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Abstract—Recommender systems are important approaches
for dealing with the information overload problem in big data
era, and various kinds of auxiliary information, including time
and sequential information, can help to improve the performance
of retrieval and recommendation tasks. However, it is still
a challenging problem how to fully exploit such information
to achieve high-quality recommendation results and improve
users’ experience. In this work, we present a novel sequential
recommendation model named Multivariate Hawkes Process
Embedding with attention (MHPE-a), which combines a temporal
point process with attention mechanism to predict the items that
the target user may interact with according to her/his historical
records. Specifically, the proposed approach MHPE-a can model
users’ sequential patterns in their temporal interaction sequences
accurately with a multivariate Hawkes process. Then, we perform
accurate sequential recommendation to satisfy target users’ real-
time requirement based on their preferences obtained with
MHPE-a from their historical records. Especially, an attention
mechanism is used to leverage users’ long/short-term preferences
adaptively to achieve accurate sequential recommendation. Ex-
tensive experiments are conducted on two real-world datasets
(lastfm and gowalla), and the results show that MHPE-a achieves
better performance than state-of-the-art baselines.

Index Terms—recommender system, sequential recommenda-
tion, multivariate Hawkes process, attention, embedding

I. INTRODUCTION

NOWADAYS, the prevalence of Information Technol-
ogy (IT) promotes the rapid growth in digital services

and contents available on the Internet, thereby causing an
information overload problem. For example, Apple iTunes
provides over 70 million songs (https://www.apple.com/my/
apple-music/). As a result, it becomes more and more difficult
for users to obtain digital contents or services they actually
need. As one important solution for information overload
problem, recommender systems [1], [2] can reduce search cost
effectively and offer users personalized contents or services
from enormous amounts of available data. Generally, tradi-
tional recommendation methods include collaborative filtering,
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content-based, context-aware and hybrid models [3]. All kinds
of recommendation methods are widely applied in many fields,
such as music recommendation [4], point of interests (POI)
recommendation [5], [6], groups recommendation [7], [8],
business process recommendation [9], E-Commerce [10] and
so on. Most traditional recommendation techniques perform
recommendation based on users’ general interest, which rep-
resents users’ long-term static preferences. For example, some
certain users may prefer pop music to other genres in most
situations.

In fact, users’ preferences may change dynamically over
time, and the next behavior or item generally depends on
their recent behaviors. Therefore, the sequential patterns are
quite important in capturing their requirement and improving
the performance of recommendation. In this case, sequential
patterns represent a user’s short-term dynamic preference. For
example, a certain user may enjoy rock songs when doing
exercise, though he/she likes pop music better in general.
In this case, rock music is the user’s short-term preference
while pop music is her/his long-term preference. Sequen-
tial recommender systems [11] can model users’ sequential
patterns and predict their next action/item based on their
long/short-term preferences, which can be obtained from their
historical behavior sequences. However, traditional methods
mainly focus on users’ interaction records while ignore some
important information in sequences, such as time and context,
which limits such methods’ performance and applications.
Besides, it is still an important and challenging task to deal
with complex interactions and relationships in sequences and
capture users’ real-time preferences accurately.

A toy example of the studied scenario is given in Figure 1,
where the colored line of dashes indicates the base intensity
of event/record A, B and C, and the colored solid line is used
to represent the real intensity of the events/records in real
time. Meanwhile, due to the occurrence of events/records, a
positive or negative effect may be triggered among A, B, and
C. For example, A has a negative effect on the occurrence
of C, and vice versa, so the occurrence of e1 or e3 has
a negative effect on the occurrence of A. Besides, event B
has a positive effect on C’s probability of occurrence, and
vice versa. Note that the correlations between events A and
B are omitted for simplicity. Specifically, the base intensity
(base rate) can be seen as users’ long-term static preferences
for specific item, and events/records that occurred recently
indicate users’ short-term dynamic preferences. Furthermore,
the prediction or recommendation of events/records depends
on both long- and short-term preferences, although they may
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Fig. 1. Illustration of complex interactions and relationships in sequences.
Each event/record has a basic probability of occurring (base rate or long-
term preferences). At the same time, the occurrence of various events/records
may have positive or negative effects (short-term preferences) on the target
events/records, causing their actual probability (Intensity) to deviate from its
basic probability.

have varying degrees of impact in different situations. For
example, the prediction at t1 and t3 mainly depends on short-
term preference, while the prediction at t2 or t4 is mostly up
to long-term preference.

In this work, we propose a novel sequential recommendation
model named Multivariate Hawkes Process Embedding with
attention (MHPE-a), which combines a temporal point process
and attention mechanism to predict items that a user would
interact with according to her/his historical interaction records.
Especially, compared with traditional sequential recommenda-
tion methods, temporal point process (TPP) explicitly incorpo-
rates important temporal information and model timestamped
behaviors in continuous time space. As one variant of TPP,
multivariate Hawkes process can learn the low-dimensional
feature representations (embeddings) of items and capture
the feature interactions as well as latent sequential behavior
patterns for better recommendation. Specifically, MHPE-a con-
sists of three main steps. Firstly, MHPE-a models the sequen-
tial relationships among items in sequences effectively, and
learns the sequential patterns in users’ interaction sequences
accurately with a multivariate Hawkes process. Secondly, an
attention mechanism specifically tailored for this task is used
to enhance MHPE-a in extracting users’ preferences as well
as modeling complex sequences, which can further improve
the performance. Thirdly, MHPE-a can perform sequential
recommendation to satisfy target users’ real-time requirement
according to their long-term static preferences as well as short-
term dynamic preferences.

