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Abstract—Electroencephalogram (EEG)-based neurofeedback
has been widely studied for tinnitus therapy in recent years.
Most existing research relies on experts’ cognitive prediction,
and studies based on machine learning and deep learning are
either data-hungry or not well generalizable to new subjects.
In this paper, we propose a robust, data-efficient model for
distinguishing tinnitus from the healthy state based on EEG-
based tinnitus neurofeedback. We propose trend descriptor, a
feature extractor with lower fineness, to reduce the effect of
electrode noises on EEG signals, and a Siamese encoder-decoder
network boosted in a supervised manner to learn accurate
alignment and to acquire high-quality transferable mappings
across subjects and EEG signal channels. Our experiments show
the proposed method significantly outperforms state-of-the-art
algorithms when analyzing subjects’ EEG neurofeedback to 90dB
and 100dB sound, achieving an accuracy of 91.67%-94.44% in
predicting tinnitus and control subjects in a subject-independent
setting. Our ablation studies on mixed subjects and parameters
show the method’s stability in performance.

Index Terms—EEG, subject-independent, Siamese autoen-
coder, domain alignment, trend descriptor, tinnitus.

I. INTRODUCTION

Tinnitus is a type of phantom perception caused by neural
activities related to auditory system disorder. It is a common
disease in large populations, covering over 17% of the general
population and up to 33% of the elderly [1], and has been
widely studied over the last decades. Tinnitus may lead to
hearing loss if not treated timely but, meanwhile, can be
difficult to be diagnosed. Currently, the diagnosis of tinnitus
remains largely relying on patients’ cognitive reactions to
questionnaires and auditory tests [2].

Extensive experiments and studies on exploring the causes
of tinnitus have led to the widely accepted opinion that tinnitus
may be triggered under the stressful and annoying situations
temporarily but turned into permanence by the mechanism of
central auditory system [3], [4]. The mechanism enlarges and
reinforces the relationship between the unpleasant situations
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and the tinnitus unintentionally, and turns out to be a persisting
state at last. Some research proves that patients’ responses to
tinnitus will decrease if they turn their attention from tinnitus
to other irrelevant tasks [5]. This discovery suggests that we
may alleviate and terminate the aberrant neural activity in the
central auditory system by breaking the association between
tinnitus and negative emotions or situations by habituation.
Following this idea, sound therapy aims to alleviate tinnitus
via training patients using session sounds. Until now, sound
controlled tinnitus therapy has proven effective [6] and become
the principal treatment to tinnitus. Considering the variance of
subjects in the phantom type, it is crucial to schedule treatment
based on individual patients’ feedback in such therapy.

Compared with traditional auditory tests that investigate pa-
tients’ tinnitus, electroencephalogram (EEG), or more specif-
ically, Auditory brainstem response (ABR), allows obtaining
real-time feedback from the nervous system using non-invasive
wearable devices. While the neurofeedback can be an effective
data source for experts—who analyze and decides the proper
sound treatment for patients manually [7], [8], [9]—machine
learning and deep learning methods, e.g., support vector
machine (SVM) [10], [11], neural network [12], [13], and au-
toencoder [14], [15], have achieved extraordinary performance
in EEG-based neurofeedback analysis. Recently, generative
models have shown the potential for overcoming subject
variances in tinnitus neurofeedback analysis [16], [17], given
it capability in domain alignment and domain transfer. As
subject variance can be viewed as characteristic information
of a domain, generative models can learn how to transfer the
information from one domain to another. Besides, generative
models can adopt domains alignment to embed the samples
from different subjects into a unified space and thus achieve
better classification.

This paper introduces a novel hand-engineered descrip-
tor and an automatic representation learning model named
Siamese Autoencoder for small-scale datasets and subject-
independent experiments. Our designed features achieve re-
markable performance in distinguishing tinnitus patients from
control subjects. They can be used for either determining
whether a patient has recovered to a healthy state or predict-
ing the usefulness of certain sound in neurofeedback-based
sound therapy for tinnitus treatment. We make the following
contributions in this paper:
• We design a novel Siamese Autoencoder with extra
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auxiliary accuracy loss, domain loss and alignment loss
for better autoencoder optimization, domain transfer, and
domain alignment, respectively. We further propose a
trend descriptor that can reduce the effect of electrode
noise to complement the autoencoder representations.
The proposed two features, in combination, achieve good
generalization in different experiments.

• We introduce a new split method, i.e., the Anchor Split
training procedure, for our Siamese Autoencoder. The
new split method contains the required information for
domain alignment, domain transfer, and class prediction,
and is a more suitable split method than tradition ran-
domly cross-validation split methods.

