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Parametrized quantum circuits (PQCs) have been broadly used as a hybrid quantum-classical machine learning
scheme to accomplish generative tasks. However, whether PQCs have better expressive power than classical
generative neural networks, such as restricted or deep Boltzmann machines, remains an open issue. In this paper,
we prove that PQCs with a simple structure already outperform any classical neural network for generative tasks,
unless the polynomial hierarchy collapses. Our proof builds on known results from tensor networks and quantum
circuits (in particular, instantaneous quantum polynomial circuits). In addition, PQCs equipped with ancillary
qubits for postselection may possess expressive power stronger than that of those without postselection. We
employ them as an application for Bayesian learning, since it is possible to learn prior probabilities rather than
assuming they are known. We expect that it will find many more applications in semisupervised learning where
prior distributions are normally assumed to be unknown. Lastly, we conduct several numerical experiments using
the Rigetti Forest platform to demonstrate the performance of the proposed Bayesian quantum circuit.
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I. INTRODUCTION

There is a ubiquitous belief called “quantum supremacy”
that quantum computers will outperform classical comput-
ers [1]. One characterization of quantum supremacy relates
to the expressive power of quantum computing, since the
probability distribution generated by quantum devices may
not, classically, be sampled efficiently and accurately. Two
leading proposals toward this goal are Boson sampling [2] and
instantaneous quantum polynomial time (IQP) circuits [3].

The system noise in current implementations is known
to be the major roadblock. Widespread explorations have
been conducted to verify whether noisy intermediate-scale
quantum (NISQ) [4] devices can also outperform classical
computers for specific computation tasks. It has been proven
that, with system noise, quantum supremacy will disappear in
Boson sampling [5] but will remain in IQP [6]. In addition
to demonstrating the existence of quantum supremacy, the
issue of finding practical applications for NISQ devices with
quantum advantages needs to be further studied.

Quantum machine learning problems have been popular-
ized because of their ability to efficiently process tremendous
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amounts of data. They are also exploited as alternative
testbeds to confirm quantum advantages [7–13]. By employ-
ing NISQ devices, potential quantum advantages may still
be retained, benefiting from the fact that most statistical
machine learning algorithms are robust to system noise; i.e.,
the noise contained in the input data and models has a negli-
gible influence on the final results [14,15].

Expressive power is a central topic in classical machine
learning and it has generated great interest in quantum ma-
chine learning. It is deeply tied to two major topics in machine
learning: discriminative modeling and generative modeling,
which aim to learn patterns and the probability distribution
of input data [16], respectively. Expressive power in discrim-
inative learning relates strongly to classification performance,
e.g., by employing the kernel method [17], the kernel sup-
port vector machine can efficiently classify nonlinear data.
In generative modeling, the expressive power of two highly
successful models, the restricted Boltzmann machine (RBM)
and the deep Boltzmann machine (DBM) [18,19], to represent
quantum many-body states has been extensively investigated
[20–24]. Consequently, the RBM and the DBM have been
broadly applied to physics research, e.g., identifying phase
transition, solving many-body wave functions, and accelerat-
ing Monte Carlo simulations [25–29].

Parametrized quantum circuits (PQCs) are promising
NISQ devices that have demonstrated their potential to be
applied to practical applications with quantum advantages. By
employing variational hybrid quantum-classical algorithms,
PQCs have been applied to accomplish both the generative
[30–32] and the discriminative [33–36] tasks. A PQC is
composed of a set of parametrized single-qubit and con-
trolled single-qubit gates with noise, and the parameters are
iteratively optimized by a classical optimizer. In general, the
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proposed PQCs can be divided into two types: multiple-
layer PQCs (MPQCs) and tensor network PQCs (TPQCs).
An MPQC consists of multiple blocks of quantum circuits
in which the arrangement of quantum gates in each block
is identical [30,31,37]. Mathematically, we denote the input
quantum state as |0〉⊗N with N qubits, the total number of
blocks as L, and the ith block as U (θi ), where the number
of parameters is proportional to the number of qubits |θ| ∝ N
and N is logarithmically proportional to the dimension of the
generated data. The generated quantum state of an MPQC,
|�〉, is defined as |�〉 = ∏L

i=1 U (θi ) |0〉⊗N . The TPQCs treat
each block as a local tensor. The arrangement of the blocks
follows a specified tensor network, such as matrix product
states and a tree tensor network [35]. Mathematically, the ith
block U (θi ) is composed of Mi local tensor blocks, with Mi ∝
N/2i, denoted as U (θi ) = ⊗Mi

j=1 U (θi
j ). The generated state

from a TPQC is defined as |�〉 = ∏L
i=1

⊗Mi
j=1 U (θi

j ) |0〉⊗N .
Refer to Sec. II for more details.

Although PQCs have provided strong evidence of quantum
advantage [38,39], two important questions remain unex-
plored: (i) What is the expressive power of PQCs? (ii) Is
there any quantum advantage of PQCs that can be used to
solve practical problems? A comparison of expressive power
between PQCs and classical neural networks is desirable and
may benefit both physics and machine learning areas, since
PQCs are capable of solving many kinds of machine learning
tasks and classical machine learning methods have also been
extensively applied to physics research.

To analyze their relationships, we first prove that MPQCs
can be formulated by the tensor network language. This shows
that MPQCs, TPQCs, and classical neural networks have a
close connection with tensor networks, such as matrix product
states (MPSs) [40]. We then exploit entanglement entropy,
as a metric that evaluates the expressive power of tensor
network states, to characterize the expressive power of PQCs
and neural networks. We provide a rigorous proof that, given
the number of trainable parameters that polynomially scale
with the number of qubits or visible neurons N , the bond
dimensions represented by MPQCs, TQPCs, the DBM, and
the long-range RBM scale with O( exp(N )), while the bond
dimensions represented by the short-range RBM scale with
O(poly(N )).

Before answering the question of whether PQCs have any
quantum advantages over classical generative algorithms, we
remark that entanglement entropy is not the only metric for
quantifying expressive power. The second metric to quantify
the expressive power of PQC and neural networks is the run-
time complexity to simulate certain probability distributions.
We prove that the probability distribution generated by an
RBM and a DBM with O(N ) visible neurons and O(poly(N ))
hidden neurons can be efficiently simulated by MPQCs in
O(poly(N )) runtime. We further prove that instantaneous
quantum polytime (IQP) circuits [41] are a special subclass
of MPQCs. The probability distribution generated by IQP
cannot be sampled efficiently and accurately by any classical
neural network [3]. This indicates that, from the perspective of
complexity theory, MPQCs have an expressive power stronger
than that of classical neural networks and have the potential
to become a practical application with quantum supremacy
[42].

Finally, we equip MPQCs with ancillary qubits for
postselection—a model we call ancillary driven MPQCs (AD-
MPQCs). We show that the class of AD-MPQCs contains
post-IQP circuits as a special case. Apart from the stronger
expressive power, AD-MPQCs also provide additional bene-
fits from the machine learning perspective. Specifically, AD-
MPQCs with a simple structure, which we call the Bayesian
quantum circuit (BQC), are devised for Bayesian learning. We
indicate that the expressive power of the BQC is equivalent to
that of a post-IQP circuit. From the machine learning point of
view, the ancillary qubits of the BQC can be used to represent
the additional information, such as a prior distribution. The
BQC not only can exploit priors to improve the performance
of a learning task but can also enable the estimation of prior
distributions from the given data, which is highly desired
for semisupervised learning [43]. A toy model is designed
to verify its effectiveness. The BQC experiments are imple-
mented in PYTHON, leveraging the pyQuil library to access the
numerical simulator known as the quantum virtual machine
(QVM) [44].

