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We present a secure backpropagation neural network training model (SecureBP), which allows a neural network to be trained
while retaining the confidentiality of the training data, based on the homomorphic encryption scheme. We make two con-
tributions. The first one is to introduce a method to find a more accurate and numerically stable polynomial approximation of
functions in a certain interval. The second one is to find a strategy of refreshing ciphertext during training, which keeps the order

of magnitude of noise at O(e®).

1. Introduction

Driven by massive amounts of data and the high scalability,
versatility, and high efficiency of cloud computing, modern
machine learning (ML) has been widely used in many fields,
including health care, military, and finance [1-3]. These
fields often contain a large amount of sensitive data, so how
to protect the data privacy while using them becomes a very
important problem. At present, there exist various ap-
proaches that can be used to protect data privacy. Differ-
ential privacy (DP), secure multiparty computation (MPC),
and homomorphic encryption (HE) are the most widely
used methods for this problem.

DP allows one to control the amount of information
leaked from an individual record in a dataset. By using DP,
one can ensure privacy for any entity whose information is
contained in the dataset as well as to create models that do
not leak this information about the data they were trained
on. Therefore, DP is mainly used in the training process.
However, we are more concerned about how to use cryp-
tographic methods to protect data privacy.

Most MPC methods establish a communication protocol
among the parties involved such that if the parties follow the
protocol, then they will end with the desired results while
protecting the security and privacy of their respective assets

[4-7]. However, due to the large scale of data used in
machine learning, the communication cost of MPC is very
high.

HE is also another major method to protect data privacy,
which allows us to perform certain arithmetic operations on
encrypted data without decryption. Fully homomorphic
encryption (FHE) (it allows us to perform arbitrarily
complex and efficiently computable evaluations over
encrypted data without decrypting them) was originally
introduced by Rivest et al. in 1978 [8]. But it had been an
open problem until Gentry presented the first plausible
candidate FHE construction based on ideal lattices in 2009
[9]. Since then, a series of works [10-15] have been proposed
to improve the security assumptions and efficiency of FHE,
following Gentry’s blueprint. Currently, some public li-
braries are available (Table 1), namely, HELib [16] and SEAL
[17] based on BGV scheme [18] and FHEW [19] and TFHE
[20, 21] based on GSW scheme [14] and HEAAN [22] based
on CKKS scheme [23]. The BGV-based schemes can handle
a lot of bits at the same time, so they can pack and batch
many operations in the SIMD manner. However, the set of
operations that are efficient with BGV depends on the
section of the parameter set. The GSW-based schemes can
use Boolean circuits to deal with nonlinear operations
quickly, but their computational efficiency of arithmetic
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TaBLE 1: Outstanding performance of HE schemes.

Based scheme Library Plaintext Operation

BGV HEIlib, SEAL Finite field packing Addition, multiplication
GSW FHEW, TFHE Binary string Look-up table
CKKS HEAAN Real/complex packing numbers Fixed-point arithmetic

operations is relatively low. The CKKS-based schemes can
perform efficient approximate arithmetic operations on
encrypted data by introducing a novel encoding technique
and a fast rescale operation, but they cannot deal with
nonpolynomial operations. It is widely used in machine
learning due to its high efficiency in arithmetic operations
(which is why we chose the CKKS scheme for our SecureBP
model).

Two important use-cases for machine learning models
are predictions-as-a-service (Paa$S) setting and training-as-a-
service (TaaS) setting. In the PaaS setting, a large organi-
zation (or the cloud) uses its proprietary data to train
machine learning models. The organization now hopes to
monetize the model by deploying services that allow users to
upload their inputs and receive predictions for price. In the
Taa$S setting, the organization makes profits by deploying
services that allow users to upload their encrypted inputs
and receive the encrypted machine learning model. More-
over, in this setting, since the process of training an
encrypted model is time- and resource-consuming, the
techniques and proprietary tools for the training algorithm
are often considered critical intellectual property by its
owner, who is typically not willing to share them.

BP [24] is one of the most classical and widely used
neural network models. It is more powerful than linear
regression and logistic regression models. Moreover, the BP
network already has the basic module of deep neural net-
work (DNN); in other words, the BP network is the cor-
nerstone of DNN. Therefore, when we study the data privacy
protection of machine learning, it is appropriate to take the
BP network model as the breakthrough point.