• We experimentally show our approach outperforms state-
of-the-art algorithms by 12.5% and 5.56% under two dif-
ferent conditions, respectively. We also study the impact
of our proposed two features on the final performance
and present ablation studies on the hyper-parameters and
sound classification.

II. RELATED WORK

Much research has been conducted about EEG-based neu-
rofeedback neural activity training to alleviate brain system
disorders. This treatment has been widely used in treat-
ing epilepsy [18] and attention deficit hyperactivity disorder
[19], and has achieved outstanding performance. Tinnitus
researchers similarly used neurofeedback to monitor EEG
status and applied brain training to keep brain maintaining
in a healthy state.

The early work on judging the health of neurofeedback
mainly relied on the cognitive judgement of experts with
little statistics information. The first attempt of neurofeedback
training on tinnitus treatment was carried out by [7]. They
researched on 40 patients and 15 control subjects. The treat-
ment protocol was to increase the Alpha-band activity and
decrease the Beta-band activity of EEG, which was considered
to be related to tinnitus. The experiment lasted for seven
years, and all the patients expressed a significant decrement of
their tinnitus by the Tinnitus Questionnaire (TQ). Schenk et
al. [9] further replicated the experiment in 40 patients. They
conducted stress-test while monitoring the EEG of patients
and control subjects, and the experiment results showed that
all the patients scored tinnitus with less annoying and stressful
in TQ by tinnitus after training. Among the patients, 23
of 40 patients succeed in increasing Alpha-band activities,
but 13 of them failed to decrease Beta-band activities. The
experiment confirmed the effectiveness in treating tinnitus with
neurofeedback based EEG training but also showed that simple
lifting of tinnitus patients’ EEG did not equal to the healthy
EEG state.

Researchers further began to use some statistical tools to
help judge whether patients’ EEG recover to a healthy state.
Weiler et al. [8] extracted the power value of Alpha-band,
Beta-band, Theta-band and Delta-band activities and compared
the z-score of the patient with 20 control subjects. The protocol
was to ameliorate the waves of patients to have similar z-score
with the other observed 20 control subjects. The experiment

showed that tinnitus might be correlated to the above all four
bands. Milner et al. [20] applied slow cortical potential (SCP)
in neurofeedback tinnitus treatment, which was a descriptor of
overall cortical distribution shifts in neural activities. The case
report of this SCP-based neurofeedback training showed that
the reduction of frequency in Delta-band and Theta-band could
effectively decrease the tinnitus loudness and pitch. These
studies showed that tinnitus might have a complicated relation-
ship with EEG patterns, which was hard for simple models to
catch. The subject variance might lead to the different patterns
of the EEG. All the above-mentioned research stayed on the
stage of relying on the cognitive judgements of experts and
case-specific analysis. Therefore, the research did not have a
clear criterion, and the experiment results differed from each
other.

Recently, researchers sought the help of machine learning
and deep learning methods for a solid criterion in the analysis
of tinnitus. Some efforts aim to distinguish tinnitus patients
from control subjects by machine learning. Sun et al. [13]
extracted Principal Components Analysis (PCA), Fast Fourier
Transformation (FFT), and frequency-domain statistics fea-
tures for analysis. Similarly, Li et al. [10] preprocessed data
in the frequency domain, and further extracted the features by
cosine mapping and main-phase computing. Both of the work
received good performance in the experiments. However, these
studies were subject-dependent, which meant that some of the
test samples come from the same subjects in training. Then,
short-time sampling from the same subjects would produce
some similar samples, so subject-dependent experiments may
contain similar samples in both train and test samples, which
would overestimate the performance of models. Wang et al.
[11] studied the subject-independent experiments in classifying
tinnitus patients from control subjects. It adopted FFT and
concatenate the multi-view information from multiple chan-
nels and bands, which achieved good performance with least
squares support vector machine in a dataset of 29 volunteers.

Unfortunately, these tinnitus-related work only considered
how to distinguish patients from control subjects in a quiet
environment: control subjects would not hear anything, but
tinnitus patients would hear the phantom sound, which might
lead to a clear difference in EEG. Moreover, their model failed
to consider to help sound therapy for tinnitus, which needed
models to predict tinnitus patients from control subjects while
hearing a sound. Therefore, their models could not handle the
job of neurofeedback based sound therapy for tinnitus.

Other EEG study fields have attracted many advanced
models and analysis tools. Some studies [21], [12] utilized
deep learning to predict the sleep stages and activities in
subject-independent experiments; others [15], [14] applied
generative models to generate low-dimension features; finally,
recent studies [22], [23] adopted domain transfer by generative
models to enhance the EEG analysis. However, these powerful
generative models would be limited in the data scale, which
needed a large scale data to optimize the massive network
parameters.

