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Abstract: Sound barriers can be configured with different top edge impedance to improve their noise
control performance. In this paper, the integral equation method was used to calculate the sound field
of a barrier with various top edge impedance, and the effects of the barrier top edge impedance on
sound barrier diffraction were investigated. The simulation results showed that the noise reduction
performance of a sound barrier with a soft boundary on its top edge was larger than that with a hard
boundary, but there were some impedance values which, if assigned to the top edge boundary, would
give the sound barrier even better noise reduction performance. It was found that the sound barrier
with a good top edge impedance formed a dipole-like radiation pattern above the barrier to expand
the effective range of the shadow zone. The research discoveries reported in this paper point out the
potentials of using acoustics metamaterials or active control methods to implement the desired good
impedance on the top edge of a sound barrier for better noise reduction.
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1. Introduction

Sound barriers have been widely used for the alleviation of noise nuisance in outdoor engineering
projects, such as highways [1], railways [2], and high-rise buildings [3]. Although acoustic performance
is important for noise barriers, other factors, such as noise source visibility and barriers aesthetics, also
need to be considered when designing noise barriers, as they affect the subjective perception of the
barrier effectiveness in complex ways [4–8]. Therefore, although the acoustic performance of barriers
can be simply improved by increasing the barrier height, this cannot be done in practical applications
due to various objective and subjective factors such as cost and visual effects. To improve the acoustic
performance of a noise barrier without increasing its height, various types of barrier have been
investigated. One type of the new barriers involves modifying the shape of the barrier, and barriers
with new profiles, such as T-shape barriers, Y-shape barriers, circular barriers [9], multiple edge
barriers [10], and wave-trapping barriers [11] have been designed. Another type involves suppressing
the sound pressure at the barrier’s edge by installing an acoustically soft [12] or absorbent material [13].
These two types can be considered simultaneously when designing the barriers. Ishizuka and Fujiwara
tested the acoustic performance of noise barriers with various shapes and surface conditions using a
two-dimensional Boundary Element Method (BEM), and they found that the absorbing and soft edges
improved the efficiency of the barrier significantly and the T-shape design was the most effective in the
absorbing and the soft cases [9].
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In further improving the acoustic performance, barriers with complex shapes of top devices have
attracted a lot of attention. Monazzam and Lam investigated the acoustic performance of noise barriers
with quadratic residue diffuser (QRD) tops using a two-dimensional BEM and found that insertion
loss produced by utilizing QRD on different barrier profiles varied significantly with frequency and
was strongly dependent on the design frequency of the QRD [14]. Later, Naderzadeh et al. found
that the diffuser performance could be improved by treating the diffuser with perforated sheets either
on the top surface or inside the wells [15]. Okubo and Fujiwara investigated a noise barrier with a
Waterwheel cylinder installed on the top edge to improve the sound shielding efficiency of a noise
barrier, and the effective range was extended by assigning additional channels corresponding to the
ineffective range [16,17]. However, due to the lack of research on the effects of the top edge impedance
on the sound barrier diffraction, the barrier performance can only be improved through optimization
algorithms [18–20]. Besides, some phenomena in prior studies cannot be properly explained, such as
findings that barriers with “acoustically soft surface” edge perform better than barriers with “theoretical
soft surface” edge in certain frequency bands [21].

To further investigate the effects of top edge impedance on sound barrier diffraction, it is important
to accurately calculate the sound field around barriers with arbitrary top edge impedance.
The diffraction of waves by a thin half plane has been studied since the 18th century [22]. MacDonald [23]
formulated a mathematically rigorous solution to solve generalized diffraction problems by planes due
to cylindrical and spherical incident waves, and Hadden and Pierce proposed an analytical model
to predict the sound pressure diffracted by a wedge [24]. Besides these two conventional analytical
solutions, the geometrical theory of diffraction (GTD) developed by Keller is another commonly
used method, which shows that the source of the diffracted rays is determined by the incident rays
toward the barrier’s top and an appropriate diffraction coefficient [25]. However, these conventional
analytical methods are no longer capable of dealing with the barriers with complex profiles and complex
impedances, where the BEM becomes a good option [26,27]. The basic formulation and implementation
of a collocation BEM are well established, but they generally consume large amounts of computing
resources and errors may arise when performing discretization and solving integrations [28,29].

