
ORIGINAL ARTICLE

From text to graph: a general transition-based AMR parsing using
neural network

Min Gu1 · Yanhui Gu1 · Weilan Luo2 · Guandong Xu3 · Zhenglu Yang4 · Junsheng Zhou1 ·
Weiguang Qu1

Received: 12 March 2020 / Accepted: 18 September 2020 / Published online: 15 October 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Semantic understanding is an essential research issue for many applications, such as social network analysis, collective

intelligence and content computing, which tells the inner meaning of language form. Recently, Abstract Meaning Rep-

resentation (AMR) is attracted by many researchers for its semantic representation ability on an entire sentence. However,

due to the non-projectivity and reentrancy properties of AMR graphs, they lose some important semantic information in

parsing from sentences. In this paper, we propose a general AMR parsing model which utilizes a two-stack-based transition

algorithm for both Chinese and English datasets. It can incrementally parse sentences to AMR graphs in linear time.

Experimental results demonstrate that it is superior in recovering reentrancy and handling arcs while is competitive with

other transition-based neural network models on both English and Chinese datasets.

Keywords Semantic analysis · AMR parsing · Two-stack-based transition algorithm · Neural network

1 Introduction

Meaning Representation of natural language is an impor-

tant issue for massive data in the real world. How to

achieve complete semantic understanding of natural lan-

guage sentences in real-world data has been attracted by

researchers [1–6]. When applying natural language pro-

cessing technologies to mine semantic information and

understand the real meaning of the data, semantic repre-

sentation is the carrier of semantic information.

In recent years, graph representation-based strategies

show their excited performance in expressing information

in complex condition, such as social network representa-

tion [3, 7–10], chemical molecule representation [11–15]

and so forth. Because of the characteristics of real-world

data and the properties of graphs which can handle much

more complex information, we intend to harness the wis-

dom of graphs to represent the semantic information in

sentences. Because of the ambiguity and polysemy of

semantics, it is a great challenge to realize the semantic

understanding of natural language sentences. Traditional

sentence semantic understanding research usually designs a

formal meaning representation form for a specific domain

[16, 17]. However, the real world is a multi-domain hybrid

environment where people could consume, produce and

share information easily. Semantic representation needs a

domain-independent general representation method to

mine semantic information in multi-domain natural lan-

guage sentences.

To tackle this issue, we propose an automatic semantic

parsing model based on a representative semantic repre-

sentation method, i.e., Abstract Meaning Representation

(AMR). We represent semantics in natural language sen-

tences by semantic graphs to express the deep semantic

& Yanhui Gu

gu@njnu.edu.cn

& Zhenglu Yang

yangzl@nankai.edu.cn

1 School of Computer Science and Technology, Nanjing

Normal University, Nanjing, China

2 School of Computer Science, Nanjing University of Posts and

Telecommunications, Nanjing, China

3 Advanced Analytics Institute, University of Technology

Sydney, Sydney, Australia

4 Institute of Big Data, College of Computer Science, Nankai

University, Tianjin, China

(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05378-5&domain=pdf

information in sentences. AMR is a domain-independent

semantic representation language which represents an

entire sentence as a rooted, directed, acyclic graph [18].

Due to its semantic representation ability for entire sen-

tence, AMR can assist in various semantic-based tasks,

such as Text Summarization, Machine Translation, Event

Extraction and so forth [19–24].

For a given sentence “Iranian law states the death

penalty for drug trafficking.”, its AMR graph is illustrated

in Fig. 1. A word may correspond to a concept fragment

formed by a single concept (e.g., “state-01”) or multiple

concepts (e.g., “country ? name ? “Iran””). In an AMR

graph, concepts are represented as labeled nodes and

relations are represented as labeled and directed arcs. Some

AMR graphs are non-projective (having crossing arcs) or

have reentrant nodes (e.g., node “law” has two parent

nodes: “state-01” and “penalize-01” in Fig. 1. “ ” has

two parent nodes: “ -02” and “ -01” in Fig. 2a), which

make the generation of AMR graphs more difficult. AMR

uses graph variables and reentrancy to express coreference.

The reentrancy prevents the AMR graph from being a tree

structure [25].

When transforming natural language sentences to AMR

graphs, transition-based models [26] and graph-based

models [27] are two common strategies. Previous transi-

tion-based methods mainly have two methods. One is uti-

lizing dependency tree as an intermediary and performing

tree-to-graph transformation [26, 28–32]. The other takes

sentences as input and directly parses sentences to graphs

[33–36]. Transition-based model predicts transition actions

and constructs an AMR graph based on predicted actions.

However, traditional transition-based decoding methods

only fit dependency trees which are projective and do not

perform well in crossing arcs and reentrancy situations.

Thus, previous methods try to design complex actions for

graph construction [37] or introduce extra classifiers for

reentrancy arcs generation [33], but the reentrancy classi-

fier does not perform well.

In our automatic semantic parsing strategy, we propose

a two-stack-based transition algorithm to realize the gen-

eration of complete AMR graphs incrementally. The

decoding algorithm can cover more AMR graphs with

simple actions. With the decoding algorithm, a general

transition-based AMR parser using neural network is

constructed for both English and Chinese data. The

experimental evaluation demonstrates the effectiveness of

our proposed model on both English and Chinese datasets.

Our contributions are listed as follows:

(1) We survey the state-of-the-art AMR semantic pars-

ing models and analyze them from different aspects.

(2) We propose an effective general strategy for trans-

forming English or Chinese natural language sen-

tences to semantic graphs.

(3) We directly parse sentences to AMR graphs without

transformation of dependency trees. It reduces

information loss and error propagation.

The remainder of this paper is organized as follows: Sect. 2

mainly introduces the related work of semantic represen-

tation and AMR semantic parsing. Section 3 describes the

proposed model. Section 4 shows the experiments and

discusses the experimental results. Finally, we conclude

this paper in Sect. 5.

2 Related work

2.1 Semantic representation by applying graph
construction

In this paper, we select AMR as the graph representation

method. AMR is a domain-independent semantic repre-

sentation language for sentences. It abstracts the semantics

of a sentence into a single directed acyclic graph. Com-

pared with English AMR annotation, the research of Chi-

nese AMR annotation started late [39]. Based on the

framework of English AMR annotation, Li et al. introduce

AMR semantic representation system into Chinese [40].

They focus on solving the issues of AMR concept and word

alignment and initially propose Chinese AMR annotation

specification.

Compared with dependency trees, AMR graphs have

more complicated structure. Sometimes, it is non-projec-

tive and may have reentrant nodes. Nodes indicate concepts

in AMR graph, which can be either English or Chinese

words (e.g., law,) or PropBank framesets [41] (e.g.,

want-01, -02, state-01).

Based on AMR annotation specification and datasets,

the researchers attempt to automatically convert sentences

to AMR graphs through different AMR transformationFig. 1 AMR graph of English sentence “Iranian law states the death
penalty for drug trafficking.” from LDC2014T12 dataset

algorithms. AMR transformation is designed to parse sen-

tences into corresponding AMR graphs. In an AMR graph,

the label of a directed arc represents the relationship

between two concepts. As shown in Fig. 1 “Iranian law

states the death penalty for drug trafficking.”, the arc

between concept “law” and concept “state-01” is marked

with “:arg0” relation label, indicating the subject–predicate

relationship. The arc between concept “ -02” and con-

cept “ ” is also labeled with “:arg0” in Fig. 2a.

AMR contains more than one hundred semantic rela-

tions, which can be summarized into five types. Table 1

gives some examples of the five types. The collection of all

concepts and relationships in AMR enables it to abstractly

represent the semantics of sentences in a reasonable and

consistent way.

AMR graphs have the following characteristics:

Concept: It is the basic component of AMR graphs in

English and Chinese AMR graphs. A node in a graph

indicates a concept. A concept or a concept fragment can

be aligned to words in sentences. For example, the word

“ ” in sentence “ (He wants to eat apples.)”

is aligned to concept “ -02.”

