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Abstract. Differential evolution (DE) is an efficient approach widely applied for solving global 

optimization problems. Nevertheless, it suffers from some drawbacks, such as weak local 

searchability, premature convergence, and low effectiveness and scalability when the 

dimension is increased. This paper proposes a novel DE algorithm named quantum-based avian 

navigator algorithm (QANA), which mimics migratory birds' extraordinary precision 

navigation during long-distance aerial paths. The QANA is modeled by introducing two long-

term and short-term memories, a new V-echelon communication topology, and quantum-based 

navigation, including two mutation strategies and a qubit-crossover operator. Moreover, a 

success-based population distribution (SPD) policy is proposed to assign the flocks' mutation 

strategies using the previous success rate of the strategies. The effectiveness and scalability of 

the proposed QANA were experimentally determined using benchmark functions CEC 2018 

and CEC 2013 as LSGO problems, and the results were statistically analyzed by the Wilcoxon 

signed-rank sum test, ANOVA, and mean absolute error. Finally, the applicability of the 

QANA to solve real-world problems was evaluated by four engineering problems. The 

experimental results and statistical analysis prove that the QANA is superior to the competitor 

DE and swarm intelligence algorithms. 

   

Keywords: Optimization, Metaheuristic algorithms, Differential evolution algorithms, Large-
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1. Introduction 

Solving global optimization problems in real-world applications in the medical, 

engineering (He et al., 2020; Wu et al., 2019), industrial (Dezfouli et al., 2018; Sayarshad, 

2010; Zahrani et al., 2021), and other fields face various complexities, including non-linear ly, 

non-convex, multi-modality, non-differentiable functions, and large-scale dimensionality (Deb 

and Myburgh, 2017; Gandomi et al., 2019). Since these challenges and the available search 

time do not allow the use of exact optimization algorithms, many metaheuristic algorithms 

have been developed, which can seek reasonable solutions to solve these complex problems. 



The metaheuristic algorithms are inspired mainly by the collective behaviors of swarms and 

evolutionary phenomena in nature (Eiben and Smith, 2015; Talbi, 2009) and can be classified 

into three main categories: swarm intelligence (SI), physics, and evolutionary algorithms (EAs) 

(Talbi, 2009; Zamani et al., 2019). 

The SI algorithms are inspired by the behaviors of swarms of birds (Yang and Gandomi, 

2012), aquatic animals (Gandomi and Alavi, 2012; Mirjalili and Lewis, 2016), terrestrial 

animals (Long et al., 2018; Mirjalili et al., 2014), and insects (Karaboga and Basturk, 2007) in 

nature. They have been rapidly extended, and their performance and abilities make them 

suitable for solving a wide range of complex problems (Abdel-Basset et al., 2020; Altabeeb et 

al., 2019; Zamani and Nadimi-Shahraki, 2016). Meanwhile, they are also adapted mostly by 

using transfer functions (Taghian et al., 2018) to introduce effective algorithms (Mafarja et al., 

2019; Pashaei and Aydin, 2017; Srikanth et al., 2018; Taghian and Nadimi-Shahraki, 2019a, 

b; Vieira et al., 2013; Zhang et al., 2016) to solve a wide variety of discrete optimization 

problems (Karasu et al., 2020). Recently, numerous SI algorithms have been proposed by 

introducing new approaches (Abdel-Basset et al., 2020; Banaie-Dezfouli et al., 2021; Long et 

al., 2018; Nadimi-Shahraki et al., 2020a; Sun et al., 2018) to solve their weaknesses.  

Physics-based algorithms are suggested based on the physical concepts in nature to solve 

numerical optimization problems. These algorithms generate the new candidate solutions using 

physical laws, such as gravitational force, magnetic, chemical reaction, light refraction, inertia 

force, and molecular dynamics to eventually guide the search process to the promising area by 

increasing the exploitation ability. The most recent algorithms in this category are simulated 

annealing (SA) (Kirkpatrick et al., 1983), ray optimization (RO) (Kaveh and Khayatazad, 

2012), black hole (BH) (Hatamlou, 2013), magnetic optimization algorithms (MOAs) 

(Tayarani-N and Akbarzadeh-T, 2014), and quantum-inspired gravitational search algorithm 

(QIGSA) (Soleimanpour-Moghadam et al., 2014). 

In evolutionary algorithms (EAs), the problems are approximated by performing 

meaningful search strategies inspired by biological evolution, such as reproduction, mutation, 

recombination, and selection (Eiben and Smith, 2015; Price et al., 2006; Qin et al., 2008; Wu 

et al., 2016; Zhang and Sanderson, 2009). The EAs initiate random candidate solutions and 

iteratively generate and evolve offspring solutions until the acceptable solution is discovered. 

The prominent representatives of EAs include evolution strategies (ES) (Beyer and Schwefel, 

2002), estimation of distribution algorithms (EDAs) (Larrañaga and Lozano, 2001), 

biogeography-based optimization (BBO) (Simon, 2008), opposition-based DE (ODE) 

(Rahnamayan et al., 2008), and differential evolution (DE) (Storn and Price, 1995, 1997). 

Since the introduction of the DE algorithm by Storn and Price (Storn and Price, 1995, 

1997), it has become one of the most successful evolutionary algorithms in dealing with 

complex optimization problems (Brest et al., 2006; Brest et al., 2016; Islam et al., 2011; 



Mallipeddi and Suganthan, 2010; Maučec and Brest, 2019). The DE algorithms incorporate 

mutation, crossover, and selection operators to gradually move the population toward the 

global optimum during the optimization process (Wu et al., 2016; Yang et al., 2008). However, 

the original DE algorithms suffer from premature convergence and population stagnation, 

which can significantly affect its performance. Therefore, many DE developments have been 

proposed to cope with their weaknesses by introducing novel approaches and successful 

enhancements (Cai and Wang, 2015; Civicioglu et al., 2020; Deng et al., 2017; Mallipeddi and 

Suganthan, 2010; Mallipeddi et al., 2011; Meng and Pan, 2016; Nadimi-Shahraki et al., 2020b; 

Wang et al., 2013; Wang et al., 2011; Wang et al., 2014). Therefore, as shown in Fig. (1), the 

DE algorithm's development can be classified based on these introduced approaches and 

mechanisms as follows.  

Trial vector generation strategies: The performance of the DE is sensitive to the search 

strategies (Awad et al., 2016b; Meng and Pan, 2018; Qin et al., 2008; Wang et al., 2011; Zhang 

and Sanderson, 2009), and an inappropriate choice can generate unpromising trial vectors that 

may lead to premature convergence, local optima trapping, and low diversity and scalability 

(Brest et al., 2016, 2017; Fan and Lampinen, 2003; Larrañaga and Lozano, 2001; Tanabe and 

Fukunaga, 2013; Wu et al., 2018; Yang et al., 2008). Therefore, to improve the DE algorithm, 

there has been a growing trend to enhance the trial vector generation strategies, which has been 

introduced by a variety of mutations and crossover operators. 

The most common mutation strategies are DE/rand/1 (Storn and Price, 1997), DE/rand/2 

(Qin et al., 2008), DE/best/1, and DE/best/2. The mutation strategies DE/best/1 and DE/best/2 

effectively solve unimodal problems; however, they usually demonstrate a slow convergence 

rate when dealing with multimodal problems because of their greediness. As such, improved 

standard mutation strategies have been introduced using L-SHADE (Tanabe and Fukunaga, 

2014), iLSHADE (Brest et al., 2016), jSO (Brest et al., 2017), and PALM-DE (Meng et al., 

2018) to straightforwardly adjust the balance between diversify and convergence rate. The 

DE/current-to-pbest (Zhang and Sanderson, 2009), DE/current-to-gr_best/1 (Ghosh et al., 

2011), ensemble mutation by using three strategies (DE/rand/1, DE/current-to-rand/1 and 

DE/best/2) (Mallipeddi and Suganthan, 2010), improved DE/rand/2 strategy (Wang et al., 

2018), and trigonometric (Fan and Lampinen, 2003) are some advanced mutation strategies 

that enhance the performance of DE for solving complex problems. Gong et al. (Gong et al., 

2010) proposed the DE/BBO algorithm by incorporating DE’s mutation operator by utilizing 

the migration operator in the BBO algorithm (Simon, 2008).  

The crossover operator aims to intensify the population diversity (Awad et al., 2016b; 

Maučec and Brest, 2019; Wang et al., 2012) by exchanging elements between the mutant and 

parent vectors. In recent years, various crossover strategies have been introduced, including 

JADE (Zhang and Sanderson, 2009), CPI-DE [27], CoBiDE (Wang et al., 2014), DE-EIG [29], 



HLXDE (Cai and Wang, 2015), multiple exponential recombinations [32], and MDE_pBX 

(Islam et al., 2011). Moreover, Deng et al. (Deng et al., 2017) developed a new rotating 

crossover scheme (DE-RCO) to enlarge the diversity of the population and enhance the 

searching ability by utilizing a multi-angle searching strategy-based rotating crossover operator 

(RCO). Wang et al. (Wang et al., 2012) proposed the orthogonal crossover (OX) operator based 

on orthogonal design, which creates a systematic and rational search in the region defined by 

the parent solutions. Recently, an adaptive guided differential evolution (AGDE) algorithm 

was proposed (Houssein et al., 2021), which introduces a new mutation rule and an adapted 

parameter value for effective crossover strategies. 

Population: The effectiveness of DE algorithms critically depends on how each utilizes the 

population in terms of initializing, size-changing, and using multi-populations. Although the 

population is usually initialized randomly (Brest et al., 2016; Storn and Price, 1997; Tanabe 

and Fukunaga, 2013; Zhang and Sanderson, 2009), few DE algorithms such as population 

restart mechanisms (LaTorre and Peña, 2017), centroid-based population initialization 

(Salehinejad and Rahnamayan, 2016), and opposition-based learning (OBL) strategy in the 

shuffled differential evolution (SDE) (Ahandani and Alavi-Rad, 2012) use problem 

characteristics to divide the initial population into several subpopulations. Changing the 

population size is another aspect that DE algorithms can handle in static (Maučec and Brest, 

2019) and dynamic fashions, which can be based on linear and non-linear population size-

changing methods (Biswas and Suganthan, 2020; Tanabe and Fukunaga, 2014).  Furthermore, 

some well-known DE algorithms (Tong et al., 2018; Wu et al., 2016) provide effective 

mechanisms to apply multi-populations to decrease the risk of stagnation risk.  

Parameters setting: In the DE algorithms, specifying the scaling factor (F) and the crossover 

rate (CR) by appropriate values has a high impact on the performance, which remains a long-

standing challenge. In the literature, this challenge has been handled primarily by either offline 

or online parameter settings. The algorithm designers set the values of the parameters in the 

offline methods before running the algorithm, and the values remain unchanged during the 

search process, whereas in the online parameter setting, the values of the parameters are 

adjusted in real-time. Concerning the philosophy of adopted online parameter settings, the DE 

variants can be classified into three classes: deterministic, adaptive, and self-adaptive (Eiben 

and Smith, 2015; Lu et al., 2020; Maučec and Brest, 2019). Some DE algorithms utilize 

deterministic rules to set the parameter values without getting any feedback (Eiben and Smith, 

2015; Storn and Price, 1997), while SaDE (Qin and Suganthan, 2005), jDE (Brest et al., 2006), 

ADE (dos Santos Coelho et al., 2013), and SaNSDE (Yang et al., 2008) dynamically adapt the 

new values by getting feedback from the search process. The self-adaptation parameter setting 

is used in the SaMDE (Wang et al., 2013) DESAP (Zhong and Cai, 2015) and NAMDE 



(Abderazek et al., 2019) algorithms, which can be adapted to different problems without any 

user interaction (Brest and Maučec, 2008). 

 

Fig. 1 Development of differential evaluation (DE) algorithms . 

 

External archive: The DE algorithms use external archives with different characteristics in 

terms of structure and content to enhance population diversity. Meng et al. (Meng and Pan, 

2019) proposed the HARD-DE algorithm, utilizing a new hierarchical archive to keep in-depth 

information of evolution to obtain a better perception of landscapes and improve the diversity 

of the trial vectors. Khanum et al. (Khanum et al., 2016) introduced the reflected adaptive 

differential evolution with two hierarchical external archives (RJADE/TA) to store superior 

solutions. Algorithms, such as JADE (Zhang and Sanderson, 2009), SHADE (Tanabe and 

Fukunaga, 2013), L-SHADE (Tanabe and Fukunaga, 2014), iLSHADE (Brest et al., 2016), 

LSHADE-EpSin (Awad et al., 2016b), and MPGDE (Yang et al., 2016), use a non-hierarchical 

memory to maintain success and inferior solutions and share their experiences.  

Ensemble and hybridization strategies: Recently, ensemble methods have been actively 

pursued to design high-quality DE algorithms by employing multiple learning algorithms. 

Many differential evolution algorithms have been introduced in the literature to solve 

optimization problems using a pool of diverse strategies (Mallipeddi and Suganthan, 2010; 

Mallipeddi et al., 2011; Wu et al., 2016). In EPSDE (Mallipeddi et al., 2011), a pool of mutation 

strategies and corresponding control parameters coexists to compete throughout the evolution 

process and produce the trial vectors. The MTDE algorithm (Nadimi-Shahraki et al., 2020b) 



applies an adaptive movement based on a new multi-trial vector approach (MTV), which 

combines different search strategies. The EDEV algorithm (Wu et al., 2018) employs a multi-

population based framework (MPF) to realize the ensemble of multiple DE variants. Both the 

multi-population ensemble DE (MPEDE) algorithm (Wu et al., 2016) and the improved version 

of MPEDE (IMPEDE) (Tong et al., 2018) provide a pool of diverse strategies for 

approximating the optimal global solution. Meanwhile, some DE algorithms (Awad et al., 

2017; LaTorre et al., 2013) utilize a hybrid framework that enables them to combine several 

algorithms and increase the quality of the DE variants for solving complex optimization 

problems.  

As mentioned above, much attention has been devoted to developing DE algorithms due to 

their abilities to solve a variety of optimization problems. Nevertheless, for solving complex 

problems, the DE algorithms suffer from weak local searchability, premature convergence, low 

diversity, among other weaknesses (Brest and Maučec, 2008; Cai and Wang, 2015; Mallipeddi 

and Suganthan, 2010; Mallipeddi et al., 2011; Maučec and Brest, 2019). Moreover, their 

performance deteriorates rapidly as the search space's dimensionality increases in the LSGO 

problems (Li et al., 2013; Maučec and Brest, 2019). The number of such complex and LSGO 

problems will continue to grow; therefore, it is an emerging issue to develop effective and 

scalable DE algorithms to solve the complex and LSGO problems. Then, extending the DE 

algorithms using multi-trial generation strategies appear to be a sufficient approach, since 

theoretically, no general optimization algorithm will be superior and answer these needs.  

In this study, an effective and scalable DE algorithm, named quantum-based avian 

navigator algorithm (QANA), is proposed to solve the global optimization problems. The 

QANA is inspired by migratory birds' ability to navigate long-distance aerial paths with 

extraordinary precision using their quantum-based avian navigator and the communication 

topologies (Bajec and Heppner, 2009; Wang et al., 2006). The QANA is modeled and 

implemented by introducing two long-term and short-term memories to maintain 

diversification, a topology named V-echelon to share information and guide its flow, and 

quantum-based navigation including two mutation strategies and a qubit-crossover operator to 

move search agents toward better solutions. Initially, different geographic zones using random 

centroids are determined to form a number of flocks by randomly distributing search agents. 

Then, during the evolutionary process, the introduced success-based population distribution 

(SPD) policy assigns each flock using its previous success rate to one of the quantum-based 

navigation strategies through which the search agents are moved and exchanged information 

by the V-echelon communication topology. Meanwhile, the long-term (LTM) and short-term 

(STM) memories store the exploration experiences of search agents to maintain the diversity 

of the population. It is expected that the exploration of the search space by the flocks based on 

the SPD policy decreases the risk of stagnation since the majority of the population is assigned 



to the winner trial vector. Moreover, using the novel V-echelon communication topology can 

promote slow diffusion of unpromising information flow through the population by enhancing 

the population diversity and suspending premature convergence.   

The effectiveness of the proposed QANA was experimentally evaluated by conducting the 

benchmark test functions, CEC 2018 (Awad et al., 2016a), with different dimensions, 30, 50, 

and 100. Moreover, the scalability of QANA was assessed by the benchmark test functions 

CEC 2013 (Li et al., 2013), with dimension 1000 as LSGO problems. In addition, four 

engineering problems were considered to evaluate the applicability of QANA to solve real-

world problems. Statistically, the proposed algorithm was also analyzed by three statistica l 

tests: Wilcoxon signed-rank sum, analysis of variance (ANOVA) and mean absolute error 

(MAE). The obtained results were further compared with well-known SI and DE variants to 

prove the superiority of the proposed QANA over other algorithms. 

2. Inspiration 

Bird migration is a remarkable natural phenomenon in which massive swarms of birds, 

such as robins and geese, migrate thousands of miles annually to find the best ecological 

conditions and habitats for feeding and breeding. In this extraordinary process, the question of 

origin concerns how the migratory birds navigate such long-distance aerial paths with 

extraordinary precision and without utilizing various cues, such as an atlas, GPS, or road signs 

during the migration (Mouritsen, 2018). Over the recent decades, ornithologist studies have 

demonstrated that the birds have an avian navigator equipped with quantum-based 

magnetoreception, which senses the Earth's magnetic field to determine their direction, altitude , 

and location (Wang et al., 2006; Zhang et al., 2015). Recent works have also revealed that the 

migratory birds enhance communication and coordination by aggregation into the flocks, and 

they have an interaction with different topologies to conserve much-needed energy during their 

lengthy and challenging flight (Wiltschko and Wiltschko, 2009). The quantum-based avian 

navigator and communication topologies of the migratory birds motivated us to investigate and 

develop a quantum-based avian navigator (QANA) algorithm. 

Magnetoreception is a sense (magnetic compass) in the avian navigator that provides 

information about migratory birds' spatial navigation (Maeda et al., 2008; Mouritsen, 2018). 

This information is received by the receptor molecules in cryptochromes proteins located in 

the avian retina and is then transmitted to the optical nervous system for a meaningful reaction 

(Wang et al., 2006). As shown in Fig. 2(a), a quantum of light (a photon) enters a bird’s eye 

during migration and hits the retina, then this energy can excite the receptor molecules to 

produce unpaired electrons. The relative alignment of unpaired electrons exists in two states, 

singlet and triplet, which are affected by the interaction with Earth's magnetic field (Zhang et 

al., 2015). As shown in Fig. 2(b), after a photon hits the retina, two main actions occur in the 



avian navigator. First, the energy of the photon splits these two electrons. Then, depending on 

the bird's orientation concerning Earth's magnetic field, these two electrons are recombined, 

and their spin with two possibilities may or not remain in the quantum correlated (quantum 

entanglement) (Maeda et al., 2008; Wang et al., 2006). If the orientation is true, then the 

electrons stay entangled with opposite spins or in the singlet state through which they release 

the original energy of the photon, producing a stimulus to the optical nerve of the bird. If the 

orientation is wrong, then the spins end up parallel or in the triplet state, and the optic nerve of 

the bird does not receive the stimulus. 

 

           (a). The retina hitting                       (b). Two main actions, splitting and recombining (quantum entanglement) 

Fig. 2 The process of providing information about spatial navigation by an avian navigator. 

As shown in Fig. 3, the migratory birds exhibit orderly aerial maneuvers using V-echelon 

topology. This flight formation conserves their flight energy efficiency by taking advantage of 

the upwash vortex fields created by the birds' wings in front and facilitating the orientation and 

communication among the birds during their long, arduous migration (Mouritsen, 2018). The 

V-echelon formation and its advantages inspired us to introduce a novel communication 

topology in this study. 

3. Avian navigator modeling 

Motivated by the above inspiration, we modeled the avian navigator by introducing 

quantum-based navigation, including two new mutation strategies and a qubit-crossover 

operator, to move the search agents using a communication topology and two long-term and 

short-term memory structures. In our model, these mutation strategies are equipped with a 

quantum orientation mechanism to produce their trial vectors. Each quantum-based mutation 

strategy utilizes the introduced V-echelon topology in which the search agents communicate 

and share the information of the promising solutions generated during the optimization process. 

This presented communication topology can increase the diversification and exploration ability 

of navigation strategies, which significantly impact our avian navigator's performance. 

Suppose Avian = {a1, a2…aN} is a finite set of N distinct migratory birds or search agents 

randomly distributed equally in k different geographic zones determined by random centroids. 

Commented [AHG1]: Or “correlation”? 



The position of search agent ai in the current iteration t is denoted by 𝑋𝑖(𝑡) = [𝑥𝑖1, 𝑥𝑖2 …𝑥𝑖𝐷], 

which is a feasible solution to the corresponding problem in a D-dimensional search space. 

This distribution forms k flocks, each including n search agents, where n=N/k. In each iteration, 

each flock's search agents explore the search space by using one of the quantum-based mutation 

strategies selected by the success-based population distribution (SPD) policy. The visited aerial 

paths' specifications are archived by the long-term and short-term memories to provide 

meaningful knowledge for partial landscape analysis. The structure of these memories, V-

echelon communication topology, and quantum-based navigation are described in the 

following sections. 