II. DEFINITIONS AND PRELIMINARIES

A. Boltzmann machine

The Boltzmann machine (BM), inspired by the Ising
model, plays a significant role in the development of the deep
neural network, which aims to learn a distribution over the set
of its inputs [45,46]. Specifically, the BM can be divided into
two parts: N visible units (visible neurons), v = {vi}N

i=1, and
M hidden units (hidden neurons), h = {h j}M

j=1, where both
visible and hidden neurons take binary inputs with vi ∈ {0, 1}
and h j ∈ {0, 1}. Given the trainable parameters wi j , ai, and b j ,
the Hamiltonian is defined as H (s) = ∑

i aivi + ∑
j b jh j +∑

i< j wi j sis j , with s = {v, h}. The joint probability distribu-
tion over the visible and hidden units is defined as

P(v, h) = 1

Z eH (v,h), (1)

where Z = ∑
v

∑
h eH (v,h) is called the partition function.

For generative tasks, the marginal probability distribution of
visible units P(v) = ∑

h P(v, h) is expected to be maximized
by optimizing wi j , ai, and b j .

The RBM [47] is a special type of BM, which can be
learned more efficiently. Mathematically, the Hamiltonian
of the RBM is defined as H (v, h) = ∑

i aivi + ∑
j b jh j +∑

i, j wi jvih j , where only the inner connections between visi-
ble units and hidden units remain. An RBM is short range, if
the connection between visible and hidden units is sparse and
local. For short-range RBMs, the visible unit vi only locally
connects with 2k + 1 hidden units {hj, h j+1, . . . , h j+2k} with
a small constant k or k ∼ O(log M ). Similarly, an RBM is
nonsparse (or long range) if k satisfies k ∼ O(M ).

A deep Boltzmann machine (DBM) [19], different from an
RBM that includes only one layer of hidden units, contains
many layers of hidden units. In DBMs, multiple hidden layers
can be learned by training one hidden layer one at a time as
for the RBM. When we calculate the probability distribution
between the nth layer and the n + 1th layer, the hidden units
of the previous nth layer hn are treated as visible units vn, and
P(vn, hn+1) is obtained in the same manner as in the RBM.
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Remark. Throughout the whole paper, we restrict that
DBMs and RBMs only take one-dimensional input. Such a
restriction is mild and has been employed in Ref. [21], since
high-dimensional inputs of Boltzmann machine can be easily
reshaped to the one-dimensional setting.

B. Tensor networks

An MPS is a natural choice to efficiently represent
one-dimensional low-energy quantum states [40]. We de-
note a quantum state of one-dimensional lattice with N
sites as |�〉 = ∑d

j1, j2,..., jN =1 Cj1 j2... jN | j1〉 ⊗ | j2〉 ⊗ · · · ⊗ | jN 〉,
where all sites have the same dimension d . The state |�〉
can be completely described by a rank-N tensor Cj1 j2... jN with
total dN elements. However, such an exponentially scaling
relation implies that the computation cost becomes expensive
for large N . An MPS enables |�〉 to be approximated with a
high accuracy using only O(poly(N )) parameters. We rewrite
|�〉 as follows:

|�〉 =
∑
l,r

Cl,r |l〉 |r〉 , (2)

where l corresponds to the first site l = j1 and r corresponds
to the rest of the N − 1 sites, r = ( j2, . . . , jN ). Let Cl,r =∑

a Ul,aSa,aV †
a,r be the singular value decomposition (SVD) of

Cl,r . Then we have

|�〉 =
∑
l,r

∑
a

Ul,aSa,aV
†

a,r |l〉 |r〉 =
∑

a

Sa |a〉l |a〉r , (3)

where |a〉l = ∑
l Ul,a |l〉, |a〉r = ∑

r Vr,a |r〉, and Sa = Sa,a is
the (a, a)th entry of S. Equation (3) is called the Schmidt
decomposition and the entanglement of the bipartite systems l
and r is characterized by Sa. Specifically, the bond dimensions
D between the l and r subsystems are defined by the the
number of nonzero values S as defined in Eq. (3), i.e., the rank
of the matrix of S with D = rank(S).

Through successively performing the SVD along each
single site in turn, we can split out the rank-N tensor Cj1 j2... jN
into N local tensors {Aji}N

i=1. Mathematically, analogous to
Eq. (3), the matrix product state of |�〉 is defined as

|�〉 =
∑
j1... jN

∑
a1

Uj1,a1 Sa1,a1V
†

a1,( j2... jN ) | j1〉 | j2... jN 〉

=
∑
j1... jN

∑
a1

Uj1,a1Ca1,( j2... jN ) | j1〉 | j2... jN 〉

=
∑
j1... jN

∑
a1

Aj1
a1

U(a1, j2 ),a2Ca2,( j3... jN ) | j1〉 | j2〉 | j3... jN 〉

=
∑
j1... jN

∑
a1...aN−1

Aj1
a1

Aj2
a1,a2

...AjN
aN−1

N∏
i=1

| ji〉 , (4)

where Sa1,a1 and V †
a1,( j2,..., jN ) have been multiplied and re-

shaped to a vector Ca1,( j2,..., jN ), and the matrix Uj1 is decom-
posed into a collection of d row vectors Aj1 with entries
Aj1

a1 = Uj1,a1 . The number of parameters (elements) in the
MPS scales as O(NdD2), where D represents the maximum
of bond dimensions among all Sa,a. When D is small or some
truncated methods are employed to keep M small, MPSs can

efficiently approximate the quantum states with polynomial
parameters.

C. Entanglement entropy

The entanglement (also called von Neumann entropy) S (ρ)
of a bipartite system ρAB is defined as

S (ρA) = −Tr(ρA ln ρA) = −Tr(ρB ln ρB) = S (ρB), (5)

where ρA = TrBρAB is the reduced density matrix of system
A. For a quantum system A that satisfies area (volume) law, its
entanglement entropy grows proportionally with the bound-
ary area (volume) of system A, denoted as S (ρA) = O(|∂A|)
[= O(|A|)].

The maximum entanglement entropy of a bipartite system
is logarithmically bounded by the bond dimensions D as de-
fined in Sec. II B, i.e., S (ρA) ∼ ln D. The MPS can efficiently
represent a wide class of quantum states that satisfies area law,
where the bond dimensions D and the number of parameters
used in the MPS to describe the state are small.

The entanglement entropy S (ρ) of bipartite systems
closely relates to the bond dimensions D as formulated in
Eq. (3). As claimed in Ref. [48], certain quantum states
that satisfy one-dimensional area law can be efficiently sim-
ulated by MPS with constant bond dimensions, while one-
dimensional area-law states only occupy a partial Hilbert
space. In order to employ the MPS to simulate quantum states
beyond one-dimensional area law, e.g., the quantum states
cover the whole Hilbert space, the bond dimensions D are
required to be exponentially large with respect to the size of
the system.

D. Quantum circuits

Analogous to classical computers, a quantum computer
accomplishes its computation by applying quantum gates to
quantum bits (qubits).

As stated in Ref. [49], a set of single-qubit and two-qubit
gates, which consists of rotation gates and controlled-NOT

(CNOT) gates, is universal for quantum computation. In other
words, any function computable in this model can be com-
puted using only these gates. We denote the phase rotation
gate Rφ , the z-axis rotation gate RZ (θ ), the x-axis rotation gate
RX (γ ), and the y-axis rotation gate RY (α) as follows:

Rφ =
(

1 0
0 eiφ

)
, RX (γ ) =

(
cos(γ /2) i sin(γ /2)
i sin(γ /2) cos(γ /2)

)
,

RZ (θ ) =
(

eiθ/2 0
0 e−iθ/2

)
,

RY (α) =
(

cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)
.