Compared with existing approaches, MHPE-a can: 1) effec-
tively model users’ behaviors in sequences and precisely cap-
ture the complex dynamic relevance among items/records in
behavior sequences with multivariate Hawkes process, 2) use
attention mechanism to learn and leverage users’ long/short-
term preferences adaptively to perform accurate sequential
recommendation.

The main contributions of this work are summarized as
follows:

• We devise a multivariate Hawkes process-based method
to model users’ behavior sequences and learn the com-
plex sequential relationships among items as well as the
corresponding features in a user’s behavior sequence.

• We present a sequential recommendation model named
MHPE-a that can recommend appropriate items in accor-
dance with the target user’s long/short-term preferences
to satisfy their real-time needs.

• Comprehensive experiments on two real-world datasets,
and the results show that MHPE-a outperforms several
state-of-the-art baseline methods.

The rest of this paper is organized as follows. Section II
introduces the related work. In Sections III and IV, we describe
the problem definition and the proposed model MHPE-a in
detail. Then, comprehensive experiments of MHPE-a against
state-of-the-art baselines are given in Section V. At last, the
conclusion and future works are provided in Section VI.

II. RELATED WORK

In this part, we introduce existing work on sequential
recommendation, and related works including temporal point
process and attention mechanism which inspire this study.

A. Sequential Recommendation

Users’ interactive actions/events recorded in web systems
and applications play an important role in understanding their
underlying intents and preferences. Many approaches have
been proposed to model their interactions in a sequential man-
ner for prediction or recommendation. Typically, the factorized
personalized Markov chains [12] model uses the first-order
Markov chains and matrix factorization to learn sequential
information from users’ historical behavior for next-basket
recommendation. Wang et al. [13] propose a hierarchical
representation model (HRM) to model complicated interac-
tions and perform next basket recommendation. Especially,
the adaptability of HRM is enhanced with different aggre-
gation operations, especially nonlinear ones. However, these
methods mainly mine the local sequential patterns between
adjacent behaviors [14], and they can hardly mine long-term
dependence between records in behavior sequence.

Recurrent Neural Networks (RNN) as well as their vari-
ants [15] are often used in sequential behavior prediction and
recommendation due to their success in sequence modeling
[16]. Hidasi et al. [17] apply RNN on session-based recom-
mender systems, and they also propose several variants to
classic RNN to improve the performance on specific tasks.
However, such approaches generally represent user’s historical
behaviors with one latent vector or hidden state, while each
record may have different importance in prediction or recom-
mendation tasks. Zhu et al. [18] present a modified version of
Long Short-Term Memory (LSTM), namely Time-LSTM, to
model users’ sequential actions. Specifically, Time-LSTM can
incorporate time intervals with time gates, and capture both of
users’ long/short-term preferences, so as to achieve accurate
sequential recommendation. Liu et al. [19] propose an ap-
proach named Short-Term Attention/Memory Priority Model,
which uses different memory to capture users’ long/short-term
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preferences from session context and last-clicks, separately.
Ying et al. [20] present a sequential recommendation model,
which uses a hierarchical attention network to model users’
long/short-term interests. Tang et al. [21] propose a unified
and flexible model named Convolutional Sequence Embedding
Recommendation (Caser) to learn users’ general preferences
from their behavior sequences and capture their sequential
behavior patterns for top-N sequential recommendation. Kang
et al. [22] address the next item recommendation task with a
self-attention based sequential model (SASRec), which models
users’ longer-term semantics as well as their recent actions
simultaneously for accurate prediction. Ma et al. [23] combine
hierarchical gating network with the Bayesian Personalized
Ranking (BPR) to capture users’ long/short-term interests for
the sequential recommendation. Especially, feature/instance
gating modules are adopted to extract latent features and items
that are important for prediction/recommendation. However,
the proposed approach can capture the dynamic relevance and
complex relationships among items in timestamped behavior
sequences, and leverage users’ long/short-term preferences
with attention mechanism adaptively to predict next new
behavior/item.

B. Temporal Point Process

A temporal point process (TPP) can model event sequences
in continuous time space by learning the time dependency
between events. Especially, several variants of TPP have been
proposed for specific form of dependency in different tasks.
For example, Hawkes processes [24], [25] assumes that past
events temporarily increase the probability of future events
rather than using a fixed probability, which is known as self-
exciting effects. Specifically, the exciting effects are positive,
additive over the past events, and exponentially decaying with
time [26]. However, in real-world, sequential patterns may
violate these assumptions when one event inhibits another
instead of exciting it. On the contrary, a self-correcting pro-
cess [27] assumes that the occurrence of an event reduces
the probability of other events by a certain amount. Recurrent
Marked TPP [28] combines RNN with marked TPP to predict
the probability and time of next event will occur. Mei et
al. [26] apply continuous-time LSTM in a multivariate point
process and propose Neural Hawkes process to model event
sequences in continuous time.

