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ABSTRACT
Similarity query processing has been an active research topic for
several decades. It is an essential procedure in a wide range of
applications. Recently, embedding and auto-encoding methods
as well as pre-trained models have gained popularity. They
basically deal with high-dimensional data, and this trend brings
new opportunities and challenges to similarity query process-
ing for high-dimensional data. Meanwhile, new techniques
have emerged to tackle this long-standing problem theoreti-
cally and empirically. In this tutorial, we summarize existing
solutions, especially recent advancements from both database
(DB) and machine learning (ML) communities, and analyze
their strengths and weaknesses. We review exact and approx-
imate methods such as cover tree, locality sensitive hashing,
product quantization, and proximity graphs. We also discuss
the selectivity estimation problem and show how researchers
are bringing in state-of-the-art ML techniques to address the
problem. By highlighting the strong connections between DB
and ML, we hope that this tutorial provides an impetus towards
new ML for DB solutions and vice versa.
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1. INTRODUCTION
Similarity query processing is a fundamental and essential

procedure in applications of many domains, including databases
(DB), machine learning (ML), multimedia, and computer vision.
Numerous query processing algorithms have been proposed in
the last few decades to deal with various kinds of data types and
similarity functions. With the proliferation of deep learning,
especially the prevalence of embedding, auto-encoders, and pre-
trained models, similarity query processing for high-dimensional
data become increasingly important. They benefit DB applica-
tions such as entity matching [48] and concept linking [12] as
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well as ML applications such as multimedia retrieval [7] and
adversarial machine learning [1]. In ML community, similarity
queries are also studied under the name of k nearest neighbors
(k-NN) queries. k-NN itself is also an instance-based learning
method for classification and regression.

Our tutorial discusses the importance of similarity query
processing for high-dimensional data in a wide range of appli-
cations. We summarize existing solutions, especially recent
advancements from both DB and ML communities, thereby
highlighting the interplay between modern DB and ML tech-
nologies. We review technical challenges and various exact and
approximate algorithms, including cover tree, locality sensitive
hashing, product quantization, and proximity graphs. More-
over, we discuss the selectivity estimation of similarity query
processing for high-dimensional data, and show how researchers
are bringing in state-of-the-art ML techniques to address this
problem. We expect that this tutorial will provide an impetus
towards new ML for DB solutions and vice versa.
Scope. This tutorial aims to provide a comprehensive review of
similarity query processing methods for high-dimensional data.
In particular, we explain the reason why processing similarity
queries for high-dimensional data – in contrast to sets and strings
(see [45, 73] for survey) which have been extensively studied by
the DB community – has become more important. We introduce
various existing algorithms and analyze their strengths and
weaknesses. We highlight the connections between DB and ML
as well as their foci on this topic. Finally, we outline future
research directions and open problems to be solved.
Intended Length and Target Audience. This is a three-
hour tutorial targeting researchers, developers, and practition-
ers interested in managing high-dimensional data and ML for
DB topics. We assume that the target audience is generally fa-
miliar with basic DB and ML terms, but there is no requirement
for prior knowledge of specific algorithms.
Related Tutorials in Recent Years. This will be the
first time that the authors present a tutorial on similarity
query processing for high-dimensional data. To the best of
our knowledge, two topically related tutorials were presented
at recent data-centric research venues (WISE 2017 [55] and
CIKM 2019 [40]). These two tutorials target sets and strings,
respectively, whose query processing methods are substantially
different from those will be presented at this tutorial.

2. TUTORIAL OUTLINE
This tutorial consists of five parts. The first part motivates

the need for similarity query processing on high-dimensional
data and introduces basic concepts. The second and third
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parts delve into query processing algorithms. The fourth part
covers selectivity estimation algorithms. The fifth part discusses
miscellaneous issues such as the use of similarity queries with
respect to the entire workflow of real applications, deployment
in a distributed environment, as well as future directions and
open problems.

2.1 Background and Preliminaries
In the introductory part of the tutorial, we first introduce

applications and explains the increasing importance of simi-
larity query processing on high-dimensional data, as stated in
Section 1. Then we describe basic concepts: (1) data models
and the way of which we convert raw data (text, images, etc.)
to high-dimensional data; (2) similarity/distance functions,
mainly Hamming distance for binary vectors, Euclidean dis-
tance, cosine similarity (angular distance), and inner product
for real-valued vectors; (3) query types, i.e., search and join
queries, or thresholded and k-NN queries, depending on the
dimension of categorization; (4) a summary of the solutions
that will be elaborated in the rest of the tutorial.

2.2 Exact Query Processing
Exact query processing methods aim to find all the results

that satisfy the similarity constraint. Researchers are interested
in this type of solutions as it does not pose any uncertainty
to the pipelines that apply similarity query processing as a
component. It also simplifies empirical comparison as only speed
and space consumptions are key evaluation criteria. Existing
exact methods usually answer queries by looking up one or
more (overlapping or non-overlapping) regions in the original
or a transformed space. Partitioning techniques are often
employed. These methods can be classified into the following
three categories:
Tree-basedMethods. These methods partition the database
in a hierarchical manner. To process queries, triangle inequality
is often used to determine the nodes to be traversed. Represen-
tative methods are M-tree [11] and cover tree [5, 27].
Space Partitioning Methods. These methods partition
the original space and bound the overall distance using the
distance in each subspace. Some methods require a sequential
scan of the database, e.g., the vector approximation file (VA-
file) [67]. For fast retrieval, indexing methods were proposed to
deal with Hamming distance using the pigeonhole principle [51,
54, 56, 57].
Dimensionality Reduction Methods. These methods
project objects to another space to reduce dimensionality. They
are basically early attempts that deal with the disk-resident
case and aim at reducing disk I/O [3, 52, 9, 74, 28]. Most of
them transform the original space to a 1-dimensional space and
utilize B+-trees for indexing.