3.1. Long-term and short-term memories 

Migratory birds regularly remember the visited landscapes and aerial paths during their 

navigation to utilize information kept in their memory. Motivated by this ability, we define 

long-term memory (LTM) and short-term memory (STM) strategies. 

Definition 1 (Long-term memory): Let LTM= {LTM1, LTM2, ..., LTMi, ... , LTMN} be a 

finite set of N distinct memories. The LTMi is the long-term memory of the search agent ai to 

archive its superior solutions gained during the optimization process. The LTMi is filled by 

positions {X1, ..., Xj, ..., XҠ'}, where Ҡ' is the memory size, and Xj = {xj1, xj2, ..., xjD}. The 

vector X1 is the position of ai once the population is distributed in the search space. In the 

LTMi, F (Xj) < F (Xj-1), where F is the fitness function, and in each iteration, the position of ai 

is maintained by its long-term memory LTMi if the fitness of this position is less than the last 

member of the LTMi. Whenever the memory size of LTMi is completed, a new solution is 

replaced with its nearest existing solution found by the Euclidean distance because the new 

solution dominates its neighbors.  

Definition 2 (Short-term memory): Consider a finite set of STM = {X1, ..., Xj, ..., XҠ''} as a 

short-term memory with memory size Ҡ". This is a global memory for the population to keep 

the inferior positions generated by all search agents. After distributing the population in the 

search space, STM is initialized by Ҡ" inferior positions of the population. Then, at the end of 

each iteration, the worst Ҡ" inferior positions gained during this iteration are complete ly 

replaced with the current members of the STM. 

3.2. V-echelon communication topology  

Inspired by migratory birds' navigation behaviors, we modeled their flight formation to 

spread the information flow throughout the search agents by introducing V-echelon 

communication topology. In the following, the V-echelon topology is defined based on its 

properties.  



Definition 3 (V-echelon topology): Let V be a set of n members of the flock fq, including a 

header (H) and two subsets denoted right-line (R) and left-line (L), which are considered in a 

V-shaped formation, as shown in Fig. 3(a). Then, V is a V-echelon topology if it satisfies the 

following properties, where Xs is a representative set of n members of the flock fq, and F is the 

fitness function. 

Property V1: Xs = {Xi | Xi  fq, 1≤ i ≤ n, F (Xi) ≤ F (Xi+1)}. 

Property V2: The header H, as the leader of V, is the best member of Xs, then H = X1. 

Property V3: The rest of the representation set Xs (Xs – H) forms two subsets, right-line (R) 

and left-line (L) such that R = {X2j | X2j  Xs, 1 ≤ j ≤ n/2} and L= {X2j+1 | X2j+1  Xs, 1 ≤ j ≤ 

n/2}. 

Property V4: In the V, each member of R and L is computed by following its front member in 

these lines such that in the right-line, X2j+2 = M (X2j), and in the left-line, X2j+3= M (X2j+1) where 

M can be provided by different mutation functions to compute the position of Xi  Xs and 1 ≤ 

j ≤ n/2. Consistently, both front members of R and L subsets follow H (X2 = M (H) and X3 = 

M (H)). Fig. 3(b) shows the schematic structure used for a V-echelon topology.  

 

 

Fig.  3(a) The V-shaped formation consisting of a header (H) and two subsets, right-line (R) and left-line (L). 

 



Fig.  3(b) The schematic structure of V-echelon topology. 

Fig. 3 V-echelon communication topology. 

 

3.3. Quantum-based navigation 

The flocks explore the search space using the introduced quantum-based navigation, 

including success-based population distribution (SPD) policy, two new mutation strategies, 

"DE/quantum/I" and "DE/quantum/II," and a qubit-crossover operator. During the optimization 

process, each flock is assigned one of these mutation strategies based on the SPD policy defined 

in Definition 4.  

Definition 4 (SPD policy): The success-based population distribution (SPD) policy assigns 

the flocks to the mutation strategies dynamically based on their improvement rate. The success 

rate of mutation strategy Mm is denoted by SRm and computed by Eq. (1), where fm is the set 

consisting of flocks that use Mm in iteration t, and ij is equal to 1 if Mm could improve aj of i-

th flock of the set fm, otherwise, ij is equal to 0.  

𝑆𝑅𝑚(𝑡) = ((∑
∑ 𝜏𝑛

𝑗=1 𝑖𝑗

𝑛
𝑖𝑓𝑚

)/|𝑓𝑚|) × 100 (1) 

In the first iteration, each flock is randomly assigned by one of the quantum mutation 

strategies. Then, in each iteration t, each quantum mutation strategy's success rate is computed 

by Eq. (1) to determine the winner mutation strategy. The SPD policy rewards the winner 

mutation strategy by assigning it to the majority of flocks in the iteration t+1. It is expected 

that this SPD policy can decrease the risk of stagnation since a greater success rate is gained 

by the winner trial vector.   

Quantum mutation strategies: The quantum-based navigation introduced in our modeling 

consisted of two quantum mutation strategies, DE/quantum/I and DE/quantum/II, defined by 

Eqs. (2) and (3), respectively, where xi (t) is the position of search agent ai in the current 

iteration t, 𝑥̂𝑉_𝑒𝑐ℎ𝑒𝑙𝑜𝑛(𝑡) is the position of the search agent followed by ai based on Definition 

3 of v-echelon topology, 𝑥̂𝑗∈𝑆𝑇𝑀(𝑡), 𝑥̂𝑗∈𝐿𝑇𝑀(𝑡) are positions that are randomly selected from 

STM and LTM memories, respectively, and xbest (t) is the position of the best search agent. The 

parameter 𝑆𝑖(𝑡) is a self-adaptive quantum orientation that is defined by Definition 5. The trial 

vector vH (t+1) as a leader in the V-echelon topology is determined using Eq. (4), where the 

parameters L and U are the lower and upper bound of the search space, respectively. 

𝑣𝑖(𝑡 + 1) = 𝑥𝑏𝑒𝑠𝑡 (𝑡)+ 𝑆𝑖(𝑡) × (𝑥𝑉𝑒𝑐ℎ𝑒𝑙𝑜𝑛
(𝑡)− 𝑥𝑗∈𝐿𝑇𝑀(𝑡)) +  

                                           𝑆𝑖(𝑡) × (𝑥𝑉_𝑒𝑐ℎ𝑒𝑙𝑜𝑛 (𝑡)− 𝑥𝑏𝑒𝑠𝑡(𝑡)) + 𝑆𝑖(𝑡) × (𝑥𝑗∈𝐿𝑇𝑀(𝑡)− 𝑥𝑗∈𝑆𝑇𝑀(𝑡)) 

(2) 

𝑣𝑖(𝑡 + 1) = 𝑆𝑖(𝑡) × (𝑥𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑉𝑒𝑐ℎ𝑒𝑙𝑜𝑛
(𝑡)) + 𝑆𝑖(𝑡) × (𝑥𝑖(𝑡) + 𝑥𝑗∈𝐿𝑇𝑀(𝑡) − 𝑥𝑗∈𝑆𝑇𝑀(𝑡)) (3) 

𝑣𝐻(𝑡 + 1) = 𝑆𝑖(𝑡) × 𝑥𝑏𝑒𝑠𝑡 + (L + (U−  L) ∗ 𝑟𝑎𝑛𝑑(0. 1)) (4) 



Definition 5 (Self-adaptive  quantum orientation): Let the quantum orientation Si (γ) for 

avian ai be defined by Eq. (5) (Wang et al., 2006) as a sensitivity of the receptor molecules 

containing radical pairs that have an angle of γ with Earth's magnetic field. In this equation, the 

parameter ℒS is the weighted Lehmer mean (Tanabe and Fukunaga, 2013) that is computed by 

Eq. (7); the parameter 𝛷𝑆𝑖(𝛾) is the singlet yield corresponding to the angle γ that is computed 

by Eq. (6) (Wang et al., 2006); and the parameter 𝛷̅𝑆𝑖(𝛾) is the average singlet yield over all 

angles. In Eq. (6), the parameter k  is the decay rate, γe is the electron gyromagnetic ratio, and 

B is the magnetic field intensity.  

𝑆𝑖 (𝛾) = ℒ𝑆 +  𝑟𝑎𝑛𝑑(0. 1) × (𝛷𝑆𝑖(𝛾)− 𝛷𝑆𝑖(𝛾))               0 ≤ 𝛾 < 2𝜋  (5) 

𝛷𝑆𝑖(𝛾) =
6𝑘2+5×(𝛾𝑒×𝐵)2+(𝛾𝑒×𝐵)2×cos (2𝛾)

16(𝑘2+(𝛾𝑒×𝐵)2)
         𝑘 =  0.3, 𝛾𝑒 = 𝑟𝑎𝑛𝑑, 𝐵 = 1.76085  (6) 

ℒ𝑆 = 
∑ 𝑤𝑆𝑖

× 𝑆𝑖
2

𝑆𝑖∈𝑆̂

∑ 𝑤𝑆𝑖
× 𝑆𝑖𝑆𝑖∈𝑆̂

 (7) 

 

In Eq. (7) 𝑆 is the set of successful self-adaptive quantum orientations 𝑆𝑖 that F (Ui (t+1)) < F 

(Xi (t)) where 1 ≤ i ≤ N, and the parameter 𝑤𝑆𝑖
 is the weighting factor of 𝑆𝑖 that is calculated 

by Eq. (8). 

Qubit-crossover operator: The mutant vector vi(t+1) is crossed by its parent xi(t) in order to 

generate trial vector ui(t+1) using Eq. (9), where, |𝜓𝑖⟩𝑑 is a qubit-crossover probability of 

dimension d-th that is defined by Definition 6.    

𝑢𝑖𝑑(𝑡 + 1) = {
𝑣𝑖𝑑(𝑡 + 1)         |𝜓𝑖⟩𝑑 ≥ 𝑟𝑎𝑛𝑑        

𝑥𝑖𝑑(𝑡 + 1)         |𝜓𝑖⟩𝑑 < 𝑟𝑎𝑛𝑑        
     (9) 

Definition 6 (Qubit-crossover probability): Given |𝜓𝑖⟩ as a qubit-crossover probability for 

the search agent ai,, which is a two-state quantum system denoted by |0⟩ = (1
0
)  and |1⟩ = (0

1
) 

(Nielsen and Chuang, 2001). In each iteration, for each dimension of the trial vector ui(t+1), a 

qubit-crossover |𝜓𝑖⟩𝑑 is computed by Eq. (10), which is visualized by Fig. 4 using a Bloch 

sphere (Nielsen and Chuang, 2001), and the probability |𝜓𝑖⟩𝑑 is considered a final solution. In 

this equation, the parameter |𝜓𝑅⟩𝑑 is a random distribution, which is coefficient for changing 

the length of the vector|𝜓𝑖⟩𝑑 in the Bloch sphere. 

  |𝜓𝑖⟩𝑑 = |𝜓𝑅 ⟩𝑑 × (𝑐𝑜𝑠 (
𝜃

2
) |0⟩ + 𝑒𝑖𝜑 𝑠𝑖𝑛 (

𝜃

2
) |1⟩)       𝜃, 𝜑 = 𝑟𝑎𝑛𝑑 ×

𝜋

2
   (10) 

 
 

𝑤𝑆𝑖
=

|𝐹(𝑈𝑖 (𝑡+1)−𝐹(𝑋𝑖 (𝑡))|

∑ |𝐹(𝑈𝑖(𝑡+1)−𝐹(𝑋𝑖 (𝑡))|
|𝑆|
𝑖=1

  (8) 

https://en.wikipedia.org/wiki/Bloch_sphere
https://en.wikipedia.org/wiki/Bloch_sphere


 

Fig. 4 Visualizing a qubit-crossover probability |𝜓𝑖⟩𝑑 using the Bloch sphere (Nielsen and Chuang, 2001). 

4. QANA  

 This section proposes a novel evolutionary algorithm denoted the quantum-based avian 

navigator algorithm (QANA) based on the avian navigator modeling introduced in the previous 

section. In the following section, the QANA's step-wise procedure is summarized, and its 

pseudo-code is shown in Fig. 5.  

Algorithm: Quantum-based avian navigator algorithm (QANA) 

Input: N (number of search agents), k (number of flocks), and MaxIt (maximum iterations). 
Output: The global best solution. 

1.  Begin 

2.  Initialization. 
3.  Set t = 1. 
4.  While   t  ≤  MaxIt 
5.       Constructing k flocks. 
6.       Set long-term and short-term memories using Definitions1and 2. 

7.       Forming the V-echelon communication topology of each flock using Definition 3. 
8.       Assigning each flock to a mutation strategy using the SPD policy defined by Definition 4. 
9.       For  q = 1→ k   
10.            For  i = 1→ N/k   
11.              Generating the mutant vector vi(t+1) for each search agent ai of flock fq using Eqs. (2- 4). 
12.              Crossover the mutant vector v i(t+1) to generate trial vector u i(t+1) using Eq. (9).  

13.              If  F(Ui (t+1))  ≤  F(Xi (t))   
14.                      Xi (t+1) = Ui (t+1). 
15.              Else 

16.                      Xi (t+1) = Xi (t). 
17.              End If 
18.            End For 

19.        End For 
20.        t = t + 1. 
21.  End while 
22.  Return the position of the best search agent as a global best solution. 
23.  End 

Fig. 5 The pseudo-code of the proposed quantum-based avian navigator algorithm (QANA). 

 

Step 1. Initialization: Set N distinct migratory birds or search agents that are randomly 

distributed in k different geographic zones determined by k random centroids. 

Step 2.  Flock construction: Construct k flock by selecting n=N/k search agents randomly form 

the population for each flock.  

Step 3. Set long-term and short-term memories: Set the LTM for each search agent using 

Definition 1 and STM for all search agents using Definition 2. 



Step 4. V-echelon topology formation: Forming the communication topology of each flock 

using Definition 3, as shown in Fig. 3. 

Step 5. Mutation strategy assigning: Assign each flock to a mutation strategy using the SPD 

policy defined by Definition 4. 

Step 6. Trial vector generation: Generate the trial vector of each search agent a i of flock fq 

using its assigned mutation strategy by Eqs. (2-4).  

Step 7. Crossover: Crossover the mutant vector vi(t+1) by its parent xi(t) in order to generate 

trial vector ui(t+1) using Eqs. (9) and (10).  

Step 8. Selection: Compare the fitness values of each trial vector F(U i(t+1)) with its 

corresponding target vector F(Xi (t)), and select the dominant trail vector. 

Step 9. Algorithm termination: Stop the algorithm if the termination criterion is satisfied; 

otherwise jump to step 2 to repeat the search process for more favorable solutions in a specific 

problem.   

5. Experimental evaluation of the  QANA  

A variety of experiments were designed to evaluate the performance of the QANA. These 

experiments are set up differently to analyze the QANA's behaviors to reflect its qualitative 

and quantitative aspects. First, a qualitative analysis was performed based on four metrics, 

including search history, trajectory, average fitness values, and convergence rate, to show the 

proposed algorithm's exploration and exploitation abilities and its convergence behavior for 

solving problems. Then, in the quantitative analysis, the effectiveness and scalability of the 

proposed QANA were compared with other competitive algorithms. The effectiveness was 

evaluated by testing the exploitation and exploration, escape ability from local optima, and 

convergence speed, while the scalability was assessed by solving LSGO problems. Due to the 

stochastic nature of the optimization algorithms, the overall performance of the algorithms was 

statistically analyzed by three non-parametric statistical tests, i.e. Wilcoxon signed-rank sum, 

analysis of variance (ANOVA), and mean absolute error (MAE). The applicability of the 

QANA for real-world optimization problems was also assessed by solving four engineering 

design problems. 

The QANA was coded using Matlab version R 2016b programming language, and to ensure 

a fair comparison, all competitor algorithms were also run under the same conditions in this 

Matlab version. All experiments were run using the same configuration, including an Intel(R) 

Core(TM) i7 CPU with 3.4 GHz and 8 GB memory on Windows 7 operating system.  

5.1. Benchmark test functions 

Due to the theoretical limitations, the performance verification of a new metaheuristic 

algorithm is difficult. Thus, several benchmark functions, such as the CEC test suite in which 

the complexity degrees deteriorate rapidly as the dimensionality increases (Li et al., 2013; 



Maučec and Brest, 2019; Sun et al., 2018; Zamani et al., 2019), have been introduced to 

evaluate the effectiveness and scalability of new metaheuristic algorithms. Therefore, the 

effectiveness of the proposed QANA was tested by benchmark functions CEC 2018 (Awad et 

al., 2016a) with different dimensions 30, 50, and 100, and its scalability was evaluated using 

CEC 2013 (Li et al., 2013) with dimension 1000. 

The CEC 2018 test suite consists of four groups: unimodal, simple multimodal, hybrid, and 

composition. Functions (F1 and F3) are unimodal test functions with one global optimum with 

non-separable, symmetric, and smooth properties but a narrow ridge, so they are suitable for 

evaluating the proposed algorithm in terms of the exploitation ability and convergence speed. 

In the second group, there are seven multimodal functions (F4–F10), which have many local 

optima that are mostly used to test the exploration ability and local optima avoidance of the 

QANA. Besides, functions (F11– F20) and (F21–F30) of the third and fourth groups are hybrid 

and composition, respectively, that are more complex and challenging than unimodal and 

multimodal functions. Due to their more rugged nature and ability to maintain continuity 

around the global optima, these functions are suitable for testing the balance between the 

exploration and exploitation abilities and premature convergence. Also, the search space's 

bounds for all of the functions were limited between interval [-100, 100] D, where D is the 

dimension of the corresponding problems. 

Moreover, the CEC 2013 benchmark suite (Li et al., 2013) consists of fifteen test functions : 

fully-separable functions (F1–F3), partially additively separable functions (F4–F11), overlapping 

functions (F12–F14), and non-separable function (F15) with different properties, which are 

suitable to test the scalability. In the CEC 2013, all functions were used with dimension 1000, 

except functions F13 and F14 in which the dimension was 905. Moreover, the bounds of the 

search space were set differently, such that they were limited between interval [-100, 100] for 

functions F1, F4, F7, F8 and F11–F15, between interval [-5, 5] for functions F2, F5, and F9, and 

between interval [-32, 32] for functions F3, F6 and F10.  

5.2. Qualitative  analysis 

In this subsection, the qualitative behavior of QANA is analyzed in terms of convergence, 

population diversity, and exploration and exploitation. These analytical experiments were 

performed by 60 search agents distributed equally in 4 flocks on a 2-dimensional search space 

on some functions with different properties selected from the CEC 2018. 

5.2.1.  Convergence analysis 

The convergence behavior of QANA was analyzed using four metrics, including search 

history, average fitness values, best fitness values, and trajectory, which are plotted in the 

second to fifth columns of Figs. 6 and 7, respectively. Their respective landscapes are also 

presented in the first column of these figures. 

Commented [ns2]: Consider: by distributing 60 search 

agents equally in 4 flocks.. 



The search history of all search agents is tracked along the contour lines with a solid black 

circle, and the global optimum solution is marked with a red star. This experiment shows the 

movement history of search agents during the evolutionary process for finding the global 

optimum solution. The third column displays the QANA's ability to improve the candidate 

solutions by computing the average fitness values in each iteration. Then, the globally best 

values obtained during the optimization are shown in the fourth column, revealing the 

convergence ability of the QANA. Finally, the fifth column shows the trajectory in which the 

first dimension of the representative search agent a1 is tracked to show how the proposed 

algorithm has abrupt movements in the initial iterations for exploration and gradually 

converges to a region in the final iterations for exploitation. 

The search history results show that the QANA follows the same pattern on all of the test 

functions. In the unimodal test function F1, the search agents bypass the local optima with a 

long step size to reach the promising region and exploit in the vicinity of the global optimum 

very precisely. In test functions, F6 and F10, the landscape composed of many basins of 

attraction and the behavior of the QANA show that it is able to move out the basin from a given 

local optimum and approximate the region of a global optimum effectively. As shown in the 

first column in Figs. 6 and 7, the landscapes of the hybrid and composition test functions F21–

F28 are composed of numerous deep valleys, which simultaneously benchmarked the ability of 

exploration and exploitation and the local optima avoidance of the proposed algorithm. These 

observations concluded that the introduced movement strategies are able to bypass the deep 

valleys efficiently and approximate the global optimum of optimization problems.   

The results were evaluated based on the average fitness values. The results prove that the 

QANA can evolve the obtained candidate solutions towards a global optimum solution for 

different landscapes. In the test functions F1, F6, and F10, the proposed algorithm has an 

accelerated convergence trend toward the global optimum with the steepest descent slope. In 

the challenging test functions F21–F28, the proposed algorithm can discover the optimum 

solution in a slight slope. It initially analyzes the search space by explor ing and bypassing the 

local optima, contributing to the promising regions using its exploitability. The trajectory 

curves plotted in the fifth column demonstrate that the representative search agent a1 starts its 

evolutionary process with the abrupt changes at the initial iterations, then gradually decreases 

as it becomes closer to the solution over the course of iterations. This behavior guarantees that 

the proposed algorithm eventually converges to a point in the landscape. 
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Fig. 6 Search history, average fitness, convergence curve, and trajectory in the first dimension of QANA. 