In summary, most studies [24], [25] only took statistics
features (e.g. power value) and relied on the large scale
dataset for training; in contrast, most tinnitus EEG dataset
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Fig. 1. Model Overview. We create two low-dimensional representations of raw data by a) using a trend descriptor and b) encoding the raw data with a
pre-trained encoder from our Siamese autoencoder. The sliding window annotation highlights the peaks and troughs in consecutive sliding-windows in different
colors. For the encoder input, xk denotes the kth sample in an EEG trial. We depict the trend descriptor and the encoded representation with blue and purple
circles, respectively. v-SVM takes the combination of two features to predict whether the EEG data belong to a tinnitus patient or a healthy subject.

had a limited scale. Little work has been done to provide
a reliable subject-independent tool to assist sound therapy
for tinnitus. Therefore, we propose a novel trend descriptor
which contains better overall shape information, and we design
a Siamese autoencoder intended for small-scale datasets and
subject variance learning in sound therapy.

III. METHODOLOGY

A. Model Overview

Fig. 1 shows an overview of our proposed model with
feature construction and class prediction as two main steps.
The model takes the raw EEG signals as inputs and generates
two sources of features: a trend descriptor (which separates a
single trial into sliding windows and summarizes the trend in
each) and a pre-trained encoder of the Siamese autoencoder
(which learns subject differences and align samples from dif-
ferent subjects into a unified domain). The classifier operates
on these two feature sources to predict the class: tinnitus or
control. Throughout this section, we define the EEG trial set
as X = {X1, X2, ..., Xn}, where Xi denotes a single trial.

B. Trend Descriptor Extraction

We propose a lower fineness trend descriptor to solve the
electrode noise problem in EEG signals. The trend descriptor
first finds the peak and trough points in sliding windows and
then collects the magnitude and number of peaks and troughs
in each window.

First, we introduce our lower fineness extreme point search-
ing method. Given an EEG trial Xi ∈ X , we define the slice
set of Xi as Qi = {q1, q2, ..., qw}, where qi denotes the first
sliding window of Qi. Then, we search the following points
of a time point n to sign it. Given a certain searching scope,
we have the sign function:

Trend(n) =

 Up (p > d+ µ)
Stable (d+ µ ≥ p ≥ d− µ)
Down (p < d− µ)

(1)

where n denotes a time point in a sliding window; p, d denote
the larger point number and the smaller point number than
n in the searching scope; µ denotes a hyperparameter which
lowers the fineness of searching extreme points and ignores
the abnormal fluctuation caused by electrode noise. Then, the
peaks and troughs in the sliding window are readily identified
by observing when the sign function changes from Up to
Down, or vice versa. The position of a peak will be the last
sample with a Up or Stable sign before a sample with a Down
sign. Similarly, troughs can be identified from the last sample
with a Down or Stable sign before a change to an Up sign. The
peaks and troughs are collected in temporal order as E, and
we can express the trend character of an arbitrary sub-window
qi by a 4-dimension vector Trend(qi), where:

R = {Ej : Ej < Ej+1, Ej ∈ qi}
D = {Ej : Ej > Ej+1, Ej ∈ qi}

Trend(qi) = {|R|,
∑
i∈R

abs(Ei − Ei+1),

|D|,
∑
i∈D

abs(Ei − Ei+1)}

(2)

Since E is time-ordered, a peak can only be followed by
a trough and vice-versa. Therefore, R,D denote the sets of
peak and trough points. We denote by |R|,|D| the number
of elements in R,D, and by abs the absolute value. Then,
we can obtain the trend descriptor of a trial Trend(Xi) by
concatenating the trend descriptor of sliding windows belongs
to its corresponding Qi:

Trend(Xi) = {Trend(qi) : qi ∈ Qi} (3)

The trend descriptor will have 4∗w dimensions, depending
on sliding-window-size and step. We show the procedure in
Algorithm 1. Finally, we apply z-score normalization:

Trend(Xi) = Normalize({Trend(qi) : qi ∈ Qi})

= {Trend(qi)− Trend(q
X
i )

σ(Trend(qXi ))
: qi ∈ Qi}

(4)
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Algorithm 1 Trend Descriptor Extraction with default values:
window size = 50, step = 50, search scope = 10, µ = 2

Require: EEG trial set X = {X1, X2, ..., Xn}
1: for i ∈ [1, n] do
2: Split Xi into slices Qi = {q1, q2, ..., qw}
3: for j ∈ [1, w] do
4: for m ∈ [1, size] do
5: Sign nm ∈ qj by Eq. (1)
6: end for
7: Calculate Trend(qj) by Eq. (2)
8: end for
9: Concatenate and obtain Trend(Xi) by Eq. (3)

10: end for
11: for i ∈ [1, n] do
12: Normalize Trend(Xi) by Eq. (4)
13: end for

where qXi = {qXi
i : Xi ∈ X} denotes the set of sliding

windows from the same time of all trials; Trend(qXi ) denotes
the mean value; and σ(Trend(qXi )) denotes the standard
deviation.