Non-projectivity: It means that there are crossing arcs

in AMR graphs if the arcs are drawn in sentence order, e.g.,

the arc between “ ” and “ -01” is crossing with

another arc which is illustrated in Fig. 2b.

Reentrancy: It indicates that the node in an AMR graph

has multiple parent nodes. We call the node “Reentrant

Node” and the arc linked to the node “Reentrant Arc.” For

example, Reentrant Node “law” has two parent nodes

“state-01” and “penalize-01” in Fig. 1. Reentrant Node

“ ” also has two parent nodes “ -02” and “ -01”

which is shown in Fig. 2a.

In 200 manually aligned AMR graphs, 41% of them

have reentrant nodes and 51% are non-projective graphs

[33]. These unique characteristics of AMR graphs make the

prediction of transition actions in transition-based AMR

transformation become more complicated.

2.2 Automatic semantic representation
transformation

The traditional English semantic AMR graph transforma-

tion based on statistical learning model can be divided into

four different types: graph-based model [27, 42–45], tran-

sition-based model [28–35, 46], Combinatory Categorial

Grammar-based model [47–49] and Machine Translation-

based model [50]. The transformation process is also

named as parsing. Among them, graph-based parsing

models and transition-based parsing models are two most

common models. Flanigan et al. propose the first AMR

parser: JAMR [42]. It is a graph-based model which

divides the AMR parsing task into two subtasks: concept

recognition task and relation recognition task. Concept

recognition is the process of mapping a word or a word

string in an input sentence to a concept or concept fragment

in AMR graphs. It applies the semi-Markov model to label

the concepts. Based on the concept sequence, a Maximum

Spanning Connected Subgraph (MSCG) algorithm is used

to search all the relationships between concepts to find the

subgraph with the highest score. The state-of-the-art graph-

based model is an attention-based model that treats AMR

parsing as sequence-to-graph transduction [51]. Transition-

based model has two types. One is represented by CAMR

[26], which generates AMR graphs from dependency trees.

The other directly parses sentences to graphs through

transition algorithms [33].

Traditional statistical learning-based models rely on

artificial feature engineering to obtain complex features,

and the combined features may make parameter space of

the model become too large and result in low efficiency on

time and space. Considering the representation learning

ability of neural networks, AMR parsing models based on

neural network models were proposed for English datasets

(a)
(b)

Fig. 2 AMR graph of Chinese

sentence “ (He
wants to eat apples)”

Table 1 Examples of AMR relations

Relation types Examples

PropBank framesets :arg0, :arg1, :arg2

General :age, :location, :name

Date :day, :month, :time

List :op1, :op2, :op3

Number :quant, :unit, :scale

to AMR graphs. It also integrates word, POS tags and

dependency information for parsing. It can reduce loss of

information in transformation and cover more AMR graphs

in training.

2.3 Sentence modeling and feature learning

Text modeling is the basis of NLP tasks. Researchers apply

models, such as RNN, CNN and pre-training models, to

learn word, character and fragment information for NLP

researches [38]. According to feature extraction methods,

AMR parsing models can be divided into (a) combined

feature learning model, (b) RNN-based feature learning

model and (c) CNN-based feature learning model.

(a) Combined feature learning model

In traditional graph decoding dependency parsing models,

the features are expressed as high-dimensional and sparse

vectors, which are independent. This feature representation

method cannot capture the commonalities between features

and also suffers from data sparse problem. In graph

decoding dependency parsing models which are based on

neural network, features are mapped to low-dimensional

and dense vectors. Features with close syntactic and

semantic properties are embedded in adjacent positions,

which shows commonality or similarity in semantic space.

In order to capture the nonlinear relationship between

features and goals of models, it is necessary to utilize

combined features, that is, combine multiple basic features

as new features. Puzikov et al. use a combination of

numerical features and embedding features [46] to connect

features through hidden layers to form a combined vector

representation. Damonte et al. apply numerical features

(such as the depth of the current concept subgraph, the

number of child nodes and the number of parent nodes),

word embeddings (words in the sentence corresponding to

the concept subgraph), part-of-speech tag embeddings, and

dependency tags embeddings to represent a certain con-

figuration in the transition system [33]. Though combined

features are effective in AMR parsing models, the intro-

duction of combined features increases the difficulty of

feature engineering. People need to try and select effective

features from a large number of combined features.

(b) RNN-based feature learning model

Barzdins and Gosko utilize the Seq2seq model for the first

time in AMR analysis. They use a depth-first algorithm to

serialize the AMR graph, but due to data sparsity, its

accuracy is much lower than the model based on statistical

learning [53]. Foland et al. also propose introducing RNN

into AMR parsing [44]. However, due to data sparseness

and the limitation of AMR graph structure, its application

in AMR analysis is insufficient.

[33]. The application of neural network models in AMR
parsing can be divided into two types: (1) learning feature
representation through neural network model, using graph-
based or transition-based decoding method to generate
AMR graphs, and (2) utilizing sequence-to-sequence
model to generate serialized AMR graphs directly from
sentences [52].

On the basis of CAMR, Puzikov et al. use the Feed-
forward Neural Network to predict transition actions [46].
With the combination of numerical features and word
embeddings, a multilayer Feedforward Neural Network
classifier is applied to predict actions. Ballesteros et al.
propose utilization of Stack-LSTM for AMR state repre-
sentation learning, which can obtain feature representations
without external resources [35].

Barzdins and Gosko first use the sequence-to-sequence
(Seq2Seq) model in AMR parsing. They apply the depth-
first algorithm to serialize AMR graphs, encode the inter-
mediate representation through LSTM and then obtain the
serialized AMR representation by decoding [53]. However,
due to the sparse of data, its accuracy is lower than the
statistical learning-based model. On the basis of this,
Konstas et al. utilize stacked LSTM to optimize represen-
tation learning with large-scale unlabeled datasets as
external resources for self-training and improve the AMR
parsing performance of sequence-to-sequence-based mod-

els [54]. Guo and Lu also apply stacked LSTM with nine
types of actions to construct AMR graphs. They design a
representation called compact AMR graph to simplify
concepts and relations of an AMR graph. Their model
achieves Smatch F1 score of 0.683 on LDC2014T12
dataset with optimized aligner and compact AMR graph
[37].

Similar to English AMR parsing based on the statistical
learning model, Wang et al. propose a method for trans-
forming dependency trees to Chinese AMR graphs [36].
The model consists of two steps. First, an existing depen-
dent parser is used to generate the corresponding depen-
dency trees; then, the transition algorithm is applied to
convert dependency trees to AMR graphs. The model
designs nine transition actions. By predicting transition
actions, the greedy decoding algorithm selects the action
with the highest score from the action set to perform
actions on the corresponding dependency trees, thus
transforming the dependency tree to the AMR graph.
However, this model relies on dependency tree as an
intermediary, and errors in dependency parsing are directly
propagated to AMR parsing.

Considering the researches on English and Chinese
AMR parsing and the issues in AMR parsing, this paper
proposes an extended Shift/Reduce decoding algorithm
based on two stacks for AMR parsing. It is a transition-
based model which can incrementally transform sentences

(c) CNN-based feature learning model

The affixes and roots of English words contain rich

semantic information. For example, in the word “un-

precedented” the prefix “un” needs to be marked as a “:

polarity” relationship in AMR. Although word embeddings

can describe the information of a word, the information

contained in the affix and root may not be clear. Therefore,

Wang et al. propose a model which encodes character

feature by CNN [32] to obtain character-level features for

the recognition of AMR concepts.