 
 

 
 
 
 
 
 

 
 
 
 
 
 



 

 

Fig. 7 Search history, average fitness, convergence curve, and trajectory in the first dimension of QANA. 

 
 

5.2.2. Population diversity analysis 

 

Population diversity maintenance during the search process is an essential attribute that can 

prevent or suspend the search agents from the local optima trapping. Increasing the 

dimensionality results in the population dispersion which prematurely converge to the 

unpromising areas throughout iterations. In this subsection, the proposed QANA algorithm's 

population diversity was analyzed in different dimensions, 30, 50, and 100. The obtained 

results for some of the test functions are plotted in Fig. 8. The population diversity was 

computed using Eq. (11) (Olorunda and Engelbrecht, 2008), where the parameter N is the 



number of search agents, D is the dimensionality of the problem, xid is the position of i-th 

search agent in d-th dimension, and 𝑥𝑑̅̅ ̅ is the average of d-th dimension.  

𝐷 = 
1

𝑁
∑√∑(𝑥𝑖𝑑 − 𝑥𝑑̅̅ ̅)2

𝐷

𝑑=1

𝑁

𝑖=1

 (11) 

 

In these curves, a small value indicates the population convergence, while a large value 

reveals a higher population dispersion. The curves show that the QANA algorithm can maintain 

population diversity for different test functions of unimodal, multimodal, hybrid, and 

composition with dimensions of 30, 50, and 100.  

 

 

Fig. 8 Population diversity analysis of QANA in unimodal, multimodal, hybrid, and composition test functions. 
  



5.2.3. Exploration and exploitation analysis 

In this experiment, the exploration and exploitation abilities of the proposed QANA 

algorithm in the face of different problems with various properties, such as unimodal, 

multimodal, hybrid, and composition, were analyzed. The obtained results are plotted in Fig. 

(9) to show the exploration and exploitation percentage during the evaluation process for  

different dimensions, 30, 50, 100, and 1000. A high percentage of exploration shows the 

considerable distance among search agents for finding the unvisited areas. Meanwhile, the high 

percentage of exploitation shows that the population's distance decerases and converges to the 

promising area. Thus, the balance between exploration and exploitation can suspend the 

premature convergence and alleviate the loss of diversity (Hussain et al., 2019).  

The percentages of exploration and exploitation during the search process were computed 

using Eqs. (12) and (13) (Hussain et al., 2019). The parameter Div (t) is computed using Eq. 

(14) to show the increase and decrease of distance among search agents, and Divmax is the 

maximum diversity in the entire iterations. In Eq. (14), parameter xid (t) is the position of i-th 

search agent in the d-th dimension, and xd (t) is the median value of the d-th dimension for all 

N search agents, respectively. 

 

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 (%)=
𝐷𝑖𝑣(𝑡)

𝐷𝑖𝑣𝑚𝑎𝑥
× 100 (12) 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛(%) =
|𝐷𝑖𝑣(𝑡)−𝐷𝑖𝑣𝑚𝑎𝑥 |

𝐷𝑖𝑣𝑚𝑎𝑥
× 100  (13) 

𝐷𝑖𝑣(𝑡) =
1

𝐷
∑

1

𝑁
∑|𝑚𝑒𝑑𝑖𝑎𝑛{𝑥𝑑(𝑡)}− 𝑥𝑖𝑑 

𝑁

𝑖=1

(𝑡)|

𝐷

𝑑=1

 (14) 

 

These curves show that the proposed QANA algorithm can strike balance between 

exploration and exploitation and find the near-optimal solution for different problems. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 



 

Fig. 9 Exploration and exploitation analysis of QANA. 
 

5.3. Quantitative  analysis 

In the quantitative analysis, the proposed QANA was compared with several state-of-the-

art algorithms, including DE variants, self-adapting control parameters in differential evolution 

(jDE) (Brest et al., 2006), hybrid differential evolution with biogeography-based optimization 

(DE/BBO) (Gong et al., 2010), differential evolution with composite trial vector generation 

strategies and control parameters (CoDE) (Wang et al., 2011), Sanskrit word meaning victory 

(Jaya) (Rao, 2016), monkey king evolutionary (MKE) (Meng and Pan, 2016), and weighted 



differential evolution algorithm (WDE) (Civicioglu et al., 2020), and SI algorithms such as 

salp swarm algorithm (SSA) (Mirjalili et al., 2017), exploration-enhanced grey wolf optimizer 

(EEGWO) (Long et al., 2018), modified whale optimization algorithm (MWOA) (Sun et al., 

2018), and arithmetic optimization algorithm (AOA) (Abualigah et al., 2021). The 

effectiveness of the QANA was evaluated by conducting the CEC 2018 benchmark suite in 

terms of exploitation and exploration abilities, local optima avoidance, and convergence. 

Moreover, the scalability of the proposed algorithm was also analyzed using CEC 2013 with 

dimension 1000 as large-scale global optimization problems (Li et al., 2013). In all quantitative 

experiments, the initial parameters of the competitor algorithms were set according to the 

original papers, as shown in Table 1. Moreover, the values of the common parameters, such as 

population size (N) and maximum function evaluations (MaxFEs), were set to 200 and 

D×10000, respectively. Due to the random nature of the algorithms and to achieve a more 

comprehensive comparison, all quantitative experiments and statistical tests were run 30 times 

over the benchmark functions. 

The experimental results are tabulated in Tables 2–4, where Avg, SD, and Min are the 

mean, standard deviation, and minimum fitness value, respectively. The best result for each 

function is highlighted and in boldface, and the comparisons are shown at the end of each table 

based on the numbers of the win (W), tie (T), and loss (L) of each algorithm. 

5.3.1 Evaluation of exploitation and exploration  

The exploitation and exploration abilities of the QANA were benchmarked against the 

contender algorithms using the unimodal and multimodal functions. Since the unimodal 

functions, F1 and F3, have only one global optimum, they can assess the exploitation ability. 

The results reported in Table 2 for using these functions with different dimensions (30, 50, and 

100) show that the QANA provides a very competitive exploitation ability. The main reason is 

that using the introduced V-echelon communication topology defined by Definition 3 spreads 

the information flow of good solutions using the representative set Xs, thereby boosting the 

exploitation ability.  

The multimodal test functions, F4–F10, were considered for evaluating the exploration 

ability due to having a complex landscape with very rugged regions and multiple local optima. 

The obtained results from this evaluation show a good exploration ability. This is mainly 

because of exploring the landscape by multi-flocks which are constructed and then dynamically 

assigned in each iteration to the mutation strategies based on their improvement rate and the 

SPD policy defined in Definition 4. Using the qubit-crossover operator defined in Eq. (9) 

enhances the diversity, which can also improve the exploration ability of the QANA. 

 

 



Table 1 The parameter settings of algorithms. 

Algorithms Parameters values  

jDE  F= 0.5, CR = 0.9, τ1 and τ2 = 0.1. 

DE/BBO  
I = E = 1, πmax = 0.005, K = 2, scaling factor F = rand (0.1, 1), and crossover 

probability (CR) = 0.9.  

CoDE  CR = [0.1, 0.9, 0.2], and F = [1, 1, 0.8]. 

Jaya No parameter for initial setting. 

MKE  FC = 0.7.  

SSA l=2, c2, c3 = random numbers in the interval [0, 1].  

EEGWO  b1 = 0.1, b2 =0.9, non-linear modulation index μ=1.5, an initial= 2 and a final = 0. 

WDE  There are no parameters other than the common parameters.  

MWOA  
b =1, the values of parameters p, r1 and r2 are a random number between interval 

[0, 1], 0 < β ≤ 2.            

AOA α = 5, μ= 0.5. 

QANA The number of flocks (k) = 10. K' = 9, Ҡ"=50. 

 

5.3.2  Evaluation of local optima avoidance  

The evaluation of the local optima avoidance ability is a complex and challenging test that 

requires solving different problems. Therefore, the hybrid and composition benchmark 

functions F11–F20, and F21–F30 that have other properties are suitable for evaluating the local 

optima avoidance's ability. Tables 3 and 4 show the results for solving the hybrid and 

composition test functions with dimensions 30, 50, and 100. The results prove that the proposed 

algorithm is very competitive to other algorithms and can accurately approximate the global 

optima solutions in the hybrid and composition problems for different dimensions. Thus, the 

proposed QANA can strike a balance between exploration and exploitation. The main reasons 

are that the proposed algorithm uses two different mutation strategies that can handle hybrid 

and composition problems while utilizing the introduced long-term and short-term memories 

in Definitions 1 and 2, which maintain the diversity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 Comparison of optimization results obtained from unimodal and multimodal test functions. 

Func.  D Metrics 
jDE 

(2006) 

DE/BBO 

 (2010) 

CoDE 

(2011) 

Jaya 

(2016) 

MKE 

(2016) 
SSA 

(2017) 

EEGWO 

(2018) 

WDE 

(2018) 

MWOA 

(2018) 

AOA 

(2021) 
QANA 

F1 

30 
Avg 6.4769E+ 10 1.03844E+ 02 1.06172E+ 02 3.1458E+ 10 1.00022E+ 02 4.5079E+ 03 5.5092E+ 10 1.1751E+ 09 2.5512E+ 10 4.0204E+ 10 1.0000E+ 02 

SD 1.4030E+ 10 1.42898E+ 00 1.61947E+ 00 6.2989E+ 09 1.90931E-02 5.2536E+ 03 5.8141E+ 09 2.0186E+ 08 8.1351E+ 09 6.1158E+ 09 1.0220E-14 

Min 7.2406E+ 09 1.01664E+ 02 1.03247E+ 02 2.0129E+ 10 1.00003E+ 02 1.9447E+ 02 4.0603E+ 10 8.0520E+ 08 1.0534E+ 10 2.8769E+ 10 1.0000E+ 02 

50 
Avg 1.2800E+ 11 1.90408E+ 03 2.05014E+ 03 8.3942E+ 10 1.52133E+ 02 7.5172E+ 03 1.0966E+ 11 4.5173E+ 09 5.8918E+ 10 9.8217E+ 10 1.0030E+ 02 

SD 1.8514E+ 10 1.75908E+ 03 1.37145E+ 03 1.0066E+ 10 5.69634E+ 01 9.7270E+ 03 6.7506E+ 09 5.6447E+ 08 1.1658E+ 10 9.3012E+ 09 1.2850E+ 00 

Min 4.8465E+ 10 1.79040E+ 02 4.17062E+ 02 7.1728E+ 10 1.01256E+ 02 2.0473E+ 02 9.1619E+ 10 3.1522E+ 09 3.3415E+ 10 7.6918E+ 10 1.0000E+ 02 

100 
Avg 3.8935E+ 11 1.66217E+ 04 1.00962E+ 03 2.2982E+ 11 2.60746E+ 02 1.1492E+ 04 2.6711E+ 11 1.8535E+ 10 1.7548E+ 11 2.6239E+ 11 1.0020E+ 02 

SD 1.8623E+ 10 8.63675E+ 03 4.47651E+ 02 2.9327E+ 10 3.27224E+ 02 1.1585E+ 04 6.6847E+ 09 1.9963E+ 09 1.4939E+ 10 1.1541E+ 10 4.0400E-01 

Min 3.5015E+ 11 2.59544E+ 02 3.58430E+ 02 1.8100E+ 11 1.02349E+ 02 1.6432E+ 02 2.5239E+ 11 1.3868E+ 10 1.3880E+ 11 2.3598E+ 11 1.0000E+ 02 

F3 

30 
Avg 1.0072E+ 05 6.70028E+ 04 3.00773E+ 02 2.3632E+ 05 2.63582E+ 04 3.0000E+ 02 8.8657E+ 04 8.0510E+ 04 8.0821E+ 04 7.3776E+ 04 3.0000E+ 02 

SD 1.6696E+ 04 8.02561E+ 03 2.99105E-01 3.7484E+ 04 5.66511E+ 03 1.4982E-08 2.7984E+ 03 1.2357E+ 04 7.4300E+ 03 7.9286E+ 03 4.7130E-08 

Min 5.8109E+ 04 5.25341E+ 04 3.00391E+ 02 1.5215E+ 05 1.78791E+ 04 3.0000E+ 02 8.1618E+ 04 4.9904E+ 04 6.4370E+ 04 5.4896E+ 04 3.0000E+ 02 

50 
Avg 2.1589E+ 05 1.54228E+ 05 3.00772E+ 02 3.4524E+ 05 8.59432E+ 04 3.0035E+ 02 2.8121E+ 05 2.0134E+ 05 1.7605E+ 05 1.6869E+ 05 3.0080E+ 02 

SD 2.6005E+ 04 1.46509E+ 04 4.49700E-01 5.0824E+ 04 1.15653E+ 04 1.1202E+ 00 1.2274E+ 05 1.9242E+ 04 2.4049E+ 04 2.1422E+ 04 1.8770E+ 00 

Min 1.4136E+ 05 1.17206E+ 05 3.00159E+ 02 2.7029E+ 05 6.34188E+ 04 3.0000E+ 02 1.8432E+ 05 1.5880E+ 05 1.4855E+ 05 1.4097E+ 05 3.0000E+ 02 

100 
Avg 5.5899E+ 05 4.90388E+ 05 3.03809E+ 02 1.0158E+ 06 3.38128E+ 05 1.2652E+ 04 5.2875E+ 05 5.5477E+ 05 3.3529E+ 05 3.2481E+ 05 3.0380E+ 02 

SD 4.0284E+ 04 2.81876E+ 04 2.24693E+ 00 1.4440E+ 05 3.26822E+ 04 4.7457E+ 03 6.9785E+ 05 3.5187E+ 04 1.5851E+ 04 1.6648E+ 04 2.2470E+ 00 

Min 4.4578E+ 05 4.33909E+ 05 3.00802E+ 02 5.9410E+ 05 2.86574E+ 05 7.8656E+ 03 3.4532E+ 05 4.6124E+ 05 2.8379E+ 05 2.8274E+ 05 3.0080E+ 02 

F4 

30 
Avg 8.7962E+ 03 4.74768E+ 02 4.60272E+ 02 2.6637E+ 03 4.54630E+ 02 4.8515E+ 02 1.7818E+ 04 6.6414E+ 02 4.5383E+ 03 8.6132E+ 03 4.0700E+ 02 

SD 2.4023E+ 03 8.39620E-01 1.38574E+ 00 6.6116E+ 02 2.11234E+ 01 2.1747E+ 01 2.2449E+ 03 2.4966E+ 01 1.7472E+ 03 3.0115E+ 03 2.0130E+ 01 

Min 9.5796E+ 02 4.72957E+ 02 4.59145E+ 02 1.7997E+ 03 4.00623E+ 02 4.2667E+ 02 1.3681E+ 04 6.2123E+ 02 1.6121E+ 03 2.4834E+ 03 4.0000E+ 02 

50 
Avg 3.2203E+ 04 4.97679E+ 02 4.32383E+ 02 2.0362E+ 04 4.86490E+ 02 5.5273E+ 02 3.7420E+ 04 1.1372E+ 03 1.5123E+ 04 2.4220E+ 04 4.6010E+ 02 

SD 8.0518E+ 03 9.11201E-01 1.40903E+ 01 4.1548E+ 03 5.39561E+ 01 3.5298E+ 01 3.4866E+ 03 7.9705E+ 01 4.7158E+ 03 4.0857E+ 03 3.5280E+ 01 

Min 1.9420E+ 03 4.95839E+ 02 4.28553E+ 02 1.4662E+ 04 4.19149E+ 02 4.9726E+ 02 2.9372E+ 04 9.8398E+ 02 8.1262E+ 03 1.5676E+ 04 4.0010E+ 02 

100 
Avg 1.1900E+ 05 6.21373E+ 02 6.05697E+ 02 7.7024E+ 04 6.09167E+ 02 6.8798E+ 02 1.0554E+ 05 2.8265E+ 03 4.3815E+ 04 6.9631E+ 04 5.7670E+ 02 

SD 1.2735E+ 04 2.04354E+ 01 1.23057E+ 01 1.8604E+ 04 2.74908E+ 01 4.9410E+ 01 9.1309E+ 03 2.0743E+ 02 6.5825E+ 03 9.2090E+ 03 3.9180E+ 01 

Min 8.7791E+ 04 5.59811E+ 02 5.97357E+ 02 4.6944E+ 04 5.29741E+ 02 5.9895E+ 02 8.1504E+ 04 2.3022E+ 03 3.0973E+ 04 5.1544E+ 04 5.0480E+ 02 

F5 

30 
Avg 8.8658E+ 02 5.82814E+ 02 6.23725E+ 02 8.6937E+ 02 6.28983E+ 02 6.0667E+ 02 9.5529E+ 02 6.6639E+ 02 8.7466E+ 02 7.9841E+ 02 6.0510E+ 02 

SD 1.7864E+ 01 8.90438E+ 00 9.08148E+ 00 2.5356E+ 01 8.67157E+ 00 3.4586E+ 01 2.2592E+ 01 1.1275E+ 01 5.3659E+ 01 3.2172E+ 01 2.7520E+ 01 

Min 8.4156E+ 02 5.64532E+ 02 6.08022E+ 02 8.3413E+ 02 6.07340E+ 02 5.6970E+ 02 8.8793E+ 02 6.4082E+ 02 7.6870E+ 02 7.4093E+ 02 5.6170E+ 02 

50 
Avg 1.3057E+ 03 6.78840E+ 02 7.97185E+ 02 1.2054E+ 03 7.84647E+ 02 7.7860E+ 02 1.2279E+ 03 8.6183E+ 02 1.1285E+ 03 1.0717E+ 03 6.7880E+ 02 

SD 8.6888E+ 01 1.07869E+ 01 1.07193E+ 01 5.7217E+ 01 1.24118E+ 01 6.6596E+ 01 1.6631E+ 01 2.7229E+ 01 3.8917E+ 01 3.7360E+ 01 1.0790E+ 01 

Min 9.2568E+ 02 6.53673E+ 02 7.67848E+ 02 1.0904E+ 03 7.55679E+ 02 6.9302E+ 02 1.1950E+ 03 7.7358E+ 02 1.0452E+ 03 1.0049E+ 03 6.5370E+ 02 

100 
Avg 2.4641E+ 03 9.77358E+ 02 1.22908E+ 03 2.2214E+ 03 1.25535E+ 03 1.2515E+ 03 2.1535E+ 03 1.5050E+ 03 1.9735E+ 03 1.9342E+ 03 9.89907E+ 02 

SD 6.1847E+ 01 2.21133E+ 01 2.48664E+ 01 8.0875E+ 01 2.25969E+ 01 1.2760E+ 02 2.5318E+ 01 4.1603E+ 01 7.3372E+ 01 5.2973E+ 01 6.39795E+ 01 

Min 2.2319E+ 03 9.27454E+ 02 1.17684E+ 03 2.1096E+ 03 1.22091E+ 03 9.8952E+ 02 2.1078E+ 03 1.3954E+ 03 1.7790E+ 03 1.8151E+ 03 8.74103E+ 02 

F6 

30 
Avg 6.8024E+ 02 6.00000E+ 02 6.00007E+ 02 6.6912E+ 02 6.00000E+ 02 6.3388E+ 02 6.9909E+ 02 6.2271E+ 02 6.8207E+ 02 6.6464E+ 02 6.0040E+ 02 

SD 7.1173E+ 00 2.82486E-08 7.70335E-04 7.4442E+ 00 5.70562E-06 1.2043E+ 01 5.8258E+ 00 1.9290E+ 00 1.2282E+ 01 8.1810E+ 00 3.1930E-01 

Min 6.6292E+ 02 6.00000E+ 02 6.00005E+ 02 6.5449E+ 02 6.00000E+ 02 6.1872E+ 02 6.8315E+ 02 6.1665E+ 02 6.5565E+ 02 6.4427E+ 02 6.0000E+ 02 

50 
Avg 7.0339E+ 02 6.00000E+ 02 6.00028E+ 02 6.9189E+ 02 6.00000E+ 02 6.4664E+ 02 7.1328E+ 02 6.3189E+ 02 6.9623E+ 02 6.8197E+ 02 6.0200E+ 02 

SD 4.2812E+ 00 1.51280E-06 4.61072E-03 8.9940E+ 00 1.46675E-04 1.1677E+ 01 3.6064E+ 00 1.6688E+ 00 3.5215E+ 00 5.2511E+ 00 9.6060E-01 

Min 6.9014E+ 02 6.00000E+ 02 6.00019E+ 02 6.7741E+ 02 6.00000E+ 02 6.2956E+ 02 7.0121E+ 02 6.2834E+ 02 6.8697E+ 02 6.7199E+ 02 6.0000E+ 02 

100 
Avg 7.2059E+ 02 6.00001E+ 02 6.00002E+ 02 7.1524E+ 02 6.00001E+ 02 6.5828E+ 02 7.1716E+ 02 6.4507E+ 02 7.0331E+ 02 7.0080E+ 02 6.0810E+ 02 

SD 1.7537E+ 01 1.30006E-04 4.90414E-04 9.2902E+ 00 2.21072E-04 5.7566E+ 00 2.0336E+ 00 1.7721E+ 00 4.0297E+ 00 3.9222E+ 00 1.9810E+ 00 