The CNOT gate, defined as

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠,

flips the target qubit iff the the control qubit is |1〉. Other
quantum gates can be represented by the above universal gate
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W A X B X C

FIG. 1. Simulation of controlled unitary gates.

set, e.g., the Pauli-Z gate, defined as Z = (1 0
0 −1), can be rep-

resented by RZ (θ = π ); the T gate, defined as T = (1 0
0 eiπ/4 ),

can be represented by Rφ (φ = π/4); the Hadamard gate (H

gate), defined as H = 1/
√

2(1 1
1 −1); can be represented by

RX (γ = π/2)RZ (θ = π/2)RX (γ = π/2); and the two-qubit
controlled-Z gate (shorted as CZ gate), defined as

CZ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, (6)

can be represented by (I ⊗ H )CNOT(I ⊗ H ).
Proposition 1 below demonstrates how to use the universal

gate set to express other quantum gates [50].
Proposition 1. A controlled unitary W gate (CW ) can be

simulated by a quantum network composed of single-qubit
gates and a CNOT gate. Suppose that W = RZ (θ )RY (α)RZ (β ),
then as shown in Fig. 1, it can be simulated by the quan-
tum circuits A, B, and C, where A = RZ (θ )RY (α/2), B =
RY (−α/2)RZ (−θ/2 − β/2), and C = RZ (β/2 − θ/2).

IQP circuits

The instantaneous quantum polynomial (IQP) circuit con-
sists of commute gates that are diagonal in the Z basis. The
basic framework of IQP circuits is illustrated in Fig. 2.

Given N qubits, the IQP circuits can generate distributions
pI = | 〈0⊗N |H⊗NUZH⊗N |0⊗N 〉 |2, where UZ is composed of
O(poly(N )) commuting gates, e.g., the single-qubit T gate
and the CZ gate.

IQP circuits have been proven to be capable of gener-
ating probability distributions pI that cannot be classically
simulated efficiently [51]. The main result of IQP circuits is
summarized in the following proposition.

Proposition 2. If the output probability distributions gen-
erated by uniform families of IQP circuits could be weakly
classically simulated to within multiplicative error 1 � c �√

2, then post − BPP = PP and the polynomial hierarchy
would collapse to its third level.

FIG. 2. A general framework of IQP circuits.

E. Parametrized quantum circuits

Parametrized quantum circuits (PQCs), as a special type of
quantum circuit model, are composed of a set of parametrized
single-qubit and controlled single-qubit gates. In this work, a
PQC is used to implement a unitary transformation operator
U (θ) with O(poly(N )) parametrized quantum gates, where N
is the number of input qubits.

Several recent works [30,31,35] have employed PQCs to
accomplish generative tasks. One major reason is that the
superposition property allows the number of trainable param-
eters to be dramatically reduced. In generative tasks, PQCs
produce the probability q(X = x) = |〈x|�G〉|2 measured by
the computational basis |x〉, where

|�G〉 = U (θ) |0〉⊗N . (7)

The parameters θ can be optimized using only classical ap-
proaches,

arg min
θ

L[q(X ), p(X )], (8)

where L[·, ·] is a loss function that measures the dissimilarity
of the generated and the targeted probability distributions.
For example, suppose that the loss function is negative log-
likelihood [52], then the optimizing process is

arg min
θ

1

D

D∑
i=1

− log q(X = xi ), X ∼ p(X ), (9)

where the dataset D = {xi}D
i=1 is sampled from the targeted

probability distribution p(X ), the size of D is D, and each
example of D is denoted as xi for i ∈ [1, D].

Another loss function that is broadly employed is the max-
imum mean discrepancy (MMD). The MMD loss is defined as

L =
∥∥∥∥∥
∑

λ

∑
xi∈x

q(xi,λ)φ(xi ) −
∑
xi∈x

p(xi )φ(xi )

∥∥∥∥∥
2

, (10)

where φ(xi ) maps the ith input data, xi, into a high-
dimensional reproducing Kernel Hilbert space [53], and∑

xi∈x p(xi ) refers to the target probability distribution.
More details about the MMD loss and how to optimize it
by employing the gradient descent method with unbiased
estimation are introduced in Refs. [31,54].

In the following, we define two types of PQCs that are the
focus of the present work, where the major difference is the
layout of quantum gates to compose U (θ).

1. Multilayer parametrized quantum circuits

Multilayer parametrized quantum circuits (MPQCs) are
composed of L blocks, where each block implements U (θi ),
with i ∈ [1, L] and L ∼ poly(N ). A unitary operator U (θ) =∏L

i=1 U (θi ) is applied to N input qubits. An example of
MPQCs is illustrated in Fig. 3. In each block, the arrangement
of quantum gates is identical. Moreover, each qubit is operated
with at least one parametrized gate (denoted by yellow color),
and CNOT gates within the block can connect arbitrary two
qubits. Another requirement in MPQCs is the amount of CNOT

gates is no larger than N in each block.
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FIG. 3. Illustration of MPQCs.

Using MPQCs to accomplish generative tasks has been
explored in Refs. [30,31], while the layout of quantum gates
in each block and the optimization methods have been varied.

2. Tensor network parametrized quantum circuits

Another type of PQC is the tensor network PQC (TPQC),
which generally inherits the tensor network structures, i.e.,
MPSs, tree tensor networks, or multiscale entanglement renor-
malization ansatz. In other words, CNOT gates can only con-
nect two local qubits. Mathematically, the quantum state |�G〉
generated by TPQCs is formulated as

|�G〉 =
L∏

i=1

Mi⊗
j=1

U
(
θi

j

) |0〉⊗N , (11)

where Mi represents the number of local blocks in the block
U (θi ) and N/Mi is constant for all i. For example, a TPQC
that inherits the layout of a tree tensor network is given in
Fig. 4.

Figure 5 illustrates another example of a TPQC that inher-
its the layout of an MPS tensor network. Employing TPQCs to
accomplish generative tasks has been investigated in Ref. [35].
We remark that in this paper, we only consider TPQCs with
one-dimensional tensor network structures, e.g., matrix prod-
uct states and tree tensor networks.

FIG. 4. An example of a TPQC that inherits the layout of a
tree tensor network, where the CNOT gates in different layers have
different local constraints.

FIG. 5. An example of TPQCs that inherit the layout of MPSs.

III. EXPRESSIVE POWER OF PARAMETRIZED
QUANTUM CIRCUITS

For ease of understanding, we divide this section into two
parts. We first introduce the main result of this study in
Sec. III A. We then elaborate the technical details in Sec. III B.

A. Main result

The goal of a generative learning network is to learn
a distribution q(x) that approximates a targeted probability
distribution p(x) within a tolerable error ε. The expressive
power of a generative learning machine directly determines
how well the generated distribution can match the target
distribution, e.g., Eq. (8). The stronger the expressive power
is, the smaller the dissimilarity of two distributions will be.
The formal definition of the expressive power of generative
models is the following.

Definition 1 (Comparison of expressive power). Consider
two generative models, A and B, that are selected from
MPQCs, TPQCs, short-range RBMs, long-range RBMs, and
DBMs as formulated in Sec. II. We say that the expressive
power of model A is no weaker than that of model B if the
following relation is satisfied:

(EA � EB) ∧ (CA � CB), (12)

where EX and CX are the maximal bond dimension and the
runtime of the generative model X , respectively, to simulate a
certain probability distribution.

Following conventions [55], the runtime complexity of
quantum circuit models refers to the gate complexity. The
definition of gate complexity is as follows.

Definition 2 (Gate complexity, [56,57]). Let elementary
gates be the CNOT gates and arbitrary single qubit gates. The
gate complexity for a unitary U is the minimal number of
elementary gates that is needed to implement U .

Remark. The motivation to employ bond dimensions as
measures to quantify the expressive power of generative
model comes from the following fact. As explained in Sec. II,
a larger bond dimension for a generative model implies that it
can represent a larger set of quantum states living in a Hilbert
space. Equivalently, bond dimensions measure the diversity
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of distributions (quantum states) that can be produced by the
generative model.