3 Proposed model

We propose a general automatic semantic representation

model based on the two-stack-based transition algorithm

for transforming natural language sentences to semantic

graphs. In the model, the transition decoding model is a

model which incrementally parses sentences by performing

actions such as Shift and Reduce based on defined con-

figuration. Nivre proposes two transition-based algorithms

for dependency parsing: arc-standard [55] and arc-eager

[56]. The goal of dependency parsing task is to parse the

input sentence to a dependency tree. Dependency trees can

represent the syntactic relationships between words in

sentences. The nodes in a tree represent the words in a

sentence, and the arcs represent the dependency syntax

relationship between two words. Dependency trees and

AMR graphs are similar in structure, their nodes both

represent a lexical content, and arcs all represent semantic

relationships. In addition, there is a strong correlation

between AMR parsing task and dependency parsing task.

The input of both tasks is a sentence, and the output is an

abstract representation structure corresponding to the sen-

tence. Therefore, appropriate improvements on traditional

dependency parsing algorithms can be applied to AMR

parsing tasks. Inspired by the algorithm based on transi-

tion-based decoding for dependency parsing: arc-eager and

its improvement in directed acyclic graphs proposed by

Sagae et al. [57], this paper proposes an extended two-

stack-based transition-based AMR parsing model for both

English and Chinese AMR. It consists of two Feedforward

Neural Network models. It can incrementally parse sen-

tences to AMR graphs from left to right in linear time. The

baseline strategy of this paper is a parsing model based on

AMR-eager, which is similar to Damonte et al. [33]. We

also apply and modify the proposed model in [33] on the

Chinese dataset.

3.1 Transition-based algorithms for automatic
semantic representation transformation

Transition-based algorithms utilize configurations or states

to formalize parsing process. A triple ðr; b;AÞ is used to

represent a configuration. It contains a stack r for nodes in

partially constructed AMR graph; a buffer b for words in a

sentence; and a list A for constructed arcs. When a parsing

procedure starts, it calculates scores for taking transition

actions to construct a new configuration according to cur-

rent configuration. Transition actions are diverse in dif-

ferent models. Transition actions with the highest score

will be chosen to update current configuration. It processes

sentences in a left–right order until the stack and buffer are

both empty. The most popular transition-based algorithms

are arc-standard and arc-eager.

3.1.1 Arc-standard algorithm

For a sequence of words w ¼ fw1;w2; . . .;wng, wi ! wj

indicates that there is an arc from wi to wj. Arc-standard

contains three transition actions:

(1) Left-reduce(l): Add an arc with the label l from the

first element in the buffer to the top element of the

stack, and remove the top element from the stack;

(2) Right-reduce(l): Add an arc labeled l from the top

element of the stack to the first element of the buffer,

and replace the first element of the buffer with the

top element of the stack and remove the top element

from the stack;

(3) Shift: The first element of the buffer is moved to the

stack, which is used to determine whether a word in

the buffer needs to be pushed into the stack.

Transition actions’ definitions are stated in Table 2.

3.1.2 Arc-eager algorithm

The arc-eager algorithm uses the same triple to store

parsing configuration. It modifies transition actions in arc-

standard. Arc-eager contains four transition actions: Shift,

Reduce, LArc(l) and RArc(l). Shift and LArc(l) are the

same as those in arc-standard algorithm. Reduce indicates

removing the top element in the stack. RArc(l) means

adding an arc with label l from the top element in stack to

the first element in the buffer and removing the first ele-

ment to the stack. Table 3 gives the formal definitions of

these four transition actions and their prerequisites.

3.2 General automatic semantic parsing model
based on two-stack-based transition
algorithm

Based on concept recognition results, we train two

Feedforward Neural Network classifiers for predicting

transition actions and arc labels in AMR parsing model

based on the extended Shift/Reduce algorithm. We design

two classifiers for English and Chinese AMR parsing:

(a) transition action classifier and (b) label classifier.

According to concept recognition result and prediction

results from the classifiers, the model can construct a single

root, directed and acyclic AMR graph. Finally, evaluation

is performed on generated AMR graphs and gold AMR

graphs.

3.2.1 Concept recognition algorithm

We define the set {1,2,...,n} as [n]. An AMR graph is

defined as a triple ðG; x; pÞ, where s represents sentence

x ¼ fx1; x2; . . .; nng. xiði 2 ½n�Þ is the word in the sentence.

G ¼ ðV;EÞ is a directed graph, where V is the node set and

E stores arcs. p : V ! ½n� is the mapping from concepts in

AMR graphs to word positions in sentences. A node v in an

AMR graph is abstracted from word xpðvÞ. We define the

mapping from word at position i in a sentence to AMR

concept as:

p ðiÞ ¼ ðp�1ðiÞ;E \ ðp�1ðiÞ � p�1ðiÞÞÞ;
p�1ðiÞ ¼ fvjv 2 V ; pðvÞ ¼ ig

ð1Þ

Based on alignment annotations, we can obtain an align-

ment table of word–concept pairs. According to alignment

result, this model utilizes heuristic search algorithm to

select the concept with the highest score corresponding to

the current word. The concept acts as input for the transi-

tion-based module.

Table 2 Transition actions’ definitions and prerequisites in arc-standard algorithm

Actions Definitions Prerequisites

Shift ðr;b0jb;AÞ ! ðrjb0;b;AÞ bj j > 1

Left-reduce(l) ðrjr0;b0jb;AÞ ! ðr;b0jb;A [f\b0; l;r0 [gÞ rj j > 2 and bj j > 1 and r0 is not root and does not contain root node

Right-reduce(l) ðrjr0;b0jb;AÞ ! ðr;r0jb;A [f\r0; l;b0 [gÞ rj j > 2 and bj j > 1 and b0 is not root

Table 3 Transition actions’ definitions and prerequisites in arc-eager algorithm

Actions Definitions Prerequisites

Shift ðr;b0jb;AÞ ! ðrjb0;b;AÞ bj j > 1

Reduce ðrjr0;b;AÞ ! ðr;b;AÞ rj j > 1

LArc(l) ðrjr0;b0jb;AÞ ! ðr;b0jb;A [f\b0; l;r0 [gÞ rj j > 2 and bj j > 1 and r0 is not root and does not contain root node

RArc(l) ðr;b0jb;AÞ ! ðrjb0;b;A [f\r0; l;b0 [gÞ rj j > 2 and bj j > 1 and b0 does not contain root node

The baseline strategy of this paper is based on the arc-eager
algorithm. It applies heuristic search method for concept
recognition. In order to modify the transition algorithm to
suit AMR transformation, we introduce a two-stack-based
transition algorithm to solve the problem in AMR graph
generation. Inspired by [58], the two-stack-based transition
algorithm is an extended Shift/Reduce decoding algorithm
based on two stacks. We modify the transition actions in
[58]. At the same time, we apply more appropriate feature
representation to enrich feature representation learning in
the prediction of transition actions. This model can be
divided into six parts, which are illustrated in Fig. 3.
Among them, pre-training, AMR concept annotation and
named-entity recognition are pre-processing processes.
Based on external datasets, we train word embeddings
using Word2vec model as the input of this model. The
AMR concept annotation aligns words to concepts and
constructs an alignment table through an aligner [42]. This
table is the input for the concept recognition module. In
addition, we utilize Corenlp to label named entities in
dataset as features for the concept recognition module and
transition-based AMR parsing module.

After pre-processing, the heuristic search-based concept
recognition module uses the alignment table to train the
concept recognition model. The concept recognition model
returns concepts or concept fragments corresponding to
words.

For better comprehension, we define the mapping

function as p 0
. For i 2 ½n�, the result of p 0

is a subgraph

Gi ¼ ðVi;EiÞ. The subgraph has only one root node,

denoted as rootðGiÞ. p 0
allows a word map to a complex

concept subgraph or none.