Min 6.3752E+ 02 6.00001E+ 02 6.00001E+ 02 7.0349E+ 02 6.00000E+ 02 6.4785E+ 02 7.1387E+ 02 6.4167E+ 02 6.9384E+ 02 6.8922E+ 02 6.0000E+ 02 

F7 

30 
Avg 2.1737E+ 03 8.25686E+ 02 8.69854E+ 02 1.2732E+ 03 8.70538E+ 02 8.6463E+ 02 1.4405E+ 03 1.0442E+ 03 1.3791E+ 03 1.3046E+ 03 8.2890E+ 02 

SD 1.1874E+ 02 5.94137E+ 00 1.02771E+ 01 4.1948E+ 01 1.23804E+ 01 4.8583E+ 01 3.2897E+ 01 3.4589E+ 01 6.8148E+ 01 5.9606E+ 01 2.9150E+ 01 

Min 1.9233E+ 03 8.16415E+ 02 8.45959E+ 02 1.2085E+ 03 8.39825E+ 02 8.1999E+ 02 1.3832E+ 03 9.5780E+ 02 1.2097E+ 03 1.1810E+ 03 7.7140E+ 02 

50 
Avg 3.8880E+ 03 9.54593E+ 02 1.06477E+ 03 2.0218E+ 03 1.05434E+ 03 1.0107E+ 03 2.0741E+ 03 1.4962E+ 03 1.9645E+ 03 1.8639E+ 03 1.0560E+ 03 

SD 1.9459E+ 02 1.32965E+ 01 1.29841E+ 01 1.4399E+ 02 1.76118E+ 01 4.5724E+ 01 3.4471E+ 01 3.9981E+ 01 8.3372E+ 01 4.9887E+ 01 6.5600E+ 01 

Min 3.4431E+ 03 9.29913E+ 02 1.03439E+ 03 1.7427E+ 03 1.01700E+ 03 9.4905E+ 02 2.0062E+ 03 1.4147E+ 03 1.7965E+ 03 1.7449E+ 03 9.2510E+ 02 

100 
Avg 9.2300E+ 03 1.36617E+ 03 1.55382E+ 03 3.8176E+ 03 1.60130E+ 03 1.5681E+ 03 4.0494E+ 03 3.0703E+ 03 3.8736E+ 03 3.7491E+ 03 2.3720E+ 03 

SD 3.8246E+ 02 3.91775E+ 01 2.38208E+ 01 1.6321E+ 02 3.21338E+ 01 1.3059E+ 02 5.5783E+ 01 1.2351E+ 02 1.0088E+ 02 6.2638E+ 01 2.9310E+ 02 

Min 8.2672E+ 03 1.29650E+ 03 1.48682E+ 03 3.5312E+ 03 1.51088E+ 03 1.3476E+ 03 3.8862E+ 03 2.8598E+ 03 3.5734E+ 03 3.5938E+ 03 1.6940E+ 03 

F8 

30 
Avg 1.2005E+ 03 8.83762E+ 02 9.26352E+ 02 1.1250E+ 03 9.27306E+ 02 9.1412E+ 02 1.1774E+ 03 9.5941E+ 02 1.0816E+ 03 1.0264E+ 03 8.9350E+ 02 

SD 5.1546E+ 01 6.78663E+ 00 6.87944E+ 00 1.9217E+ 01 1.34635E+ 01 2.3840E+ 01 1.5620E+ 01 1.4659E+ 01 3.3080E+ 01 2.9485E+ 01 2.7460E+ 01 

Min 9.8322E+ 02 8.69400E+ 02 9.12647E+ 02 1.0875E+ 03 9.01012E+ 02 8.7363E+ 02 1.1443E+ 03 9.2285E+ 02 9.9731E+ 02 9.7469E+ 02 8.4970E+ 02 

50 
Avg 1.5875E+ 03 9.74029E+ 02 1.09424E+ 03 1.5594E+ 03 1.08191E+ 03 1.0548E+ 03 1.5555E+ 03 1.1551E+ 03 1.4219E+ 03 1.4194E+ 03 9.7400E+ 02 

SD 1.3539E+ 02 1.01725E+ 01 1.31150E+ 01 5.5989E+ 01 1.19607E+ 01 6.7622E+ 01 2.2897E+ 01 2.1828E+ 01 4.6185E+ 01 4.2242E+ 01 1.0170E+ 01 

Min 1.1247E+ 03 9.52334E+ 02 1.05400E+ 03 1.4823E+ 03 1.05861E+ 03 9.5621E+ 02 1.4958E+ 03 1.0973E+ 03 1.3108E+ 03 1.3407E+ 03 9.5230E+ 02 

100 
Avg 2.8533E+ 03 1.26052E+ 03 1.52924E+ 03 2.6666E+ 03 1.56536E+ 03 1.5201E+ 03 2.6500E+ 03 1.8065E+ 03 2.4568E+ 03 2.4094E+ 03 1.2610E+ 03 

SD 5.0121E+ 01 1.98577E+ 01 2.15518E+ 01 1.2315E+ 02 2.47552E+ 01 1.2043E+ 02 2.3686E+ 01 4.1523E+ 01 7.0714E+ 01 7.6111E+ 01 1.9860E+ 01 

Min 2.7606E+ 03 1.21801E+ 03 1.48909E+ 03 2.5217E+ 03 1.50451E+ 03 1.3549E+ 03 2.6037E+ 03 1.7178E+ 03 2.3244E+ 03 2.2409E+ 03 1.21800E+ 03 

F9 

30 
Avg 1.6405E+ 04 9.00000E+ 02 9.01822E+ 02 1.3481E+ 04 9.00000E+ 02 4.1709E+ 03 1.3072E+ 04 4.6833E+ 03 8.7082E+ 03 5.5521E+ 03 1.1770E+ 03 

SD 1.7333E+ 03 5.20698E-09 7.43058E-01 2.1227E+ 03 8.66746E-13 1.9490E+ 03 1.0923E+ 03 5.6890E+ 02 1.7165E+ 03 7.9506E+ 02 4.9130E+ 02 

Min 1.3021E+ 04 9.00000E+ 02 9.00610E+ 02 9.9785E+ 03 9.00000E+ 02 1.0006E+ 03 1.0976E+ 04 3.7851E+ 03 4.2391E+ 03 4.0883E+ 03 9.1280E+ 02 

50 
Avg 4.6209E+ 04 9.00065E+ 02 9.00601E+ 02 4.0622E+ 04 9.00040E+ 02 1.0472E+ 04 4.3812E+ 04 1.4997E+ 04 3.2006E+ 04 2.1715E+ 04 3.2650E+ 03 

SD 8.4768E+ 03 8.60611E-02 2.86121E-01 7.8803E+ 03 9.46880E-02 3.5029E+ 03 1.7381E+ 03 1.8109E+ 03 4.7760E+ 03 2.6341E+ 03 1.2580E+ 03 

Min 9.0094E+ 03 9.00003E+ 02 9.00117E+ 02 2.9135E+ 04 9.00000E+ 02 3.8562E+ 03 3.9073E+ 04 1.0917E+ 04 2.0792E+ 04 1.6922E+ 04 1.3720E+ 03 

100 
Avg 1.3144E+ 05 1.27444E+ 03 9.00001E+ 02 1.0702E+ 05 9.01834E+ 02 2.3192E+ 04 8.7631E+ 04 5.1289E+ 04 6.3032E+ 04 5.5916E+ 04 9.0000E+ 02 

SD 7.5124E+ 03 7.73202E+ 01 1.13537E-03 8.6919E+ 03 1.95290E+ 00 2.6925E+ 03 3.2482E+ 03 3.7619E+ 03 4.2155E+ 03 5.0778E+ 03 1.1350E-03 

Min 1.1015E+ 05 1.14390E+ 03 9.00000E+ 02 9.2144E+ 04 9.00090E+ 02 1.7090E+ 04 8.0800E+ 04 4.2854E+ 04 5.7250E+ 04 4.4095E+ 04 9.0000E+ 02 

F10 

30 
Avg 8.1157E+ 03 4.70567E+ 03 5.66929E+ 03 8.1117E+ 03 6.10576E+ 03 4.7881E+ 03 9.2130E+ 03 4.9636E+ 03 7.8327E+ 03 6.5839E+ 03 3.3750E+ 03 

SD 2.4935E+ 02 2.11542E+ 02 3.20365E+ 02 3.1526E+ 02 2.30270E+ 02 5.9682E+ 02 2.8290E+ 02 2.5851E+ 02 5.8524E+ 02 4.9526E+ 02 6.1790E+ 02 

Min 7.5312E+ 03 4.29487E+ 03 4.63041E+ 03 7.1855E+ 03 5.65151E+ 03 3.6607E+ 03 8.6102E+ 03 4.3198E+ 03 6.3170E+ 03 5.4880E+ 03 2.0670E+ 03 

50 
Avg 1.4383E+ 04 8.34560E+ 03 1.07290E+ 04 1.4727E+ 04 1.09306E+ 04 7.6818E+ 03 1.5944E+ 04 8.5586E+ 03 1.3516E+ 04 1.2136E+ 04 6.3560E+ 03 

SD 4.6349E+ 02 3.94629E+ 02 3.44535E+ 02 2.3280E+ 02 3.90368E+ 02 1.1831E+ 03 5.1500E+ 02 3.2754E+ 02 7.6239E+ 02 7.0069E+ 02 7.8150E+ 02 

Min 1.3104E+ 04 7.63074E+ 03 9.95302E+ 03 1.4309E+ 04 9.91393E+ 03 5.6360E+ 03 1.4747E+ 04 7.9418E+ 03 1.2133E+ 04 1.0864E+ 04 4.4670E+ 03 

100 
Avg 3.0736E+ 04 1.89002E+ 04 2.68139E+ 04 3.1673E+ 04 2.54144E+ 04 1.4859E+ 04 3.3432E+ 04 1.9455E+ 04 2.9798E+ 04 2.7769E+ 04 1.4680E+ 04 

SD 2.1694E+ 03 8.46416E+ 02 3.94468E+ 02 5.3225E+ 02 5.76029E+ 02 1.0340E+ 03 6.9638E+ 02 4.7398E+ 02 1.4684E+ 03 1.1675E+ 03 1.2160E+ 03 

Min 2.0573E+ 04 1.77717E+ 04 2.58708E+ 04 3.0751E+ 04 2.38409E+ 04 1.3103E+ 04 3.1718E+ 04 1.7891E+ 04 2.6870E+ 04 2.4907E+ 04 1.2580E+ 04 

Ranking 

30     W|T|L 0|0|9 0|2|7 0|0|9 0|0|9 0|2|7 0|1|8 0|0|9 0|0|9 0|0|9 0|0|9 6|2|1 

50     W|T|L 0|0|9 1|1|7 0|0|9 0|0|9 1|1|7 0|1|8 0|0|9 0|0|9 0|0|9 0|0|9 5|2|2 

100   W|T|L 0|0|9 1|0|8 0|1|8 0|0|9 0|1|8 0|0|9 0|0|9 0|0|9 0|0|9 0|0|9 7|1|1 

 
  



Table 3 Comparison of optimization results obtained from hybrid test functions. 

Func.  D Metrics jDE 

(2006) 
DE/BBO 

(2010) 
CoDE 

(2011) 
Jaya 

(2016) 

MKE 

(2016) 
SSA 

(2017) 
EEGWO 

(2018) 

WDE 

(2018) 

MWOA 

(2018) 
AOA 

(2021) QANA 

F11  

30 
Avg 9.4348E+ 03 1.1790E+ 03 1.16488E+ 03 1.7504E+ 04 1.16579E+ 03 1.2842E+ 03 9.6669E+ 03 1.4077E+ 03 5.6278E+ 03 3.3556E+ 03 1.1790E+ 03 

SD 2.3386E+ 03 6.3989E+ 00 7.43028E+ 00 4.6855E+ 03 2.89988E+ 01 4.6494E+ 01 2.0140E+ 03 3.5383E+ 01 2.1293E+ 03 1.5184E+ 03 3.4750E+ 01 

Min 3.6150E+ 03 1.1671E+ 03 1.14927E+ 03 9.3021E+ 03 1.13380E+ 03 1.1994E+ 03 6.3148E+ 03 1.3323E+ 03 2.6524E+ 03 1.7261E+ 03 1.1250E+ 03 

50 
Avg 2.1877E+ 04 1.4074E+ 03 1.21476E+ 03 3.7048E+ 04 1.24487E+ 03 1.3975E+ 03 2.4354E+ 04 2.2099E+ 03 1.1582E+ 04 1.3950E+ 04 1.2760E+ 03 

SD 3.9172E+ 03 2.3622E+ 01 7.27766E+ 00 1.2352E+ 04 2.30910E+ 01 4.8526E+ 01 2.1967E+ 03 1.7394E+ 02 3.3255E+ 03 3.4901E+ 03 4.7090E+ 01 

Min 1.4524E+ 04 1.3655E+ 03 1.20327E+ 03 2.2037E+ 04 1.20932E+ 03 1.2379E+ 03 1.8444E+ 04 1.9491E+ 03 5.3654E+ 03 7.2569E+ 03 1.1510E+ 03 

100 
Avg 2.1424E+ 05 2.4618E+ 03 1.36606E+ 03 3.4426E+ 05 1.79281E+ 03 2.5689E+ 03 6.4587E+ 05 3.1955E+ 04 1.6947E+ 05 1.5678E+ 05 1.3660E+ 03 

SD 2.5545E+ 04 1.2358E+ 02 6.40393E+ 01 7.9505E+ 04 4.99390E+ 01 2.0880E+ 02 4.5986E+ 05 5.7921E+ 03 3.6803E+ 04 2.2761E+ 04 6.4040E+ 01 

Min 1.6327E+ 05 2.2309E+ 03 1.24704E+ 03 2.3856E+ 05 1.67878E+ 03 2.0232E+ 03 2.1688E+ 05 1.8192E+ 04 9.7258E+ 04 1.1691E+ 05 1.24700E+ 03 

F12  

30 
Avg 1.0423E+ 10 4.6767E+ 05 3.33261E+ 03 2.2463E+ 09 4.96378E+ 04 3.7310E+ 06 1.4816E+ 10 2.5752E+ 07 2.6407E+ 09 6.7672E+ 09 3.3180E+ 03 

SD 1.8699E+ 09 1.6981E+ 05 2.73117E+ 02 7.3208E+ 08 2.93083E+ 04 2.5583E+ 06 1.9592E+ 09 6.7742E+ 06 1.3133E+ 09 1.7547E+ 09 1.9160E+ 03 

Min 6.0852E+ 09 2.4952E+ 05 2.79546E+ 03 1.4570E+ 09 6.98602E+ 03 6.5758E+ 05 1.0698E+ 10 1.1517E+ 07 6.7688E+ 08 3.4529E+ 09 2.0780E+ 03 

50 
Avg 4.4341E+ 10 1.3455E+ 06 8.76528E+ 03 2.6299E+ 10 2.09526E+ 05 1.8651E+ 07 8.7310E+ 10 2.5033E+ 08 2.0616E+ 10 5.5215E+ 10 4.2320E+ 03 

SD 8.0361E+ 09 3.7206E+ 05 4.01566E+ 03 8.5272E+ 09 2.07857E+ 05 1.3538E+ 07 7.7120E+ 09 6.2257E+ 07 1.1721E+ 10 9.9616E+ 09 4.6780E+ 02 

Min 3.2447E+ 10 5.8661E+ 05 5.25574E+ 03 1.3093E+ 10 3.48460E+ 04 2.3044E+ 06 7.2363E+ 10 1.4234E+ 08 7.1153E+ 09 2.5806E+ 10 3.2410E+ 03 

100 
Avg 1.7331E+ 11 1.2555E+ 06 3.40009E+ 05 1.1263E+ 11 1.23864E+ 06 7.1194E+ 07 2.0553E+ 11 1.8388E+ 09 7.9744E+ 10 1.7028E+ 11 1.2040E+ 04 

SD 1.3246E+ 10 3.2393E+ 05 1.61495E+ 05 1.9487E+ 10 4.89616E+ 05 2.5354E+ 07 1.0774E+ 10 2.6162E+ 08 1.9011E+ 10 2.1475E+ 10 5.0820E+ 03 

Min 1.2966E+ 11 8.1019E+ 05 1.61818E+ 05 8.4069E+ 10 6.34381E+ 05 2.3311E+ 07 1.8619E+ 11 1.2222E+ 09 4.4149E+ 10 1.2672E+ 11 4.5820E+ 03 

F13  

30 
Avg 1.6215E+ 09 1.3711E+ 03 1.39430E+ 03 2.3123E+ 08 1.45806E+ 03 1.5189E+ 05 1.4209E+ 10 3.5166E+ 05 2.4580E+ 08 4.3645E+ 04 1.3750E+ 03 

SD 4.7617E+ 08 5.4800E+ 00 6.55020E+ 00 1.7703E+ 08 3.24120E+ 01 1.0123E+ 05 3.8299E+ 09 1.4384E+ 05 2.4321E+ 08 4.0071E+ 04 4.0160E+ 01 

Min 3.2672E+ 08 1.3610E+ 03 1.38318E+ 03 3.8914E+ 07 1.40969E+ 03 1.5811E+ 04 4.1000E+ 09 1.1923E+ 05 4.5192E+ 06 1.9704E+ 04 1.3160E+ 03 

50 
Avg 1.4619E+ 10 1.2415E+ 05 1.51544E+ 03 1.1043E+ 10 2.43031E+ 03 1.0759E+ 05 4.9109E+ 10 3.9312E+ 06 3.8725E+ 09 3.4778E+ 09 5.4030E+ 03 

SD 4.5740E+ 09 6.0585E+ 04 2.51748E+ 01 2.2062E+ 09 1.37405E+ 03 4.7200E+ 04 9.0470E+ 09 1.3328E+ 06 3.0887E+ 09 3.4837E+ 09 7.7010E+ 03 

Min 7.0465E+ 08 4.9200E+ 04 1.44901E+ 03 7.0309E+ 09 1.63933E+ 03 4.5776E+ 04 2.6054E+ 10 1.3272E+ 06 7.0930E+ 08 8.6005E+ 06 1.6000E+ 03 

100 
Avg 3.4177E+ 10 6.5799E+ 04 1.83584E+ 03 1.7483E+ 10 7.16860E+ 03 7.3147E+ 04 4.7863E+ 10 1.6331E+ 07 1.0573E+ 10 3.3969E+ 10 1.1980E+ 04 

SD 8.4495E+ 09 2.0274E+ 04 1.22993E+ 02 3.8097E+ 09 5.18801E+ 03 4.4264E+ 04 4.0124E+ 09 3.4564E+ 06 4.2632E+ 09 3.7911E+ 09 7.5780E+ 03 

Min 6.2254E+ 08 4.8454E+ 04 1.68800E+ 03 9.2552E+ 09 1.68536E+ 03 3.0036E+ 04 4.1497E+ 10 1.1102E+ 07 3.7600E+ 09 2.6079E+ 10 2.2860E+ 03 
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30 
Avg 7.8961E+ 05 2.2788E+ 03 1.45121E+ 03 1.1882E+ 06 1.46377E+ 03 1.0705E+ 04 7.4613E+ 06 2.5844E+ 03 1.1930E+ 06 4.8518E+ 04 1.4710E+ 03 

SD 4.1695E+ 05 4.8358E+ 02 3.34326E+ 00 6.5585E+ 05 5.31697E+ 00 6.6506E+ 03 4.7391E+ 06 3.5645E+ 02 1.0504E+ 06 3.6007E+ 04 2.1420E+ 01 

Min 1.5858E+ 05 1.7743E+ 03 1.44328E+ 03 2.6106E+ 05 1.45448E+ 03 1.7371E+ 03 1.3601E+ 06 2.0833E+ 03 4.6250E+ 03 2.8773E+ 03 1.4380E+ 03 

50 
Avg 8.7847E+ 06 4.8618E+ 03 1.49663E+ 03 6.3919E+ 06 1.54733E+ 03 5.0162E+ 04 1.5906E+ 08 2.0782E+ 04 6.8215E+ 06 4.2734E+ 05 1.5360E+ 03 

SD 3.2772E+ 06 1.5136E+ 03 7.86784E+ 00 2.4324E+ 06 1.39052E+ 01 4.4212E+ 04 6.9400E+ 07 9.3857E+ 03 7.9215E+ 06 3.4595E+ 05 3.8270E+ 01 

Min 2.7715E+ 06 2.1487E+ 03 1.48080E+ 03 2.9556E+ 06 1.51920E+ 03 1.4094E+ 04 5.3397E+ 07 6.5861E+ 03 1.9417E+ 05 5.7380E+ 04 1.4700E+ 03 

100 
Avg 7.0261E+ 07 3.1676E+ 04 1.53450E+ 03 8.9302E+ 07 4.16418E+ 03 3.5226E+ 05 1.5144E+ 08 3.8306E+ 05 2.3778E+ 07 1.9818E+ 07 1.5340E+ 03 

SD 1.6673E+ 07 1.3196E+ 04 6.53155E+ 01 2.8599E+ 07 5.53243E+ 03 1.9468E+ 05 5.6330E+ 07 1.1598E+ 05 9.2376E+ 06 1.1915E+ 07 6.5320E+ 01 