C. Siamese Autoencoder Representation Learning

Autoencoders are a widely used tool to extract the signifi-
cant information from low signal-to-noise ratio EEG data by
encoding raw data into a low-dimension representation. Here,
we use a Siamese structure and domain adaptation methods
to enhance the autoencoder. Fig. 2 illustrates the architecture
of the proposed Siamese autoencoder, which uses two parallel
autoencoders with shared weight parameters as the analysis
tool as contains three types of loss function: LAE , LSiamese

and Lalign. The proposed Siamese autoencoder takes pairwise
raw data, meaning that for N input samples, we have

(
N
2

)
training pairs. Therefore, we can generate enough training
samples to optimize the deep-learning model even with the
small-scale EEG dataset. Given a raw trial data set X , we
compose the pairwise training batch B = {B1, B2, ..., Bn}
by Bi = {Xa, Xb : Xa, Xb ∈ X} (details of construction of
B in Section III-E). We define s as the autoencoder repre-
sentation, and the representation pair of Bi as Si = {sia, sib},
where sia, s

i
b denote two corresponding representations of Bi,

respectively.
In the following, we introduce the autoencoder structure,

the Siamese structure, and domain alignment representation
learning for the proposed Siamese autoencoder, respectively.

1) Autoencoder Structure: An autoencoder consists of two
components: an Encoder and a Decoder.The Encoder ex-
tracts the low-dimension representation, and Decoder recon-
structs the raw data from the representation. The representation
should contain all the essential information from the raw data
to allow the Decoder to recover the raw data.

Given an arbitrary trial data Xi, we construct the Encoder
with two fully connected (FC) layers activated by the hyper-
bolic tangent (Tanh) function. Here, we use the Tanh function
because it can convert the input data into [-1,1] and help avoid

B1

B2

Bn

Xa Xbx1 x2 x3 ... xkx1 x2 x3 ... xk

...

...

...

...

sa sb... ...

...

...

...

...

X'a X'bx'1 x'2 x'3 ... x'kx'1 x'2 x'3 ... x'k

Auxiliary	Class
Prediction

Domain	
Prediction

L2	Loss Cross-entropy	Loss

Data	Transfer Shared	Weight

LAE
Lalign

LSiamese LSiamese

True	Class	Label True	Domain	Label

Encoder

Decoder

...

...

...

...

...

Pairwise	Raw	Data

Fig. 2. Siamese Autoencoder Architecture. Xa, Xb represent the raw data
from a train pair and X

′
a, X

′
b denote the corresponding generated data. sa, sb

are the encoded representation from Encoder. Specially, LSiamese consists
of two parts: auxiliary class loss and domain loss.

the vanishing and exploding gradient problems. Then we can
obtain the representation si of Xi by:

Layer(Xi) = Tanh(W ∗Xi + b)

si = Encoder(Xi)

= Layer(Layer(Xi))

(5)

where W, b denote the weights and bias of the Encoder,
respectively. Similarly, Decoder consists of two FC layers,
but only the first layer has the Tanh activation function. Our
raw data scope is out of the range of the Tanh function, so we
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drop the Tanh function in the decoder output layer. Then, we 
have the generated raw data X

′ 
by:

i

X
′

i = Decoder(si)

=W ∗ (Layer(si)) + b
(6)

where W, b denote weights and bias of Decoder, respectively.
We want the generated X

′

i to be as similar as possible to
the raw data Xi. Therefore, we apply the L2 loss function to
ensure the Encoder and the Decoder preserve the necessary
information from the raw data. This leads to the pairwise
autoencoder loss function, LAE , for an arbitrary pairwise data
Bi:

LAE =
∑

Xa∈Bi

||Xa −X
′

a||22+
∑

Xb∈Bi

||Xb −X
′

b||22 (7)

where ||Xa−X
′

a||22 denotess the L2 loss between the raw data
and the generated data. LAE will ensure the representation Si

carries the essential information of raw data Bi during the
training.