In addition to the commonly used BEM, Zhao et al. proposed an analytical method for calculating
sound field around a rigid noise barrier based on the integral equation method, which requires
much less computation resources than the Finite Element Method (FEM) [30]. Based on the same
principle, an analytical method for calculating sound field of a barrier with arbitrary top edge
impedance was introduced first, and then the effects of top edge impedance on sound barrier diffraction
were investigated.

2. Theory

2.1. Theoretical Equation

A two-dimensional sound field was assumed throughout this paper for less computational
resources and calculation time. It has already been shown by scale-model experiments that the
two-dimensional analyses can be applied to the three-dimensional situation when a point source and a
receiver are in the vertical plane which is perpendicular to the barrier [17]. Figure 1 shows the barrier
in the free field to be investigated and the coordinate system for solving the problem.

The barrier was assumed to be located at −L/2 < x < L/2, y < 0, where L is the thickness of the
barrier. The normal admittance of the top edge B2 was supposed to be β in the following text, where
β = 0 denotes the rigid boundary while β = ∞ denotes the soft boundary. Since the purpose of this
research was to study the effects of top edge impedance on sound barrier diffraction, barrier front and
back surfaces B1 and B3 were assumed to be rigid. A point source S was located at rs = (xs, ys) on the
left side of the barrier. The transmission loss of the barrier was supposed to be large enough to ensure
that the sound field behind the barrier was only the diffraction wave. The whole space was divided
into three subspaces as shown in Figure 1. Space I consisted of the space x < −L/2, y < 0, barrier B1,
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virtual boundary Σ1, and quadrant C1, where point S indicates the primary source. Space II consisted
of the space y > 0, barrier B2, virtual boundary Σ1, Σ2, and quadrant C2. Space III consisted of the
space x > L/2, y < 0, barrier B3, virtual boundary Σ2, and quadrant C3. The diameter of C1, C2, and C3

is infinite.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 13 
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where r’ is the position vector on the boundaries and pi(r) is the sound field generated by the point 
source, which can be obtained by pi(r) = jωρ0qsG1(r|rs). ω is the angular frequency, ρ0 is the air density, 
qs is the source strength of the point source, and G1, G2, G3 are the Green functions of the three 
subspaces, respectively. 
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Figure 1. The schematic diagram of the barrier system.

Following the Kirchhoff–Helmholtz equation, the sound field at location r in each of the three
subspaces can be described as [31]:

p(I)(r) = pi(r) +
∫

B1+Σ1+C1

[G1(r|r′)
∂p(I)(r′)
∂n′

− p(I)(r′)
∂G1(r|r′)
∂n′

]dS′, (1)

p(II)(r) =

∫
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where r′ is the position vector on the boundaries and pi(r) is the sound field generated by the point
source, which can be obtained by pi(r) = jωρ0qsG1(r|rs). ω is the angular frequency, ρ0 is the air density,
qs is the source strength of the point source, and G1, G2, G3 are the Green functions of the three
subspaces, respectively.

The sound field must satisfy the rigid boundary conditions of B1, B3, and impedance boundary
condition of B2 simultaneously, namely,
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which can be obtained with the image method [32] as:

G1(r|r′) = −
j
4
{H(1)

0 (k|r− r′|) + H(1)
0 (k|r− r′1|) + H(1)

0 (k|r− r′2|) + H(1)
0 (k|r− r′3|)}, (7)

G2(r|r′) = −
j
4
{H(1)

0 (k|r− r′|) + H(1)
0 (k|r− r′2|)}, (8)

G3(r|r′) = −
j
4
{H(1)

0 (k|r− r′|) + H(1)
0 (k|r− r′1|) + H(1)