TPP model and its variants span a wide range of applications
as event data is prevalent and becoming increasingly available
such as online advertisement [29], [30], detection [31], pattern
mining [32], information diffusion [33], prediction and recom-
mendation [34]–[37]. For example, Xu et al. [35] develop a
framework for modeling the transition events of patient flow
via point process, which can be used to predict patients’
destination care units and duration days. Dutta et al. [31]
propose a fake retweeters detector named HawkesEye, which
combines Hawkes process and topic model to fully utilize
textual content data and time information for better detection
performance. Cai et al. [37] present a long- and short-term
Hawkes process (LSHP) model, which combines two Hawkes
processes to capture “mutual-influence” of different behaviors

as well as “self-influence” of behaviors of the same type. Yang
et al. [36] design a novel Recurrent Spatio-Temporal Point
Process (RSTPP) to learn the latent dependencies of event
times over behavior sequences. Compared with other methods,
RSTPP can utilize abundant spatio-temporal information of
precedent records for predicting the time of users’ next check-
in behaviors. Okawa et al. [34] propose a model named Deep
Mixture Point Processes (DMPP), which uses deep learning
method and point process intensity to capture the effects
of unstructured contextual features on target value. Du et
al. [38] combine self-exciting point processes with low-rank
models to explicitly capture users’ patterns from their temporal
behaviors and predict relevant items/events or returning-time.
Bai et al. [39] present a Demand-aware Hawkes Process (DHP)
framework to infer users’ requirements from their behavior
records. Specifically, users’ long/short-term preferences are
captured by attention mechanism and convolutional neural
network, respectively. Vassøy et al. [40] use a hierarchical
RNN to model inter-session relations and capture users’ long-
term preferences for time and item predictions. Especially,
the point process model is adopted to incorporate temporal
aspects of user-item interactions for further improving the
performance.

C. Attention Mechanism

An attention [41], [42] is intuited from visual attentions of
human beings (incline to be attracted by more important parts
of a target object). Attention is widely used in many fields,
including object detection [43], [44], prediction [45], query
suggestion [46], and recommendation [4]. In brief, attention
can be used to increase the interpretability and adaptivity of
complex models such as neural networks by calculating the
weights of different data/information automatically. Recently,
many studies attempt to apply an attention mechanism in
recommendation. For example, Li et al. [47] combine an
encoder with an attention mechanism to capture users’ pref-
erences in the current context from their sequential behaviors.
Chen et al. [48] combine item-level and component-level
attention with Collaborative Filtering to perform sequential
recommendation. Xiao et al. [49] propose a model named
Attentional Factorization Machines, which uses an attention
model and Factorization Machines to model the importance
of different features and their interactions. Wang et al. [4]
present a content- and context-aware recommendation model
called CAME, which use an attention model and Convolutional
Neural Network to learn the content features adaptively for
music recommendation. Especially, an attention mechanism
enables CAME to model different aspects of music and en-
hanced its ability of capturing music pieces’ dynamic features.
Huang et al. [8] propose a novel multiattention-based rec-
ommendation model, which utilizes multiattention-based deep
neural network structures to capture internal social features
for accurate group recommendation. Han et al. [50] present a
novel recommendation method named Adaptive Deep Latent
Factor Model, which can learn users’ preferences adaptively
from their rated item descriptions, and experimental results
show it is effective in recommendation task.
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TABLE I
SYMBOLS USED IN THIS WORK

Symbol Description

U , I user set and item set
u ∈ U , i ∈ I a user and an item
Su user u’s behavior sequence
Hu,t ⊆ Su user u’s historical behavior sequence before time t
U ∈ R|U|×d user embedding matrix
V ∈ R|I|×d item embedding matrix

v ∈ Rd the d-dimensional feature vector representation (embed-
ding) of user or item

µu,i
the base rate (long-term static preference) of user u for
item i

αh,i
the degree to which historical item h initially excites the
target item i

κ (·) the exponential kernel function that calculate the expo-
nentially decaying of historical influence with time

δu ≥ 0 the decay rate of historical influence
W, b, Wl,
bl, Ws, bs

model parameters

βl
u, βs

u adaptive weights of user u’s long/short-term preferences
λ̃i|u (t) the predicted preference of u for item i at time t
>u,t the ranking of candidate item for user u at time t

III. DEFINITION

As shown in Table I, we give the key notions and symbols
of sequence data used in this paper.

Definition 1. Record. Let U =
{
u1, u2, ..., u|U |

}
denote

the user set, I =
{
i1, i2, ..., i|I|

}
represent the item set, and

T be a time domain. A record r is a triplet (u, i, t) ∈ U×I×T
, which represents the interaction record between user u and
item i at time t .

Definition 2. Sequence. Let S be the collection of all
users’ behavior sequences, and as for a user u ∈ U ,
her/his behavior sequence Su ∈ S is formally defined
as Su :=

[
(u, i1, t1) , (u, i2, t2) , · · · ,

(
u, i|Su|−1, t|Su|−1

)]
,

where (u, i, t) ∈ S and Su ⊆ S. Here, an item can refer
to a piece of music, a point of interests (POI), or an action on
websites/applications.

Definition 3. Sequential Recommendation. Given a user
u ∈ U and her/his historical behavior sequence Hu,t ⊆ Su

before time t, predict u’s preference for item i at t and make
a recommendation.

IV. METHODOLOGY

A. Temporal Point Process

Temporal Point Process (TPP) can model event sequences
in continuous time space by learning the time dependency
between events. In this paper, an event (record) (u, i, t) is that
a user u interacted with an item i at time t ∈ R+ (a set of
non-negative real numbers).