By employing the definition of expressive power, our main
result in this paper is as follows.

Theorem 1. The expressive power of MPQCs with
O(poly(N )) single qubit gates and CNOT gates and classical
neural networks with O(poly(N )) trainable parameters, where
N refers to the number of qubits or the visible units, can
be ordered as follows: MPQCs > DBM > long-range RBM
> short-range RBM, unless the polynomial hierarchy (PH)
collapses.

Remark. Note that our result, Theorem 1, does not contra-
dict Ref. [20]. Recall that Gao and Duan [20] claimed that a
deep neural network can efficiently represent most quantum
states in the following sense. Specifically, given any N-qubit
quantum state |�〉 that is generated by a quantum circuit with
T circuit depth, their study showed that a DBM with N visible
neurons and O(NT ) hidden neurons is sufficient to compute
the probability amplitude 〈v|�〉, given a fixed basis |v〉. How-
ever, we quantify the expressive power of different generative
models by their ability to simulate the “whole probability
distribution,” instead of just one probability amplitude in any
given fixed basis.

B. Proof sketch of Theorem 1

Theorem 1 can be proved following Lemma 1, Theorem 2,
and Theorem 3. Lemma 1 below indicates that MPQCs and
TPQCs are capable of simulating MPSs with exponentially
large bond dimensions.

Lemma 1. MPQCs and TPQCs with N qubits and
O(poly(N )) blocks, where each block contains O(N ) trainable
parameters and at most N CNOT gates, can efficiently represent
MPSs with bond dimensions D = O( exp (N )).

The proof of Lemma 1 is given in Appendix A. Lemma 1
and the results in Refs. [21,24] together establish the follow-
ing relation in terms of the bond dimensions:

EMPQC = EDBM = EL-RBM = ETPQC > ES-RBM, (13)

where EL-RBM and ES-RBM represent the maximum bond di-
mensions of the long-range RBM and the short-range RBM,
respectively. In particular, the algorithm proposed by Chen
et al. [21] indicates that when we reformulate the short-range
RBM (long-range RBM) by the MPS, the corresponding bond
dimensions are constant [exponentially scales with respect to
N visible neurons, i.e., D = O( exp (N ))]. Moreover, since
both short-range and long-range RBMs can be treated as the
special case of the DBM (by setting the number of hidden
layers as one), we conclude that the DBM can efficiently rep-
resent the MPS with O( exp (N )) bond dimensions. Likewise,
the Ref. [24] obtains a result similar to that of Ref. [21], i.e.,
EL-RBM > ES-RBM.

Remark. The close relation between bond dimensions and
entanglement entropy, as explained in Sec. II, provides the fol-
lowing implication. The short-range RBM can only efficiently
represent a certain class of quantum states satisfied with area
law, while the long-range RBM and the long-range DBM have
the ability to simulate quantum states satisfying volume law
entanglement.

Theorems 2 and 3 characterize the expressive power of
different generative models in terms of the computation com-
plexity to approximate a certain distribution. In particular,
Theorem 2 proves that probability distributions represented
by RBMs and DBMs with N visible neurons and O(poly(N ))
hidden neurons can be efficiently simulated by MPQCs.

Theorem 2. Any probability distribution produced by short-
range RBMs, long-range RBMs, or DBMs with N visible
neurons and O(poly(N )) hidden neurons can be generated
by some MPQCs with O(poly(N )) circuit depths (runtime
complexity).

The proof of Theorem 2 is provided in Appendix B. Note
that the proof of Theorem 2 follows from a mapping rule,
which we designed, to transform RBMs or DBMs with N
visible neurons and O(poly(N )) hidden neurons to MPQCs
with O(poly(N )) quantum gates.

Next, by making connections with IQP circuits, Theorem
3 quantifies the expressive power of MPQCs is stronger than
that of DBMs and RBMs.

Theorem 3. There exist probability distributions generated
by MPQCs with N qubits and O(poly(N )) quantum gates
cannot be simulated efficiently by classical neural networks
unless the PH collapses.

The proof of Theorem 3 is demonstrated in Appendix C.
Since it has been proven that a DBM (long-range RBM)

has an expressive power stronger than that of a long-range
RBM (short-range RBM) [20,21], i.e., CDBM > CL-RBM and
CL-RBM > CS−RBM, we employ the conclusion of Theorems 2
and 3 to obtain

CMPQC > CDBM > CL-RBM > CS-RBM. (14)

Combining Eqs. (13) and (14), it is straightforward to compare
the expressive power of different generative models as formu-
lated in Definition 1, which concludes the proof of Theorem 1.

IV. BAYESIAN QUANTUM CIRCUIT

In Bayesian inference, additional information about a prior
probability distribution p(λ) which represents our beliefs
about the parameters of the learning algorithm is given, and
the posterior probability distribution p(λ|x) can be obtained
by Bayes’ rule,

p(λ|x) = p(λ)p(x|λ)/
∫

λ

p(λ)p(x|λ)dλ,

where p(x|λ) is known as the likelihood function. It has
been shown that the performance of many learning tasks can
be dramatically improved if Bayesian models are employed
[58–62].

Considering the significance of the Bayesian approach in
classical machine learning, we devise a Bayesian quantum
circuit (BQC) that enables PQCs to accomplish quantum
machine learning tasks with Bayesian advantages. We remark
that our BQC is an interesting quantum method for a Bayesian
generative model based on PQCs. The proposed BQC is capa-
ble of explicitly and efficiently generating prior, likelihood,
and posterior distributions. Furthermore, we demonstrate that
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FIG. 6. A general framework of an AD-MPQC. The arrangement
of quantum gates in each block is identical.

the BQC may possess an expressive power stronger than that
of MPQCs studied in the previous section.

A. Layouts and optimization of the BQC

Before elaborating on the BQC, we first define the ancillary
driven MPQCs (AD-MPQCs). AD-MPQCs can be divided
into two parts, of which the first part aims to generate the
targeted distribution and the second part aims to conduct
postselection. In contrast to MPQCs, in which all blocks are
directly applied to the data qubits, some blocks in AD-MPQCs
are conditionally applied to the data qubits for specific an-
cillary quantum states. A general layout of an AD-MPQC is
illustrated in Fig. 6, in which the common shared blocks are
highlighted in green and |λ〉 represents all possible combina-
tions of M ancillary qubits with |λ〉 = {|0〉 , |1〉}⊗M .

The BQC in Fig. 7 is a special case of AD-MPQCs
in which the commonly shared blocks (green blocks in
Fig. 6) do not exist. In the BQC, after applying K blocks
{U (γ i )}K

i=1 to M ancillary qubits, the generated state is |�A〉 =∏K
i=1 U (γ i ) |0〉⊗M . Measuring the state |�A〉 by computational

basis, the prior distribution q(λ) = |〈λ|�A〉|2 is generated.
Similarly, after conditionally applying L blocks {U (θi

λi
)}L

i=1
to N data qubits iff the ancillary state is |λi〉, ∀λi ∈ λ, and
measuring by computational basis |x〉, the likelihood distribu-
tion q(x|λi ) = |〈x, λi|�x,λ〉|2 is generated, where |�x,λ〉 is the

FIG. 7. The general scheme of the proposed BQC.

FIG. 8. An example of conditionally applying U (θ1
λk

) to data
qubits iff |λk〉 = |01〉.

quantum state generated by data qubits and ancillary qubits
after applying a total of K + |λ|L blocks.