L.1. Our Contributions. In this paper, we present a secure
backpropagation neural network model (SecureBP) based
on HE. In this model, in a setup phase, the data owner (user)
encrypts his data and sends them to the cloud. In the
computation phase, the cloud can train the model on the
encrypted data without learning any information beyond the
ciphertext of data. Technically, we have two main contri-
butions: a more accurate polynomial approximation tech-
nique and a lightweight interactive scheme to refresh
ciphertexts during training.

We focus on the TaaS setting in this paper and we choose
HE (i.e., CKKS scheme) as the method to protect user’s data.
For clarity, let us review the technical challenges and dif-
ficulties of using HE for the BP network in the TaaS$ setting.
Firstly, in the BP network, each node is activated before
output by an activation function, which is usually selected by
nonpolynomial functions, such as sigmoid, tanget-hyper-
bolic (tanh), or rectified linear unit (ReLU). However, most
existing HE schemes is that they only support polynomial

arithmetic operations. The evaluation of the activation
function is an obstacle for the homomorphic implementa-
tion of the BP network since it cannot be expressed as a
polynomial. In addition, in order to ensure security, HE
introduces some noise in encryption, and the noise increases
as the homomorphic computation proceeds. When the noise
reaches a certain threshold, the decryption error will occur.
Therefore, in view of the abovementioned technical difhi-
culties, we make the following two contributions.

The first contribution is that by using Chebyshev
polynomials (in fact, several studies have suggested this
approach, but none have examined it in detail), we introduce
a more accurate polynomial approximation L,(x) of sig-
moid function for a certain interval. Compared with Taylor
polynomials, our method causes more similarities of de-
rivatives with the sigmoid function (see Section 3.1).

The second contribution is that we propose a lightweight
interaction protocol, which is a novel strategy to refresh
ciphertext during training. The trivial way to deal with the
growing noise is bootstrapping. However, bootstrapping
comes with high computational overhead. To avoid costly
bootstrapping of HE, we present the lightweight interaction
protocol during training. By this method, on the one hand,
no technical information of the cloud training model is
provided to the user. On the other hand, the noise of weight
ciphertext grows linearly after it grows to a certain value.

Now that the basic ingredients are in place, we construct
our SecureBP network. To demonstrate the feasibility of our
SecureBP, we estimate its performance on three datasets: Iris
dataset, Diabetes dataset and Sonar dataset (see Table 2),
which are from the University of California at Irvine (UCI)
dataset repository [25].

1.2. Related Work. Before the current work, there have been
some researches on privacy-preserving machine learning
algorithm [26-29]. These papers propose solutions based on
MPC and HE techniques (see Table 3), but they appear to
incur some problems.

Privacy-preserving machine learning via MPC provides
a promising solution by allowing different parties to train
various models on their joint data without revealing any
information beyond the outcome. They require interactivity
between the party that holds the data and the party that
performs the blind classification. Even though practical
performances of MPC-based solutions have been impressive
compared to FHE-based solutions, they incur other issues
such as network latency and high bandwidth usage. Because
of these downsides, HE-based solutions seem more scalable
for real-life applications.

Privacy-preserving machine learning based on HE is
more challenging. As we mentioned before, the standard
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TaBLE 2: Performance of SecureBP in time and accuracy.

Dataset Accuracy (%) Time (ms)
Iris 79.6 7632.7
Diabetes 65.1 9962.1
Sonar 82.23 2.0993 x 10°

activation function is a challenge in applying HE to the
machine learning algorithm. Faced with this challenge, Ran
Gilad-Bachrach et al. [30] propose a solution (CryptoNets)
where instead of standard activation function, they use a
square function. Homomorphic computation depends on
the total number of levels required to implement the
network and results in a relatively high computational
overhead which bounds CryptoNets practicability in re-
source-limited settings where the data owners have severe
computational constraints. Moreover, the inherent limi-
tation of most existing HE constructions is that they only
support the arithmetic operations over modular spaces.
Therefore, their approaches required the size of parameter
for real number operations (i.e., no modular reduction over
plaintext space) which is too large to be practically
implemented.

1.3. Organization. Section 2 briefly introduces some nota-
tions and reviews the framework of BP. Section 3 describes
our SecureBP model. In section 4, we estimate our model
and discuss the estimation and implementation results.