2) Siamese Structure: This section introduces the auxil-
iary class enhanced Siamese structure for domain transfer
leaning. Tradition Siamese structure compares two samples
and determines whether they are from the same class. In our
model, we compare the pairwise representations Si and predict
whether they belong to the same subject domain. This domain
prediction let Encoder transfer the domain information from
different subjects and learn how to generate the representation
with discriminative subject identity information. We also pro-
pose an auxiliary class loss, which prevents Encoder from
generating white noise representations.

Given an arbitrary pairwise representations Si = {sia, sib}
from Encoder, we define the subject domain label D as 1
when sia, sib are from the same subject otherwise 0. Siamese
structure consists of two classifiers Class and Domain for
predicting class labels Y and domain labels D of a pairwise
representation Si, respectively. Both classifiers contain two FC
layers and take Sigmoid Function as the activation function of
outputs. We apply the Cross-entropy Loss as our classification
loss function. Then, Siamese structure loss LSiamese:

Lcls(y, ŷ) = −y log ŷ − (1− y)log(1− ŷ)

LSiamese =
∑
Si∈S

Lcls(Ya, Class(s
i
a)) + Lcls(Yb, Class(s

i
b))

+ Lcls(D,Domain(Si))
(8)

where Lcls(y, ŷ) denotes the Cross-entropy Loss function
between true label y and predicted probability ŷ; Ya, Yb denote
the class labels of sia, s

i
b, respectively. The first two terms

represent the accuracy loss, which offers the label information
during the training of autoencoder. Label information could as-
sist the optimization of autoencoder towards better prediction
results, and keep the key information for class prediction. The
last term is the domain loss, which hopes the representations
can contain the subject identity information. Subject identity
information will make the representations more diverse and
enhance the robustness of algorithms on predicting class
labels from different subjects. Therefore, LSiamese will make

the representations produced by autoencoder more easily to
predict the class labels and the subject source-domain.

3) Domain Alignment Representation Learning: The
Siamese structure improves the subject information and class
information carried by the representations, but it fails to
align the sample domain into a unified classification space.
Therefore, we propose Lalign to adopt domain alignment of
the generated representations from Encoder.

Given an arbitrary training batch set S = {S1, S2, ..., Sn},
where Si = {sia, sib}, then we have:

Lalign =
∑
Si∈U

||sia − sib||22−
∑
si∈T

||sia − sib||22

s.t. U = {Si : Ysia = Ysia}, T = {Si : Ysia 6= Ysia}
(9)

where U, T denote the set of pairwise data from same and
different classes, respectively; sia, s

i
b denote the corresponding

two representations of Si. Lalign is designed to minimize
the pairwise representations difference from the same class,
and maximize the representation difference from the different
classes, in which way the class domain of different subjects
will be adapted into a unified domain after optimization. Based
on Eq. (7), Eq. (8), and Eq. (9), we could get the loss function
of our Siamese Autoencoder:

L = LAE + LSiamese + Lalign (10)

where LAE is the basic autoencoder loss function; LSiamese

is intended for subject variance learning by domain transfer;
Lalign is designed for domain alignment in classification.

D. Classifier

We use v-Support Vector Machine (v-SVM) with default
settings in scikit-learn [26] to predict class labels. v-SVM
takes both trend descriptors and autoencoder representations
as the inputs of the classifier. It aims to find a hyper-plane
that maximizes the sample distance to this hyper-plane. In our
tinnitus prediction, which is a binary classification problem,
we define the binary labels as {-1,1}. Then, we denote the
classification hyper-plane by

0 = wT r + b (11)

where w denotes the normal vector of the hyper-plane; b
denotes a real number; r denotes the mapped point by kernel
function (e.g. radial basis function kernel). Note, w and r
are vectors with multi-dimensions. Then, we have the sign
function for class label y:

yri =

{
1 wT ri + b ≥ 1
−1 wT ri + b ≤ −1 (12)

Now, our goal transforms into maximizing the gap between
classification margin 1 and -1, and we figure out the distance
of an arbitrary sample ri to the hyper-plane by

γi =
yi(w

T ri + b)

||w||
(13)

where ||w|| denotes the norm of hyper-plane normal vector,
and yi denotes the class label of sample ri.
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Finally, we have the loss function for v-SVM [27]:

argmin
||w||2

2
− ρv + 1

l

l∑
i

ζi

s.t. yi[w
T ri + b] ≥ ρ− ζi, i ∈ [1, l]

ρ = yi − ε, ρ ≥ 0

ζi ≥ 0, i ∈ [1, l]

(14)

where v denotes a hyper-parameter between 0 and 1; ε denotes
the error tolerance of prediction; ρ denotes the tolerated sample
sign; l denotes the sample number; ζi denotes the relaxation
variable. The optimization details are in [27].