In the BQC, the parametrized gates in U (θi
λi

) are controlled
rotational qubits gates, e.g., controlled phase gate CRφ (φ);
controlled rotation gate along the x axis, CRX (γ ); controlled
rotation gate along the y axis, CRY (α); and controlled rotation
gate along the z axis, CRZ (θ ), which are controlled by the
ancillary quantum state |λ〉. To reduce the gate complexity,
we introduce a flag qubit that is conditionally activated for
the specified ancillary state, which enables each parametrized
controlled rotational gate to have only one control qubit. As
a result of this extra controlled qubit, the CNOT gates used in
MPQCs are replaced by N Toffoli gates. Each Toffoli gate
can be efficiently implemented by ten single-qubit gates and
six CNOT gates. We give an intuitive example of how to apply
the block U (θ1

λk
) to the data qubits iff the ancillary state is

λk = |10〉 in Fig. 8. The green region represents encoding
the state |�A〉 into ancillary qubits. The two pink regions
represent how to conditionally activate and uncompute the
flag qubit for the specific ancillary state |01〉. The black
dotted box illustrates how the block U (θ1

λk
) is conditionally

applied to the data register for the specified ancillary state
|λk〉 = |01〉.

In the training process, we employ the MMD defined in
Eq. (10) as the loss function. By measuring the data register
and the ancillary register, the joint distribution q(xi,λ) is
obtained by q(xi,λ) = ∑

λk∈λ |〈xi, λk|�x,λ〉|2, where |�x,λ〉
refers to the entanglement quantum states generated by the
BQC.

B. Expressive power of the BQC and AD-MPQCs

Here we discuss the expressive power of the BQC and
AD-MPQC. Given N data qubits and M ancillary qubits, the
generated quantum state of the BQC is

|�〉 =
2M∑
i=1

αi

L∏
j=1

U
(
θ

j
λi

) |0〉⊗N |λi〉 , (15)

where αi stands for the probability amplitude of state |λi〉
with

∑
i |αi|2 = 1. Since 〈λi|λ j〉 = δi j , the generated states

corresponding to different ancillary quantum states are in-
dependent. When there is only one ancillary quantum state
|λ| = 1, the number of string operators is one and the BQC
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FIG. 9. The generative results obtained from DDQCL, the QCBM, and our model. Since the BAS dataset can be regard as a set of binary
images, it can be mapped into different integers, as the x axis of figures. Panels (b), (c), and (e) are the generated result of 2 × 2 BAS images
using the QCBM, DDQCL, and the BQC respectively. Figures (d) and (f) are the generated results of 3 × 3 BAS images using the QCBM and
the BQC, respectively.

is equivalent to an MPQC. This implies that the expressive
power of the BQC cannot be worse than that of MPQCs.
Additionally, since the BQC is a special case of AD-MPQCs,
the expressive power of AD-MPQCs cannot be worse than
that of the BQC. Therefore, from the perspective of the
entanglement entropy, the expressive power of the BQC and
the AD-MPQCs cannot be worse than that of MPQCs. Since
the post-IQP circuit can be efficiently formulated by both
AD-MPQCs and the BQC, a better expressive power of the
BQC is obtained compared to MPQCs from the perspective
of computational complexity.

V. NUMERICAL EXPERIMENTS

A. Generating bar-and-stripe dataset

To demonstrate the advancements of the proposed BQC,
we first use the BQC to accomplish generative tasks, e.g.,
generating 2 × 2 and 3 × 3 bars and stripes (BAS) datasets.
A BAS dataset is composed of vertical bars and horizontal
stripes, and some examples of BAS are shown in Fig. 9(a).
For n × m pixels, the number of images that belong to BAS
is NBAS = 2n + 2m − 2. The target distribution of such a gen-
erative task is denoted as p(x), where p(xi ) = 1/NBAS iff xi

is a valid BAS image. The generated probability distribution
of the BQC, q(x) = ∑

λi∈λ q(x, λi ), aims to approximate the
targeted distribution p(x), where the x refers to the generated
the images, |λ| refers to the number of valid BAS patterns, and
q(x, λi ) refers to the probability distribution of the generated
images given specific λi.

We compare the generative performance of the BQC
with two existing MPQCs in the literature, i.e., data-driven
quantum circuit learning (DDQCL) [30] and the quantum

circuit born machine (QCBM) [31]. Two major differences
between DDQCL and the QCBM are the layout of CNOT

gates in each block and the optimization methods. In DDQCL,
the topology of CNOT gates is based on the topology of
quantum devices, such as chain, star, and all connections.
A gradient-free optimization approach is employed, i.e., the
swarm optimization algorithm. In the QCBM, the topology
of CNOT gates is determined by the Chow-Liu tree algorithm,
which is inspired by the graphical models to efficiently extract
information from training data among different nodes. The
unbiased gradient-based optimization approach is employed
in the training process. In accordance with the conventions in
previous study, in the BQC, all BAS patterns are encoded in
the qubits, where each data qubit stands for a pixel of the BAS
image.

For the task of generating BAS images, the prior is a
uniform distribution, since all BAS images are expected to
be generated with the same probability. Through applying K
blocks to the ancillary register with M qubits, the generated
quantum state |λ〉 is formulated as |λ〉 = ∏K

i=1 U (γ i) |0〉⊗M ,
where q(λ = λi) = |〈λi|λ〉|2 = 1/NBAS, |λ| = NBAS, and M =
�log NBAS�. Since the BAS patterns are encoded into the
qubits, the total number of data qubits is N = n × m. For
the specified ancillary state λ = λi, L blocks {U (θi

λi
)}L

i=1 are
conditionally applied to the N data qubits, where total |λ|L
blocks are required in the BQC. Since there exists a one-to-
one mapping that each λi aims to represent a specific BAS
image, we have q(x = xi ) = q(x = xi,λ = λi), where q(x =
xi,λ = λ j ) = 0 for i = j. We remark that it is a special case
in generative tasks.

We first train the BQC to generate BAS images with
2 × 2 pixels, where NBAS = 6 valid images are expected to be
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generated uniformly after learning. In the experiment, the
numbers of data qubits and ancillary qubits are set to be
N = 4 and M = 3, respectively. Since the prior distribu-
tion is known, the parameters of K = 2 blocks {Uj (γ )}2

j=1

are fixed, where the generated state is
∏2

j=1 Uj (γ ) |0〉⊗M =
1/

√
6

∑
i |λi〉, with λi ∈ λ and |λ| = 6. In the numerical sim-

ulation, we use the function provided by a QVM to directly
generate the prior distribution p(λ). In the learning process,
we set L = 2 blocks {Uj (θ

i
λi

)}2
i=1 for the specified ancillary

quantum state, where each block only contains 4 CRY (α) gates
(interacting with 4 data qubits separately) and the number of
Toffoli gates that connect 2 qubits in sequence is also 4, as
illustrated in Fig. 8. A total of 48 trainable parameters are
updated in the learning process.

When the BQC is applied to generate 3 × 3 BAS images,
with NBAS = 14, the numbers of data qubits N and ancillary
qubits M are set as 9 and 4, respectively. A uniformly ancil-
lary state is first generated by using the function provided
by the QVM. Analogous to the 2 × 2 BAS case, we set
L = 2 and each block contains 9 CRY (α) gates (interacting
with 9 data qubits separately) and 9 Toffoli gates. There-
fore, a total of 112 parameters are updated in the learning
process.

Since QVM allows us to read the quantum states directly,
the distribution of BAS images can be accessed accurately
as measuring infinite times. The experimental results are
illustrated in Fig. 9. Here we define the accuracy as NBAS/N ,
where N represents the total number of generated images
and NBAS represents the number of generated images that
have BAS patterns. As shown in Table I, the BQC outper-
forms state-of-the-art PQCs, where the accuracy to gener-
ate BAS 2 × 2 and 3 × 3 images is 99.96% and 98.65%,
respectively.

TABLE I. Accuracies for generative 2 × 2 and 3 × 3 BAS datasets.