2. Preliminaries

2.1. Notations. All logarithms are base 2 unless otherwise
indicated. During homomorphic operations, we use ® to
denote the multiplication between ciphertexts; @ denotes the
addition between ciphertexts and ©® denotes the scalar
multiplication between a constant and a ciphertext.

Next, we introduce some signs used in the BP network:

() {xi}ic () the input value.

(ii) { ]}] , the output value of hidden layer.
(iii) {Ogfxe(ap the output value of output layer.
(iv) {W } , the weight connecting the hidden-

layer j- gy ﬁe and the input-layer i-th node.

) (w9 ]}ke (d),je[z)> the weight connecting the output-
layer k-th node and the hidden-layer j-th node.

(vi) { } jeter the bias of hidden-layer j-th node.
(vii) {b§ }kE a> the bias of output-layer k-th node.
(viil) L, the learning rate.

2.2. The Framework of BP. In this subsection, we give a brief
review of one version of the BP network. For ease of pre-
sentation, in this paper, we only consider a neural network of
three layers (input layer, hidden layer, output layer). It is
trivial to extend our work to the multilayers network. This
configuration can be seen from Figure 1.

In the BP algorithm, there is one forward phase and one
backward phase during each iteration. Then, the whole BP
algorithm can be described in Algorithm 1.

The forward phase starts from the input layer and ap-
proaches the output layer. During this phase, weighted sums
and activations are computed for every node in each layer
using the activation function, which is normally the sigmoid
function. That is,

= 0<Z W?l Sx; + bl; >, (in hidden layer),
i=1

Ok = "<ing'

j=1

(1)
h;+ bko>, (in output layer).

The backward phase starts from the output layer and
descends toward the bottom layer (i.e., the input layer) of the
network to compute gradients. Finally, we need to update
the weights ({ }{WO }) and biases ({bh} {b9}) using the
computed gradlents The rules for updatlng are as follows:

Wk,] = Wk,] + l . Errk . h]>
bg = bko +1. Errg,
- h 2)
W]-’i = iji +l-Errj - X
b gk h
bj = bj +l~Errj,
where Errl = O, (1 - 0Op) (t; — Op) and
Err;’ =h;(1- hj)zkErrkOWkO)j

3. SecureBP Based on CKKS Scheme

In this section, we explain how to securely train the BP
network model using the CKKS scheme.

3.1. A Decent Polynomial Approximation. In the preceding
update formula, except for activation function inside neu-
rons (i.e., sigmoid function o(x) = (1/1 +e %)), all other
operations in BP network are addition and multiplication, so
they can be implemented over encrypted data. One limi-
tation of the existing HE schemes is that they only support
polynomial arithmetic operations. The evaluation of the
activation function is an obstacle for the implementation of
the BP network since it cannot be expressed as a polynomial.
Hence, in order to operate a complete BP neural network
over encrypted data, we replace the sigmoid function with
polynomial approximations that are compatible with
practical HE schemes.

Actually, the Taylor polynomials
T;(x)= Zk o (f ) (0)/k!)x* have been commonly used for
approximation of the sigmoid function [32-34]:

1 1 1 1
0(X)=-4-x——x +—x + O(x7). (3)

2 4 48 480
However, we observe that the size of error grows rapidly
as |x| increases. Besides, in order to guarantee the accuracy
of the BP network, we have to use a higher degree Taylor
polynomial, but it requires too many homomorphic
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TaBLE 3: Research works in secure machine learning.
Setting Prior work Problem Activation Technique
DeepSecure [29] DNN ReLU, RelU, sigmoid MPC
Gazelle [27] CNN ReLU MPC, HE
PaaS CryptoNets [30] CNN Square function SHE
FHE-DiNN [26] DiNN Sign FHE
Chameleon [28] DNN ReLU, sigmoid MPC, HE
SecureML [27] LR, NN Sigmoid, Softmax MPC
Taa$ [31] LR Least squares approximation HE
Ours BP L;(x) HE

Backward process

——=

Data

Matrix-vector multiplication |—P| Activation function

| Matrix-vector multiplication |—P| Activation function

Input Hidden layer

Output layer

Forward process

FIGURE 1: A conventional BP network with three layers.