3.2.2 Two-stack-based transition algorithm

Similar to two-stack-based transition-based dependency

parsing [58], we propose a two-stack-based transition-

based AMR parser. Different transition actions, including

SHIFT, REDUCE, LEFT_ARC(l), RIGHT_ARC(l) and

MEM, are applied to update configurations and construct

AMR graphs. In the two-stack-based transition algorithm, a

configuration is defined as fr; r0 ; b;Ag. It contains a pri-

mary stack r for nodes in partially constructed AMR

graph; a secondary stack r0 as a cache for nodes; a buffer b
for words; and a list A for constructed arcs. When a parsing

procedure starts, we calculate scores for taking transition

actions to construct a new configuration according to cur-

rent configuration. In the five transition actions, LEF-

T_ARC(l), RIGHT_ARC(l), SHIFT and REDUCE are

similar to those in the arc-eager algorithm. They only

operate on the primary stack. The fifth action MEM pushes

the top element in the primary stack to the secondary stack

to handle crossing arcs and reentrancy issues.

Table 4 gives the formal definitions of these five tran-

sition actions and their prerequisites. (1)SHIFT: remove

the first node in b and push nodes in r
0
to r. (2)LEFT/

RIGHT_ARC(l): update a configuration by adding an arc

(i, l, j) to A, where i is the top of r, and j is the first node in

b. (3)REDUCE: update a configuration by popping the top

of r. (4)MEM: pop the top element from r and push it into

r
0
:

We utilize an oracle algorithm to obtain gold transition

actions in parsing for training, as shown in Algorithm 1. In

training procedure, the model processes each word in a

sentence from left to right and obtains transition actions

based on current configurations until the end of the sen-

tence. The oracle algorithm returns a gold transition action

sequence T. Firstly, we obtain AMR concept of each word

in a sentence (lines 2 to 5) and initialize a configuration

(line 6). Then, we add transition actions to action sequence

T on the basis of current configurations. If there is a left arc

Fig. 3 General automatic

semantic parsing model based

on two-stack-based transition

algorithm

or right arc between the top node of stack r and the first

node in buffer b, action LEFT_ARC or RIGHT_ARC

with an arc label l will be added to T (lines 7 to 10). If the

top node of stack r has arcs with others in buffer b except

the first node, action MEM will be accepted (lines 11 to

12). If last action is not MEM and the top node in stack r
has no other arcs with nodes in buffer b, the node will be

deleted from the stack (lines 13 to 14). Otherwise, action

SHIFT will be taken (lines 15 to 16).

For example, the parsing process of sentence

“ ” in two-stack-based algorithm and arc-eager

algorithm is shown in Tables 5 and 6. We also illustrate the

graph generation procedure in two-stack-based algorithm

in Fig. 4. For each sentence in the training dataset, given

the corresponding standard concept sequence, using the

transition action set in the baseline strategy does not con-

struct a valid transition action sequence to generate the

corresponding gold AMR graph. When the gold AMR

graph corresponding to the sentence contains a reentrant

node, the AMR graph parsed by the baseline strategy loses

the reentrant arc, e.g., the arc in gold AMR

graph is missing in arc-eager in Table 6.

In view of the shortcomings of the baseline strategy, this

paper redefines and expands the set of transfer actions in

the baseline strategy. Therefore, it can cover the entire

training dataset more effectively.

In transition decoding, we propose two classifiers based

on Feedforward Neural Network: transition action classifier

and label classifier. Transition action classifier predicts

next transition action according to current configuration.

The feature in this classifier is shown in Table 7. When

the current action is LEFT_ARC or RIGHT_ARC, we need

to tell the label of the new generated arc. The label clas-

sifier predicts labels based on the configuration after per-

forming LEFT_ARC and RIGHT_ARC. Its features are

shown in Table 8.

Compared with the proposed model, the baseline strat-

egy utilizes three classifiers: transition action classifier,

label classifier and reentrancy classifier. The former two

classifiers are similar to our proposed model. The last

classifier predicts whether the concept node and its sibling

need to add a reentrancy arc. The features for transition

action classifier, label classifier and reentrancy classifier

are shown in Tables 9, 10 and 11.

In the proposed model, we add more dependency fea-

tures for training, since the dependency relation indicates

the semantic connection between words. We propose to

utilize a multilayer Feedforward Neural Network to con-

struct classifiers. Its structure is illustrated in Fig. 5.

For each classifier, its features are represented as:

ei ¼ ½exi ; epi ; eNERi ; edi ; e
n� ð2Þ

Ta
bl
e
4

T
ra
n
si
ti
o
n
ac
ti
o
n
s’

d
efi
n
it
io
n
s
an
d
p
re
re
q
u
is
it
es

in
th
e
tw
o
-s
ta
ck
-b
as
ed

al
g
o
ri
th
m

A
ct
io
n
s

D
efi
n
it
io
n
s

P
re
re
q
u
is
it
es

L
E
F
T
_
A
R
C
(l
)

ðr
jr 0

;r
0 ;
b
0
jb;

A
Þ!
ðr
jr 0

;r
0 ;
b
0
jb;

A
[
f\

b
0
;l
;r

0
[
gÞ

r jj
>

1
an
d
b jj

>
1

R
IG

H
T
_
A
R
C
(l
)

ðr
jr 0

;r
0 ;
b
0
jb;

A
Þ!
ðr
jr 0

;r
0 ;
b
0
jb;

A
[
f\

r
0
;l
;b

0
[
gÞ

rjj
>

1
an
d

bjj
>

1

S
H
IF
T

ðr
;r
0 jr

0 0
;b
;A
Þ!
ðr
jr 0

;r
0 ;
b
;A
Þ;t

h
en
ðr
;r
0 ;
b
0
jb;

A
Þ!
ðr
jro

o
tða
ðb

0
ÞÞ;

r
0 ;
b;
A
[
E
a
Þ;w

h
er
e
a
ðb

0
Þ¼
ðV

a
;E

a
Þ

b jj
>

1

R
E
D
U
C
E

ðr
jr 0

;r
0 ;
b
;A
Þ!
ðr
;r
0 ;
b
;A
Þ

r jj
>

2

M
E
M

ðr
jr 0

;r
0 ;
b
;A
Þ!
ðr
;r
0 jr

0
;b
;A
Þ

r jj
>

2

[1
]
a
ðb

0
Þ¼
ðV

a
;E

a
Þi
n
d
ic
at
es

th
e
A
M
R

su
b
g
ra
p
h
w
h
ic
h
b
0
co
rr
es
p
o
n
d
s
to

exi is word embedding; epi is POS tag embedding; eNERi is

NER tag embedding; edi is named-entity label embedding;

and eni is numerical features.

Through multiple hidden layers, the representation is

encoded as:

Ht ¼ rðWtei þ btÞ ð3Þ

Table 6 Parsing process of

sentence “ (He

wants to eat apples.)” in arc-

eager

Table 5 Parsing process of

sentence “ (He

wants to eat apples.)” in the

proposed model

Wt is the parameter between layers, bt is the bias item and

r is activation function.

The output of hidden layers is the input of the output

layer:

Ot ¼ rðWoHt þ boÞ ð4Þ
Wo is the parameter between layers, and bo is the bias item.

Finally, softmax function is used to get the probability

distribution of the predicted target:

yt ¼ softmaxðWsOt þ bsÞ ð5Þ
We apply Adagrad algorithm to minimize the object

function:

Fig. 4 AMR graph generation

procedure of sentence

“ (He wants to

eat apples.)”