A typical TPP models the probability of an event occurs
at time t (more precisely, in the infinitesimally wide interval
[t, t+ ∆t)) as λ (t) ∆t. Specifically, λ (t) ≥ 0 is known as the
intensity function, which represents the arrival rate of sequen-
tial events. As a well-known generalization of TPP, Hawkes
process models the events sequences as well as the interactions

between events in a sequence. Specifically, the conditional
intensity function in the Hawkes process characterizes the
arrival rate of a current event given past events and models the
effects between historical events and the current one, which is
formally defined as

λ (t) = µ+

∫ t

0

ακ (t− s) dN (s), (1)

where µ ≥ 0 is the base rate(base intensity) of the current
event, depicting the generating rate of events, α is excitation
rate of past events on the current event, and κ (t− s) dN (s)
is a kernel function that describes excitation of historical
events N (s) on the current one at time t. Specifically, the
excitation in a typical TPP is positive, additive over the
historical events, and exponentially decaying with time [26].
Furthermore, the conditional intensity function is extended into
a multi-dimensional one where each dimension represents one
type of event. Therefore, a Hawkes process can deal with
different types of events. The excitation of event type k′ on
event type k in a multivariate Hawkes process is captured with
excitation rate parameter αk′,k.

Formally, a conditional intensity function can be used to
represent the arrival rate of events, and it can be formally
defined as the frequency of events in a small time window
[t, t+ ∆t) given all past events H (t) in historical sequence.

Our goal is to predict users’ future actions from their
historical behavior sequences. Especially, we propose a
novel sequential recommendation approach named Multivari-
ate Hawkes Process Embedding with attention (MHPE-a). It
well combines a TPP with embedding and attention mech-
anism to 1) effectively model users’ behavior sequences, 2)
precisely capture dynamic relevance and complex relationships
among items in sequences, 3) incorporating and leveraging
users’ long-term static preferences and short-term dynamic
preferences adaptively to achieve accurate sequential recom-
mendation.

B. Multivariate Hawkes Process Embedding with Attention

The proposed approach named Multivariate Hawkes Pro-
cess Embedding with attention (MHPE-a) model is based on
the following characteristics of sequential patterns: 1) there
exist complex correlations among items in users’ behavior
sequences, which may have different impacts on the prediction
of next behavior or item, and 2) users have both static long-
term preferences and dynamic short-term preferences, which
may have different influences on sequential recommendation
for each user.

The framework of the proposed approach MHPE-a is given
in Figure 2. Specifically, MHPE-a consists of three compo-
nents: 1) an embedding layer for learning representation of
users and items, 2) a multivariate Hawkes process for modeling
complex behavior sequences, and 3) an attention mechanism
for capturing and leveraging users’ long/short-term preferences
and performing recommendation.

The basic idea of MHPE-a is to learn the correlations among
items in behavior sequences of different users for accurate
prediction and recommendation. Specifically, we first learn the
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Fig. 2. The framework of MHPE-a consists of three main components: 1) an embedding layer for representation learning, 2) a multivariate Hawkes process
for sequence modeling, and 3) an attention mechanism for users’ preferences capturing and recommendation.

low-dimensional denser feature representations (embeddings)
of users and items, which is more informative and effective
than the users/items’ id or one-hot representations. Then,
a multivariate Hawkes process model is devised to model
behavior sequences in continuous time space by learning the
time dependency and correlations between events. Especially,
an attention mechanism is adopted to enhance MHPE-a’s
ability of modeling complex sequences as well as leveraging
users’ long/short-term preferences. At last, we can perform
next item recommendation based on users’ historical behavior
sequences.

Compared with existing methods, MHPE-a can incorporate
both long/short-term user preferences in an adaptive way.
Besides, the dynamic and complex impact of historical items
in behavior sequences on the next item can be effectively
modeled by its Hawkes process with attention mechanism.
Next, we introduce each of its component in detail.

1) Representation Learning with Embedding Layer: In
traditional recommendation models, user and item are gener-
ally represented with one-hot vectors, whose dimension is the
same as the size of item set. However, one-hot representation
suffers from serious dimensional disaster and data sparsity
problems [51], especially when the size of item set reach
millions or even larger.

In this work, the proposed model first learns the informative
low-dimensional denser feature representations (embeddings)
of users and items, which capture both items’ features and rela-
tionships. Formally, each item i ∈ I in the behavior sequences
is transformed into corresponding embedding vi ∈ Rd with
an item embedding matrix V ∈ R|I|×d, where d represents
the dimension of items’ embeddings and I is the item set.
Specifically, vi = v′iV, where v′i ∈ R1×|I| is i’s one-hot
representation that consists of “0” in all dimensions with the

exception of a single “1” in one dimension used uniquely to
identify the item. Similarly, user u’s embedding vu ∈ Rd

can be obtained by looking up the user embedding matrix
U ∈ R|U |×d in the embedding layer.

Although recommendation methods like matrix factorization
or latent factor models [52] can also learn the feature vectors
of users and items, the proposed model can capture more high-
level dynamic key features by adopting a Hawkes process and
attention mechanism.