(2) Repeat

(5) Adjust the weights and biases

(1) Set the number of iterations, weight matrix W, and bias vector b to small random initial values.

(3) Forward phase: beginning with the input nodes, compute weighted sums, and activation function for all nodes;
(4) Backward phase: compute gradients for all nodes starting from output nodes;

(6) until the number of iterations reaches a preset value.

ArLGoriTHM 1: The conventional BP training algorithm.

multiplications to be practically implemented. In summary,
although Taylor expansions are more convenient and easier
to compute, the accuracy of estimation is not always con-
sistent because it is a local approximation near a certain
point. Therefore, we introduce another good candidate for
approximation with better approximation ability to replace
the sigmoid function: optimal and uniform polynomial
approximation of o(x). Not exactly, we find a polynomial
function L, (x) that minimizes the absolute value of the error
between ¢ (x) and L, (x) within a given interval.

The Chebyshev polynomials are used to construct the
optimal uniform approximation polynomials L, (x). The
Chebyshev polynomials C, (x) can be simply defined as for
-1<x<1,

C, (x) =cos(n- arccosx), n=0,1,2,... (4)

From the abovementioned definition, we can get two
important properties of Chebyshev polynomials. The first
property is that we can get a recurrence of Chebyshev
polynomials

Cy(x) =1, C (x) =x, C,yy (x) =2xC,(x) - C,_, (x). The
second is that the Chebyshev polynomial C,(x) has n
different zero points on the interval [-1,1], ie,
x; = cos((2k — 1)n/2n), k = 1,2, ...,n. Then, we can get the
important theorem in polynomial approximation as
follows.

Theorem 1. Let f (x) be a continuous differentiable function
on interval [-1,1], L,(x) be the interpolation polynomial,
and its interpolation nodes x,---,x, are the zero points of
Chebychev polynomial C,,, (x), then L, (x) is the optimal
and uniform polynomial approximation of f (x) on interval
[-1,1], and

max_; .| f (x) - L, (x)] < m”f(nn) (x)"m. (5)

Proof
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}llgyf(x) -L,(x)|< ﬁ”f("ﬂ) (x)“oo|l(x = xo) (x=x7) ... (x=x,)|
T (n+ 1)'”f " )"00 prCne ©
2”(n + 1)'||f(n+l)( )”
Therefore, it can be seen from .the aboveme.ntiorlled Step 3. Cloud computes
ot at o i e ot o syt T

set the interpolation node of L,(x) as the zero point of
Chebychev polynomial C,,,, (x). For the function f(x) on
an interval [a,b], we can take the transformation
x=((a+bl2)+ (b—al2))t, —1<t<]1, ) that
f(x)=f(((a+bl2)+ (b—-a/2))t) = g(t). Then, we can
apply Theorem 1 to g (t). We note that compared with Taylor
polynomials, this method of polynomial approximation
causes more similarities of derivatives with the sigmoid
function, which might help produce a better model (see
Figure 2).

To justify our claims, we compare the accuracy of the
produced BP neural network model using different activa-
tion functions with the Iris dataset (see Table 4). O

3.2. Our SecureBP Network Model. In this section, we explain
how to perform the lightweight interactive protocol to re-
fresh ciphertexts during the training phase. To be precise, we
explicitly describe a full pipeline of the evaluation of the
SecureBP. We adopt the same assumptions as in the previous
section so that the whole database can be encrypted in m
ciphertexts.

First of all, in the setup phase, the user encrypts the
dataset and sends them to the public cloud. The cloud
randomly initializes weights and biases (in the initialization
phase, the weights and biases can be plaintexts). Next, we
introduce the iterative computing phase carried out in the
cloud. The goal of each iteration is to update the weights and
biases. Note that ct.x; (ct. h], ct.op, ct.Wh >t WkJ, ct. b]
ct.by) denotes the c1phertext of x; (h, oy, Wh bh %
respectively). Each iteration consists of the followmg 51x
steps:

Step 1. Cloud starts the iterative computation (here, ctr;
(including ct.r; in (8)) represents the encryption of a small
random number, which has no effect on the correctness of

the decryption):
r_ h h
ct.hj = Z ct.Wj)i Qct.x; eact.bj,
1

~ (7)
cth;= L3(ct.h]'<) @ct.r.