Model DDQCL QCBM BQC

2 × 2 Accuracy (%) 83.82 98.46 99.96
3 × 3 Accuracy (%) 65.36 98.65

B. Learning prior distribution

How to learn a prior distribution q(λ) efficiently and
accurately is one critical topic in machine learning, e.g., to
learn the class priors in semisupervised learning. Meanwhile,
class priors are also important in learning very sparse data
and developing binary classifiers to discriminate positive and
unlabeled data [63,64]

To confirm the effectiveness of the BQC to learn class
prior distributions q(λ) from given data, we devise a toy
model. Specifically, the training data (referred to the test
data with unlabeled class in the above example) are sampled
from a joint distribution p(x,λ), i.e., p(x,λ) = p(λ)p(x|λ),
with |λ| = 2, where the known class conditional densities are
p(x|λ = λ1) ∼ N1(μ1, σ1) and p(x|λ = λ2) ∼ N2(μ2, σ2).
N1(μ1, σ1) and N2(μ2, σ2) are two Gaussian distributions
with means μ1 and μ2 and variations σ1 and σ2, respectively.
In this toy model, the means and variances of N1 and N2 are
set as μ1 = 16, μ2 = 64 and σ1 = 2, σ2 = 4, respectively. For
each class, the known class conditional density distribution is
generated by applying L = 7 blocks {U (θi )λk }L

i=1to the 7 data
qubits with N = 7. Alternatively, 14 blocks are employed to
describe p(x|λ) with a total of 98 fixed parameters. Since x
is encoded into qubits as the variable in N1 and N2, it is
represented as a bit string and should be integers, where the
maximum value of x is xmax = 2N and N is the number of
qubits.

FIG. 10. The figure illustrates the MMD loss functions for p(λ1) = 0.70 with different parameter settings.
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FIG. 11. The figure illustrates the MMD loss functions for p(λ1) = 0.85 with different parameter settings.

In the training process, we estimate two sets of targeted
coefficients, i.e., p(λ1) = 0.7, p(λ2) = 0.3 and p(λ1) = 0.85,
p(λ2) = 0.15, respectively. Due to |λ| = 2, we set the number
of ancillary qubits as M = 1 and employ 1 block U (γ i )
to learn the class prior distribution, where the blocks only
contains one parametrized Ry(α) gate. We first use the BQC
to learn the targeted coefficient p(λ1) = 0.7, and the MMD
loss functions with three different measurement settings and
two gradient descent optimization methods are shown in
Fig. 10. For each setting, we repeat the experiments three
times with varied initialized parameters, which are indicated
by different colors. The training loss by setting the number
of measurements as 100 and employing the general stochastic
gradient descent optimization method is shown in Fig. 10(a).
Then, we employ the unbiased gradient descent method [54]
and set the number of measurements as 100, 1000, and ∞. The
training losses are illustrated in Figs. 10(b), 10(c), and 10(d),
respectively. We next use the BQC to learn the targeted coef-
ficient p(λ1) = 0.85. Following the same parameter settings,
the training losses are shown in Fig. 11. The two numerical
simulation results are listed in Table II. The small variance
is mainly caused by the fact that the limited parameters θ

cannot approximate N1 and N2 well. We remark that different
initial parameters have subtle influences on the convergence

but the number of measurement determines if the loss can be
converged.

VI. CONCLUSION AND DISCUSSION

In this paper, our first contribution is to the evaluation of
the expressive power of parametrized quantum circuits and
classical neural networks. Characterized by the entanglement
entropy, we prove that MPQCs, TPQCs, long-range RBMs,
and long-range DBMs can efficiently simulate MPSs that
the corresponding bond dimensions exponentially scale with
the number of inputs (visible neurons) N , which cannot be
efficiently simulated by the short-range RBMs. We next prove
that MPQCs can efficiently simulate probability distributions
generated by an IQP circuit. These distributions are difficult
to simulate efficiently by classical neural networks unless the
polynomial hierarchy collapses. We therefore see that MPQCs
have expressive power stronger than that of classical neural
networks.

Our second contribution is the proposal of the BQC to ac-
complish Bayesian learning tasks. The BQC is a special case
of AD-MPQCs that can efficiently simulate the probability
distribution generated by post-IQP circuits. It has stronger
expressive power over MPQCs without ancillary qubits. In

TABLE II. Learning prior distribution with M = 1 and N = 7. Here QVM∗ stands for employing a general optimization method, while the
QVM employs the unbiased estimation optimization method.

Methods Measurements P(λ1) P(λ2) Variance P(λ1) P(λ2) Variance

Target 0.70 0.30 0.85 0.15
QVM∗ 100 0.163 0.867 4.47 × 10−2 0.555 0.445 1.44 × 10−1

QVM 100 0.706 0.294 1.66 × 10−4 0.868 0.132 8.47 × 10−5

QVM 1000 0.702 0.298 5.74 × 10−6 0.856 0.144 5.94 × 10−6

QVM ∞ 0.701 0.299 6.12 × 10−10 0.855 0.145 4.67 × 10−9
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addition, the postselection operation enables the BQC to
accomplish machine learning tasks without knowledge about
prior distributions. We perform two numerical simulations to
validate the effectiveness of the BQC. The first numerical
simulation uses the BQC to generate BAS images, in which
the BQC outperforms state-of-the-art PQCs. The second nu-
merical simulation uses the BQC to learn the class prior
distribution, which is highly desirable for semisupervised
learning. The simulation results demonstrate that the BQC can
accurately estimate the prior distributions. These two tasks
can be efficiently implemented on near-term quantum devices.

A PQC is a hybrid quantum classical learning scheme
that has accomplished various learning tasks using a limited
number of quantum gates and a shallow quantum circuit
depth. With the benefit of the strong expressive power and
efficient implementation on near-term quantum devices, PQCs
have the potential to tackle practical problems with quantum
advantages. One future direction is to explore how to use
PQCs to solve practical machine learning problems and to
investigate whether the proposed quantum learning model can
provide a definitive quantum advantage.
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APPENDIX A: PROOF OF LEMMA 1

Proof of Lemma 1. The proof of Lemma 1 leverages
the well-known result of tensor networks, MPSs can only
efficiently simulate quantum circuits with polynomial loga-
rithmic circuit depth [65].

In PQCs, only CNOT gates can increase bond dimensions.
Specifically,

CNOT =
∑

σ,τ,σ ′,τ ′∈{0,1}
Oσ ′,τ ′

σ,τ |σ ′〉|τ ′〉〈τ |〈σ |, (A1)

where Oσ ′,τ ′
σ,τ is a rank-4 tensor with Oσ ′=0,τ ′=0

σ=0,τ=0 =
Oσ ′=1,τ ′=1

σ=1,τ=1 = Oσ ′=1,τ ′=1
σ=0,τ=1 = Oσ ′=1,τ ′=0

σ=1,τ=1 = 1 and 0 otherwise.
The CNOT gate can be decomposed into two local tensors with
bond dimension D = 2. One possible solution is

Oσ ′,τ ′
σ,τ =

∑
b∈{0,1}

W σ ′,σ
1b W τ ′,τ

2b , (A2)

where W σ ′,σ
1b and W τ ′,τ

2b correspond to two local rank-3 tensors,
and their explicit representations are as follows:

W σ ′,σ
10 = [1 00 0], W σ ′,σ

11 =
[

1 0
0 1

]
,

W τ ′,τ
20 =

[
1 −1

−1 1

]
, W τ ′,τ

21 =
[

0 1
1 0

]
. (A3)

Suppose that there exists k CNOT gates between the ith and
(i + 1)th qubits, where the first i qubits and the remaining
N − i qubits compose a bipartite system; the maximal bond
dimensions of such a bipartite system are 2k .

FIG. 12. The mapping between a MPQC and a MPS.

Since the bond dimensions exponentially scale with the
number of CNOT gates, O(poly(log D)) blocks are required to
generate an MPS with bond dimensions D.