0 (k|r− r′2|) + H(1)
0 (k|r− r′3|)}, (9)

where r′1, r′2, and r′3 are the image location of r′ regarding the corresponding boundaries.
By combining the boundary conditions and the fact that the integration over C1, C2, and C3 tends

to be zero with the infinite large diameter [31], Equations (1)–(3) becomes

p(I)(r) = jωρ0qsG1(r|rs) +

−∞∫
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It can be seen that the sound field is determined by the normal partial derivative of the sound
pressure on the boundary

∑
1, B2, and

∑
2. Using the continuation conditions on the virtual boundary∑

1 and
∑

2, namely:

p(I)(r)
∣∣∣
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and the boundary condition of B2 shown in Equation (5), it has:

−∞∫
−L/2

(Λ1(1, 1) + Λ2(1, 1)) f1(x′1)dx′1 +
L/2∫
−L/2

Λ2(1, 2) f2(x′2)dx′2 +
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L/2
Λ2(1, 3) f3(x′3)dx′3 = −pi(x1, 0), (15)

f2(x2)+ jkβ(

−∞∫
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(Λ2(3, 3) + Λ3(3, 3)) f3(x′3)dx′3 = 0, (17)

where Λi(m, n) = Gi(xm, 0|x′n, 0), f1(x′1), f2(x′2) and f3(x′3) are the normal partial derivatives of the
sound pressure on

∑
1, B2, and

∑
2, respectively.
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Although the proposed method is a rigorous solution and holds in the whole space, it is hard to
solve Equations (15)–(17) analytically, so numerical scheme was utilized. Take N1, N2, and N3 sampling
points on

∑
1, B2, and

∑
2 respectively, then the integral equation can be discretized into matrix form as

Λ111 + Λ211 Λ212 Λ213

jkβΛ221 I + jkβΛ222 jkβΛ223

Λ231 Λ232 Λ233 + Λ333




F1

F2

F3

 =


A
0
0

, (18)

where I is the identity matrix, Fi = [ fi(x′i1)∆x′i1 , fi(x′i2)∆x′i2 , . . . , fi(x′iNi)∆x′iNi ]
T,

A = −jωρ0qs[G1(x11 , 0|rs), G1(x12 , 0|rs), . . . , G1(x1N1 , 0|rs)]
T, and

Λimn =


Λi(m1, n1) Λi(m1, n2) · · · Λi(m1, nNn)

Λi(m2, n1) Λi(m2, n2) · · · Λi(m2, nNn)
...

...
. . .

...
Λi(mNm , n1) Λi(mNm , n2) · · · Λi(mNm , nNn)

. (19)

The normal partial derivative of sound pressure at all sampling points can be obtained by
solving Equation (18). Then, the sound field at any location r in the space can be calculated with
Equations (10)–(12).

2.2. Verification

Assume the normal admittance of the top edge is β = jβ0tan(kl), where β0 is the characteristic
admittance of the air, k is the wave number, and l = 0.1715 m. It is the equivalent acoustic impedance at
the opening of a quarter-wave resonator (a well with closed end) resonating at 500 Hz. Fifty sampling
points at equal intervals were used on B2, and 800 sampling points at exponential intervals were used
on Σ1 and Σ2, respectively. The farthest sampling point was about 10 m from the barrier and the
maximum sampling point interval was about 0.034 m. The point source was located at S (−5, −5)
m. Figure 2 shows the calculated sound pressure level (SPL) at two receiving points at R1 (2, −2) m
and R2 (4, 2) m as well as the results from the commercial software (COMSOL Multiphysics v5.4).
The agreement of the two methods at both R1 and R2 was reasonably good, which verifies the reliability
of the proposed method.
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Figure 2. The sound pressure level (SPL) curve at (a) R1 and (b) R2 with different top edge impedance.

The SPL curves at two receiving points when the top edge was a rigid boundary (by setting
β = 10−10) or a soft boundary (by setting β = 1010) are also given in Figure 2 for comparison. The results
of setting the top edge to a rigid boundary or a soft boundary in the COMSOL simulations are consistent
with the results of setting β = 10−10 or β = 1010 in the proposed method, respectively. Thus, it was
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reasonable to set β = 10−10 to simulate the rigid boundary and to set β = 1010 to simulate the soft
boundary. The same settings were used for the simulation below. It can be seen that the SPL with
β = jβ0tan(kl) was smaller than that of soft boundary in certain frequency band and greater than that of
rigid boundary in another frequency band. Because β = jβ0 tan(kl) was the normal admittance at the
opening of a well, Figure 2 implies that although installing a well on top edge can improve the barrier
performance in a specific frequency band, it reduces the performance in another frequency band below
the effective frequency. This is consistent with the phenomenon observed in prior research [21].