Table 7 Features in transition action classifier

Features Templates

Number The distance from r0 and aðb0Þ to the root

The distance from r0 and aðb0Þ to the most left child node

The number of child nodes of r0 and aðb0Þ
The depth of parent node of r0 and aðb0Þ

Word wðr0Þ, wðr00Þ, wðb0Þ, wðpðr0ÞÞ, wðpðaðb0ÞÞÞ, wðcðr0ÞÞ, wðcðaðb0ÞÞÞ, wðcðpðr0ÞÞÞ, wðcðpðaðb0ÞÞÞÞ
POS tag posðr1Þ, posðr0Þ, posðb0Þ, posðb1Þ
Named entity NEðr1Þ, NEðr0Þ, NEðb0Þ, NEðb1Þ
Dependency 8 2 f0; 1g, depðri; b0Þ and depðb0;riÞ

8 2 f1; 2; 3; 4g, depðbi; b0Þ and depðb0;biÞ
8 2 f1; 2; 3; 4g, depðbi; r0Þ and depðr0;biÞ
8 2 f1; 2g, depðri; r0Þ and depðr0;riÞ

[1] p(a) means the most left parent node of a and c(a) is the most left child node of a. w(a) is the word embedding of a. pos(a) indicates the POS
tag of the word corresponding to a. NE(a) is the named entity label of the word corresponding to a. dep(a, b) means the dependency label

between a and b

Table 8 Features in label classifier

Features Templates

Number The distance from r0 and aðb0Þ to the root

The distance from r0 and aðb0Þ to the most left child node

The number of child nodes of r0 and aðb0Þ
The depth of parent node of r0 and aðb0Þ

Word wðr0Þ, wðb0Þ, wðpðr0ÞÞ, wðpðaðb0ÞÞÞ, wðcðr0ÞÞ, wðcðaðb0ÞÞÞ, wðcðpðr0ÞÞÞ, wðcðpðaðb0ÞÞÞÞ
POS tag posðr0Þ, posðb0Þ
Named entity NEðr0Þ, NEðb0Þ
Dependency depðr0;b0Þ and depðb0;r0Þ

LðhÞ ¼ �
Xn

i¼1
yilogðŷiÞ þ ð1� yiÞlogð1� ŷtÞ þ k hk k22

ð6Þ
h is the parameters in the model, yi is the gold output at

time i, ŷt is the real output, and k hk k22 is the L2 regular-

ization item.

The algorithmic procedure of the proposed general

automatic semantic parsing model based on two-stack-

based transition algorithm is illustrated in Algorithm 2.

Table 9 Features in transition action classifier of the baseline strategy

Features Templates

Number The distance from r0 and r1 to the root and fromr0 and r1 to the most left child node

The number of child nodes of r0 and r1
The depth of parent node of r0 and r1

Word wðr0Þ, wðr1Þ, wðpðr0ÞÞ, wðpðr1ÞÞ, wðcðr0ÞÞ, wðcðr1ÞÞ, wðcðpðr0ÞÞÞ, wðcðpðr1ÞÞÞ, wðb0Þ, wðb1Þ
POS tag posðr1Þ, posðr0Þ, posðb0Þ, posðb1Þ
Named entity NEðr1Þ, NEðr0Þ, NEðb0Þ, NEðb1Þ
Dependency depðr0; r1Þ, depðr1; r0Þ

8 2 f0; 1g, depðri; b0Þanddepðb0; riÞ
8 2 f1; 2; 3g, depðbi; b0Þanddepðb0; biÞ
8 2 f1; 2; 3g, depðbi; r0Þanddepðr0; biÞ

Table 10 Features in label

classifier of the baseline strategy
Features Templates

Number The distance from r0 and r1 to the root

The distance from r0 and r1 to the most left child node

The number of child nodes of r0 and r1
The depth of parent node of r0 and r1

Word wðr0Þ, wðr1Þ, wðpðr0ÞÞ, wðpðr1ÞÞ, wðcðr0ÞÞ, wðcðr1ÞÞ, wðcðpðr0ÞÞÞ, wðcðpðr1ÞÞÞ
POS tag posðr1Þ, posðr0Þ
Named entity NEðr1Þ, NEðr0Þ
Dependency depðr0; r1Þ, depðr1; r0Þ

Table 11 Features in reentrancy classifier of the baseline strategy

Features Templates

Word wðr0Þ, wðsðr0ÞÞ, wðpsðr0ÞÞ
POS tag posðr0Þ, posðsðr0ÞÞ, posðpsðr0ÞÞ
Dependency depðr0; sðr0ÞÞ and depðsðr0Þ;r0Þ

depðr0; psðr0ÞÞ and depðpsðr0Þ;r0Þ
depðsðr0Þ; psðr0ÞÞ and depðpsðr0Þ; sðr0ÞÞ

[1] ps(a) is the parent node of a and sibling of a. s(a) is the sibling of

a

Fig. 5 Multilayer Feedforward Neural Network

The procedure of the proposed general automatic

semantic parsing model can be divided into two modules:

encoder and decoder. Given a sentence, the model initial-

izes a new configuration C. Then, the encoder module

encodes the features from the configuration. The embed-

dings are transferred to the decoder module for graph

decoding. The AMR graph is constructed step by step

based on the five transition actions and labels which are

predicted by the action classifier and label classifier.

4 Experimental evaluation

4.1 Datasets and metrics

We evaluate our framework on both English dataset

(LDC2014T12-proxy (14-p), LDC2014T12-all (14-all))

and Chinese dataset [59] with regard to the metrics of

Smatch Precision (P), Recall (R) and F-measure (F1) [60].

The dataset contains discussion forums collected for the

DARPA BOLT program, Wall Street Journal and trans-

lated Xinhua news texts, various newswire data from NIST

OpenMT evaluations and weblog data used in the DARPA

GALE program. Size of each dataset is shown in Table 12.

Metrics for evaluation are as follows:

Precision ðPÞ ¼# correct predicted triples

all predicted triples
ð7Þ

Recall ðRÞ ¼# correct predicted triples

all triples
ð8Þ

F1 ¼ 2 � P � R
Pþ R

ð9Þ

4.2 Oracle evaluation

The baseline strategy utilizing arc-eager is called AMR-

eager in this paper. We reproduce the model in [33] as our

baseline and modify the model for the Chinese dataset. The

proposed transition-based AMR transformation using two-

stack-based transition algorithm is defined as T-AMR.

TAMR applies the same dependency feature as those in

AMR-eager. On the basis of TAMR, we add more

appropriate features into the model for both English and

Chinese datasets, especially dependency information. We

call it General Automatic Transition-based AMR model

(GAT-AMR).

As mentioned in Sect. 3, we apply the oracle algorithm

to obtain gold actions for training. The performance of

oracle algorithm indicates the performance of transition

system. We compare our oracle algorithm with AMR-ea-

ger according to Smatch score of AMR graphs constructed

utilizing gold actions on training dataset. As shown in

Table 13, our algorithm performs the best with Smatch F1

score being 0.90 on the English datasets and 0.81 on the

Chinese dataset. Experiment results show that our extended

Shift/Reduce algorithm is better than arc-eager algorithm

in AMR graph generation. It can cover more graphs than

arc-eager and produce more suitable transition action

sequences for training.

Table 12 Size of datasets

Datasets Train Dev Test

Chinese dataset 7918 989 991

LDC2014T12 10,312 1,368 1371

LDC2014T12-proxy 6603 826 823

Table 13 Oracle evaluation of models

Datasets P R F1

Chinese dataset AMR-eager 0.82 0.73 0.77

GAT-AMR 0.84 0.77 0.81

LDC2014T12 AMR-eager 0.86 0.78 0.81

GAT-AMR 0.94 0.86 0.90

4.3 Parameter setting

Early stopping strategy is applied in training. We calculate

dev accuracy after each epoch and stop training when the

accuracy does not improve in 30 rounds. The embeddings

for Chinese words are pre-trained on CTB5.0 which has

507,222 words. The embeddings for English words and

POS tags were pre-trained on a large unannotated dataset

consisting of the first one billion characters from

Wikipedia.8.

We conducted many experimental evaluations on both

English and Chinese datasets and found that the data which

have been trained from Chinese one can present the per-

formance clearly and intuitively. Therefore, in this sub-

section we took the Chinese dataset as a representative to

illustrate the training performance with different activation

functions and batch sizes. We compare the influence of

activation function and batch size in training of GAT-

AMR. Figure 6 illustrates the accuracy of transition action

classifier and label classifier with activation function: Tanh

and ReLU on the Chinese dataset. The batch size is 32, and

learning rate is 0.1.