Figure 12 depicts a mapping between a MPQC and a
MPS, where, for illustrative purpose, we assume that N − 1
CNOT gates are applied to the data qubits in sequence. The
middle section of Fig. 12 indicates the effects of CNOT gates
and parametrized single-qubit gates. All local tensors applied
to the same qubit can be merged into one local tensor [cf.
Eq. (4)] and yield the corresponding MPS, as shown in the
right section of Fig. 12.

Following the same routine, MPSs can only simulate
TPQCs with polynomial logarithmic circuit depth [35].

Alternatively, when MPQCs and TPQCs have the poly-
nomial circuit depth, the generated states have exponen-
tial dimensions, which cannot be efficiently simulated
by MPSs. �

APPENDIX B: PROOF OF THEOREM 2

For ease of understanding, we reformulate the DBM to a
two-layer graph structure as the RBM does before elaborating
the proof of Theorem 2.

Lemma 2. The DBM with N visible neuron and O(poly(N ))
hidden neurons can be reformulated as a long-range RBM
with N visible neurons and O(poly(N )) virtual and hidden
neurons.

Proof of Theorem 2. We first illustrate how to use MPQCs
to efficiently simulate an RBM. We then generalize the result
to a DBM by leveraging the conclusion of Lemma 2. Note that
we restrict the weights {w, a, b} of the RBM and the DBM to
real constants. Our analysis can be easily generalized to the
complex value case.

There are two preprocessing steps before transforming an
RBM to MPQCs. Suppose that the original RBM contains
N visible neurons and M hidden neurons, as shown in the
upper left panel of Fig. 13. The first preprocessing step is the
splitting rule, where we substitute the original hidden neuron
by new hidden neurons so that each hidden neuron only
connects to one visible neuron. We exemplify the splitting rule
in the upper and lower right panels of Fig. 13. In particular, for
the original RBM, the hidden neuron hk connects to visible
neurons vi and v j with weights {wki, ai, bk} and {wk j, a j, bk},
respectively. The first step of reformulation is introducing the
hidden neurons ho and hl to ensure that each hidden neuron
only connects to one visible neuron. Denote that the weights
for ho and hl are {w′

oi, a′
i, b′

o} and {w′
l j, a′

j, b′
l}, respectively.
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FIG. 13. The first preprocessing step to transform the RBM to
MPQCs. The upper left panel shows the original RBM. The upper
right panel illustrates that the hidden neuron hk , as highlighted by
purple shadow, is selected and split. The lower right panel demon-
strates the splitting result, where each two new hidden neurons ho

and hl only connect to the visible neurons vi and v j , respectively.
Following the same routine, the lower left panel exhibits the result of
splitting all hidden neurons of the original RBM.

The mapping rule should satisfy the following equation:∑
hk

ehkwkivi+hkwk jv j+aivi+a jv j+bkhk

=
∑
ho,hl

ehow
′
oivi+b′

oho+a′
ivi+hl w

′
l jv j+b′

l hl +a′
jv j . (B1)

Since there are four combinations for vi and v j , i.e., (vi, v j ) ∈
{{0, 0}, {0, 1}, {1, 0}, {1, 1}}, a possible solution for Eq. (B1)
is

a′
i = ai, a j = a′

j, b′
o = ln

(
ewk j+wki − ebk

ewk j − 1 − ewk j+wki + ebk

)
,

b′
l = ln

(
ebk+wk j − ebk+wk j+wki + e2bk − ewk j+wki

ewk j − 1

)
,

(B2)

w′
l j = ln

(
ewk j + (1 − ebk )e2wk j+wki − ewk j+wki + ebk

ebk+wk j (1 − eewki ) + e2bk − ewk j+wki

)
,

w′
oi = ln

(
1 + ebk + ewk j + ewki − ebk+wki

ebk+wki+wk j − e2bk − ewki+wk j − ebk

)
.

The second preprocessing step is the merging rule. As
shown in Fig. 14, all hidden neurons that connect to the same
visible neuron are merging into the new hidden neuron. In par-
ticular, we denote {w′

ji, b′
j, a′

i}, {w′
ki, b′

k, a′
i}, and {w′′

li, b′′
l , a′′

i }
as the weights between h j and vi, hk and vi, and hl and vi,
respectively. The merging rule that transforms hj and hk to hl

should satisfy the following equation:∑
h j ,hk

eh jw
′
jivi+b′

j h j+hkw
′
kivi+b′

khk+a′
ivi

=
∑

hl

ehl w
′′
livi+b′′

l h j+a′′
i vi . (B3)

FIG. 14. The second preprocessing step to transform the RBM to
MPQCs. The left (right) panel shows the RBM after the first (second)
preprocessing step. In particular, all hidden neurons that connect to
the same visible neuron are merging into the new hidden neuron. For
example, hidden neurons hj and hk that connect to vi are substituted
by hl .

Since vi can take two values, i.e., vi ∈ {0, 1}, a possible
solution for Eq. (B3) is

a′′
i = a′

i, b′′
l = ln(1 + eb′

k + eb′
l + eb′

k+b′
l ),

(B4)

w′′
li = ln

(
ew′

ji+b′
j + ew′

ki+b′
k + ew′

ji+w′
ki+b′

j+b′
k

1 + eb′
j + eb′

k + eb′
j+b′

k

)
.

Note that the preprocessed RBM, with at most N hidden
neurons as shown in the right panel of Fig. 14, expresses
the same probability distribution as the original RBM does.
Following such an observation, we employ MPQCs to sim-
ulate the preprocessed RBM. We demonstrate the mapping
rule in Fig. 15. In particular, as shown in the upper panel
of Fig. 15, we initially apply Hadamard gates to an input
state, which represents the probability distribution of the RBM
without hidden neurons. Mathematically, given an RBM with
N visible neurons and zero hidden neurons, the probability
P(v) for v ∈ {0, 1}N is 1/2N . The equivalent mapping for
MPQCs is applying N Hadamard gates on the input state |0〉N .

In order to simulate the probability distribution of the
target RBM, we iteratively attach the hidden neurons and find
the corresponding parameters for MPQCs. As shown in the

FIG. 15. The mapping rule from the RBM to MPQCs. The left
panel shows the RBM and the right panel illustrates the equivalent
MPQC representation. An iterative updating rule is employed to
map RBM to MPQCs, where each hidden neuron corresponds to a
parametrized rotation single-qubit gate along the Y axis.
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middle part of Fig. 15, h j only connects to vi with parame-
ters {w′′

ji, a′′
i , b′′

j}, where we apply RY (θi ) to the ith qubit of
MPQCs to simulate such an operation. The mapping rule to
between θi and {w′′

ji, a′′
i , b′′

j} is as follows. Denote the proba-
bility distribution function before introducing the connection
between h j and vi as �(v), i.e., �(v) = ∑

h eH (v,h)/Z . After
introducing the connection between hj and vi, the probability
distribution is denoted as �̃(v), i.e.,

�̃(v) = 1

C

∑
h j

ea′′
i vi+h jw

′′
jivi+b′′

j h j �(v), (B5)

where {a′′
i , b′′

j ,w
′′
ji} are defined in Eq. (B4), C = Z/Z ′, Z ′ =∑

v

∑
h′ eH (v,h′ ), and h′ = {h, h j}. For MPQCs, denote the

probability amplitude before applying RY (θi ) to the ith qubit
as |�(v)〉. Applying the RY (θi ) gate to the state |�(v)〉 gener-
ates the state |�̃(v)〉, with

|�̃(v)〉 = [RY (θi ) ⊗ I⊗N−1] |�(v)〉 . (B6)

The distribution represented by the RBM and MPQCs satisfies
the relation �(v) = |〈v|�(v)〉|2. We denote Ai(0) as Ai(0) =∑

v\vi

∑
vi=0,h eH (v,h)/Z , which refers to the summation

of probability among all 2N−1 bases |v1, ..., vi = 0, ..., vN 〉
with v \ vi ∈ {0, 1}N−1. The normalization constraint implies
Ai(1) = 1 − Ai(0) and Ai(1) = ∑

v\vi

∑
vi=1,h eH (v,h)/Z .