E. Anchor Split Training and Procedure

Training batch split is a critical factor of generative models’
performance. Therefore, we propose Anchor split for our
Siamese autoencoder that includes subject-difference and class
difference in each training batch. The proposed Anchor-split
method allows the autoencoder to learn the characters of
subjects and classes evenly. First, we select a random sample
from each subject as Anchor to ensure each training batch
will contain the information of all training subjects. Second,
we randomly pick a batch size number of positive and negative
unique samples belonging to each Anchor, respectively. The
selected samples will be combined as pairs with the corre-
sponding Anchors that carry the class information. Then, we
further choose a random batch size number of positive and
negative unique samples belonging to the different subjects
from Anchors and merge them as pairs to transfer the subject
variance information to the autoencoder. Third, we keep the
selected pairs to build a data warehouse for each Anchor
and shuffle them randomly. For each iteration of an epoch,
we will select a certain number of pairwise data from each
Anchors data warehouses to obtain a training batch. In each
epoch, we repeat the three steps to relocate Anchors and
rebuild the corresponding data warehouses to improve the
training diversity. We illustrate the detailed training procedure
in Algorithm 2.

IV. EXPERIMENT

A. Experiment Setting

Our experimental dataset [28] contains 456 trials from 43
volunteers aged from 19 to 61, including 19 tinnitus patients
and 24 control subjects. The EEGs were recorded with a
50 kilohertz (kHz) sampling frequency, and the stimuli were
click trains with 90 decibels (dB) and 100dB sound pressure
level (SPL). We conduct subject-independent experiments in
distinguishing tinnitus subjects from control subjects for 90dB
SPL and 100dB SPL click-evoked EEG data, respectively.
We selected trials from two tinnitus patients and two control
subjects for testing and used the remaining trials for training.
This provided 216 trials for training and 49 trials for testing in
the 90dB SPL data, generating 23,220 pairs of training data;
we also have 148 trials for training and 43 trials for testing
in 100dB SPL experiment, which contains 10,878 pairs of
train samples. By this means, we generated sufficient data for
training our Siamese autoencoder.

Algorithm 2 Training procedure with default values:
batch size = 128, max epoch = 300, representation dimension
= 128, learning rate (lr) = 0.001
Require: EEG trial set X = {X1, X2, ..., Xn}

1: Split train/test subjects
2: Extract trend descriptor by Algorithm 1
3: while epoch ≤ max epoch do
4: Set Anchors in train subjects
5: Build data warehouse within train subjects
6: while Data warehouse not empty do
7: Pick up a pairwise train batch
8: Calculate L by Eq. (10)
9: W, b← Adam(lr, L)

10: end while
11: end while
12: Encode samples of test subjects by Eq. (5)
13: Use v-SVM to predict classes with trend descriptors and

representations of test subjects by Eq. (14)

For both experiments, we define tinnitus patients as 1 and
control subjects as 0, and set our Siamese autoencoder with
the same parameters: lr = 0.005, batch size = 128, max epoch
= 300, representation dimension = 64; we also set window-
size = 40, step = 40, search scope = 10, µ = 2 for our trend
descriptor. We compared our method with several competitive
methods: (a) v-Support Vector Machine (v-SVM) [29] using
raw data as the baseline, (b) Improved Covariance Matrix
Estimators (nCSP) [30], (c) Convolutional Recurrent Attention
Model (CRAM) [12], (d) Autoencoder enhanced Extreme
Gradient Boosting (AEXGB) [14], (e) Compact Convolutional
Neural Network for EEG (EEGNet) [31], (f) Shallow Convolu-
tional Network (ShallowNet) [32], and (g) Deep Convolutional
Network (DeepNet) [32].

We define Macro and Weighted criteria for performance
evaluation in our experiments:

Macro :
1

|L|
∑
l∈L

φ(yl, ŷl)

Weighted :
1∑

l∈L|ŷl|
∑
l∈L

|ŷl|φ(yl, ŷl)
(15)

where L denotes the set of labels; yl, ŷl denote the predicted
label and true labels; |yl| denotes the number of predicted
labels which have the label l; φ(yl, ŷl) denotes the function
to compute Precision, Recall, or F1-Score for the true and
predicted labels.