As shown in Fig. 6, the ReLU activation function per-

forms better than Tanh. The label classifier of Tanh acti-

vation function is a little over-fitting. So, ReLU is more

stable and suitable for AMR parser training. Because of the

early stopping strategy, the classifier with Tanh activation

function stops training at Epoch 60 when the classifier’s

performance on the dev dataset got worse in the next ten

epochs. It can prevent the model from being over-fitting.

Figure 7 illustrates the dev accuracy of different learning

rates in the label classifier on the Chinese dataset when

learning rate is 0.1.

As we can see from Fig. 7, the dev accuracy increases

rapidly and reaches a higher level with the increase in

batch size. It indicates that the AMR parser training needs a

larger batch size. The classifier stops training at Epoch 50,

60 and 80 because of the early stopping strategy.

4.4 Parser evaluation

We compare the Smatch score on the English and Chinese

datasets. The evaluation results are shown in Table 14.

Bold represents the maximum value per row or column.

Compared with the baseline strategy, GAT-AMR out-

performs AMR-eager without applying an extra classifier

for reentrancy nodes by 1% on the Chinese dataset and 1%

on LDC2014T12-p. Considering AMR-eager and T-

AMR, T-AMR applies the two-stack-based transition

algorithm, which performs better precision score than that

of arc-eager in non-projectivity and reentrancy situations.

The GAT-AMR model is a general model for both English

and Chinese. The dependency feature provides more

information which is needed in training.

The Chinese dataset used in this paper is randomly

divided, and the dataset used by Wang et al. does not [36].

The Smatch F1 score is 0.58 in [30]. Since the code of

Wang et al. is not released, it is not considered as a com-

parison object in this paper and we only compare transi-

tion-based models. As mentioned in Sect. 2.2, Guo and Lu

achieve Smatch F1 score of 0.683 on LDC2014T12 dataset

with optimized aligner and compact AMR graph in concept

recognition [37]. Utilizing the same aligner and without

compact AMR graph, their model’s Smatch F1 score is

only 0.639. Compared with the model, our model can

(a) Transition Action Classifier

(b) Label Classifier

Fig. 6 Accuracy of different activation functions in two classifiers on

the Chinese dataset

achieve competitive performance as the state-of-the-art

transition-based model in arc generation with less transi-

tion actions. Our model is also more generative than the

model as we can construct both English and Chinese

graphs.

We also evaluate AMR-eager and GAT-AMR on

individual evaluation metrics, including: Unlabeled (eval-

uation on unlabeled arcs), No WSD (evaluation on con-

cepts without PropBank suffix), Named Ent. (evaluation on

named entities), Negations (evaluation on polarity arcs),

Reentrancies (evaluation on reentrancy arcs), Concepts

(evaluation on concepts), and SRL (evaluation on arcs with

arg label). The results on the English dataset and Chinese

dataset are shown in Tables 15 and 16.

As shown in Tables 15 and 16, GAT-AMR outperforms

AMR-eager on all individual evaluation metrics in the

Chinese dataset, especially on Unlabeled. It also outper-

forms AMR-eager on the English dataset except Concepts

and Named Ent. These two metrics are related to concept

recognition. Overall, experiments indicate that the transi-

tion algorithm in GAT-AMR is better than that in AMR-

eager on arc prediction. It can perform well on non-pro-

jective graphs. The Reentrancy scores of both datasets also

improve compared to AMR-eager. It shows that GAT-

AMR can deal with reentrancy well without extra

classifier.

4.5 Ablation study

We also conduct ablation study of the proposed GAT-

AMR model. The proposed model without additional

features is called GAT-AMR–feature, and the proposed

model without two-stacked-based transition algorithm and

additional features is called GAT-AMR–trans. We eval-

uate the three models on all individual evaluation metrics.

The evaluation results on Chinese dataset are illustrated in

Fig. 8.

We can see that the GAT-AMR–feature performs

better than GAT-AMR–trans on the unlabeled evaluation

Fig. 7 Dev accuracy of different learning rates in label classifier on

the Chinese dataset

Table 14 Smatch evaluation of

models on the English and

Chinese datasets

Models LDC2014T12-p LDC2014T12 Chinese

P R F1 P R F1 P R F1

AMR-eager 0.66 0.65 0.66 0.64 0.59 0.62 0.61 0.55 0.58

T-AMR 0.67 0.65 0.65 0.65 0.59 0.62 0.59 0.57 0.58

GAT-AMR 0.69 0.66 0.67 0.66 0.60 0.62 0.56 0.62 0.59

Table 15 Individual evaluation on the Chinese dataset

Metrics AMR-eager GTAMR

P R F1 P R F1

Unlabeled 0.66 0.61 0.63 0.63 0.69 0.66

No WSD 0.58 0.54 0.56 0.56 0.62 0.59

Named Ent. 0.72 0.57 0.63 0.65 0.76 0.70

Negations 0.58 0.61 0.59 0.66 0.63 0.64

Concepts 0.79 0.71 0.75 0.73 0.82 0.78

Reentrancies 0.32 0.33 0.33 0.31 0.38 0.34

SRL 0.58 0.45 0.51 0.47 0.62 0.53

Table 16 Individual evaluation on the English dataset (LDC2014T12)

Metrics AMR-eager GTAMR

P R F1 P R F1

Unlabeled 0.71 0.7 0.71 0.71 0.73 0.72

No WSD 0.66 0.66 0.66 0.66 0.7 0.68

Named Ent. 0.74 0.95 0.83 0.75 0.90 0.82

Negations 0.39 0.56 0.46 0.40 0.58 0.47

Concepts 0.84 0.88 0.86 0.84 0.87 0.85

Reentrancies 0.47 0.34 0.4 0.34 0.55 0.42

SRL 0.56 0.54 0.55 0.56 0.68 0.61

metric, which indicates that it can construct more complete

AMR graphs. With additional features, the GAT-AMR

model outperforms on all the evaluation metrics except

unlabeled and Named Ent.

4.6 Error analysis

Figure 9a shows the correct AMR graph of sentence

“ (Geography helps me a lot.),” and

Fig. 9b shows the AMR graph generated by our proposed

model. The concept “ -01(help)” cannot be recognized

in our proposed model. We identify concepts in a sentence

from left to right, but the words mapping to concept “ -

01(help)” are separated in the sentence. So, the proposed

concept recognition algorithm cannot recognize the correct

concept.

Figure 9c and d shows another example of the correct

AMR graph and generated AMR graph for sentence “Hope

this helps.”. Since the word “i” is omitted in the sentence,

the proposed model cannot complement the omitted part.

These special linguistic phenomena, such as omission and

separable words, are challenges for AMR parsing models.

5 Conclusion

Semantic representation in the real world needs a domain-

independent general representation method to mine

semantic information in multi-domain natural language

sentences. We present a general automatic semantic rep-

resentation model based on two-stack-based transition

algorithm for multilingual data, which can represent

semantic information in texts with graphs. The proposed

two-stack-based transition algorithm can handle reentrancy

and crossing arcs in AMR graphs better, and the feature

templates in the model can enrich feature representation

while training. Experiments demonstrate that our strategy

is superior to the baseline strategy. In the future, we will try

to apply sequence labeling methods to improve concept

recognition and optimize the AMR parser for some special

linguistic phenomena, such as omission and separable

words.

Acknowledgements This work was supported by the Ministry of

Education of Humanities and Social Science project under Grant

16YJC790123 and National Natural Science Foundation of

China under Grant 61772278.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of

interest.