We now explore the optimal parameter of θi such that

�̃(v) = | 〈v|�̃(v)〉 |2. (B7)

By expanding Eq. (B7) using Eqs. (B5) and (B6), we obtain

1

C

(
1 + eb′′

j
) = [cos(θi ) − sin(θi)]

2Ai(0). (B8)

The solution for θi is θi = arcsin ( 1+e
b′′

j

Ai (0)C − 1)/2.
We then explain how to use MPQCs to simulate a DBM

following the same procedure. As concluded in Lemma 2,
any DBM can be transformed into a two-layer RBM by intro-
ducing virtual visible neurons. After the transformation, the
MPQCs can simulate the corresponding probability distribu-
tion by using the abovementioned method, where O(poly(N ))
ancillary qubits are introduced to simulate the virtual visible
neurons. Since each (virtual) visible neuron corresponds to
one ancillary qubit that is applied to a parametrized single-
qubit gate, the total number of quantum gates to simulate the
probability distribution represented by the RBM and the DBM
is at most O(poly(N )). �

Proof of Lemma 2. The proof of the Lemma 2 leverages
the conclusion of Ref. [20]. We illustrate the reformulation in
Fig. 16. �

APPENDIX C: PROOF OF THEOREM 3

Two major differences between TPQCs and MPQCs are
that (i) CNOT gates in TPQCs cannot connect any two qubits
arbitrarily and (ii) the blocks are replicated based on the
structure of the tensor networks. This restriction limits the
expressive power of TPQCs.

Proof of Theorem 3. This theorem can be proved by com-
bining Theorem 4 below with Proposition 2. Theorem 4 shows
that any IQP circuits with N qubits and O(poly(N )) commut-
ing gates can be transformed into MPQCs with O(poly(N ))

FIG. 16. The reformulation from a DBM to an RBM by intro-
ducing virtual visible neurons. The blue and orange nodes refer to
the visible and hidden neurons, respectively. The hidden layers with
odd numbers, as highlighted by green dash-dotted boxes, form the
hidden layer of the reformulated RBM. The hidden layers with even
numbers, as highlighted by red dash-dotted boxes, form the virtual
visible neurons of the reformulated RBM.

blocks. As stated in Proposition 2, there exist probability
distributions, generated by IQP, that cannot be efficiently
simulated by classical circuits (including DBMs or long-range
RBMs). �

Theorem 4. MPQCs can efficiently simulate any IQP cir-
cuits with N qubits and O(poly(N )) commuting gates, with at
most O(poly(N )) blocks, where each block contains no more
than 7N single-qubit gates and N − 1 CNOT gates.

Proof. A general IQP circuit is shown in Fig. 17. Before
proving that an IQP circuit can be efficiently simulated by
MPQCs, we first define the arrangement of quantum gates
in each block. As shown in Fig. 18, from left to right in
each block, the seven parametrized single-qubit gates are RX ,
RZ , RX , Rφ , RZ , RY , and RZ , followed by N − 1 CNOT gates,
where the controlled qubit of all of them is the first qubit. For
simplicity, we use (θi, . . . , θ7) to represent the composition of
the seven parametrized qubit gates.

Note that H = RX (π/2)RZ (π/2)RX (π/2). Hence, it is not
hard to see that the initial and final layers of IQP circuits,
where N H gates are separately applied to N qubits, can be
simulated by choosing parameters (π/2, π/2, π/2, 0, 0, 0, 0)
and (0,0,0,0,0,0,0) in the first and second blocks, respectively.

Next we demonstrate that the internal diagonal matrix UZ

can also be simulated using the predefined block structure.
Without loss of generality, we assume that the ith circuit depth
in UZ contains MT T gates and MCZ CZ gates, with MT +
MCZ � N . For example, the colored region in Fig. 17 indicates
that MT = 2 and MCZ = 2.

Similar to the simulation of H gates, 2 blocks are sufficient
to simulate MT (MT � N) T gates at the same circuit depth.

FIG. 17. The arrangement of quantum gates in a general IQP
circuit.
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FIG. 18. The arrangement of quantum gates in each block.

Since T = Rφ (π/4), then the T gates can be simulated by ap-
plication of (0, 0, 0, π/4, 0, 0, 0) followed by (0,0,0,0,0,0,0).

We next prove how to use predefined blocks to efficiently
simulate a CZ gate. Suppose that a CZ gate is applied to the
kth qubit, which is controlled by the jth qubit, with j � k.
Since the explicit connection between the two qubits may
not exist in the predefined block, we first use 14 blocks to
simulate a SWAP gate that switches the jth controlled qubit to
the first qubit. We then use 6 blocks to simulate the CZ gate
that is applied to the kth qubit and controlled by the first qubit.
Last, 14 blocks are employed to simulate another SWAP gate to
switch the first control qubit back to its original position. For
example, as shown in the left panel of Fig. 19, the CZ gate as
indicated by the blue box can be represented by an equivalent
circuit controlled by the first qubit.

The central problem in simulating the SWAP operation is
how to simulate a single CNOT gate applied arbitrarily to two
qubits, since a SWAP gate is composed of three CNOT gates,
as illustrate in Fig. 20. The first and third CNOT gate of the
SWAP operation can be simulated by 4 blocks. Recall that, in
Proposition 1, a single CNOT gate (namely, the CX gate) can be
decomposed into X = A1B1C1, where A1 = RZ (0)RY (π/2),
B1 = RY (−π/2)RZ (π ), and C1 = RZ (π ). We set all parame-
ters of the first block as 0 except the parameters corresponding
to the kth qubit, which are set as (0, 0, 0, 0, 0, π/2, 0) to

FIG. 19. The left panel illustrates an equivalent circuit described
by SWAP operation. The right panel shows the implementation of
SWAP by two CNOT gates and one reversed CNOT gate.

simulate A1. Next, we set all parameters of the second block
as 0 except the parameters corresponding to the kth qubit,
which are set as (0, 0, 0, 0, 0,−π/2, π ) to simulate B1. Then,
we set all parameters of the third block as 0 except the
parameters corresponding to the kth qubit, which are set as
(0, 0, 0, 0, 0, 0, π ) to simulate C1. Last, all parameters of the
fourth block are set as 0.

Six blocks are required to simulate the second reversed
CNOT gate (R-CNOT gate) in the SWAP operation. Since R-CNOT

= (H ⊗ H )CNOT(H ⊗ H ), we use 4 blocks to simulate the
(H ⊗ H )CNOT and then use an extra 2 blocks to simulate the
last two Hadamard gates. For the first 4 blocks, the parameters
of the first three parametrized gates that are applied to the first
and ith qubits are set as π/2, π/2, and π/2, with the aim
of simulating two H gates. The remaining parameters of the
first 4 blocks follow with the same setting as simulating the
CNOT gate as defined above. The last 2 blocks follow a similar
setting as simulating the Hadamard layer, where the first three
parametrized gates that are applied to the first and ith qubits
simulate two H gates and the remaining parameters are set as
zero. To conclude, a SWAP gate can be composed of a total of
14 blocks.

Finally, because the CZ gate can be reformulated as CZ =
(I ⊗ H )CNOTI ⊗ H ), it can also be simulated by using 6
blocks.

In summary, since H gates, T gates, and CZ gates can be
efficiently simulated by using a constant number of blocks,
O(N ) blocks are sufficient to simulate an IQP circuit with
O(poly(N )) T and CZ gates. �

FIG. 20. Simulating a single CNOT gate by using 4 blocks.
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