Min 4.1255E+ 07 1.4696E+ 04 1.45642E+ 03 4.9752E+ 07 1.90262E+ 03 1.1109E+ 05 5.5592E+ 07 1.3028E+ 05 9.3017E+ 06 4.7559E+ 06 1.4560E+ 03 
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30 
Avg 1.5281E+ 08 2.0380E+ 03 1.53134E+ 03 6.6726E+ 07 1.55919E+ 03 8.5724E+ 04 6.2937E+ 08 1.1176E+ 04 3.4799E+ 07 2.4682E+ 04 1.5310E+ 03 

SD 6.6426E+ 07 1.7412E+ 02 4.27952E+ 00 4.4752E+ 07 2.06994E+ 01 7.7001E+ 04 2.5465E+ 08 3.6899E+ 03 6.4097E+ 07 1.0972E+ 04 4.2800E+ 00 

Min 3.4084E+ 07 1.6556E+ 03 1.51671E+ 03 6.4439E+ 06 1.54218E+ 03 1.4628E+ 04 2.6572E+ 08 5.7677E+ 03 9.3093E+ 04 1.4121E+ 04 1.5170E+ 03 

50 
Avg 3.3704E+ 09 2.7581E+ 04 1.58464E+ 03 2.0027E+ 09 1.64778E+ 03 4.9401E+ 04 8.9693E+ 09 6.7629E+ 04 6.5295E+ 08 3.4265E+ 04 1.5850E+ 03 

SD 1.0385E+ 09 1.8434E+ 04 8.73875E+ 00 5.8348E+ 08 1.76004E+ 01 3.3124E+ 04 2.0669E+ 09 2.4471E+ 04 8.9929E+ 08 8.3451E+ 03 8.7390E+ 00 

Min 1.6816E+ 09 5.1402E+ 03 1.56326E+ 03 1.1316E+ 09 1.61059E+ 03 1.8034E+ 04 4.7018E+ 09 2.0594E+ 04 1.4485E+ 07 1.9974E+ 04 1.5630E+ 03 

100 
Avg 1.2877E+ 10 8.1637E+ 03 1.69441E+ 03 1.2160E+ 10 4.99309E+ 03 7.5260E+ 04 2.6254E+ 10 5.0827E+ 05 3.8932E+ 09 5.6218E+ 09 1.6940E+ 03 

SD 3.4854E+ 09 5.0625E+ 03 5.01001E+ 01 1.8771E+ 09 2.62907E+ 03 2.9758E+ 04 2.5451E+ 09 1.8979E+ 05 2.0004E+ 09 2.2013E+ 09 5.0100E+ 01 

Min 9.7581E+ 07 1.6555E+ 03 1.60300E+ 03 8.9145E+ 09 1.94537E+ 03 2.0549E+ 04 2.1985E+ 10 9.8283E+ 04 6.4742E+ 08 1.6912E+ 09 1.60300E+ 03 
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30 
Avg 4.1870E+ 03 2.1775E+ 03 2.10938E+ 03 4.4938E+ 03 2.24790E+ 03 2.5286E+ 03 6.6843E+ 03 2.3920E+ 03 4.1417E+ 03 3.6495E+ 03 2.3060E+ 03 

SD 3.1518E+ 02 1.0420E+ 02 9.21428E+ 01 3.3337E+ 02 1.96507E+ 02 3.3654E+ 02 8.3922E+ 02 1.1171E+ 02 5.8147E+ 02 4.4912E+ 02 2.6430E+ 02 

Min 3.3538E+ 03 1.9910E+ 03 1.94218E+ 03 3.7945E+ 03 1.87071E+ 03 2.0093E+ 03 4.8220E+ 03 2.1131E+ 03 3.2794E+ 03 2.8626E+ 03 1.7760E+ 03 

50 
Avg 7.2903E+ 03 2.9696E+ 03 2.95177E+ 03 7.3305E+ 03 3.20908E+ 03 3.2215E+ 03 1.0953E+ 04 3.2216E+ 03 6.4785E+ 03 5.6450E+ 03 3.1980E+ 03 

SD 3.4458E+ 02 1.1168E+ 02 1.83654E+ 02 3.9374E+ 02 3.37159E+ 02 3.5623E+ 02 8.0149E+ 02 1.5245E+ 02 8.9048E+ 02 1.0956E+ 03 3.5040E+ 02 

Min 6.3167E+ 03 2.7805E+ 03 2.41128E+ 03 6.7923E+ 03 2.30421E+ 03 2.6558E+ 03 9.6273E+ 03 2.8707E+ 03 4.9417E+ 03 3.5804E+ 03 2.5380E+ 03 

100 
Avg 1.8285E+ 04 5.6988E+ 03 6.99216E+ 03 1.5666E+ 04 7.06958E+ 03 5.8788E+ 03 2.4808E+ 04 6.3287E+ 03 1.6628E+ 04 1.7011E+ 04 7.0700E+ 03 

SD 1.1062E+ 03 4.4075E+ 02 4.22176E+ 02 1.0350E+ 03 7.31138E+ 02 8.8382E+ 02 1.8634E+ 03 3.3996E+ 02 2.4771E+ 03 2.5105E+ 03 7.3110E+ 02 

Min 1.5531E+ 04 4.3999E+ 03 5.74653E+ 03 1.3950E+ 04 4.30614E+ 03 3.9403E+ 03 2.0705E+ 04 5.5594E+ 03 1.2823E+ 04 1.3005E+ 04 4.3060E+ 03 
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30 
Avg 3.0753E+ 03 1.8960E+ 03 1.82996E+ 03 2.9659E+ 03 1.82828E+ 03 2.0374E+ 03 5.3238E+ 03 1.8976E+ 03 2.7179E+ 03 2.5859E+ 03 1.8280E+ 03 

SD 1.6658E+ 02 2.5350E+ 01 1.56029E+ 01 1.6025E+ 02 7.24457E+ 01 1.4527E+ 02 1.4125E+ 03 3.4890E+ 01 2.2578E+ 02 3.0824E+ 02 7.2450E+ 01 

Min 2.5450E+ 03 1.8408E+ 03 1.80427E+ 03 2.7188E+ 03 1.76080E+ 03 1.7923E+ 03 3.7253E+ 03 1.8388E+ 03 2.3845E+ 03 2.0400E+ 03 1.7610E+ 03 

50 
Avg 6.6265E+ 03 2.3026E+ 03 2.59917E+ 03 5.5479E+ 03 2.73956E+ 03 2.9819E+ 03 1.1370E+ 04 2.7446E+ 03 5.0293E+ 03 4.0778E+ 03 2.3030E+ 03 

SD 7.9679E+ 02 1.0835E+ 02 1.15142E+ 02 3.8334E+ 02 2.21347E+ 02 3.3053E+ 02 4.4377E+ 03 1.0223E+ 02 9.9919E+ 02 4.1105E+ 02 1.0840E+ 02 

Min 4.4755E+ 03 2.1081E+ 03 2.36143E+ 03 5.0664E+ 03 2.28590E+ 03 2.4265E+ 03 6.2195E+ 03 2.4187E+ 03 3.8936E+ 03 3.4068E+ 03 2.1080E+ 03 

100 
Avg 5.1415E+ 05 3.9499E+ 03 4.83190E+ 03 7.6073E+ 05 5.34097E+ 03 5.2044E+ 03 1.2144E+ 07 4.8938E+ 03 2.0036E+ 05 1.7268E+ 05 3.9500E+ 03 

SD 3.1338E+ 05 2.3470E+ 02 2.08411E+ 02 5.7562E+ 05 2.36691E+ 02 6.0949E+ 02 3.9465E+ 06 2.1438E+ 02 2.7182E+ 05 3.6699E+ 05 2.3470E+ 02 

Min 1.1359E+ 05 3.6052E+ 03 4.45812E+ 03 1.2364E+ 05 4.88443E+ 03 4.2869E+ 03 4.3295E+ 06 4.3503E+ 03 1.1105E+ 04 1.5551E+ 04 3.6050E+ 03 
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30 
Avg 4.1540E+ 06 2.3497E+ 05 1.83792E+ 03 1.4565E+ 07 1.89735E+ 03 2.2251E+ 05 7.4325E+ 07 6.3816E+ 04 1.2185E+ 07 1.0342E+ 06 5.4430E+ 03 

SD 1.7236E+ 06 8.2168E+ 04 3.02465E+ 00 9.3462E+ 06 2.72327E+ 01 1.9426E+ 05 3.6071E+ 07 2.1796E+ 04 1.6410E+ 07 9.9731E+ 05 4.8860E+ 03 

Min 1.3147E+ 06 8.1183E+ 04 1.83300E+ 03 1.6083E+ 06 1.87501E+ 03 5.8523E+ 04 2.8515E+ 07 1.9633E+ 04 6.6014E+ 05 7.7898E+ 04 2.0580E+ 03 

50 
Avg 5.3895E+ 07 1.3441E+ 06 1.85654E+ 03 4.6116E+ 07 4.77653E+ 03 4.6751E+ 05 2.3010E+ 08 3.8271E+ 05 5.4263E+ 07 1.9624E+ 07 3.2550E+ 04 

SD 1.5289E+ 07 4.4034E+ 05 4.98138E+ 00 1.7246E+ 07 2.88738E+ 03 2.9474E+ 05 7.9089E+ 07 1.3565E+ 05 4.2914E+ 07 1.6971E+ 07 2.3530E+ 04 

Min 3.1830E+ 07 4.8168E+ 05 1.84792E+ 03 1.4740E+ 07 2.27524E+ 03 1.6869E+ 05 6.6396E+ 07 1.9804E+ 05 2.3227E+ 06 3.1974E+ 06 5.7230E+ 03 

100 
Avg 1.1412E+ 08 8.1554E+ 06 2.20826E+ 03 9.8762E+ 07 1.96014E+ 05 5.8366E+ 05 2.8541E+ 08 1.3593E+ 06 2.3938E+ 07 3.5921E+ 07 2.0050E+ 05 

SD 2.4781E+ 07 1.8663E+ 06 1.26999E+ 02 2.7891E+ 07 1.28321E+ 05 2.6377E+ 05 7.0735E+ 07 3.3247E+ 05 1.2670E+ 07 3.1432E+ 07 1.3060E+ 05 

Min 5.7100E+ 07 5.1896E+ 06 2.01905E+ 03 4.2476E+ 07 4.41351E+ 04 2.4130E+ 05 1.5080E+ 08 7.9803E+ 05 7.1403E+ 06 4.5043E+ 06 5.5080E+ 04 
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30 
Avg 1.2483E+ 08 3.1195E+ 03 1.92406E+ 03 1.4510E+ 08 1.92920E+ 03 5.3397E+ 05 9.8692E+ 08 1.6543E+ 04 4.5161E+ 07 1.0930E+ 06 1.9710E+ 03 

SD 5.2753E+ 07 1.4974E+ 03 1.43646E+ 00 6.2577E+ 07 2.69165E+ 00 2.1373E+ 05 3.8598E+ 08 6.2127E+ 03 5.3009E+ 07 7.8987E+ 04 1.2930E+ 02 

Min 2.9403E+ 07 1.9281E+ 03 1.92153E+ 03 7.3932E+ 07 1.92321E+ 03 3.0256E+ 05 3.9580E+ 08 5.6089E+ 03 4.6419E+ 05 9.1318E+ 05 1.9120E+ 03 

50 

 

Avg 1.5360E+ 09 4.1460E+ 03 1.94832E+ 03 4.1777E+ 08 1.97335E+ 03 1.0354E+ 06 5.0770E+ 09 4.8040E+ 04 2.2668E+ 08 4.6394E+ 05 1.9480E+ 03 

SD 3.3431E+ 08 1.7583E+ 03 4.02553E+ 00 2.3078E+ 08 7.55549E+ 00 5.2069E+ 05 1.0359E+ 09 1.8299E+ 04 2.3224E+ 08 1.2158E+ 04 4.0260E+ 00 

Min 9.6039E+ 08 2.0745E+ 03 1.93770E+ 03 1.0437E+ 08 1.95698E+ 03 1.6552E+ 05 3.5235E+ 09 1.9201E+ 04 6.5061E+ 06 4.4801E+ 05 1.9380E+ 03 

100 
Avg 1.3307E+ 10 3.2785E+ 03 2.00146E+ 03 1.1479E+ 10 7.08199E+ 03 3.0299E+ 06 2.4107E+ 10 9.9814E+ 05 4.0596E+ 09 3.9262E+ 09 4.8910E+ 03 

SD 3.6241E+ 09 9.8395E+ 02 2.97843E+ 01 2.5247E+ 09 6.19023E+ 03 7.8694E+ 05 2.8436E+ 09 2.7978E+ 05 2.2019E+ 09 1.8397E+ 09 3.0180E+ 03 

Min 2.8715E+ 08 2.0458E+ 03 1.94955E+ 03 6.6328E+ 09 2.05124E+ 03 1.7296E+ 06 1.7954E+ 10 5.3588E+ 05 1.0269E+ 09 1.0837E+ 09 2.1990E+ 03 
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30 
Avg 2.8279E+ 03 2.2053E+ 03 2.11700E+ 03 2.8180E+ 03 2.12255E+ 03 2.3926E+ 03 3.2902E+ 03 2.2245E+ 03 2.8095E+ 03 2.6882E+ 03 2.2300E+ 03 

SD 7.6261E+ 01 2.2649E+ 01 2.22305E+ 01 1.0958E+ 02 8.78013E+ 01 1.4434E+ 02 1.5977E+ 02 5.7903E+ 01 2.0747E+ 02 1.6742E+ 02 1.1350E+ 02 

Min 2.6681E+ 03 2.1699E+ 03 2.06657E+ 03 2.6316E+ 03 2.02991E+ 03 2.1675E+ 03 2.8488E+ 03 2.1174E+ 03 2.3463E+ 03 2.3289E+ 03 2.0440E+ 03 

50 
Avg 3.9776E+ 03 2.5297E+ 03 2.59668E+ 03 4.2393E+ 03 2.82762E+ 03 3.0200E+ 03 4.6177E+ 03 2.7001E+ 03 3.8865E+ 03 3.4094E+ 03 2.5300E+ 03 

SD 1.9881E+ 02 8.5937E+ 01 9.94362E+ 01 1.7147E+ 02 1.54422E+ 02 2.2238E+ 02 1.2595E+ 02 9.6569E+ 01 3.7391E+ 02 2.2438E+ 02 8.5940E+ 01 

Min 3.3793E+ 03 2.3488E+ 03 2.42651E+ 03 3.8760E+ 03 2.62814E+ 03 2.7122E+ 03 4.4363E+ 03 2.5119E+ 03 3.1833E+ 03 2.9463E+ 03 2.3490E+ 03 

100 
Avg 7.3307E+ 03 3.8052E+ 03 4.58539E+ 03 7.6776E+ 03 5.28051E+ 03 5.1172E+ 03 8.4479E+ 03 4.4884E+ 03 6.8020E+ 03 5.9404E+ 03 3.8050E+ 03 

SD 2.5886E+ 02 2.0804E+ 02 2.90978E+ 02 2.4990E+ 02 2.95067E+ 02 5.7195E+ 02 2.6272E+ 02 2.1884E+ 02 4.8984E+ 02 5.5229E+ 02 2.0800E+ 02 

Min 6.6453E+ 03 3.3111E+ 03 4.01515E+ 03 7.1310E+ 03 4.38207E+ 03 4.0519E+ 03 7.8082E+ 03 3.9664E+ 03 5.8230E+ 03 4.7573E+ 03 3.3110E+ 03 

Ranking 

30     W|T|L 0|0|10 0|0|10 1|0|9 0|0|10 2|0|8 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 7|0|3 

50     W|T|L 0|0|10 0|0|10 3|0|7 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 6|0|4 

100   W|T|L 0|0|10 1|0|9 2|0|8 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 7|1|2 
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Table 4 Comparison of optimization results obtained from composition test functions. 

Func.  D Metrics jDE 

(2006) 
DE/BBO 

(2010) 
CoDE 

(2011) 

Jaya 

(2016) 

MKE 

(2016) 
SSA 

(2017) 

EEGWO 

(2018) 

WDE 

(2018) 

MWOA 

(2018) 
AOA 

(2021) QANA 

F21 

30 
Avg 2.2671E+ 03 2.1764E+ 03 2.42692E+ 03 2.6289E+ 03 2.43206E+ 03 2.3983E+ 03 2.8005E+ 03 2.4169E+ 03 2.6343E+ 03 2.5674E+ 03 2.1652E+ 03 

SD 1.3146E+ 00 8.7488E-01 9.00677E+ 00 2.7511E+ 01 9.41015E+ 00 5.3245E+ 01 3.0386E+ 01 6.1407E+ 01 4.5500E+ 01 5.0854E+ 01 2.6420E+ 01 

Min 2.2643E+ 03 2.1758E+ 03 2.40625E+ 03 2.5568E+ 03 2.42049E+ 03 2.2015E+ 03 2.7294E+ 03 2.2857E+ 03 2.5458E+ 03 2.4184E+ 03 2.1033E+ 03 

50 
Avg 3.1340E+ 03 2.2232E+ 03 2.59940E+ 03 3.0208E+ 03 2.58467E+ 03 2.5611E+ 03 3.3073E+ 03 2.6530E+ 03 3.0278E+ 03 2.9872E+ 03 2.1833E+ 03 

SD 3.4887E+ 01 1.2353E+ 01 1.28400E+ 01 4.7368E+ 01 1.55329E+ 01 5.6519E+ 01 5.9658E+ 01 2.0569E+ 01 8.0556E+ 01 6.4315E+ 01 3.9369E+ 01 

Min 3.0544E+ 03 2.2185E+ 03 2.57759E+ 03 2.9007E+ 03 2.54671E+ 03 2.4802E+ 03 3.1583E+ 03 2.6125E+ 03 2.8329E+ 03 2.8701E+ 03 2.1004E+ 03 

100 
Avg 4.4701E+ 03 2.2500E+ 03 3.05810E+ 03 4.0903E+ 03 3.08173E+ 03 3.0079E+ 03 5.1688E+ 03 3.3508E+ 03 4.4098E+ 03 4.5126E+ 03 2.2500E+ 03 

SD 3.6735E+ 02 2.4519E-09 4.64146E+ 01 9.7466E+ 01 3.83682E+ 01 1.3163E+ 02 1.4144E+ 02 3.9579E+ 01 1.4171E+ 02 1.7980E+ 02 0.0000E+ 00 

Min 2.9909E+ 03 2.2500E+ 03 2.86972E+ 03 3.9272E+ 03 3.00947E+ 03 2.8129E+ 03 4.8715E+ 03 3.2622E+ 03 4.1058E+ 03 4.2292E+ 03 2.2500E+ 03 
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30 
Avg 2.3656E+ 03 2.2812E+ 03 2.30000E+ 03 9.4840E+ 03 3.57372E+ 03 3.3331E+ 03 9.7756E+ 03 2.7924E+ 03 8.2966E+ 03 7.8442E+ 03 2.3073E+ 03 

SD 3.4194E+ 00 5.4922E+ 00 3.13541E-05 5.9517E+ 02 2.31816E+ 03 1.8908E+ 03 4.7943E+ 02 9.3631E+ 01 1.4986E+ 03 9.4558E+ 02 3.0068E+ 01 

Min 2.3525E+ 03 2.2685E+ 03 2.30000E+ 03 7.6220E+ 03 2.30000E+ 03 2.3000E+ 03 8.5680E+ 03 2.6176E+ 03 4.7298E+ 03 5.2984E+ 03 2.2448E+ 03 

50 
Avg 1.6104E+ 04 2.3926E+ 03 1.05973E+ 04 1.5732E+ 04 1.26262E+ 04 9.1307E+ 03 1.8080E+ 04 9.2154E+ 03 1.5389E+ 04 1.4669E+ 04 2.5014E+ 03 

SD 3.1831E+ 02 1.1739E+ 01 4.24287E+ 03 4.2421E+ 02 3.66704E+ 02 8.0237E+ 02 5.6351E+ 02 2.0333E+ 03 7.4551E+ 02 8.3866E+ 02 5.4068E+ 01 

Min 1.5311E+ 04 2.3715E+ 03 2.30002E+ 03 1.4410E+ 04 1.19492E+ 04 7.5498E+ 03 1.6542E+ 04 4.2257E+ 03 1.4013E+ 04 1.2398E+ 04 2.3960E+ 03 

100 
Avg 3.3825E+ 04 2.3500E+ 03 2.76155E+ 04 3.3685E+ 04 2.74699E+ 04 1.8389E+ 04 3.6012E+ 04 2.1891E+ 04 3.2319E+ 04 3.1269E+ 04 2.3500E+ 03 

SD 5.1963E+ 02 3.0077E-11 5.30891E+ 03 2.7150E+ 02 6.78700E+ 02 1.4918E+ 03 5.7290E+ 02 5.5116E+ 02 1.1839E+ 03 1.1424E+ 03 0.0000E+ 00 

Min 3.2445E+ 04 2.3500E+ 03 2.30002E+ 03 3.3086E+ 04 2.59629E+ 04 1.6699E+ 04 3.4796E+ 04 2.0267E+ 04 2.9796E+ 04 2.9517E+ 04 2.3500E+ 03 