2) Sequence Modeling based on Multivariate Hawkes
Process: A multivariate Hawkes process is adopted to model
each user’s behavior sequence, and then predict/recommend
her/his next behavior (target item) according to historical
records. Especially, compared with traditional methods, the
multivariate Hawkes process used in MHPE-a can capture
important temporal information and the complex feature inter-
actions between different records/items in users’ timestamped
behavior sequences for better recommendation. Specifically,
the prediction of a target item can be done according to her/his
historical behaviors. Formally, given user u ∈ U as well as u’s
historical behavior sequence, the conditional intensity function
for the arrival of target item i ∈ I at time t is formally defined
as follows:

λ̃i|u (t) = µu,i +
∑

h∈Hu,t

αh,iκu (t− th), (2)

where µu,i is the base rate (u’s long-term static preferences
for item i, and Hu,t ⊆ Su denotes u’s most recent historical
behavior sequence before time t. Especially, Hu,t is truncated
from Su as a subsequence with fixed length to reduce com-
putation cost. αh,i represents the degree to which h initially
excites i. κu (·) is an exponential kernel function for u, which
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calculates the exponentially decaying of historical influence
with time, i.e.,

κu (t− th) = exp (−δu (t− th)) , (3)

where δu ≥ 0 denotes the decay rate of historical influence,
and it is a user-dependent parameter since each user’s pref-
erence may decay in different rates. Especially, we relax the
positivity constraint on α and µ and allow them to range over
R so we can model effects of inhibition (α < 0) and inertia
(µ < 0) [26]. In other words, two terms in Equation (2) model
user u’s long-term static preference and short-term dynamic
interest, respectively. Specifically, when a user interacts with
an item, the intensities of all items are elevated or inhibited
first, and then approach their base rates µ as the influence of
a previous event decays towards 0.

However, since the positivity constraint on α and µ is
relaxed to R, the result of intensity function λ̃i|u (t) could
now be negative. Therefore, we define the probability that user
u is interested in target item i at time t as

pi|u (t) =
exp

(
λ̃i|u (t)

)
∑
k∈I

exp
(
λ̃k|u (t)

) . (4)

For each target node i ∈ I , Equation (4) defines a conditional
distribution p·|u (t) over the entire item set I .

Generally, the inputs of a traditional multivariate Hawkes
process are sequences of the original user or item IDs, which
have very limited representation capacity. Instead, we feed
the d-dimensional embeddings of users and items into the
intensity function. Specifically, µu,i, the base rate of user
u interacting with item i, depends on the matching degree
between u’s preferences and i’s features, which is a mapping
functionf ′ (·) : Rd ×Rd → R. It can be formally defined as
a vector dot product as follows:

µu,i = f ′ (·) = vu
Tvi, (5)

where vu is user u’s embedding and vi is the embedding of
item i. To note that other metrics between vectors, such as
cosine similarity and Euclidean distance, can also be adopted
here.

Besides, αh,i, the degree to which historical item h in a
behavior sequence initially excites current item i, depends on
features of h and i, i.e.,

αh,i = f ′ (·) = vh
Tvi, (6)

where vh and vi are the embeddings of historical item h and
item i. Then, the multivariate Hawkes process defined in Equa-
tion (2) can summarize the embeddings of all historical items
and calculate their influence on the prediction/recommendation
of target item.

3) Preference Extraction and Recommendation via Atten-
tion: In sequential recommender systems, users have long-
term general static preferences as well as short-term dynamic
interest. Both of them can help accurate recommendation.
In [53], long/short-term preferences are combined in a concise
but static way, e.g., pu = plongu + pshortu , although they may
have different roles and influencing mechanisms for each user.

Different from them, we present an adaptive method based
on attention for leveraging and fusing users’ preferences.
Specifically, we use an attention model to determine the
dynamic weights of users’ long/short-term preferences. They
are formally defined as:

βl
u = relu (Wlvu + bl) ,

βs
u = relu (Wsv̄H + bs) ,

(7)

where Wl ∈ Rd, Ws ∈ Rd, bl ∈ R, bs ∈ R are model
parameters, relu is the rectified linear unit, and v̄H is the
aggregation of historical items’ embeddings, which is obtained
via the average pooling strategy as follows:

v̄H =
∑

h∈Hu,t

vh

/
|Hu,t|. (8)

Then, the preference of u ∈ U for target item i ∈ I at time
t given Su is defined as

λ̃i|u (t) = βl
uµu,i + βs

u

∑
h∈Hu,t

αh,iκ (t− th). (9)

At last, we can perform recommendation according to the
ranking scores of two item i and i′ in MHPE-a, which is
calculated as

i >u,t i
′ :⇔ pi|u (t) > pi′|u (t) . (10)

C. Learning

In a learning process, Equation (4) is maximized over all
users’ behavior sequences in the training dataset. However, the
soft-max function in Equation (4) has high complexity, which
is proportional to the item set size |I|. Especially, item set size
may reach millions in real-world applications.

Therefore, negative sampling [54] is used to calculate the
original soft-max function in Equation (4) approximately,
which is computationally efficient. Then, the log probability
can be defined as:

log pi|u (t) ∝ log σ
(
λ̃i|u (t)

)
+n·Ei′∼PI

[
log σ

(
−λ̃i′|u (t)

)]
,

(11)
where σ (x) is a sigmoid function, n is “negative” sample
count, and i′ is the item sampled from item set based on PI ,
which is a noise distribution defined with empirical unigram
distribution over items.

Here, the count of negative samples n is much smaller
than item set size |I|, and the training time is independent of
the item set size |I|. Traditional optimization methods, such
as stochastic gradient descent algorithms, can be adopted to
optimize the objective function defined in Equation (11).

V. EXPERIMENTS

In this section, comprehensive experiments of the proposed
approach MHPE-a and baselines are conducted on real-world
datasets. In detail, we first describe the experimental designs,
including the datasets, baseline models, and the evaluation
metrics. Next, we show the learned embeddings in quantitative
way, and evaluate the impact of the embeddings’ dimension on
recommendation accuracy. Then, MHPE-a is evaluated against
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Fig. 3. Popularity analysis of datasets

state-of-the-art methods on two real-world datasets. At last,
we evaluate how the attention component and the sparsity of
datasets influence recommendation performance.