3. The Effects of Top Edge Impedance on Sound Barrier Diffraction

3.1. The Good and Bad Top Edge Impedance

The sound power level (SWL) flowing from Σ2 to Space III as a function of the top edge impedance
at 500 Hz and 1000 Hz is shown in Figure 3. Negative acoustic resistance (real part of the impedance)
implies the introduction of additional acoustic energy, so it was not drawn in the figure. It can be found
from the figure that the acoustic resistance corresponding to the peak and valley of the SWL was 0 at
these two frequencies, indicating that the “good impedance” and “bad impedance,” which represent
the top edge boundary condition corresponding to the minimum and maximum sound power flowing
from Σ2 to Space III, were both pure acoustic reactance. Therefore, the top edge resistance was set to 0
in this section, i.e., β was assumed to be an imaginary number.
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Figure 4a,b shows the SPL as a function of the imaginary part of top edge admittance at two
receiving points at 500 Hz. It can be observed that there were multiple β superior to the soft boundary
or worse than the rigid boundary. The good and bad acoustic admittances regarding the sound
power flowing from Σ2 to Space III are shown in Figure 4c at 10 frequencies from 100 Hz to 1000 Hz,
and corresponding SWLs flowing into the sound shadow zone are shown in Figure 4d. The good and
bad admittance values decreased with increasing frequency in general, and the same occurred with the
sound power flowing into the sound shadow zone.
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Figure 4. The good and bad top edge impedance: (a) The SPL curve at R1 as a function of the imaginary
part of top edge admittance; (b) the SPL curve at R2 as a function of the imaginary part of top edge
admittance; (c) the good and bad top edge impedance regarding the sound power flowing from Σ2 to
Space III; (d) the SWL flowing into the sound shadow zone under different boundary conditions.

3.2. Mechanism Analysis

The good (β = 27.3jβ0) and bad (β = 11.2jβ0) impedances of 500 Hz were used as examples to
explain the mechanisms. The normal sound intensity, sound pressure amplitude, normal particle
velocity amplitude, and the phase difference between the sound pressure and normal particle velocity
at each point on the boundary between the sound shadow zone and the sound bright zone under
different boundary conditions are shown in Figure 5. For the rigid case, the sound energy in the sound
shadow area mainly flowed from the area within 0.1 m from the top edge because the normal sound
intensity at x = 0.1 m was only 1% near the top edge. The effects of different top edge impedance on
the diffraction sound field were mainly reflected in the change of the normal sound intensity in this
area. The sound pressure in the range of x < 0.1 m for the soft boundary was much less than that
for the rigid boundary even though their normal particle velocities were similar, indicating that the
control mechanism of the soft boundary was to reduce the sound pressure near the top edge of the
barrier. For the bad top edge impedance, both the sound pressure and normal particle velocity were
large with a small phase difference, resulting in the largest normal sound intensity. For the good top
edge impedance, the normal particle velocity increased but was out of phase (phase difference is larger
than π/2) with the sound pressure in the range of x < 0.005, as evidenced by the negative normal sound
intensity in this range. The sound pressure in the range of x > 0.005 m was much less than that of the
soft case, so normal sound intensity was the minimum.
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Figure 5. The physical quantity on the boundary between the sound shadow zone and the sound bright
zone: (a) The normal sound intensity; (b) the sound pressure amplitude; (c) the normal particle velocity
amplitude; (d) the phase difference between the sound pressure and normal particle velocity, where
bad impedance is for β = 11.2jβ0, rigid boundary is for β = 10−10, good impedance is for β = 27.3jβ0 and
soft boundary is for β = 1010.