F23 

30 
Avg 4.6230E+ 03 2.8598E+ 03 2.76331E+ 03 3.2341E+ 03 2.77240E+ 03 2.7438E+ 03 3.7251E+ 03 2.7907E+ 03 3.1929E+ 03 3.3313E+ 03 2.5064E+ 03 

SD 1.7503E+ 02 7.0684E+ 00 6.61436E+ 00 5.1759E+ 01 9.69093E+ 00 2.2465E+ 01 1.2769E+ 02 3.3814E+ 01 1.1841E+ 02 1.1194E+ 02 1.6607E+ 01 

Min 4.0983E+ 03 2.8415E+ 03 2.75247E+ 03 3.1475E+ 03 2.74947E+ 03 2.7093E+ 03 3.5097E+ 03 2.7353E+ 03 2.9819E+ 03 3.1855E+ 03 2.5000E+ 03 

50 
Avg 4.0610E+ 03 3.1761E+ 03 3.01872E+ 03 4.0999E+ 03 3.00858E+ 03 2.9611E+ 03 4.7796E+ 03 3.1251E+ 03 3.8989E+ 03 4.2211E+ 03 2.5000E+ 03 

SD 1.9767E+ 02 1.7394E+ 01 1.45514E+ 01 1.0809E+ 02 2.32928E+ 01 4.1628E+ 01 1.8555E+ 02 5.9089E+ 01 1.7389E+ 02 1.9954E+ 02 1.8501E-12 

Min 3.2563E+ 03 3.1384E+ 03 2.98302E+ 03 3.8832E+ 03 2.94650E+ 03 2.8923E+ 03 4.5066E+ 03 2.9270E+ 03 3.5617E+ 03 3.8457E+ 03 2.5000E+ 03 

100 
Avg 6.0659E+ 03 3.8150E+ 03 3.52013E+ 03 5.4204E+ 03 3.46914E+ 03 3.4001E+ 03 7.7346E+ 03 3.6854E+ 03 5.7094E+ 03 6.5220E+ 03 3.1223E+ 03 

SD 2.1157E+ 02 3.3918E+ 01 2.36103E+ 01 1.4425E+ 02 2.86060E+ 01 9.3884E+ 01 4.0842E+ 02 4.1718E+ 01 2.8492E+ 02 4.3067E+ 02 1.9511E+ 01 

Min 5.6959E+ 03 3.7545E+ 03 3.44244E+ 03 5.1741E+ 03 3.40829E+ 03 3.2208E+ 03 7.0134E+ 03 3.5643E+ 03 5.1440E+ 03 5.8060E+ 03 3.0941E+ 03 

F24 

30 
Avg 4.8943E+ 03 3.2637E+ 03 2.94762E+ 03 3.3166E+ 03 2.95591E+ 03 2.9101E+ 03 4.0234E+ 03 3.0007E+ 03 3.3267E+ 03 3.6008E+ 03 2.6000E+ 03 

SD 1.5018E+ 02 2.4413E+ 02 9.80431E+ 00 5.3826E+ 01 1.15080E+ 01 2.5642E+ 01 2.0375E+ 02 4.6389E+ 01 9.8969E+ 01 1.5286E+ 02 0.0000E+ 00 

Min 4.5935E+ 03 2.7000E+ 03 2.92432E+ 03 3.2197E+ 03 2.93206E+ 03 2.8652E+ 03 3.6930E+ 03 2.7789E+ 03 3.1638E+ 03 3.2764E+ 03 2.6000E+ 03 

50 
Avg 4.3865E+ 03 2.7000E+ 03 3.17236E+ 03 3.9891E+ 03 3.19200E+ 03 3.0861E+ 03 5.3847E+ 03 3.3654E+ 03 4.1366E+ 03 4.6878E+ 03 2.6000E+ 03 

SD 2.3228E+ 02 2.9377E-02 2.36329E+ 01 1.1089E+ 02 1.37591E+ 01 5.4093E+ 01 2.3452E+ 02 2.8369E+ 01 1.7559E+ 02 1.5495E+ 02 0.0000E+ 00 

Min 3.4027E+ 03 2.7000E+ 03 3.11399E+ 03 3.7777E+ 03 3.17363E+ 03 3.0071E+ 03 4.9770E+ 03 3.3205E+ 03 3.6965E+ 03 4.4176E+ 03 2.6000E+ 03 

100 
Avg 9.2133E+ 03 5.1738E+ 03 3.96858E+ 03 8.0364E+ 03 4.02620E+ 03 3.8599E+ 03 1.2668E+ 04 4.4774E+ 03 7.6799E+ 03 1.0522E+ 04 3.6993E+ 03 

SD 1.0614E+ 03 2.6400E+ 02 4.65180E+ 01 3.6699E+ 02 2.76615E+ 01 9.2466E+ 01 1.0572E+ 03 5.1954E+ 01 6.8832E+ 02 8.2721E+ 02 5.3579E+ 01 

Min 4.5494E+ 03 4.1124E+ 03 3.87630E+ 03 7.2488E+ 03 3.96884E+ 03 3.7078E+ 03 9.5966E+ 03 4.3508E+ 03 6.5705E+ 03 9.2789E+ 03 3.5609E+ 03 

F25 

30 
Avg 7.6679E+ 03 2.9142E+ 03 2.88689E+ 03 3.5120E+ 03 2.88677E+ 03 2.8962E+ 03 5.5833E+ 03 3.0101E+ 03 3.7525E+ 03 4.3773E+ 03 2.7000E+ 03 

SD 8.2380E+ 02 4.6518E-01 2.12282E-02 1.3970E+ 02 3.54458E-02 1.8562E+ 01 4.4998E+ 02 2.1082E+ 01 2.1852E+ 02 4.9521E+ 02 0.0000E+ 00 

Min 6.6433E+ 03 2.9131E+ 03 2.88685E+ 03 3.2669E+ 03 2.88671E+ 03 2.8844E+ 03 4.3756E+ 03 2.9663E+ 03 3.4428E+ 03 3.5134E+ 03 2.7000E+ 03 

50 
Avg 2.2685E+ 04 3.0040E+ 03 2.98029E+ 03 8.7708E+ 03 2.98992E+ 03 3.0410E+ 03 1.5254E+ 04 3.5154E+ 03 9.2572E+ 03 1.3817E+ 04 2.7000E+ 03 

SD 2.3801E+ 03 2.6606E+ 01 2.47206E-02 1.6277E+ 03 2.48998E+ 01 2.7719E+ 01 7.3820E+ 02 6.4439E+ 01 9.7083E+ 02 1.2774E+ 03 0.0000E+ 00 

Min 1.8286E+ 04 2.9801E+ 03 2.98025E+ 03 6.4974E+ 03 2.97736E+ 03 3.0016E+ 03 1.3783E+ 04 3.4042E+ 03 7.4031E+ 03 1.0826E+ 04 2.7000E+ 03 

100 
Avg 6.1079E+ 04 3.2168E+ 03 3.23580E+ 03 2.5316E+ 04 3.23826E+ 03 3.3102E+ 03 2.8655E+ 04 5.4520E+ 03 1.6425E+ 04 2.2894E+ 04 3.2380E+ 03 

SD 5.2046E+ 03 1.8799E+ 01 3.66979E+ 01 5.1744E+ 03 6.02889E+ 01 5.6075E+ 01 1.4836E+ 03 1.6028E+ 02 1.2973E+ 03 1.6431E+ 03 6.0290E+ 01 

Min 4.5513E+ 04 3.1869E+ 03 3.13865E+ 03 1.7660E+ 04 3.13803E+ 03 3.1814E+ 03 2.5327E+ 04 5.1315E+ 03 1.3876E+ 04 1.8955E+ 04 3.1380E+ 03 

F26 

30 
Avg 1.0505E+ 04 5.1480E+ 03 4.61686E+ 03 9.9355E+ 03 4.80906E+ 03 4.3939E+ 03 1.1706E+ 04 3.9541E+ 03 8.6007E+ 03 9.2182E+ 03 2.8000E+ 03 

SD 1.1012E+ 03 7.8146E+ 01 5.23840E+ 02 7.3475E+ 02 1.03663E+ 02 8.4655E+ 02 4.0834E+ 02 1.3385E+ 02 9.9335E+ 02 8.8225E+ 02 0.0000E+ 00 

Min 7.2103E+ 03 4.9337E+ 03 2.90003E+ 03 8.6869E+ 03 4.56750E+ 03 2.8000E+ 03 1.0887E+ 04 3.6496E+ 03 6.9556E+ 03 7.1599E+ 03 2.8000E+ 03 

50 
Avg 1.7789E+ 04 7.2460E+ 03 6.52022E+ 03 2.0108E+ 04 6.53359E+ 03 3.8242E+ 03 1.7697E+ 04 5.9092E+ 03 1.5394E+ 04 1.5977E+ 04 2.8000E+ 03 

SD 1.8008E+ 03 1.5682E+ 02 1.65140E+ 02 1.3910E+ 03 1.91082E+ 02 1.4798E+ 03 3.9809E+ 02 7.0889E+ 02 1.0653E+ 03 9.9457E+ 02 0.0000E+ 00 

Min 1.0665E+ 04 6.8244E+ 03 6.10094E+ 03 1.7408E+ 04 6.24954E+ 03 2.9000E+ 03 1.6968E+ 04 4.6609E+ 03 1.3317E+ 04 1.3901E+ 04 2.8000E+ 03 

100 
Avg 5.3689E+ 04 1.4200E+ 04 1.20679E+ 04 6.0969E+ 04 1.31416E+ 04 1.0901E+ 04 5.6323E+ 04 1.7192E+ 04 4.3877E+ 04 4.9016E+ 04 1.0039E+ 04 

SD 2.8216E+ 03 2.9976E+ 02 7.81799E+ 02 6.1100E+ 03 3.76514E+ 02 3.7419E+ 03 1.9649E+ 03 1.7471E+ 03 3.1872E+ 03 2.8055E+ 03 7.6525E+ 02 

Min 4.6537E+ 04 1.3688E+ 04 9.96363E+ 03 5.3711E+ 04 1.21777E+ 04 2.9000E+ 03 5.2511E+ 04 1.1547E+ 04 3.6449E+ 04 4.2886E+ 04 8.8167E+ 03 

F27 

30 
Avg 5.6706E+ 03 3.4309E+ 03 3.20121E+ 03 3.4202E+ 03 3.19393E+ 03 3.2292E+ 03 4.9984E+ 03 3.2648E+ 03 3.6125E+ 03 4.0910E+ 03 2.9304E+ 03 

SD 1.5092E+ 02 3.3475E+ 00 5.13612E+ 00 5.3306E+ 01 1.26436E+ 01 1.4680E+ 01 3.2786E+ 02 6.0628E+ 00 1.3912E+ 02 2.3832E+ 02 7.1430E+ 01 

Min 5.2777E+ 03 3.4239E+ 03 3.18811E+ 03 3.3402E+ 03 3.16845E+ 03 3.2130E+ 03 4.3888E+ 03 3.2532E+ 03 3.3563E+ 03 3.6795E+ 03 2.9000E+ 03 

50 
Avg 5.5440E+ 03 3.5389E+ 03 3.22054E+ 03 4.5516E+ 03 3.24440E+ 03 3.3406E+ 03 8.0559E+ 03 3.6351E+ 03 5.0398E+ 03 6.1364E+ 03 2.9024E+ 03 

SD 4.8144E+ 02 2.1641E+ 01 6.11118E+ 00 2.7044E+ 02 2.88776E+ 01 4.4519E+ 01 6.7395E+ 02 3.9863E+ 01 6.9504E+ 02 4.4174E+ 02 1.2312E+ 01 

Min 3.6254E+ 03 3.4848E+ 03 3.20964E+ 03 4.1561E+ 03 3.20491E+ 03 3.2946E+ 03 6.4800E+ 03 3.5265E+ 03 4.2319E+ 03 5.2197E+ 03 2.9000E+ 03 

100 
Avg 9.7476E+ 03 4.1396E+ 03 3.26454E+ 03 8.3674E+ 03 3.34295E+ 03 3.6006E+ 03 1.5131E+ 04 3.9467E+ 03 8.0108E+ 03 1.1094E+ 04 3.2650E+ 03 

SD 1.3868E+ 03 7.7132E+ 01 1.21219E+ 01 6.6417E+ 02 3.72938E+ 01 8.7639E+ 01 1.0405E+ 03 4.3602E+ 01 1.2072E+ 03 1.0177E+ 03 1.2120E+ 01 

Min 3.7783E+ 03 4.0418E+ 03 3.23900E+ 03 7.0448E+ 03 3.27016E+ 03 3.4744E+ 03 1.3013E+ 04 3.8427E+ 03 6.1014E+ 03 8.6071E+ 03 3.23900E+ 03 

F28 

30 
Avg 6.8198E+ 03 3.2424E+ 03 3.10431E+ 03 5.9172E+ 03 3.13834E+ 03 3.2231E+ 03 7.3960E+ 03 3.3883E+ 03 4.8822E+ 03 5.6745E+ 03 3.0000E+ 03 

SD 4.5134E+ 02 2.5840E+ 01 6.21026E+ 00 9.0980E+ 02 5.39704E+ 01 1.9100E+ 01 6.5171E+ 02 2.7354E+ 01 4.9009E+ 02 5.6535E+ 02 0.0000E+ 00 

Min 5.9366E+ 03 3.2216E+ 03 3.10038E+ 03 4.6550E+ 03 3.10000E+ 03 3.1972E+ 03 5.3795E+ 03 3.3383E+ 03 3.7627E+ 03 4.7193E+ 03 3.0000E+ 03 

50 
Avg 1.2471E+ 04 3.3146E+ 03 3.25885E+ 03 1.3569E+ 04 3.27253E+ 03 3.3007E+ 03 1.3602E+ 04 3.8313E+ 03 8.3397E+ 03 1.0740E+ 04 3.0000E+ 03 

SD 1.8686E+ 03 2.5497E+ 01 7.05190E-04 8.3644E+ 02 2.23841E+ 01 2.0341E+ 01 5.4874E+ 02 7.1347E+ 01 6.4199E+ 02 9.6636E+ 02 0.0000E+ 00 

Min 3.9310E+ 03 3.2846E+ 03 3.25885E+ 03 1.1475E+ 04 3.25885E+ 03 3.2614E+ 03 1.2233E+ 04 3.6656E+ 03 7.1757E+ 03 8.6012E+ 03 3.0000E+ 03 

100 

 

Avg 4.2537E+ 04 3.3340E+ 03 3.32532E+ 03 4.4020E+ 04 3.35855E+ 03 3.4094E+ 03 3.6010E+ 04 5.7440E+ 03 2.1556E+ 04 2.9672E+ 04 3.3250E+ 03 

SD  2.0032E+ 03 1.4983E+ 00 2.10549E+ 01 3.8414E+ 03 2.52804E+ 01 4.4405E+ 01 1.2651E+ 03 2.7919E+ 02 2.0743E+ 03 2.5317E+ 03 2.1050E+ 01 

Min 3.7729E+ 04 3.3303E+ 03 3.28000E+ 03 3.7626E+ 04 3.32422E+ 03 3.3380E+ 03 3.1884E+ 04 5.2986E+ 03 1.7757E+ 04 2.4734E+ 04 3.2800E+ 03 

F29 

30 
Avg 5.0790E+ 03 3.4795E+ 03 3.53876E+ 03 5.3325E+ 03 3.58602E+ 03 3.8294E+ 03 8.7483E+ 03 3.7058E+ 03 5.3220E+ 03 5.5194E+ 03 3.1000E+ 03 

SD 2.5445E+ 02 6.1859E+ 01 4.80534E+ 01 3.0235E+ 02 1.05642E+ 02 2.3782E+ 02 1.3978E+ 03 6.8920E+ 01 6.5198E+ 02 6.8858E+ 02 0.0000E+ 00 

Min 4.3358E+ 03 3.3753E+ 03 3.44510E+ 03 4.6153E+ 03 3.38375E+ 03 3.5027E+ 03 6.1793E+ 03 3.5248E+ 03 4.4793E+ 03 4.4939E+ 03 3.1000E+ 03 

50 
Avg 1.1922E+ 04 4.1984E+ 03 3.88471E+ 03 8.9666E+ 03 3.91967E+ 03 4.7370E+ 03 1.1286E+ 05 4.2837E+ 03 1.2366E+ 04 1.4918E+ 04 3.1000E+ 03 

SD 1.4558E+ 03 8.7392E+ 01 7.99824E+ 01 7.0558E+ 02 1.67334E+ 02 4.5021E+ 02 8.4927E+ 04 1.1882E+ 02 3.3076E+ 03 3.8851E+ 03 0.0000E+ 00 

Min 8.6947E+ 03 4.0024E+ 03 3.71938E+ 03 7.8762E+ 03 3.63802E+ 03 3.8883E+ 03 1.6291E+ 04 4.0836E+ 03 7.4162E+ 03 9.2415E+ 03 3.1000E+ 03 

100 
Avg 1.3475E+ 05 5.7474E+ 03 6.80880E+ 03 4.4007E+ 04 6.95679E+ 03 8.0784E+ 03 7.7761E+ 05 7.0633E+ 03 3.6932E+ 04 1.0466E+ 05 6.7016E+ 03 

SD 6.5036E+ 04 2.5808E+ 02 3.09159E+ 02 1.3287E+ 04 2.60364E+ 02 5.4307E+ 02 3.0083E+ 05 2.5985E+ 02 2.1977E+ 04 6.9587E+ 04 4.9977E+ 02 

Min 5.8723E+ 04 5.2684E+ 03 6.04704E+ 03 2.1003E+ 04 6.47484E+ 03 7.0846E+ 03 2.2691E+ 05 6.4166E+ 03 1.9128E+ 04 2.4483E+ 04 5.7364E+ 03 

F30 

30 
Avg 3.4349E+ 08 8.2265E+ 04 5.15898E+ 03 1.0872E+ 08 7.34520E+ 03 2.4352E+ 06 2.3060E+ 09 1.7152E+ 05 1.3787E+ 08 6.0064E+ 07 3.9552E+ 03 

SD 1.2750E+ 08 3.3331E+ 04 2.53753E+ 01 4.1049E+ 07 1.14320E+ 03 1.3621E+ 06 7.4734E+ 08 6.8660E+ 04 9.2673E+ 07 1.7569E+ 08 8.4851E+ 01 

Min 1.5093E+ 08 2.7593E+ 04 5.11293E+ 03 3.9492E+ 07 5.83005E+ 03 4.4779E+ 05 9.7962E+ 08 8.2110E+ 04 1.7074E+ 07 2.7719E+ 06 3.8665E+ 03 

50 
Avg 2.5856E+ 09 1.9570E+ 06 5.97396E+ 05 6.8565E+ 08 9.12600E+ 05 3.7337E+ 07 8.2333E+ 09 9.2960E+ 06 8.0426E+ 08 5.6348E+ 08 8.9103E+ 03 

SD 6.1016E+ 08 9.8413E+ 05 3.69478E+ 03 1.8614E+ 08 1.50551E+ 05 6.3925E+ 06 1.9703E+ 09 1.5446E+ 06 4.3487E+ 08 1.3970E+ 09 3.8719E+ 02 

Min 1.3616E+ 09 6.5975E+ 05 5.91366E+ 05 3.2624E+ 08 7.42009E+ 05 2.6137E+ 07 5.1460E+ 09 5.5808E+ 06 2.7722E+ 08 1.6178E+ 08 8.3742E+ 03 

100 
Avg 2.1579E+ 10 3.2964E+ 04 5.33307E+ 03 1.2979E+ 10 9.38505E+ 03 2.0292E+ 07 4.2111E+ 10 8.7544E+ 06 7.9595E+ 09 2.6654E+ 10 6.5650E+ 03 

SD 5.4514E+ 09 2.3227E+ 04 8.87996E+ 01 1.9913E+ 09 3.20617E+ 03 7.4220E+ 06 3.4559E+ 09 1.9504E+ 06 3.2648E+ 09 5.7806E+ 09 1.0082E+ 02 

Min 1.0733E+ 08 9.6963E+ 03 5.18486E+ 03 9.4484E+ 09 6.13794E+ 03 7.9235E+ 06 3.3669E+ 10 5.1366E+ 06 3.7797E+ 09 1.6889E+ 10 6.4206E+ 03 

Ranking 

30     W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|1|9 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0 

50     W|T|L 0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 9|0|1 

100   W|T|L 0|0|10 1|2|7 1|1|8 0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 5|3|2 

javascript:void(0)


5.3.3 Evaluation of convergence speed  

In this experiment set, the convergence speed of the proposed QANA was assessed, and 

the results were compared with the contender algorithms. For such comparisons, the 

convergence curves of the best fitness values obtained by each algorithm in different 

dimensions 30, 50, and 100 are plotted in Fig. 10 for test functions unimodal and multimodal 

and in Fig. 11 for test functions hybrid and composition. For most test functions, the QANA 

shows a common behavior in which the search agents with a steep descent slope converge 

toward promising regions in the initial iterations. This is because the QANA can effectively 

explore the landscape using the multi-flock and qubit-crossover operator, which enhances the 

diversity and landscape coverage. Then, in the next iterations, the QANA can converge toward 

better solutions because it can percept the landscape of different problems using the visited 

positions stored by LTM and STM and assign the suitable mutation strategy to flocks based on 

their success rate. In the final iterations, the search agents are greedily moved toward the 

optimum solutions using the V-echelon communication topology in which the search agents 

follow their front member.  