Step 2. Cloud sends {ct h; to the user. After decrypting
and reencrypting them, the user sends the refresh ciphertext
{ct h ]}je o O the cloud for further computation.

ct.0, = Ly (ct.op) @ ct.ry.

Step 4. Cloud sends {ct.0; }. 4 to the user. After decrypting
and reencrypting them, the user sends the refresh ciphertext
{ct.op}kea) to the cloud for further computation.

Step 5. Cloud updates {ct.WZ’ j} and {ct.b0}:

Err} = ct.o, ® (1 - ct.o,) ® (¢ — ct.op),

ct.Wi’j = ct.Wi,jeBl@ErrZ@ct.hj, (9)

ct.by = ct.by ® 1O Err;.

Step 6. Cloud updates ct.W;’)i, ct.b;’,

h o 0
Err; = ct.hj®(1 - ct.hj) <Z Erry ct.Wk’j>,
k
(10)

ct.W?,i = ct.W?}i ®lo Err}; ®ct.x;,

ho h h
ct.bj = ct.bj EBloErrj.

In the abovementioned iteration, we choose the inter-
action between the cloud and the user to avoid high-cost
bootstrapping. We will send the outputs of the hidden layer
and the output layer to the user. After the user refreshes
these ciphertexts, they will be sent to the cloud to continue
the subsequent homomorphic operations. Because the
outputs of the hidden layer and output layer are two ci-
phertext vectors, with a total of (z +d) ciphertexts, the
communication cost between the cloud and the user is not
high. Through the analysis of noise in the later section, we
can find that the advantage of this interactive protocol makes
the noise of ciphertext in the process of homomorphic
operations grow linearly after it reaches a certain value
(ie., ).

In this process, it should also be noted that what the
cloud sends to the user is not the true outputs of the hidden
layer and output layer (ie., {ct.h};(, and {ct. ok}ke[d})
but the disturbed {ct h; } and {ct Ot} keja)- The idea is to
prevent the user from snooplng into the cloud to train the
neural network.
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Polynomial approximations for sigmoid function

6
4 4
2 4
Y
0 4
-2 4
4 4
-6 -4 -2
— o0(x)
— T;(x)
— Ls (x)

FiGure  2:  Polynomial  approximation  for  the

0 2 4 6
X
sigmoid function o(x) on the interval [-7,7].

L; (x) = 0.500781 + 0.14670403x + 0.001198x% — 0.001006x> generated by our method and T;(x) = (1/2) + (1/4)x — (1/4)x — (1/48)x°

generated by Taylor expansions.

TaBLE 4: Accuracy of different activation functions on the Iris dataset.

Iteration 50 (%) 100 (%) 150 (%) 180 (%) 200 (%) 220 (%) 240 (%) 260 (%) 280 (%) 300 (%)
o(x) 33.33 33.33 40.67 74.67 83.33 84.00 84.00 84.67 82.67 85.33
T, (x) 33.33 33.33 40.67 51.33 81.33 84.00 84.00 84.00 82.67 82.67
Ly (x) 33.33 33.33 4533 54.67 58.00 88.00 90.00 90.00 91.30 91.30

4. Estimation

In this section, we show the parameters setting for BP and
the CKKS scheme and analyze the estimation and imple-
mentation results.

4.1. Parameters Setting and Estimation Results

4.1.1. Parameters for the BP Algorithm. In the BP model, the
numbers of input nodes and output nodes are determined,
while the number of hidden nodes is uncertain. In fact, the
number of hidden nodes has an impact on the performance
of the neural network; an empirical formula can determine
the number of hidden nodes as follows:

z=Vd+m+a, (11)

where z is the number of hidden nodes, d is the number of
input nodes, m is the output nodes, and a is an adjustment
constant between 0 and 10.

Weights are initialized as uniformly random values in
the range [-0.1,0.1]. Feature values in each dataset are
normalized between 0 and 1. The architecture and training
parameters used in our secure neural network model are
shown in Table 5, and we choose Iris, Diabetes, and Sonar
datasets, which are from the University of California at
Irvine (UCI) dataset repository [25]. The conventional BP

learning network has the same parameters as the SecureBP
algorithm.