The SPL and sound intensity distribution near the top edge of the barrier under the four boundary
conditions are shown in Figure 6. In Figure 6a,b, when the bad top edge impedance was used,
the pressure increased significantly at the top edge and the direction of the sound intensity was nearly
parallel to the top edge, which can increase the diffracted sound according to the GTD theory [25].
In Figure 6c, the incident sound wave interfered with the secondary sound wave generated at the top
edge, forming a dipole-like radiation above the barrier, so the sound energy radiating into the sound
shadow zone was reduced. Compared with the soft boundary sound field shown in Figure 6d, the size
of the low sound pressure range at the top of the barrier with the good top edge impedance was larger.
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Figure 6. The SPL and sound intensity distribution at 500 Hz near the top edge of the barrier with (a)
bad impedance (β = 11.2jβ0), (b) rigid boundary (β = 10−10), (c) good impedance (β = 27.3jβ0) and (d)
soft boundary (β = 1010).

4. A Simple Example of Implementing the Good Top Edge Impedance

According to Section 3, the good top edge impedance can be pure reactance, which can be obtained
by digging a well on top of the barrier in a specific frequency band because the theoretical normal
admittance at the opening of a well with a depth of l is β = jβ0tan(kl). A model was established in
COMSOL, in which the depth of the well was 0.1684 m, and the opening size was consistent with the
barrier thickness, which was 0.01 m. The maximum element size was set to 0.048 m, which corresponds
to the one-seventh of the acoustic wavelength at 1 kHz, and the minimum element size was set to
one-thirtieth the thickness of the barrier.

The SWL flowing from Σ2 to Space III calculated by COMSOL simulation is shown in Figure 7a.
The peak value appeared at 482 Hz, and the valley value appeared at 500 Hz. Figure 7b shows the
comparison of the equivalent normal admittance at the opening of the well at the peak and valley
frequencies of the SWL curve and the theoretical bad and good top edge impedance. Although
the equivalent normal admittance at the opening of the well was not uniform, the results at most
measurement points agreed roughly with that from the theoretical values.

The sound pressure level and sound intensity distribution near the top edge of the barrier at 482
Hz and 500 Hz are shown in Figure 8a,b, respectively. It can be seen from Figure 8 that the reflected
sound wave of the well interfered constructively with the incident wave at 482 Hz, while it interfered
destructively with the incident wave at 500 Hz. These two sound field distributions shown in Figure 8
are basically the same as those in Figure 6a,c, indicating that the mechanisms at these two frequencies
can be equivalent to obtaining a bad top edge impedance or a good top edge impedance. This shows
that the bad and the good top edge impedance can be realized in a certain frequency by digging a well
at the top of the barrier.
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According to the above results and discussion, the system with good impedance can have
larger noise control performance than that with soft boundary. However, the required impedance is
frequency-dependent, which is difficult to implement in broadband control with passive materials.
Active noise control (ANC) techniques have been used to realize broadband soft boundary near the top
edge of the barrier by minimizing the near-field sound pressure [33], and the feasibility of controlling
the near-field acoustic impedance has been demonstrated [34]. Future research can use the ANC
system to achieve the designed impedance in a broadband frequency range.

5. Conclusions

This paper investigated the effects of the top edge impedance on the noise reduction performance
of sound barriers by calculating sound field of a sound barrier with the integral equation method.
The accuracy of the integral equation method was validated first using the COMSOL simulations.
It was found that there some impedance values existed for the top edge of a barrier which could have
better noise reduction performance than that with a soft boundary. The control mechanism of these
good top edge impedances was a dipole-like radiation pattern which formed above the barrier, where
the normal particle velocity was out of phase with the sound pressure, so the normal sound intensity
was the minimum and the size of the low sound pressure zone became larger. The good top edge
impedance can be realized in a certain frequency by digging a well at the top of the barrier. Future
research includes establishing the relationship between the good top edge impedance and the incident
sound wave and the target area, seeking a more intuitive explanation of the mechanisms, and using
acoustics metamaterials or active control methods to implement the desired impedance on the top
edge of a sound barrier for better noise reduction.
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