A. Experimental Designs

The detailed experimental designs are firstly introduced,
including dataset and task, baselines, and evaluation metrics.

1) Dataset and Task: Two real-world datasets and the
corresponding statistics information are listed in Table II.

Lastfm1 dataset is extracted from Last.fm2, which is an
international online music service website. If the action that
user u listens to music i at time t, there is a tuple record
(u, i, t) ∈ Su, where Su is u’s behavior sequence. Especially,
we have filtered users or music pieces with few interactions.
As shown in Table II, the final lastfm dataset contains 857,242
listening records by 938 users to 30,000 music pieces.

Gowalla3 dataset is extracted from a location-based social
network where users can check in at specific location to
share it. Specifically, users with few checking-in records or
unpopular locations are filtered, and the final dataset contains
473,628 annotating records by 1,594 users to 30,000 locations.

Moreover, Figure 3 gives popularity information (logarithm)
of all datasets, which shows that most items are not very
popular, and only a small number of items are interacted
with frequently, which are consistent with the power law
distribution [55].

Each dataset is divided into a training set and a test
set, which are non-overlapping. Specifically, the training
set consist of the 80% users’ behavior sequences of (ran-
dom selected) and first half of the remaining 20% users’
historical behavior sequences, while the second half of
the remaining 20% users’ sequences are used as the test
set. Specifically, each user u’s behavior sequence Su :=[
(u, i1, t1) , (u, i2, t2) , · · · ,

(
u, i|Su|−1, t|Su|−1

)]
in the test

set generates |Su| − 1 test cases, where the k-th test case is
to perform recommendation at time tk+1 given u’s historical
sequences Su := [(u, i1, t1) , (u, i2, t2) , · · · , (u, ik, tk)] with
the ground truth ik+1. Note that the task studied in this
work is sequential new recommendation, which predicts the
target user’s next new behavior/item that has not appeared
in her/his historical sequences. Especially, the sequential new

1http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/
lastfm-1K.html

2http://www.last.fm
3http://snap.stanford.edu/data/loc-gowalla.html

TABLE II
COMPLETE STATISTICS OF TWO DATASETS

Dataset #(Users) #(Items) #(Records)

Lastfm 938 30,000 857,242
Gowalla 1,594 30,000 473,628

recommendation task is an important but more challenging
task compared with traditional sequential recommendation.

2) Baselines: The proposed approach MHPE-a is evaluated
against the following baselines, including basic and state-of-
the-art models:
• Popularity-based Method (PM) performs recommenda-

tion based on items’ popularity in training data.
• Factorizing Personalized Markov Chains (FPMC) [12]

combines matrix factorization and first-order Markov
chain to learn sequential information simultaneously from
users’ historical behavior sequences for sequential recom-
mendation.

• Hierarchical Representation Model (HRM) [13] encodes
sequential information and users’ general taste as one
vector with hierarchical representation learning model
for next basket recommendation. Especially, two kinds
of aggregation operations, i.e., max pooling and average
pooling, are adopted by HRM to learn the representations
of users’ preferences, which correspond to HRM-max and
HRM-avg, respectively.

• Recommendation based on Distributed Representation
(RDR) [56] can learn the feature vectors of items from
behavior sequences with a skip-gram model [54], and
acquire users’ preferences from their historical behaviors
for personalized recommendation.

• Sequential Hierarchical Attention Network-based method
(SHAN) [20] uses a hierarchical attention mechanism to
mine long/short-term preferences for sequential recom-
mendation.

• Convolutional Sequence Embedding Recommendation
model (Caser) [21] embeds items in users’ behavior se-
quences into an “image” in the time and latent spaces and
learns both general preferences and sequential patterns
with convolutional filters for recommendation.

• Self-Attention based Sequential Recommendation
method (SASRec) [22] models users’ longer-term
semantics as well as their recent actions simultaneously
for accurate next item recommendation

• Hierarchical Gating Network (HGN) [23] adopts a feature
gating module and an instance gating module to select
informative latent features and items, and captures both
the long- and short-term user interests for sequential
recommendation.

3) Evaluation Metrics: In the evaluation step, every
method generates a recommendation list of k items (top-k
recommendation), which is evaluated by two quality metrics,
i.e., recall and Mean Reciprocal Rank (MRR).

Recall is the fraction of the total amount of hits in all
testcases. Specifically, a hit means the target item (ground
truth) appears in the recommendation list. For instance, if there
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exists a record (u, i, t) in the test set and the recommended
list of u contains i, then it is called a hit. Recall is formally
defined as:

Recall@k = # (hit)/# (testcase)

where k is the length of a recommendation list, #(hit) is the
amount of hits, and #(testcase) is the amount of all testcases.

MRR is a ranking evaluation metrics, which indicates the
average of the reciprocal ranks of target items in a recommen-
dation list, i.e.,

MRR@k =
(∑

1/rankn

)/
# (testcase)

where rankn is the ranking of the nth test case’s target item
in the generated recommendation list.

4) Implementation Details: In the training phase, we set
the batch size to 512, negative sample count to 5, dimension
of embedding to 256, number of epochs to 200. Besides, the
parameters in MHPE-a are updated via Adam optimizer [57]
with the learning rate 1e − 3. Especially, during the training
process, the weight decay in Adam optimizer is set as 3e− 3
to prevent over-fitting. The proposed approach MHPE-a was
implemented using the PyTorch 1.5.0 framework with Python
3.6, and all experiments were conducted on a server with
Intel(R) Xeon(R) Silver 4108 CPU, GeForce RTX 2080Ti
GPU, 128GB memory, and running Ubuntu 18.04.