B. Results

Table I and Table II show the algorithms’ best performance
in distinguishing tinnitus subjects from control subjects on
90dB SPL and 100dB SPL EEG data, respectively. Note, 90dB
SPL experiment has the same number of positive and negative
samples, so Weighted-F1 has the same value as Macro-F1. v-
SVM cannot distinguish the tinnitus patients with raw data;
AE-XGB shows the autoencoder can effectively improve the
quality of the raw data; while tradition machine learning meth-
ods like nCSP fail to learn the difference between tinnitus and
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TABLE I
TINNITUS PATIENTS PREDICTION FROM CONTROL OBJECTS UNDER 90DB SPL.

Model 0-Precision 0-F1 1-Precision 1-F1 Macro-Precision Macro-Recall Macro-F1 (Weighted-F1) Accuracy

v-SVM 0.5333 0.5926 0.5556 0.4762 0.5444 0.5417 0.5344 0.5417
nCSP 0.6364 0.6087 0.6154 0.6400 0.6259 0.6250 0.6243 0.6250

CRAM 0.5202 0.6844 1.0000 0.5030 0.7601 0.6680 0.5937 0.6140
AE-XGB 0.6923 0.7200 0.7273 0.6957 0.7098 0.7083 0.7078 0.7083
EEGNet 0.8571 0.6316 0.6471 0.7586 0.7521 0.7083 0.6951 0.7083

ShallowNet 0.7059 0.8276 1.0000 0.7368 0.8529 0.7917 0.7822 0.7917
DeepNet 0.8000 0.4706 0.5789 0.7097 0.6895 0.6250 0.5901 0.6250

SiameseAE 0.8571 0.9231 1.0000 0.9091 0.9286 0.9167 0.9161 0.9167

TABLE II
TINNITUS PATIENTS PREDICTION FROM CONTROL OBJECTS UNDER 100DB SPL.

Model 0-Precision 0-F1 1-Precision 1-F1 Macro-Precision Macro-Recall Macro-F1 Weighted-F1 Accuracy

v-SVM 0.4000 0.3077 0.5385 0.6087 0.4692 0.4750 0.4582 0.4749 0.5000
nCSP 0.5833 0.6364 0.6250 0.5556 0.6042 0.6000 0.5960 0.5960 0.6000

CRAM 0.3807 0.5514 1.0000 0.4913 0.6903 0.6628 0.5214 0.5089 0.5233
AE-XGB 0.5556 0.5882 0.6667 0.6316 0.6111 0.6125 0.6099 0.6123 0.6111
EEGNet 0.6667 0.8000 1.0000 0.7500 0.8333 0.8000 0.7750 0.7722 0.7778

ShallowNet 0.6154 0.7619 1.0000 0.6667 0.8077 0.7500 0.7143 0.7090 0.7222
DeepNet 0.8750 0.8750 0.9000 0.9000 0.8875 0.8875 0.8875 0.8889 0.8889

SiameseAE 0.8889 0.9412 1.0000 0.9474 0.9444 0.9500 0.9443 0.9446 0.9444

TABLE III
TREND DESCRIPTOR (TD) AND SIAMESE AUTOENCODER (SA)

INDEPENDENT PERFORMANCE UNDER 90DB SPL AND 100DB SPL.

SPL Feature 0-F1 1-F1 Weighted-F1 Accuracy

90dB TD 0.500 0.500 0.497 0.500
90dB SA 0.811 0.792 0.788 0.792

100dB TD 0.775 0.775 0.778 0.778
100dB SA 0.762 0.667 0.709 0.722

healthy EEG in subject-independent experiments. Deep learn-
ing models have better performance in both experiments—
ShallowNet achieves 79.17% accuracy under 90dB SPL, and
DeepNet obtains 88.89% accuracy under 100dB SPL, but
neither of them has good performance in both experiments.

Our proposed method outperforms other algorithms in both
experiments, which shows the Siamese generative model’s
stronger ability to catch the subject variance and the robustness
of our algorithm. We achieve 100% precision and over 0.90
F1-score in the prediction of tinnitus patients, which means
our model can find the most patients’ EEG accurately. The
overall accuracy of our model is over 90%, which shows the
eligibility in the EEG-based sound therapy.

C. Trend Descriptor and Siamese Autoencoder Analysis

We use the same data split as in former experiments to
explore the impact of the trend descriptor and the Siamese
autoencoder, respectively. Specifically, we use v-SVM to show
the performance of hand-crafted features and the output of
the classifier in Siamese network to show the effectiveness of
autoencoder-generated features.

Table III shows either of the two features cannot compete
with their combination in performance in either experiment.

Trend descriptor has better performance in 100dB SPL while
merely provides useful independent information in 90dB SPL;
Siamese autoencoder can extract meaningful information from
low signal-to-noise ratio data but has worse performance than
trend descriptor in 100dB SPL. Compared with the previous
experiment, combining the two features delivers much better
performance in both experiments, meaning the two features
can complement and improve each other.