4.1.2. Parameters for the CKKS Scheme. In the CKKS
scheme, the coefficients of error polynomials are sampled
from the discrete Gaussian distribution of standard devia-
tion o = 3.2 and a secret key is chosen randomly from the set
of signed binary polynomials with the Hamming weight
h = 64. We used the estimator of Albrecht et al. [35] to
guarantee that the proposed parameter sets achieve at least
80 bit security level against the known attacks against the
LWE problem.

We analyze the growth of noises in some ciphertexts, and
Table 6 provides theoretical upper bounds on the noise
growth during homomorphic operations. Note that e de-
notes the noise of a fresh ciphertext.

As can be seen from Table 6, the maximum size of
growth noise during homomorphic operations is O (e>*)
[36]; we choose parameters as follows: L=10, N=2",
loggq = 55, and [logQ;] = 611.

4.2. Estimation and Implementation Results. By carefully
analyzing our SecureBP protocol, we calculate the number of
homomorphic operations required for each step in the
course of an iteration (as shown in Table 7).
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TaBLE 5: Datasets and parameters in BP.

Dataset Number of samples Number of features Number of hidden nodes Learning rate
Iris 150 4 4 0.6
Diabetes 768 8 5 0.5
Sonar 208 60 9 0.4

TaBLE 6: Noise growth during the SecureBP process.

The ciphertext

The 1st iteration

The i-th iteration (i = 2,3,4,...)

ct.h; e’ +0(e) (GG =1)/2)° -2 +0(e?)
ct.o; e +0(e) (i-1)°-e®+0(e)
WS, et +0(e?) i-et+0(e?)
ct.Wf’j e +0(e) (G- ((+1))/2)-e +0O(e%)
TaBLE 7: Number of operations in SecureBP.
Step Enc Dec Mult CMult Add
1 0 0 mz + 2z 0 mz+z
2 z z 0 0 0
3 0 0 zd +2d 0 zd+d
4 d d 0 0 0
5 0 0 3d 4d 5d
6 0 0 (d+3)z 3z (d+2)z
Total z+d z+d mz +2zd +5(d +z) 4d + 3z mz + 2zd + 6d + 3zd
TaBLE 8: Homomorphic training of SecureBP.
Dataset Enc (ms) Dec (ms) Mult (ms) CMult (ms) Add (ms) Total (ms)
Iris 522 39 6068 836 167.7 7632.7
Diabetes 812 46.8 7872 1012 219.3 9962.1
Sonar 4060 78 20992 1716 580.5 2.0993 x 10°
TasLE 9: Comparison of encrypted/unencrypted BP algorithm.
Dataset Number of iterations Error rate of SecureBP (%) Error rate of conventional BP (%)
Iris 10 66.67 66.67
23 20.40 16.67
. 10 36.97 34.71
Diabetes 23 34.90 33.89
Sonar 10 21.45 18.26
23 17.77 17.21

From Table 7, we can see that the computation time
required for an iteration is only related to the number of
nodes in each layer. Combined with the time required for
each homomorphic operation in [36], we give the estimation
time (Table 8) of training SecureBP network homo-
morphically with Iris, Diabetes, and Sonar datasets, and
Table 9 shows the accuracy comparison of encrypted and
unencrypted BP networks in the case of 10 and 23 iterations,
respectively.

4.3. Efficiency and Accuracy Discussion. There are still some
limitations in the application of our evaluation model to an
arbitrary dataset. On the one hand, the HE system is a
promising solution for the privacy issue, but its efficiency in
real applications remains an open question. In other words,
one constraint in our approach is that the efficiency of the
SecureBP network is limited by the efficiency of homo-
morphic operations. On the other hand, we find that the
accuracy of the network model is positively correlated with



the degree of approximate polynomials. However, the higher
degree of polynomial means the more homomorphic op-
erations, the more time it takes to train the network model.
Therefore, we need the tradeoff between the training effi-
ciency and accuracy of the model.

5. Conclusion and Future Work

In this paper, we present a SecureBP network model for
homomorphic training. We introduce two methods, more
accuracy polynomial approximation and lightweight inter-
active protocol, to solve the difficulties encountered when
the CKKS scheme is used to protect the BP network, and our
method has a good experimental performance on different
datasets. For future work, we plan to explore how to train the
deep neural network and the convolutional neural network
effectively on encrypted data in a training-as-a-service
setting.
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