References

1. Zong Y, Xu G, Dolog P, Zhang Y, Liu R (2010) Co-clustering for

Weblogs in Semantic Space. In: the 11th international conference

of web information systems engineering, WISE 2010, Hong

Kong, China, December 12–14. pp 120–127

Fig. 8 Ablation study of

proposed models

(a) (b)

(d)(c)

Fig. 9 Examples of correct AMR graphs and incorrectly predicted

AMR graphs

2. Xu G, Yu JX, Lee W (2013) Social networks and social web

mining. World Wide Web Internet Web Inf Syst 16(5–6):541–

544

3. Li C, Goldwasser D (2019) Encoding social information with

graph convolutional networks for political perspective detection

in news media. In: the 57th conference of the association for

computational linguistics, ACL 2019, Florence, Italy, July 28–

August 2, pp 2594–2604

4. Islam J, Mercer RE, Xiao L (2019) Multi-Channel convolutional

neural network for twitter emotion and sentiment recognition. In:

the 2019 conference of the north American chapter of the asso-

ciation for computational linguistics: human language technolo-

gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7,

pp 1355–1365

5. Gupta I, Joshi N (2020) Enhanced twitter sentiment analysis

using hybrid approach and by accounting local contextual

semantic. J Intell Syst 29(1):1611–1625

6. Rudnik C, Ehrhart T, Ferret O, Teyssou D, Troncy R,Tannier X

(2019) Searching news articles using an event knowledge graph

leveraged by Wikidata. In: Companion of the 2019 world wide

web conference, WWW 2019, San Francisco, CA, USA, May 13–

17, pp 1232–1239

7. Wang H, Xu T, Liu Q, Lian D, Chen E, Du D, Wu H, Su W

(2019) Mcne: an end-to-end framework for learning multiple

conditional network representations of social network. In: the

25th ACM SIGKDD international conference on knowledge

discovery & data mining, KDD 2019, Anchorage, AK, USA,

August 4–8, pp 1064–1072

8. Yang C, Zhang J, Wang H, Li S, Kim M, Walker M, Han J (2020)

Relation learning on social networks with multi-modal graph

edge variational autoencoders. In: The thirteenth ACM interna-

tional conference on web search and data mining, WSDM 2020,

Houston, TX, USA, February 3–7, pp 2328–2337

9. Wang Y, Sun H, Zhao Y, Zhou W, Zhu S (2019) A heterogeneous

graph embedding framework for location-based social network

analysis in smart cities. IEEE Trans Ind Inf 16(4):2747–2755

10. Zhang J, Tan L, Tao X, Wang D, Ying JJ, Wang X (2019)

Learning relational fractals for deep knowledge graph embedding

in online social networks. In: 20th international conference on

web information systems engineering, WISE 2019, Hong Kong,

China, November 26–30, pp 660–674

11. Xie T, France-Lanord A, Wang Y, Shao-Horn Y, Grossman JC

(2019) Graph dynamical networks for unsupervised learning of

atomic scale dynamics in materials. Nature Commun 10(1):2667

12. Jin W, Barzilay R, Jaakkola TS (2018) Junction tree variational

autoencoder for molecular graph generation. In: the 35th Inter-

national conference on machine learning, ICML 2018, Stock-

holmsmässan, Stockholm, Sweden, July 10–15, pp 1–13

13. Jin W, Yang KK, Barzilay R, Jaakkola TS (2019) Learning

Multimodal Graph-to-Graph Translation for Molecule Opti-

mization. In: 7th International Conference on Learning Repre-

sentations, ICLR 2019, New Orleans, LA, USA, May 6–9,

pp 2328–2337

14. Wang S, Li Z, Zhang S, Jiang M, Wang X, Wei Z (2020)

Molecular property prediction based on a multichannel sub-

structure graph. IEEE Access 8:18601–18614

15. Samanta B, Abir DE, Jana G, Chattaraj PK, Ganguly N, Rodri-

guez MG (2018) A deep generative model for molecular graphs.

In: The Thirty-Third AAAI conference on artificial intelligence,

AAAI 2019, Honolulu, Hawaii, USA, January 27–February 1,

pp 2328–2337

16. Zettlemoyer LS, Collins M (2005) Learning to map sentences to

logical form: structured classification with probabilistic categorial

grammars. In: the 21st conference in uncertainty in artificial

intelligence, UAI 2005, Edinburgh, Scotland, July 26–29,

pp 658–666

17. Wong YW, Mooney RJ (2006) Learning for semantic parsing

with statistical machine translation. In: Human language tech-

nology conference of the North American chapter of the associ-

ation of computational linguistics, New York, USA, June 4–9,

pp 439–446

18. Banarescu L, Bonial C, Cai S, Georgescu M, Griffitt K, Herm-

jakob U, Knight K, Koehn P, Palmer M, Schneider N (2013)

Abstract meaning representation for sembanking. In: the 7th

linguistic annotation workshop and interoperability with dis-

course, LAW-ID@ACL 2013, Sofia, Bulgaria, August 8–9,

pp 178–186

19. Liu F, Flanigan J, Thomson S, Sadeh NM, Smith NA (2015)

Toward abstractive summarization using semantic representa-

tions. In: the 2015 conference of the North American chapter of

the association for computational linguistics: human language

technologies, , NAACL-HLT 2015, Denver, Colorado, USA,

May 31–June 5, pp 1077–1086

20. Garg S, Galstyan A, Hermjakob U, Marcu D (2016) Extracting

biomolecular interactions using semantic parsing of biomedical

text. In: The Thirtieth AAAI conference on artificial intelligence,

AAAI 2016, Phoenix, Arizona, USA, February 12–17, pp 2718–

2726

21. Sachan M, Xing EP (2016) Machine comprehension using rich

semantic representations. In: the 54th annual meeting of the

association for computational linguistics, ACL 2016, Berlin,

Germany, August 7–12, pp 486–492

22. Huang L, Ji H, Cho K, Dagan I, Riedel S, Voss CR (2018) Zero-

shot transfer learning for event extraction. In: the 56th annual

meeting of the association for computational linguistics, ACL

2018, Melbourne, Australia, July 15–20, pp 2160–2170

23. Song L, Gildea D, Zhang Y, Wang Z, Su J (2019) Semantic

neural machine translation using AMR. Trans Assoc Comput

Linguistics 7:19–31

24. Takase S, Suzuki J, Okazaki N, Hirao T, Nagata M (2016) Neural

headline generation on abstract meaning representation. In: the

2016 conference on empirical methods in natural language pro-

cessing, EMNLP 2016, Austin, Texas, USA, November 1–4.

pp 1054–1059

25. Chen WT (2015) Learning to map dependency parses to abstract

meaning representations. In: the 53rd annual meeting of the

association for computational linguistics and the 7th international

joint conference on natural language processing of the Asian

federation of natural language processing, ACL 2015, Beijing,

China, July 26–31. pp 41–46

26. Wang C, Pradhan S, Pan XM, Ji H, Xue NW (2016) CAMR at

SemEval-2016 task 8: An extended transition-based AMR parser.