B. Visual Illustration of Embedding

In this section, we visually illustrate the learned embeddings
with t-SNE [58], which show high-dimensional vectors in 2-
dimensional space via dimensionality reduction. Note that we
only give results on lastfm dataset for brevity.

The illustration of the embeddings of music pieces by
eleven famous artists is given in Figure 4a, and Table III lists
these artists and their tags (genre information) in Last.FM.
we can see that music pieces played/sung by same or similar
artists are relatively close in the 2-dimensional space, and it is
because each singer/musician has her/his own genre, which is
also reflected in their music pieces. Especially, MHPE-a can
effectively learn music pieces’ intrinsic features from music
listening sequences.

In addition, Figure 4b illustrates the embeddings of several
users’ listening records (music pieces), and the results show
that users have different behavior patterns and preferences.
For example, user 000375 and user 000674 have relatively fo-
cused interest (long-term static preferences) and their records
cluster tightly in 2-dimension space. In contrast, user 000647
has a broader range of interests (short-term dynamic prefer-
ences). Especially, MHPE-a can effectively leveraging users’
long/short-term preferences adaptively with attention mecha-
nism to achieve better recommendation.

C. Impacts of Parameter Settings

1) Dimension: The dimension of embeddings is quite
important in both sequence modeling and recommendation.
Specifically, the embeddings with high dimension can capture
more useful information at the cost of more computation

-15 -10 -5 0 5 10 15

-20

-15

-10

-5

0

5

10

15

Maroon 5
Mariah Carey
Radiohead

Coldplay
Muse
Rise Against

Metallica
Daft Punk
Lady Gaga

The Clash
Ramones

(a) music pieces being sung/played by different artists

-20 -10 0 10 20

-20

-10

0

10

20

user_000796
user_000375
user_000369

user_000448
user_000647
user_000907

user_000674
user_000435
user_000232

user_000201
user_000494
user_000778

(b) music pieces from different users’ listening records

Fig. 4. Visualization of music pieces’ embeddings in two-dimensional space

TABLE III
GENRE OF ARTISTS

No. Artist Tags

1 Maroon 5 pop, rock, pop rock, alternative
2 Mariah Carey pop, rnb, female vocalists, soul
3 Radiohead alternative, rock, alternative rock, indie, electronic
4 Coldplay alternative, rock, alternative rock, britpop
5 Muse alternative rock, rock, alternative, progressive rock
6 Rise Against punk rock, melodic hardcore, punk, hardcore, rock
7 Metallica thrash metal, heavy metal, metal, hard rock
8 Daft Punk electronic, house, dance, techno, electronica
9 Lady Gaga pop, dance, electronic, female vocalists
10 The Clash punk,punk rock, rock, british, classic rock
11 Ramones punk rock, punk, 70s, classic rock, rock

resources and time. Therefore, we firstly evaluate the proposed
model MHPE-a with different dimensions (16, 32, 64, 128 and
256) to investigate the impact of embedding’s dimension on
recommendation performance and then determine the proper
dimension to achieve performance balance between accuracy
and efficiency. As shown in Figure 5, MHPE-a with larger
embedding dimension achieve better performance in metrics of
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Fig. 5. Experimental results of the dimension’s impact

recall and MRR, which shows that high-dimensional embed-
dings can indeed learn useful features and represent users and
items accurately. Besides, the accuracy tends to get relatively
stable when the dimension reaches 256. Therefore, we set the
embeddings’ dimension as 256 for subsequent experiments.

2) Sequence Length: The sequence length parameter is
designed to truncate user u’s whole historical behavior se-
quence Su into a fixed length sequence Hu,t before time t.
As shown in Figure 6, the proposed approach MHPE-a is
evaluated with historical sequence length c varying from 1
to 5. We can see that the performance of MHPE-a in terms
of recall and MRR firstly increases and then drops when c
gets larger. Especially, the optimal performance of most cases
is achieved when c is 3. Besides, the performance is relative
stable when c ≥ 3, because the attention mechanism in MHPE-
a helps to capture key items in sequences that are important
for tasks of prediction and recommendation. Therefore, we set
the sequence length c as 3 for subsequent experiments.

Furthermore, we have presented how the average weights
of users’ long/short-term preferences change with different
sequence length c during recommendation. Specifically, as
shown in Figure 7, the proposed model MHPE-a focuses more
on users’ long-term preferences when c is small. The reason
is that it is challenging to infer the user’ preference accu-
rately only from her/his most recent record, and the predic-
tion/recommendation relies more on the long-term preference.
Besides, the weight of short-term preferences increases when
c gets larger. In addition, the results show the interpretability
of MHPE-a during the process of recommendation.

D. Comparison with Baselines

In this section, the proposed method MHPE-a is compared
with basic and state-of-the-art baselines, including Popularity-
based Method (PM), Factorizing Personalized Markov Chains
(FPMC) [12], Hierarchical Representation Model (HRM-max
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and HRM-avg) [13], Recommendation based on Distributed
Representation (RDR) [56], Sequential Hierarchical Atten-
tion Network-based method (SHAN) [20], Convolutional Se-
quence Embedding Recommendation model (Caser) [21], Self-
Attention based Sequential Recommendation method (SAS-
Rec) [22], and Hierarchical Gating Network (HGN) [23]. The
results on all datasets are given in Figure 8 and 9, respectively.