D. Sound Classification

We further test our model in predicting sound loudness in
mixed subjects. We define 90dB as label 0 and 100dB as label
1. We select three tinnitus patients and two control subjects
for the test and use the remaining samples for the train. Then
we have 400 trials for train and 56 trials for the test, which
means 79,800 pairwise samples for the train. We compare our
method with the same algorithms in the prediction of tinnitus
in Table IV. Prediction of sound level is easier for algorithms,
while we get a baseline of 81.35%. The proposed Siamese
autoencoder only has lower 100dB precision than some of
the state-of-the-art algorithms but outperforms them in other
criterion scores. This exploration reveals our model’s powerful
ability to analyze EEG-related tasks.

E. Ablation Study on Hyper-parameters

We investigate the robustness of our Siamese autoencoder,
by testing the impact of learning rate (lr), batch size, and rep-
resentation dimension on our model’s performance, separately,
with the other parameters default to lr = 0.001, batch size =
128, and representation dimension = 64. We run the model for
10 times and calculate the mean performance of the best five
times to reduce the adverse impact caused by randomization
in our Anchor split.
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TABLE IV
SOUND LOUDNESS PREDICTION ON MIXED SUBJECTS.

Model 0-Precision 0-F1 1-Precision 1-F1 Macro-Precision Macro-Recall Macro-F1 Weighted-F1 Accuracy

v-SVM 0.7955 0.8642 0.8667 0.7027 0.8311 0.7684 0.7835 0.8040 0.8136
nCSP 0.6250 0.6494 0.6471 0.6197 0.6360 0.6351 0.6345 0.6345 0.6351

CRAM 0.9105 0.9379 0.9398 0.8897 0.9252 0.9058 0.9138 0.9196 0.9205
AE-XGB 0.8537 0.8974 0.8889 0.8000 0.8713 0.8366 0.8487 0.8611 0.8644
EEGNet 0.8182 0.8889 0.9333 0.7568 0.8758 0.8047 0.8228 0.8396 0.8475

ShallowNet 0.9722 0.9589 0.9130 0.9333 0.9426 0.9502 0.9461 0.9494 0.9492
DeepNet 0.8780 0.9231 0.9444 0.8500 0.9112 0.8729 0.8865 0.8958 0.8983

SiameseAE 1.0000 0.9722 0.9167 0.9565 0.9583 0.9730 0.9644 0.9664 0.9661

1) Learning Rate: Table V shows the results of lr that
larger lr leads to the better performance in 90dB experiments
but the worse performance in 100dB experiments. When lr =
0.005, our model achieves the most balanced best performance
in both experiments. Our model achieves worst performance
when lr = 0.003 in 90dB and lr = 0.007 in 100dB. The
performance of our model will be largely influenced by lr.

2) Batch Size: We test seven commonly-used batch sizes.
Since we have more than 32 subjects, we only test the batch
sizes larger than 32. Batch size has only a small influence
on the 100dB experiments but a larger influence on the
90dB experiments. 90dB experiments need a relatively small
or a large enough batch size to allow model to learn the
representation better, while 100dB experiments need a small
batch size. Therefore, the best option for batch size is 128.

3) Representation Dimension: Both experiments have the
worst performance when we use the 16-dimension represen-
tation, which means the subject information has much more
information than the expression ability of a 16-dimension
vector. Moreover, the too large dimension will decrease the
noise compressed ability of autoencoder, which will also lead
to performance reduction in representation learning. Therefore,
we pick 64 as the balanced representation dimension for our
autoencoder.

Overall, the standard deviation in most criteria is no greater
than 0.05, demonstrating the model’s robustness in different
parameters. lr is the parameter that most significantly influ-
ences the performance of our model. 90dB experiments are
more sensitive to the parameter choice, while 100dB experi-
ments are more stable with respect to changes in batch size
and representation dimension. The parameters have different
optimal values and differed influences in the two experiments.
Our model achieves the most balanced performance when
lr = 0.005, batch size = 128, and representation = 64.

V. CONCLUSION

We propose a novel model that seamlessly integrates a lower
fineness trend descriptor and a powerful Siamese autoencoder
to distinguish tinnitus patients from control subjects based on
EEG signals. In particular, the Siamese autoencoder can learn
subject variances in small-scale datasets, and our proposed
model outperforms state-of-the-art algorithms under different
SPLs. We further prove the effectiveness of our model in sound
loudness prediction and through ablation studies.
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