In: the 10th international workshop on semantic evaluation,

SemEval@NAACL-HLT 2016, San Diego, CA, USA, June 16–

17, pp 1173–1178

27. Titov I, Lyu C (2018) AMR parsing as graph prediction with

latent alignment. In: the 56th annual meeting of the association

for computational linguistics, ACL 2018, Melbourne, Australia,

July 15–20. pp 397–407

28. Wang C, Xue NW, Pradhan S (2015) Boosting transition-based

AMR parsing with refined actions and auxiliary analyzers. In: the

53rd annual meeting of the association for computational lin-

guistics and the 7th international joint conference on natural

language processing of the Asian federation of natural language

processing, ACL 2015, Beijing, China, July 26–31, pp 857–862

29. Goodman J, Vlachos A, Naradowsky J (2016) Noise reduction

and targeted exploration in imitation learning for abstract

meaning representation parsing. In: the 54th annual meeting of

the association for computational linguistics, ACL 2016, Berlin,

Germany, August 7–12, pp 1–11

30. Wang C, Xue NW, Pradhan S (2015) A transition-based algo-

rithm for AMR parsing. In: Human language technology

conference of the north American chapter of the association of

computational linguistics, NAACL-HLT 2015, Denver, Color-

ado, USA, May 31–June 5, pp 366–375

31. Werling K, Angeli G, Manning C (2015) Robust subgraph gen-

eration improves abstract meaning representation parsing. In: the

53rh annual meeting of the association for computational lin-

guistics, ACL 2015, Beijing, China, July 26–31, pp 982–991

32. Wang C, Xue NW (2017) Getting the most out of AMR parsing.

In: the 2017 conference on empirical methods in natural language

processing, EMNLP 2017, Copenhagen, Denmark, September 9–

11, pp 1257–1268

33. Damonte M, Cohen SB, Satta G (2017) An incremental parser for

abstract meaning representation. In: the 15th conference of the

European chapter of the association for computational linguistics,

EACL 2017, Valencia, Spain, April 3–7, pp 536–546

34. Buys J, Blunsom P (2017) Robust incremental neural semantic

graph parsing. In: the 55th annual meeting of the association for

computational linguistics, ACL 2017, Vancouver, Canada, July

30–August 4, pp 1215–1226

35. Ballesteros M, Onaizan Y (2017) AMR parsing using stack-

LSTMs. In: the 2017 conference on empirical methods in natural

language processing, EMNLP 2017, Copenhagen, Denmark,

September 9–11, pp 1269–1275

36. Wang C, Li B, Xue NW (2018) Transition-based chinese AMR

parsing. In: Human language technology conference of the north

American chapter of the association of computational linguistics,

NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1–6,

pp 247–252

37. Guo Z, Lu W (2018) Better transition-based AMR parsing with

refined search space. In: the 2018 conference on empirical

methods in natural language processing, EMNLP 2018, Brussels,

Belgium, October 31–November 4, pp 1712–1722

38. Zhang H, Li J, Ji Y, Yue H (2017) Understanding subtitles by

character-level sequence-to-sequence learning. IEEE Trans Ind

Inf 13(2):616–624

39. Qu WG, Zhou JS, Wu XD, Dai R, Gu M, Gu Y (2017) Survey on

abstract meaning representation. J Data Acquis Process 32(1):26–

36

40. Li B, Wen Y, Qu WG, Bu LJ, Xue NW (2016) Annotating the

little prince with Chinese AMRs. In: the 10th linguistic annota-

tion workshop and interoperability with discourse, LAW 2016,

Berlin, Germany, August 11, pp 7–15

41. Kingsbury P, Palmer M (2002) From Treebank to Propbank. In:

The third international conference on language resources and

evaluation, LREC 2002, Las Palmas, Canary Islands, Spain, May

29–31, pp 1989–1993

42. Flanigan J, Thomson S, Carbonell JG, Dyer C, Smith NA (2014)

A discriminative graph-based parser for the abstract meaning

representation. In: the 52nd annual meeting of the association for

computational linguistics, ACL 2014, Baltimore, MD, USA, June

22–27, pp 1426–1436

43. Zhou JS, Xu FY, Uszkoreit H, Qu WG, Li R, Gu YH (2016)

AMR parsing with an incremental joint model. In: the 2016

conference on empirical methods in natural language processing,

EMNLP 2016, Austin, Texas, USA, November 1–4, pp 680–689

44. Foland W, Martin JH (2016) CU-NLP at SemEval-2016 Task 8:

AMR parsing using LSTM based recurrent neural networks. In:

the 10th international workshop on semantic evaluation, SemE-

val@NAACL-HLT 2016, San Diego, CA, USA, June 16–17,

pp 1197–1201

45. Foland W, Martin JH (2016) Abstract meaning representation

parsing using LSTM recurrent neural networks. In: the 55th

annual meeting of the association for computational linguistics,

ACL 2017, Vancouver, Canada, July 30–August 4, pp 463–472

46. Puzikov Y, Kawahara D, Kurohashi S (2016) M2L at SemEval-

2016 Task 8: AMR parsing with neural networks. In: Interna-

tional workshop on semantic evaluations, SemEval@NAACL-

HLT 2016, San Diego, CA, USA, June 16–17, pp 1154–1159

47. Artzi Y, Lee K, Zettlemoyer L (2015) Broad-coverage CCG

semantic parsing with AMR. In: Empirical methods in natural

language processing, EMNLP 2015, Lisbon, Portugal, September

17–21, pp 1699–1710

48. Kwiatkowski T, Zettlemoyer L, Goldwater S, Steedman M (2011)

Lexical generalization in CCG grammar induction for semantic

parsing. In: Empirical methods in natural language processing,

EMNLP 2011, Edinburgh, UK, July 27–31, pp 127–129

49. Misra DK, Artzi Y (2016) Neural shift-reduce CCG semantic

parsing. In: the 2016 conference on empirical methods in natural

language processing, EMNLP 2016, Austin, Texas, USA,

November 1–4, pp 1775–1778

50. Pust M, Hermjakob U, Knight K et al (2015) Using syntax-based

machine translation to parse english into abstract meaning rep-

resentation. CoRR abs/1504.06665

51. Zhang S, Ma X, Duh K, Van Durme B (2019) AMR parsing as

sequence-to-graph transduction. In: the 57th conference of the

association for computational linguistics, ACL 2019, Florence,

Italy, July 28–August 2, pp 80–94

52. Gildea D, Xue NW, Peng XC, Wang C (2017) Addressing the

data sparsity issue in neural AMR parsing. In: the 15th confer-

ence of the European chapter of the association for computational

linguistics, EACL 2017, Valencia, Spain, April 3–7, pp 366–375

53. Barzdins G, Gosko D (2016) RIGA at SemEval-2016 Task 8:

Impact of smatch extensions and character-level neural transla-

tion on AMR parsing accuracy. In: International workshop on

semantic evaluations, SemEval@NAACL-HLT 2016, San Diego,

CA, USA, June 16–17, pp 1143–1147

54. Konstas I, Iyer S, Yatskar M, et al (2017) Neural AMR:

sequence-to-sequence models for parsing and generation. In: the

55th annual meeting of the association for computational lin-

guistics, ACL 2017, Vancouver, Canada, July 30–August 4,

pp 146–157

55. Nivre J (2004) Incrementality in Deterministic dependency

parsing. In: the ACL workshop incremental parsing: bringing

engineering and cognition together, ACL 2004, Barcelona, Spain,

July 21–26, pp 50–57

56. Nivre J (2008) Algorithms for deterministic incremental depen-

dency parsing. Comput Linguist 34(5):513–553

57. Sagae K, Tsujii J (2008) Shift-reduce dependency DAG parsing.

In: the 22nd international conference on computational linguis-

tics, COLING 2008, Manchester, UK, August 18–22, pp 753–760

58. Zhang X, Du Y, Sun W et al (2016) Transition-based parsing for

deep dependency structures. Comput Linguist 42(3):353–389

59. Li B, Wen Y, Song L, Bu LJ, Qu WG, Xue NW (2017) Con-

struction of Chinese abstract meaning representation corpus with

concept-to-word alignment. J Chin Inf Process 31(6):93–102

60. Cai S, Knight K (2013) Smatch: an evaluation metric for

semantic feature structures. In: the 51st annual meeting of the

association for computational linguistics, ACL 2013, Sofia,

Bulgaria, August 4–9, pp 748–752

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

	From text to graph: a general transition-based AMR parsing using neural network
	Abstract
	Introduction
	Related work
	Semantic representation by applying graph construction
	Automatic semantic representation transformation
	Sentence modeling and feature learning

	Proposed model
	Transition-based algorithms for automatic semantic representation transformation
	Arc-standard algorithm
	Arc-eager algorithm

	General automatic semantic parsing model based on two-stack-based transition algorithm
	Concept recognition algorithm
	Two-stack-based transition algorithm

	Experimental evaluation
	Datasets and metrics
	Oracle evaluation
	Parameter setting
	Parser evaluation
	Ablation study
	Error analysis

	Conclusion
	Acknowledgements
	References