We can observe that MHPE-a achieves higher accuracy
than baselines in both recall and MRR. The improvements
indicate that the user’s short-term dynamic preferences are
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TABLE IV
STATISTICS OF DATASETS WITH DIFFERENT SPARSITY

Lastfm

#(Users) 938 934 926 919
#(Items) 30,000 25,000 20,000 15,000
#(Records) 857,242 849,789 839,019 822,436
Sparsity 96.95% 96.36% 95.47% 94.03%

Gowalla

#(Users) 1,594 1,538 1,462 1,359
#(Items) 30,000 25,000 20,000 15,000
#(Records) 473,628 444,826 409,964 366,414
Sparsity 99.01% 98.84% 98.60% 98.20%

indeed important in improving sequential recommendation.
Specifically, it outperforms other embedding-based methods
(RDR, HRM-avg, and HRM-max) because it can fully exploit
complex sequential information with a multivariate Hawkes
process and learn the embeddings effectively from users’ be-
havior sequences. Especially, the attention mechanism enables
MHPE-a to model users’ long-term static preferences and
short-term dynamic preferences adaptively, and enhances its
ability to capture the features which are important in sequential
recommendation. Besides, MHPE-a outperforms sequential
recommendation methods (FPMC, SHAN, Caser, SASRec,
and HGN), and the reason is two-fold. Firstly, MHPE-a can
capture more key features other than the correlations between
adjacent items with multivariate Hawkes process, and fully
exploit sequential information by adopting embedding layer
and attention mechanism. Secondly, the task of sequential
new recommendation, especially on sparse datasets, is a more
challenging task compared with traditional sequential recom-
mendation, which may influence the performance of some
baselines. Furthermore, MHPE-a achieves better performance
than PM, because PM only uses popularity information, and
ignores users’ preferences and sequential patterns.

In conclusion, the comparison with baselines shows that
MHPE-a is effective in inferring both the users’ long/short-
term preferences from behavior sequences as well as in
incorporating them into sequential recommendation.

E. Impacts of Data Sparsity

In this section, the proposed approach MHPE-a and base-
lines are evaluated on datasets with different sparsity, which
are generated via filtering items with low interacting fre-
quency. Specifically, the statistics information of all datasets
is given in Table IV.
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Fig. 10. Performance on lastfm datasets with different sparsity
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Fig. 11. Performance on gowalla datasets with different sparsity

The results on all datasets are given in Figure 10 and 11,
respectively. We can observe that the proposed approach
MHPE-a still achieves better performance than baselines in
terms of recall and MRR over all datasets with different
sparsity. The reason is that MHPE-a can fully exploit complex
sequential information to alleviate the influence of sparse
interactions in datasets. Besides, the performance of some
methods on gowalla datasets is not as good as that on lastfm
datasets. The reason is that the gowalla datasets are sparser
than lastfm datasets, and the correlations among sequential
records in gowalla datasets are not as strong as lastfm datasets.
In conclusion, the results show MHPE-a can effectively handle
datasets with different sparsity.
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Fig. 12. Experimental results of attention component

F. Effects of Attention

In order to investigate the effect of attention mechanism
used in MHPE-a, we also conduct ablation experiments to
compare MHPE-a and its variant MHPE that has no attention
component, with the baseline that has best performance (Best-
Baseline).

The results are given in Figure 12, and we can observe
that MHPE-a outperform MHPE on two datasets. Taking
recall@10 as an example, the relative performance improve-
ments by MHPE-a over MHPE on lastfm dataset is 50.91%.
Besides, the performance gap between MHPE-a and MHPE
on gowalla dataset is not as large as it on lastfm dataset,
and the reason is that gowalla dataset is much sparser than
lastfm dataset, which influence the performance improvement
achieved by attention component in MHPE-a. Moreover, both
MHPE-a and MHPE outperform Best-Baseline, which further
shows the effectiveness of multivariate Hawkes process.

In conclusion, the key components in MHPE-a, including
attention mechanism and multivariate Hawkes process, can
indeed help to achieve accurate recommendation.

VI. CONCLUSION AND FUTURE WORKS

In this work, we present a novel sequential recommendation
method named Multivariate Hawkes Process Embedding with
attention (MHPE-a). It relies on a temporal point process with
embedding and an attention mechanism to recommend items
that users may interact with based on their historical data.
Specifically, it consists of three main components: 1) an em-
bedding layer for learning representation of users and items, 2)
a multivariate Hawkes process for modeling complex behavior
sequences, and 3) an attention mechanism for capturing and
leveraging users’ long/short-term preferences and performing
recommendation.

Compared with existing approaches, MHPE-a can: 1) effec-
tively model complex behavior sequences with temporal point

process, 2) precisely capture dynamic relevance and com-
plex relationships among items in sequences, 3) incorporate
and leverage users’ long/short-term preferences adaptively for
accurate sequential recommendation. Comprehensive experi-
ments are conducted on two real-world datasets (lastfm and
gowalla), and the results show that it outperforms state-of-the-
art methods.

In future work, we plan to incorporate more auxiliary infor-
mation, such as users’ social data [59], to alleviate the problem
of data sparsity and cold start. Besides, we will try combining
advanced deep learning techniques [60] to enhance ability
of sequence modeling for better sequential recommendation.
Moreover, we will also extend the proposed approach for
other application scenarios, such as heterogeneous behavior
modeling on e-commercial datasets.
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