To sum up, the obtained results from the unimodal, multimodal, hybrid, and composition 

test functions demonstrate that the QANA is superior to the other algorithms and has 

outstanding exploitation and exploration abilities for unimodal test functions F1 and F3 and 

multimodal test functions F5, F7, and F10. Moreover, the convergence curves plotted for the test 

functions {F12, F16, F23, F24, F29, F30} show that the proposed algorithm can bypass the local 

optima by striking between its exploration and exploitation abilities. 

5.3.4 Scalability evaluation  

Most existing differential evolutionary algorithms have no sufficient mechanism to cope 

with the curse of dimensionality, which results in decreased exploration ability and increased 

cost of convergence to any local optima (LaTorre et al., 2013; Maučec and Brest, 2019) . 

Therefore, we designed this section to evaluate the scalability of the QANA for solving large-

scale global optimization (LSGO) problems. The CEC 2013 LSGO benchmark functions (Li 

et al., 2013), including 15 complex functions, with dimensions 1000, were considered, and the 

QANA and other competitor algorithms were applied to solve its functions over 30 independent 

runs. The algorithms set the number of population and maximum function evaluations 

(MaxFEs) to 200 and D×103, respectively. Table 5 presents the comparison results in terms of 

the standard statistical metrics, including Avg, SD, and Min, and the convergence curves of 

scalability are plotted in Fig. 12. The experimental results show that the QANA can better cope 

with the dimensionality problem and is more scalable than other contender algorithms for 

solving these extremely high-dimensional problems. This is attributable to the V-echelon 

topology and LTM and STM of QANA to find the promising regions greedily and store useful 



solutions gained by previous iterations, respectively. The algorithm is also capable of adequate 

search space coverage in high-dimensional problems. Moreover, the proposed algorithm is 

equipped with the qubit-crossover operator, which maintains the diversity and inhibits 

greediness. 

 

5.3.5 Performance index (PI) analysis 

The performance index (PI) (Deep and Thakur, 2007) is a criterion to show the relative 

performance of different algorithms in terms of their effectiveness and computational time 

(Gupta and Deep, 2019). The PI of the i-th algorithm is determined using Eq. (15), where the 

parameter Mfj is the minimum average error value obtained by all the algorithms for the j-th 

function, and Afj is the average error value obtained by an algorithm for the j-th function. Also, 

Mtj is the minimum of average time used by all the algorithm for the j-th function, Atj is the 

average time used by an algorithm for the j-th function, and parameter NF is the total number 

of test functions. The parameters α and  (α +  =1 and α,  are between intervals [0, 1]) are 

the weights assigned to the error value and computational time, respectively. The criteria PI for 

α = ω and  = 1 − ω where ω = [0, 0.2, 0.4, 0.6, 0.8 and 1] is evaluated and plotted in Fig. 13. 
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Fig. 10 Comparison of convergence curves of algorithms in unimodal and multimodal test functions. 

 
 
 



 

Fig. 11 Comparison of convergence curves of algorithms in hybrid and composition test functions. 
 
 
 

 
 



 
Table 5 Comparison of optimization results for LSGO problems using CEC 2013 with D = 1000. 

Func. Metrics 
jDE 

(2006) 

DE/BBO 

(2010) 

CoDE 

(2011) 

Jaya 

(2016) 

MKE 

(2016) 

SSA 

(2017) 

EEGWO 

(2018) 

WDE 

(2018) 

MWOA 

(2018) 

AOA 

(2021) 
QANA 

F1 
Avg 2.61300E+ 11 1.92948E+ 08 7.57297E+ 06 2.19727E+ 11 1.60759E+ 08 2.64911E+ 09 1.97500E+ 11 6.38900E+ 10 2.00500E+ 11 1.92124E+ 11 2.60700E+ 05 

SD 4.97500E+ 10 7.43773E+ 06 6.67791E+ 05 1.32474E+ 10 7.40734E+ 07 2.19535E+ 08 2.48200E+ 09 2.25900E+ 09 4.21100E+ 09 5.77470E+ 09 1.07400E+ 05 

Min 2.52000E+ 10 1.84198E+ 08 6.59147E+ 06 1.93830E+ 11 8.42055E+ 07 2.34829E+ 09 1.91500E+ 11 5.85900E+ 10 1.92600E+ 11 1.80878E+ 11 8.50800E+ 04 

F2 
Avg 8.91600E+ 04 7.55322E+ 03 1.05212E+ 04 9.18752E+ 04 2.53862E+ 04 2.68757E+ 04 4.68600E+ 04 4.59900E+ 04 4.29100E+ 04 4.67639E+ 04 6.05500E+ 03 

SD 1.19400E+ 04 1.56660E+ 02 1.48559E+ 02 1.87184E+ 04 1.33691E+ 03 1.51166E+ 03 1.86600E+ 02 8.04200E+ 02 1.82100E+ 02 2.98864E+ 02 2.78600E+ 02 

Min 3.26700E+ 04 7.34270E+ 03 1.01714E+ 04 6.63080E+ 04 2.32291E+ 04 2.43447E+ 04 4.63400E+ 04 4.40500E+ 04 4.25900E+ 04 4.60221E+ 04 5.45800E+ 03 

F3 
Avg 2.14100E+ 01 2.06977E+ 01 2.36487E+ 00 2.15838E+ 01 1.98935E+ 01 1.94643E+ 01 2.10400E+ 01 2.11500E+ 01 2.10600E+ 01 2.15871E+ 01 6.34100E+ 00 

SD 2.07000E-01 1.54691E-02 1.05771E-01 6.46945E-03 8.45809E-02 1.49844E-02 9.39900E-03 1.07800E-02 1.47300E-02 1.34033E-02 3.18500E-01 

Min 2.04100E+ 01 2.06755E+ 01 2.19962E+ 00 2.15750E+ 01 1.97644E+ 01 1.94420E+ 01 2.10100E+ 01 2.11200E+ 01 2.10300E+ 01 2.15611E+ 01 5.93300E+ 00 

F4 
Avg 5.80800E+ 12 3.38809E+ 11 1.09217E+ 10 7.63708E+ 12 3.75175E+ 10 3.07581E+ 11 1.63900E+ 13 5.36600E+ 11 1.16000E+ 13 4.32093E+ 12 2.98900E+ 09 

SD 7.68800E+ 11 6.03759E+ 10 3.58317E+ 09 1.36970E+ 12 1.40717E+ 10 2.80569E+ 10 3.90200E+ 12 4.26900E+ 10 4.96300E+ 12 2.46035E+ 12 7.16900E+ 08 

Min 4.09600E+ 12 2.20823E+ 11 5.72711E+ 09 5.50368E+ 12 1.43117E+ 10 2.55970E+ 11 8.40600E+ 12 4.42400E+ 11 4.32900E+ 12 1.84734E+ 12 1.77500E+ 09 

F5 
Avg 4.28000E+ 07 5.84221E+ 06 5.14902E+ 06 3.76329E+ 07 4.23234E+ 06 8.48878E+ 06 4.15400E+ 07 1.72700E+ 07 4.26900E+ 07 3.43114E+ 07 2.92400E+ 06 

SD 5.66300E+ 06 2.13648E+ 05 1.11370E+ 06 3.97479E+ 06 8.90745E+ 05 1.49783E+ 06 1.06800E+ 06 8.02700E+ 05 2.90900E+ 06 2.30091E+ 06 3.59300E+ 05 

Min 1.73300E+ 07 5.43052E+ 06 2.41119E+ 06 3.29415E+ 07 2.70691E+ 06 6.51480E+ 06 3.84400E+ 07 1.55500E+ 07 3.43600E+ 07 3.08441E+ 07 2.11300E+ 06 

F6 
Avg 1.04600E+ 06 1.05936E+ 06 3.02237E+ 01 1.06191E+ 06 1.18986E+ 05 3.65256E+ 05 1.03000E+ 06 1.01400E+ 06 1.03300E+ 06 1.06120E+ 06 5.57700E+ 03 

SD 2.17900E+ 03 2.01087E+ 03 1.26204E+ 00 8.03500E+ 02 1.64202E+ 04 4.08725E+ 05 1.44300E+ 03 6.33500E+ 03 2.75400E+ 03 2.04005E+ 03 3.92900E+ 01 

Min 1.04000E+ 06 1.05618E+ 06 2.82614E+ 01 1.06009E+ 06 8.92024E+ 04 7.89241E+ 04 1.02600E+ 06 9.99000E+ 05 1.02800E+ 06 1.05523E+ 06 5.48900E+ 03 

F7 
Avg 2.57100E+ 14 2.95032E+ 09 1.91320E+ 09 4.54913E+ 14 4.54755E+ 08 5.92964E+ 08 1.72500E+ 14 9.93400E+ 10 2.83100E+ 14 7.31503E+ 13 6.44300E+ 06 

SD 1.01800E+ 14 5.79138E+ 08 4.23791E+ 08 2.25031E+ 14 2.58237E+ 08 2.67191E+ 08 4.01900E+ 13 1.88400E+ 10 1.25200E+ 14 3.58885E+ 13 1.51600E+ 06 

Min 8.91600E+ 09 2.33212E+ 09 1.06265E+ 09 1.78146E+ 14 1.92894E+ 08 3.49917E+ 08 6.96000E+ 13 6.59000E+ 10 8.64800E+ 13 2.19834E+ 13 3.85300E+ 06 

F8 
Avg 2.39400E+ 17 9.63505E+ 15 3.29413E+ 11 1.59153E+ 16 1.08873E+ 14 6.57748E+ 14 8.01900E+ 17 2.44800E+ 15 4.82800E+ 17 2.23875E+ 16 1.18700E+ 12 

SD 5.52700E+ 16 1.48983E+ 13 1.67017E+ 11 2.22176E+ 16 5.53310E+ 13 1.69666E+ 14 2.13900E+ 17 5.95000E+ 14 1.80500E+ 17 9.17163E+ 15 9.63700E+ 11 

Min 1.20100E+ 17 7.24856E+ 15 1.87505E+ 11 7.26489E+ 16 3.68859E+ 13 4.12290E+ 14 3.19600E+ 17 1.06400E+ 15 2.69400E+ 17 5.38412E+ 16 1.28000E+ 11 

F9 
Avg 3.29900E+ 09 4.44818E+ 08 1.87738E+ 08 3.92337E+ 09 3.25516E+ 08 8.24005E+ 08 3.69500E+ 09 1.28600E+ 09 3.47600E+ 09 2.67995E+ 09 2.97600E+ 08 

SD 2.15800E+ 08 3.64608E+ 07 7.64609E+ 07 2.17044E+ 08 6.44244E+ 07 1.29589E+ 08 2.17200E+ 08 5.98900E+ 07 3.21100E+ 08 3.06751E+ 08 1.93700E+ 07 

Min 2.66600E+ 09 3.85317E+ 08 1.24010E+ 08 3.67943E+ 09 2.32493E+ 08 6.30737E+ 08 3.19100E+ 09 1.14300E+ 09 2.73200E+ 09 2.12716E+ 09 2.65300E+ 08 

F10 
Avg 8.65900E+ 07 9.40538E+ 07 1.05133E+ 03 9.43948E+ 07 3.85343E+ 05 3.94886E+ 06 9.30400E+ 07 2.87500E+ 07 9.34300E+ 07 9.39159E+ 07 4.88100E+ 04 

SD 1.11900E+ 07 1.70388E+ 05 3.18889E+ 01 8.41805E+ 04 5.62682E+ 05 4.41290E+ 06 4.32200E+ 05 1.81700E+ 06 8.64400E+ 05 3.35281E+ 05 5.30600E+ 02 

Min 3.32900E+ 07 9.38328E+ 07 9.93642E+ 02 9.42732E+ 07 2.05443E+ 03 1.32314E+ 06 9.19700E+ 07 2.55000E+ 07 9.07400E+ 07 9.33563E+ 07 4.65900E+ 04 

F11 
Avg 1.95300E+ 16 3.01974E+ 11 5.34862E+ 10 1.27604E+ 16 1.62624E+ 11 8.19634E+ 09 7.72800E+ 15 3.98500E+ 13 7.70800E+ 15 2.84556E+ 15 3.61900E+ 08 

SD 5.46800E+ 15 8.17347E+ 10 1.52041E+ 10 7.97606E+ 15 1.01385E+ 11 2.29325E+ 09 2.01200E+ 15 8.05400E+ 12 3.57900E+ 15 1.10165E+ 15 9.50200E+ 07 

Min 8.38800E+ 15 1.62215E+ 11 2.68130E+ 10 3.62977E+ 15 3.97159E+ 10 6.05133E+ 09 4.04700E+ 15 2.15600E+ 13 2.60800E+ 15 1.18220E+ 15 2.14800E+ 08 

F12 
Avg 6.25100E+ 12 8.66714E+ 09 3.93143E+ 06 2.39853E+ 12 3.84993E+ 10 7.75168E+ 06 1.68800E+ 12 2.72900E+ 12 1.70300E+ 12 1.68326E+ 12 1.78600E+ 04 

SD 1.00900E+ 12 1.06837E+ 09 1.13619E+ 06 6.01118E+ 10 8.80314E+ 09 2.30220E+ 06 6.06300E+ 09 9.32500E+ 10 7.06500E+ 09 7.31024E+ 09 6.32600E+ 04 

Min 1.65600E+ 12 7.41119E+ 09 2.12935E+ 06 2.28890E+ 12 2.49192E+ 10 4.44575E+ 06 1.67400E+ 12 2.48400E+ 12 1.68700E+ 12 1.67044E+ 12 3.16500E+ 03 

F13 
Avg 2.21800E+ 16 7.65865E+ 10 3.25557E+ 10 1.29350E+ 17 1.62132E+ 10 1.71877E+ 10 1.54600E+ 16 3.37000E+ 13 9.31000E+ 15 6.01586E+ 15 8.60700E+ 08 

SD 6.36100E+ 15 1.34787E+ 10 8.87535E+ 09 7.56567E+ 16 5.06498E+ 09 3.75750E+ 09 3.66000E+ 15 8.50200E+ 12 3.70100E+ 15 3.93141E+ 15 3.79700E+ 08 

Min 1.05800E+ 16 5.60574E+ 10 2.00304E+ 10 4.79093E+ 16 9.42411E+ 09 1.31282E+ 10 9.61500E+ 15 1.60100E+ 13 3.22100E+ 15 8.06022E+ 14 3.99800E+ 08 

F14 
Avg 3.44100E+ 16 1.00230E+ 12 7.99067E+ 10 3.82489E+ 16 3.00138E+ 11 1.05850E+ 11 2.66600E+ 16 6.19400E+ 13 3.66100E+ 16 6.77208E+ 15 2.66100E+ 08 

SD 9.05100E+ 15 1.78673E+ 11 2.25045E+ 10 3.87454E+ 16 1.23358E+ 11 4.08356E+ 10 8.73900E+ 15 1.52800E+ 13 2.12200E+ 16 4.53939E+ 14 1.72100E+ 08 

Min 2.05500E+ 16 6.63593E+ 11 3.98786E+ 10 9.82674E+ 15 9.88885E+ 10 5.15579E+ 10 1.21800E+ 16 3.61300E+ 13 8.53600E+ 15 2.45994E+ 15 6.84300E+ 07 

F15 
Avg 5.04200E+ 16 1.00182E+ 08 2.22929E+ 08 1.37919E+ 16 5.64352E+ 07 3.00632E+ 07 1.82300E+ 15 1.56800E+ 14 2.49600E+ 11 1.11375E+ 15 4.15200E+ 06 

SD 1.62400E+ 16 6.84632E+ 06 3.16517E+ 07 6.79353E+ 15 3.44933E+ 07 3.15888E+ 06 1.35500E+ 14 1.93800E+ 13 4.31400E+ 10 8.76659E+ 13 5.77300E+ 05 

Min 1.67200E+ 13 8.47221E+ 07 1.60899E+ 08 8.07592E+ 15 2.44351E+ 07 2.55108E+ 07 1.49600E+ 15 1.01400E+ 14 1.40100E+ 11 9.84959E+ 14 3.32100E+ 06 

Ranking W|T|L 0|0|15 0|0|15 3|0|12 0|0|15 1|0|14 0|0|15 0|0|15 0|0|15 0|0|15 0|0|15 11|0|4 
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Fig. 12 Comparison of convergence curves for LSGO problems using CEC 2013 with D = 1000. 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 



 

 

Fig. 13 Performance index (PI) analysis 
 

5.4. Non-parametric statistical test analysis 

To statistically prove the superiority of the QANA, the experimental results were analyzed 

by three statistical tests, i.e. Wilcoxon signed-rank sum (Wilcoxon, 1992), analysis of variance 

(ANOVA), and mean absolute error (MAE).  

5.4.1. Wilcoxon signed-rank test 

The Wilcoxon signed-rank test is a more sensitive non-parametric test, which is computed 

by considering the best solutions obtained by each algorithm for the corresponding test function 

during 30 independent runs. In this test, a p-value with a 95% significance level (𝛼 = 0.05) was 

computed, and the corresponding results for dimensions 30, 50, and 100 are reported in Table 



6, in which the symbol ‘>’ indicates that the proposed algorithm is significantly better than the 

compared algorithm.  

 

Table 6 Wilcoxon’s signed-ranks test (p ≥ 0.05).    

Functions 
Unimodal test 

functions 
Multimodal test 

functions 
Hybrid test  
functions 

Composition test  
functions 

Algorithms p-value Sig. p-value Sig. p-value Sig. p-value Sig. 

QANA vs. jDE 2.121E-54 > 1.729E-62 > 1.496E-182 > 1.398E-138 > 

QANA vs. DE/BBO 7.091E-22 > 4.515E-03 > 2.257E-14 > 2.300E-14 > 

QANA vs. CoDE 2.264E-02 > 4.963E-02 > 1.282E-27 > 8.179E-39 > 

QANA vs. Jaya 3.412E-48 > 1.508E-47 > 1.828E-163 > 3.822E-132 > 

QANA vs. MKE 2.366E-06 > 8.838E-02 > 3.197E-02 > 3.044E-46 > 

QANA vs. SSA 1.605E-07 > 1.540E-03 > 6.255E-69 > 1.033E-35 > 

QANA vs. EEGWO 2.495E-54 > 1.329E-61 > 2.422E-200 > 6.400E-180 > 

QANA vs. WDE 1.149E-59 > 3.411E-22 > 9.044E-112 > 1.854E-84 > 

QANA vs. AAO 2.808E-59 > 1.664E-53 > 2.185E-163 > 8.782E-172 > 

QANA vs. MWOA 4.526E-54 > 1.331E-51 > 1.466E-170 > 7.070E-149 > 

 

5.4.2. ANOVA test   

The analysis of variance (ANOVA) test has been conducted with a 5% significance level 

to highlight the consistency and overall performance of the results obtained by the comparative 

algorithms. The data obtained from 30 runs were performed for the ANOVA test, and the 

results are plotted in Figs. 14 and 15 for different dimensionsm 30, 50, and 100. These results 

prove that the proposed QANA is superior to the contender algorithm in terms of analysis of 

variance. 

 

 

 

 

 

 



 

Fig. 14 ANOVA test in unimodal and multimodal test functions. 

 

 

 

 

 

 

 



 

Fig. 15 ANOVA test in hybrid and composition test functions. 
 

5.4.3. Mean absolute  error (MAE) 

Moreover, the solutions gained by all algorithms were analyzed using the mean absolute 

error (MAE) to determine the difference between the estimated and optimal solutions. Tables 

7 and 8 provide the MAE results for benchmark functions CEC 2018 with dimensions 30, 50, 

100, and CEC 2013 with dimension 1000 for LSGO problems, respectively. The MAE was 

separately computed for each algorithm using Eq. (16), where the parameter NF is the number 



of functions, Oj and Yj are the global optimum solution and the best result obtained in the j-th 

function, respectively. 

 

 

 

 

 

  

𝑀𝐴𝐸 =
∑ |𝑂𝑗 − 𝑌𝑗|

𝑁𝑓

𝑗=1
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 (16) 



 

 

 

 

Table 7 MAE test of the algorithms on all benchmark functions of CEC 2018 with different dimensions. 