2.3 Approximate Query Processing
It is commonly believed that it is hard to compute the exact

results of queries with a sub-linear cost. Instead, computing
approximate results is sufficiently useful for many practical
problems, and these solutions empirically achieve significantly
higher efficiency and scalability than exact ones [37]. Approxi-
mate methods either adopt a space-first (i.e., looking up regions
in a space) or an object-first (i.e., looking up objects directly)
strategy to find query results.
Locality SensitiveHashing. Locality sensitive hashing (LSH)
is a data-independent space-first approach with probabilistic
guarantees on the worst-case performance [26, 20, 15, 62]. It

relies on a family of hash functions that maps objects to another
space such that similar objects are mapped to the same hash
codes with higher probability than dissimilar objects. Recent de-
velopment focuses on supporting various similarity measures [46,
76] and space-efficient indexing [61, 25, 75].
Learning to Hash. Learning to hash (L2H) is a data-
dependent space-first approach that maps data to another
space by exploiting the data distribution. The main principle
of most methods in this category is to preserve the similarity
information within an appropriate neighborhood. Additional
heuristics and optimizations are often added to further reduce
the information loss caused by the mapping or increase general-
ization to unseen data. According to the optimization objective
to preserve similarity, L2H algorithms can be grouped into
pairwise-similarity persevering class [68, 22, 39], multiwise-
similarity persevering class [64, 63], and implicitly-similarity
persevering class [30, 31]. Recently, deep learning-based L2H
methods were proposed, in both supervised and unsupervised
manner [6, 41, 70, 59].
Space Partitioning Methods. This category is a space-first
approach that divides the high-dimensional space into multiple
regions. Partition is often carried out in a recursive way, so
the index is represented by a tree or a forest. Based on the
way of partitioning, there are mainly three classes of methods:
Pivoting methods divide the objects based on the distance
from the object to some (usually randomly chosen) pivots;
e.g., VP-Tree [71] and ball tree [8]. Hyperplane partitioning
methods recursively divide the space by a hyperplane with a
random direction (e.g. Annoy [4], random projection tree [14])
or an axis-aligned separating hyperplane (e.g., randomized
kd-trees [60, 49]). Compact partitioning methods either divide
the objects into clusters [18] or create possibly approximate
Voronoi partitions [50, 5] to exploit locality. Another line of
methods is based on product quantization [29, 19, 32, 24], with
the unique ability to handle billions of objects.
Neighborhood-basedMethods. This category is an object-
first approach that constructs a proximity graph where nodes
represent objects and edges connect nearby objects. The main
idea is to perform a search for similar objects atop the prox-
imity graph. They achieve top accuracy and speed trade-off
in many empirical evaluations [37, 2]. The first class of these
methods tries to build a k-NN graph [16] or its variant [37]
which records the k-NN of each object. Then nearest neighbor
search is conducted by the hill-climbing strategy. The second
class employs the navigable small world graph [43, 44], an undi-
rected graph that contains an approximation of the Delaunay
graph and has long-range links with the small world navigation
property [34]. Hierarchical navigable small world [44] is one of
the most efficient algorithms thus far and support incremental
update. Recently, learning-based methods were proposed to
provide a more efficient search path in the graph [53]. The third
class is based on the relative neighborhood graph [17], which
considers connectivity, degree, shortest path length, and index
size to achieve robust empirical performance.

2.4 Selectivity Estimation
Selectivity estimation outputs the approximate number of

objects that satisfy a selection criterion. Due to its use in
density estimation, outlier detection, image retrieval, and query
optimization, this problem has received considerable attention
recently. For example, hands-off entity matching systems [21,
13] extract paths from random forests and take each path (a
conjunction of similarity predicates over multiple attributes)
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as a blocking rule, and thus selectivity estimation is useful for
choosing the execution order of query plans that involve multiple
similarity predicates. A traditional database method is based
on importance sampling [69]. Kernel density estimation [23, 47]
tailored to this problem has also been developed. A recent trend
is to formalize it as a regression task and utilize ML methods,
e.g., by XGBoost [10], LightGBM [33], the mixture of expert
model [58], or the recursive model indexes [35]. Another line of
work targets monotonic estimation by employing deep lattice
network [72], deep regression with incremental prediction [65],
or piece-wise linear functions [66].

2.5 Future Opportunities
We highlight a number of promising directions for future

research: (1) It is interesting to explore ML models as solu-
tions to query processing (e.g., learned indexing or sampling).
(2) Whilst many existing studies target search queries, we ex-
pect that join queries will be explored, especially for the cold
start case. (3) Answering composite queries (e.g., conjunctive
queries) over multiple attributes will receive more attention,
since many DB tasks deal with multi-attribute data and the
advancement of deep learning methods will enable us to embed
more attributes for semantic comparison. (4) Another direction
is to develop efficient algorithms for query processing in data
science platforms such as Pandas/R dataframe.

3. BIOGRAPHIES OF PRESENTERS
The four presenters have rich experience in the research on

similarity queries for high-dimensional data, and have made
significant contributions [36, 37, 38, 54, 56, 57, 61, 42, 65, 66].
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