Unimodal test functions 

Algorithms 
MAE                       

D=30 

Rank    

D=30 

MAE               

D=50 

Rank  

D=50 

MAE 

  D=100 

Rank            

D=100 

jDE 3.620E+09 8 2.423E+10 9 1.751E+11 11 

DE/BBO 2.612E+04 5 5.849E+04 5 2.169E+05 5 

CoDE 1.819E+00 2 1.586E+02 3 7.988E+02 2 

Jaya 1.006E+10 9 3.586E+10 8 9.050E+10 8 

MKE 8.790E+03 4 3.156E+04 4 1.431E+05 4 

SSA 4.724E+01 3 5.236E+01 2 3.815E+03 3 

EEGWO 2.030E+10 11 4.581E+10 11 1.262E+11 10 

WDE 4.026E+08 6 1.576E+09 6 6.934E+09 6 

MWOA 5.267E+09 7 1.671E+10 7 6.940E+10 7 

AOA 1.438E+10 10 3.846E+10 10 1.180E+11 9 

QANA 1.212E-05 1 5.427E-01 1 1.296E+02 1 

Multimodal test functions 

Algorithms 
MAE                      
 D=30 

Rank    
D=30 

MAE               
D=50 

Rank  
D=50 

MAE 
  D=100 

Rank            
D=100 

jDE 3.003E+03 10 3.620E+03 7 3.2501E+04 11 

DE/BBO 5.169E+02 3 1.038E+03 2 3.3329E+03 2 

CoDE 5.795E+02 4 1.405E+03 5 3.8887E+03 4 

Jaya 2.550E+03 9 8.314E+03 10 2.4829E+04 9 

MKE 7.143E+02 5 1.395E+03 4 3.6010E+03 3 

SSA 4.371E+02 2 1.188E+03 3 4.3188E+03 5 

EEGWO 4.638E+03 11 1.196E+04 11 2.8348E+04 10 

WDE 9.949E+02 6 2.694E+03 6 9.2517E+03 6 

MWOA 1.557E+03 8 5.856E+03 8 1.6938E+04 7 

AOA 1.529E+03 7 6.189E+03 9 1.7712E+04 8 

QANA 2.583E+02 1 6.353E+02 1 2.6596E+03 1 

Hybrid test functions 

Algorithms 
MAE                       
D=30 

Rank    
D=30 

MAE               
D=50 

Rank  
D=50 

MAE  
  D=100 

Rank            
D=100 

jDE 6.477E+08 10 3.583E+09 10 1.308E+10 9 

DE/BBO 3.291E+04 4 1.120E+05 4 6.065E+05 4 

CoDE 2.355E+02 2 8.284E+02 2 1.705E+04 2 

Jaya 1.578E+08 8 2.138E+09 8 1.090E+10 8 

MKE 6.486E+02 3 3.678E+03 3 6.859E+04 3 

SSA 1.043E+05 5 2.710E+05 5 2.544E+06 5 

EEGWO 1.549E+09 11 1.068E+10 11 2.678E+10 11 

WDE 1.166E+06 6 1.439E+07 6 1.235E+08 6 

MWOA 6.826E+07 7 7.848E+08 7 4.960E+09 7 

AOA 3.454E+08 9 2.582E+09 9 1.556E+10 20 

QANA 1.550E+02 1 6.437E+02 1 6.939E+03 1 

Composition test functions 

Algorithms 
MAE                       
D=30 

Rank    
D=30 

MAE          
  D=50 

Rank   
D=50 

MAE 
D=100 

Rank            
D=100 

jDE 1.509E+07 10 1.362E+08 10 1.075E+07 7 

DE/BBO 2.995E+03 4 6.653E+04 3 2.618E+03 3 

CoDE 5.516E+02 2 5.961E+04 2 1.784E+03 2 

Jaya 3.951E+06 9 3.263E+07 9 9.449E+08 9 

MKE 7.838E+02 3 7.565E+04 4 4.537E+03 4 

SSA 4.480E+04 6 2.614E+06 6 7.944E+05 6 

EEGWO 9.797E+07 11 5.146E+08 11 3.367E+09 11 

WDE 8.376E+03 5 5.588E+05 5 5.175E+05 5 

MWOA 1.708E+06 8 2.773E+07 8 3.780E+08 8 

AOA 2.784E+05 7 1.618E+07 7 1.689E+09 10 

QANA 1.648E+02 1 1.796E+02 1 8.954E+02 1 



 

 

 

 

 

 

 

 

 

6. Applicability of QANA for solving engineering design problems 

Many engineering problems are non-linear and constrained, and constraints handling refers 

to optimize the objective functions under given constraints for finding a feasible solution. In 

this regard, the ability of the proposed QANA for solving real-world optimization problems 

was evaluated by four engineering problems, i.e. tension/compression spring design, pressure 

vessel design (PVD), three-bar truss design, and welded beam design (WBD). The details of 

these problems and their objective functions are described in Appendix A. To achieve a fair 

comparison, the QANA and competitor algorithms were executed for 30 different runs. For 

each problem, the parameter values of the maximum number of function evaluations (FEs) and 

the population size were set to D×104 and 50, respectively. The results were compared with 

other state-of-the-art algorithms and are reported in Tables 9–12. The convergence curves of 

the QANA for solving four engineering problems are shown in Fig. 16.  

 

 
Table 9 Results for tension/compression spring design problem. 

Algorithms 
Optimal values for variables 

Optimum weight  
d D N 

jDE 0.054034 0.407561 10.127434 0.01292947 

DE/BBO 0.060303 0.494159 10.183030 0.02189302 

CoDE 0.050264 0.319697 14.080980 0.01298961 

Jaya 0.051786 0.359045 11.155078 0.01266690 

MKE 0.052466 0.375666 10.269711 0.01268829 

SSA 0.052309 0.371823 10.455412 0.01267218 

EEGWO 0.071251 0.536728 13.131940 0.04123091 

WDE 0.056750 0.437036 12.765199 0.02078208 

MWOA 0.054426 0.426187 8.161806 0.01282989 

AOA 0.050000 0.317385 14.553272 0.01313439 

QANA 0.051926 0.362432 10.961632 0.01266625 

  

Table 8 MAE test of the algorithms for CEC2013 LSGO 
benchmark functions with dimension 1000. 

Algorithms 
MAE                       

D=1000 
Rank    

D=1000 

jDE 1.064E+16 9 

DE/BBO 4.833E+14 6 

CoDE 1.875E+10 2 

Jaya 9.485E+15 8 

MKE 2.472E+12 3 

SSA 2.751E+13 4 

EEGWO 2.313E+16 11 

WDE 8.283E+13 5 

MWOA 1.892E+16 10 

AOA 3.953E+15 7 

QANA 8.715E+09 1 



 
Table 10 Results for pressure vessel design problem. 

Algorithms 
Optimal values for variables 

Optimum cost  
Ts Th R L 

jDE 1.4393774 0.724791 67.222723 10.400860 9.28148547E+03 

DE/BBO 1.7932330 2.298101 45.390909 141.259836 1.99095329E+04 

CoDE 0.881838 0.449011 43.051343 168.197626 6.53240702E+03 

Jaya 0.7786234 0.384867 40.328601 199.902730 5.88864507E+03 

MKE 0.7781692 0.384649 40.319619 200.000000 5.88533302E+03 

SSA 0.7789012 0.385012 40.357569 199.472410 5.88659056E+03 

EEGWO 3.0393982 2.180589 78.557921 18.023585 4.15319882E+04 

WDE 94.711664 20.61617 33.372093 186.702264 1.47055154E+04 

MWOA 0.8755801 0.433644 45.365979 140.422871 6.08939785E+03 

AOA 0.8252370 0.502613 40.925818 200.000000 6.68519215E+03 

QANA 0.7781687 0.384649 40.319619 200.000000 5.88533277E+03 

 
 

 
             
Table 11 Results for the three-bar truss problem 

Algorithms 
Optimal values for variables 

Optimal weight 
x1 x2 

jDE 0.790449 0.403527 2.638990006E+02 

DE/BBO 0.763495 0.492169 2.651657308E+02 

CoDE 0.787621 0.411279 2.639008002E+02 

Jaya 0.788627 0.408385 2.6389585121E+02 

MKE 0.791907 0.399584 2.639435001E+02 

SSA 0.788678 0.408241 2.63895843382E+02 

EEGWO 0.806439 0.368564 2.649516916E+02 

WDE 0.454766 0.651664 2.641254239E+02 

MWOA 0.789961 0.404649 2.638995223E+02 

AOA 0.789605 0.405664 2.639004316E+02 

QANA 0.788675 0.408248 2.63895843376E+02 

 
 

Table 12 Results of the welded beam design problem 

Algorithms 
Optimal values for variables 

Optimum  cost 
h l t b 

jDE 0.573662 4.361220 2.352191 0.429303 1.876631 

DE/BBO 0.198546 3.978957 8.794421 0.271069 2.235268 

CoDE 0.200068 3.575454 9.226260 0.206701 1.770640 

Jaya 0.205746 3.470675 9.036149 0.205754 1.725004 

MKE 0.205729 3.470548 9.036550 0.205734 1.724876 

SSA 0.205582 3.473672 9.036625 0.205730 1.725053 

EEGWO 0.268139 6.563012 7.950610 0.355915 3.320707 

WDE 0.255666 3.516591 8.192765 0.275378 2.155207 

MWOA 0.200578 3.597398 9.005897 0.209362 1.756161 

AOA 0.195824 3.735867 10.00000 0.201829 1.880410 

QANA 0.205730 3.470489 9.036624 0.205730 1.724852 

    
                



 

Fig. 16 Convergence curves of QANA for solving engineering design problems . 

  

7. Discussion 

In this section, the main reasons for the proposed QANA algorithm's superiority over the 

contender algorithms are discussed. The experimental results demonstrate that the QANA 

algorithm can be effectively adapted for various problems by applying its V-echelon 

communication topology, success-based population distribution (SPD) policy, mutation 

strategies, LTM and STM memories, and a qubit-crossover operator.  

From the qualitative results plotted in Fig. 6 and 7, the search agents can effectively cover 

the search space and finally converge to the promising area. The result of the population 

diversity analysis in Fig. 8 shows that QANA can maintain diversity during the search process. 

The main reason is that the LTM and STM memories store previous experience solutions , 

which are then used in two mutation strategies, DE/quantum/I and DE/quantum/II . 

Subsequently, the exploration ability is increased and suspends the premature convergence 

before finding a more promising area. The exploration and exploitation analysis plotted in Fig. 

9 proves that QANA devotes a high percentage of exploitation in unimodal test functions and 

a high percentage of exploration in multimodal test functions. This ability can be attributed to 

the use of Eqs. (2) and (3) which are exploitation-oriented and Eq. (4) that is exploration-

oriented. Moreover, QANA can effectively switch between exploration and exploitation in 

hybrid and composition test functions using the success-based population distribution (SPD) 

policy. 

 From the results and curves presented in Table 2 and Fig. 10, the QANA algorithm is 

competitive for unimodal and multimodal test functions by converging to the promising area 

accurately in terms of its  exploitation and exploration abilities. This can further be attributed 

to the V-echelon topology introduced in Definition 3, which promotes information flow using 

informative disciplines for headers and followers in each flock. The experimental evaluations 



reported in Tables 3 and 4 and convergence curves in Fig. 11 prove that the SPD policy 

proposed in Definition 4 could enrich the flocks by assigning the proper mutation strategies 

based on their improvement rate. The scalability results reported in Table 5 and converge nce 

curves in Fig. 12 prove that QANA is superior to the contender algorithms. This is supported 

by the division of the population into several flocks to explore the problem space 

independently, while the self-adaptive quantum orientation proposed in Definition 5 can 

produce and maintain the best parameters values obtained by success solutions. Moreover, the 

qubit-crossover probability proposed in Definition 6 combines the new and old generations to 

increase diversity and focus on exploitation.  

8. Conclusion and future work 

This study proposes a novel, differential evolution (DE) algorithm named QANA, which 

was inspired by migratory birds' behavior during their long-distance aerial migrations. The 

QANA is modeled by introducing long-term and short-term memories, a V-echelon 

communication topology, and quantum-based navigation with two mutation strategies and a 

qubit-crossover operator. To assign a mutation strategy to the flocks, we introduced the 

success-based population distribution (SPD) policy according to Definition 4, which uses the 

success rate of the mutation strategy in the previous iteration. Moreover, using the novel V-

echelon communication topology can promote slow diffusion of unpromising information flow 

through the population by enhancing the population diversity and suspending premature 

convergence. The effectiveness and scalability of the proposed QANA were experimenta lly 

evaluated using benchmark functions, CEC 2018 with dimensions 30, 50, and 100 and CEC 

2013 with dimension 1000. Besides, four engineering problems were considered to evaluate 

the applicability of the QANA to solve real-world problems. The superiority of the proposed 

algorithm was also statically analyzed using the Wilcoxon signed-rank sum, analysis of 

variance (ANOVA) and mean absolute error (MAE) tests. The experimental results show that 

the QANA is highly competitive with state-of-the-art SI and DE algorithms. The experiment 

and statistical results and the above-mentioned discussions support the following conclusions: 

 The LTM and STM memories, defined in Definitions 1 and 2, allow adequate search space 

coverage in high-dimensional problems.  

 Using the V-echelon communication topology influences the information flow between 

search agents, in which the spreading of reasonable solutions throughout the population is 

slowed down, discouraging stagnation and premature convergence.  

 The quantum mutation strategy with two meaningful search strategies and a self-adaptive 

quantum orientation causes the search agents to converge to the global optimum faster than 

the compared algorithms. 

 The qubit-crossover operator can maintain the population diversity of the QANA. 



 The QANA can effectively explore the landscape using a multi-flock and qubit-crossover 

operator, enhancing diversity and landscape coverage.  

 Performance index analysis in Fig. 13 shows the superiority of the proposed algorithm in 

terms of effectiveness over the contender algorithms. 

 The results tabulated in Table 5 confirm that the proposed QANA is more scalable than 

other compared algorithms for solving large-scale global optimization (LSGO) problems. 

 The experimental results and statistical analysis prove that the QANA is more efficient than 

the comparative algorithms for different unimodal, multimodal, hybrid, and composition 

problems. 

 The QANA is applicable to solve real-world engineering optimization problems more 

precisely than the other compared algorithms. 

To summarize the performance evaluation results, Table 13 presents the overall 

effectiveness (OE) of the QANA and contender algorithms based on their total performance 

shown in Tables 2–5. The OE of each algorithm was computed using Eq. (17), where the 

parameter N is the total number of tests, and L is the total number of losing tests for each 

algorithm.  

𝑂𝐸 = (
𝑁 − 𝐿

𝑁
) ×100 (17) 

Table13 Overall effectiveness of the QANA and contender algorithms. 

Test functions Unimodal/Multimodal/Hybrid/Composition  LSGO 2013 

Algorithms 30 
(W|T|L) 

50 
(W|T|L) 

100 
(W|T|L) 

Total 
(W|T|L) 

OE 
(%) 

1000 
(W|T|L) 

OE 
(%) 

jDE 0|0|29 0|0|29 0|0|29 0|0|87 0% 0|0|15 0% 
DE/BBO 0|2|27 1|1|27 3|2|24 4|5|78 10.35% 0|0|15 0% 
CoDE 1|0|28 4|0|25 3|2|24 8|2|77 11.49% 3|0|12 20% 
Jaya 0|0|29 0|0|29 0|0|29 0|0|87 0% 0|0|15 0% 

MKE 2|0|27 2|1|26 1|0|28 5|1|81 6.90% 1|0|14 6.67% 
SSA 0|2|27 0|1|28 1|0|28 1|3|83 4.60% 0|0|15 0% 
EEGWO 0|0|29 0|0|29 0|0|29 0|0|87 0% 0|0|15 0% 
WDE 0|0|29 0|0|29 0|0|29 0|0|87 0% 0|0|15 0% 
MWOA 0|0|29 0|0|29 0|0|29 0|0|87 0% 0|0|15 0% 
AOA 0|0|29 0|0|29 0|0|29 0|0|87 0% 0|0|15 0% 

QANA 23|2|4 20|2|7 19|4|6 62|8|17 80.46% 11|0|4 73.33% 

 

Considering the promising results of the QANA algorithm for solving single and 

continuous optimization problems in this work, further development of this algorithm for 

solving multi-objective and discrete real-world problems is suggested for future works. 

Moreover, we plan to apply the QANA algorithm to solve additional real-world optimization 

problems within the complex search space.  
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Appendix 

Tension/compression spring problem: Three decision variables, wire diameter (d), mean coil 

diameter (D), and the number of active coils (N), were considered for formulating 

tension/compression spring problem, and Fig. A.1 shows the schematic of this problem. The 

weight of a tension/compression spring is the objective function that should be minimum , 

which is defined in Eq. (A.1).   

                                      

Consider x⃗ = [x1x2x3] = [d D N]  

(A.1) 

Minimize f(x⃗ ) = (x3 + 2)x2x1 
2   

Subject to g1(x⃗ ) =  1−
x2 
3 x3

71785x1 
4 ≤ 0,   

g2(x⃗ ) =  
4x2 

2 −x1x2

12566(x2x1 
3 −x1 

4 )
+

1

5108x1 
2 − 1 ≤ 0,  

g3(x⃗ ) =  1 −
140.45x1

x2 
2 x3

≤ 0,  

g4(x⃗ ) =  
x1+x2

1.5
− 1 ≤ 0.  

Variable range 0.05 ≤ x1 ≤ 2.00, 
0.25 ≤ x2 ≤ 1.30,   
2.00 ≤ x3 ≤ 15.0 
 

 

 

Fig. A. 1 Tension/compression spring problem 

 

Pressure vessel design (PVD) problem: In this problem, the constraint decision variables 

include the thickness of the shell (Ts or x1), thickness of the head (Th or x2), inner radius (R or 

x3), and length of the cylindrical section of the vessel (L or x4). The formula for this objective 

function is presented in Eq. (A.2). The schematic of the constraint PVD problem is illustrated 

in Fig. A.2. 

 

Consider 𝑥 = [𝑥1𝑥2𝑥3𝑥4] = [𝑇𝑠 𝑇ℎ  𝑅 𝐿 ],  

Minimize 𝑓(𝑥 )= 0.6224x1x3x4 + 1.7781x2x3 
2 + 3.1661x1 

2 x4 + 19.84 x1 
2x3 ,  

Subject to 𝑔1(𝑥 ) = −x1 + 0.0193x3 ≤ 0, 

(A.2) 

 𝑔2(𝑥 ) = −x2 + 0.00954x3 ≤ 0, 

 𝑔3(𝑥 ) = −πx3 
2 x4 −

4

3
πx3 

3 + 1,296,000≤ 0, 

 𝑔4(𝑥 ) = 𝑥4 − 240 ≤ 0, 



Variable range 0 ≤ 𝑥1 ≤ 99, 

 0 ≤ 𝑥2 ≤ 99, 

 10 ≤ 𝑥3 ≤ 200, 

 10 ≤ 𝑥4 ≤ 200 
 

 

Fig. A. 2. Design of pressure vessel problem. 
 
 

Three bar truss problem: This problem is defined in Eq. (A.3) with two constraint decision 

variables (x1, x2). The schematic of this problem is shown in Fig. A.3. 

 

Consider x⃗ = [x1x2] = [A1  A2], 

(A.3) 

Min            f(x⃗ ) = (2√2x1 + x2) × l,   

Subject to g1(x⃗ ) =  
√2x1+x2

√2 x1 
2 +2x1x2

P − σ ≤ 0,  

g2(x⃗ ) =  
 x2

√2x1 
2 +2x1x2

P − σ ≤ 0,  

g3(x⃗ ) =
 1

√2x2+x1
P − σ ≤ 0,  

Variable range     0 ≤ xi ≤ 1,              i = 1,2    

 l = 100cm, P = 2 kN/cm2, and  σ = 2 kN/cm2   
 

 

Fig. A. 3 Three bar truss problem 

 

Welded beam problem: This problem is formulated using three constraint decision variables, 

i.e. the thickness of the weld (h or x1), length of the clamped bar (l or x2), height of the bar (t 

or x3), and thickness of the bar (b or x4), in Eq. (A.4). The fabrication cost of a welded beam is 

considered as an objective, and the schematic of this problem is presented in Fig. A.4.  

 

Consider                x⃗ = [x1,x2 , x3 , x4] = [h, l, t, b], (A.4) 

Min f(x⃗ ) = 1.10471x1 
2 x2 + 0.04811x3x4(14.0+ x2),  



Subject to g1(x⃗ ) = τ(x⃗ ) − τmax ≤ 0, 
g2(x⃗ ) = σ(x⃗ ) − σmax ≤ 0, 
g3(x⃗ ) = x1 − x4 ≤ 0, 
g4(x⃗ ) =  1.10471x1 

2 + 0.04811x3x4(14.0+ x2)− 5.0 ≤ 0, 
g5(x⃗ ) =  0.125− x1  ≤ 0, 
g6(x⃗ ) =  δ(x⃗ ) − δmax  ≤ 0, 
g7(x⃗ ) =  P − Pc ≤ 0, 

 

Variable range     0.1 ≤ xi ≤ 2,   i = 1,4,             0.1 ≤ xi ≤ 10,   i = 2,3  

Where 
τ(x⃗ ) = √(τ′)2 + 2τ′τ′′ x2

2𝑅
+ (τ′′)2 ,  τ′ =

P

√2 x1x2
, τ′′ =

MR

𝐽
, M = P (L+

x2

2
), R =

√
x2 
2

4
+ (

x1+x3

2
)2,        𝐽 = 2 {√2 x1x2 [

x2 
2

12
+ (

x1+x3

2
)
2

]}, σ(x⃗ ) =
6PL

 x4x3 
2 , δ(x⃗ ) =

6PL3

 E x3 
2  x4

,   

Pc(x⃗ ) =
4.013E√x3 

2 x4 
6

36

 E x3 
2  x4

(1 −
x3 

2𝐿
√

𝐸

4𝐺
), P = 6000 lb,L = 14 in. , E = 30 × 16psi,G =

12 × 106psi, τmax = 13,600 psi, σmax = 30,000 psi, δmax = 0.25 in. 
 
 

 

Fig. A. 4 Welded beam problem 
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