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Abstract: Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of am-
yloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease 
(AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP 
in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new 
anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screen-
ing (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect 
small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using 
hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, us-
ing a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated 
eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical 
database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the 
lead compounds as virtual screening hits. These compounds share a common amide scaffold, and 
showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The 
identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests 
that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the 
development of novel therapeutics. 
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1. Introduction 
Alzheimer’s disease (AD) is the most common type of dementia [1], associated with 

decline in memory and cognition [2,3]. AD is the sixth-leading cause of death, with one-
third of senior citizen deaths resulting from AD [4]. In its advanced stages, AD is charac-
terized by the reduction of cerebrospinal fluid amyloid β (CSF Aβ), and enhanced accu-
mulation of Aβ in the brain and the retinas [4–6]. Brain atrophy and toxicity associated 
with Aβ aggregation are key features of the disease in the vast majority of patients [7]. AD 
and other forms of dementia are caused by damage to neurons, and most of the current 
drugs have failed to meet the primary endpoints in phase 3 clinical trials. Therefore, the 
disease remains open to potential genetic and pharmacological therapies which, in addi-
tion to the strategy of clearance of Aβ aggregates, include therapies to slow down or pre-
vent the loss of brain neurons and maintain their function [8,9] 

Cathepsin B (EC 3.4.22.1), belongs to the papain-like cysteine protease family, and 
displays carboxyl peptidase activity involving the degradation of proteins and peptides 
[10]. The active form of this enzyme [11] mediates extracellular matrix degradation in dif-
ferent pathological conditions, including myocardial infarction [12], cancer [13], pancrea-
titis [14], and AD [15]. It is important to note that there is an increase in plasma levels of 
cathepsin B in the abovementioned conditions. Interestingly, the other isoforms of cathep-
sin (S, V, and K) are found to be localized in specific tissues, with unique biological func-
tions [16–19]. 

The autosomal-dominant mutations in AD have been identified in three genes: APP, 
presenilin 1 (PSEN1), and presenilin 2 (PSEN2) [20]. The presenilins are components of the 
proteolytic γ-secretase complex that, together with β-secretase, generates Aβ. Recently, 
our studies on single-nucleotide polymorphisms (SNPs) associated with the cathepsin B 
gene have provided relevant insight into functional and haplotype tag SNPs related to 
protein functions in AD [21]. Previous studies on cathepsin B protein inhibition revealed 
that most of its inhibitors can bind to the target protein irreversibly, while some bind re-
versibly [22]. The irreversible inhibitors include dipeptidyl nitriles [23], fluoromethyl ke-
tones [24], vinyl sulfones [25], expoxysuccinates [26], and peptidyl epoxides [27]. The re-
versible inhibitors include peptidyl aldehydes [28] and glyoxal. [29]. The inhibitory mech-
anism of epoxysuccinyl, dipeptidyl nitriles, hydroxycarboxyethyl-carbonyl and ethoxy-
carbonyl compounds on cathepsin B enzyme catalytic activity has been reported previ-
ously [23,30,31]. Cathepsin B inhibitors from natural sources have previously demon-
strated cathepsin B enzyme inhibitory activity in vitro in the range of 0.62–1.17 μM [32]. 

These studies indicate cathepsin B as an attractive target for drug development for 
several diseases, especially AD. However, until now, only a few cathepsin B inhibitors 
have been reported (Figure 1) [32]. Therefore, it is imperative to identify small drug mol-
ecules that are safe and suitable for chemical optimization and development into thera-
peutic agents to target AD. Motivated by the need for chemical scaffolds for the discovery 
of novel of cathepsin B inhibitors, we carried out ligand-based virtual screening, molecu-
lar docking, and dynamics studies. In this study, we generated mixed-feature three-di-
mensional pharmacophore models from the cathepsin B inhibitors (synthetic and natural 
origin). We employed a large-scale virtual screening of the Maybridge database library, 
consisting of ~61,000 small molecules. Furthermore, the selection of several filters was ap-
plied for the identification of novel inhibitors against cathepsin B. We employed protein–
ligand interactions and made use of fingerprint clustering techniques to prioritize virtu-
ally screened hits and identify cathepsin B inhibitors. Furthermore, to validate the stability 
of the lead molecules to close the occluding loop, the docked poses with the highest prox-
imity stability indicated by their low root-mean-square deviations (RMSDs) were sub-
jected to molecular dynamics studies for a 20-ns timeframe. 
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Figure 1. Previously reported inhibitors of cathepsin B, with IC50 in μM. 

Our step-by-step methodology provided a fast-track approach to screening large da-
tabases. The three key hit molecules identified in the study—BTB03075, KM02922, and 
RF02795—can be utilized in the future design and characterization of cathepsin B inhibi-
tors. 

2. Materials and Methods 
2.1. Selection and Preparation of Macromolecule 

The crystal structure of the cathepsin B protein (PDB ID: 1CSB) was retrieved from 
the Protein Data Bank (PDB) (http://www.pdb.org, access on 14 April 2021) [33,34]. The 
protein macromolecule was prepared to calculate the binding energy. The polar hydro-
gens were added to the molecule, whereas the nonpolar hydrogens were removed from 
the protein coordinates, and the Gasteiger partial charges were subsequently added to the 
carbon atom containing hydrogens [35]. Protein optimization was carried out with UCSF 
Chimera software [36], under AMBER parameters, and followed by protein minimization 
using the MMTK method in 500 steps, with a step size of 0.02 Å. The protein molecule 
contains light chains A and D, with 47 amino acids, and heavy chains B and E, including 
205 amino acids, with a resolution of 2.00 Å. Active site residues of the binding pocket 
were validated from previous reports [10]. 

2.2. Collection and Preparation of Ligand Dataset 
A total of 61 analogs of the inhibitors—22 of natural (N) (Figure 2-part 1) and 39 of 

synthetic (S) (Figure 2-part 2) origin—were collected from the PubChem database [37] and 
other literature [26,38–40]. Inhibitors were screened based on their pharmacological prop-
erties (IC50 and Ki values), as shown in Figure 2. The qualitative and quantitative charac-
terization—such as physicochemical properties—was generated using the Molinspiration 
web server (http://www.molinspiration.com, access on 16 April 2021). The absorption, 
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distribution, and toxicity prediction are summarized in Tables S1, S2, and S3, respectively. 
Inhibitor optimization was carried out using Sybyl-x1.1 with a conjugate gradient method 
(TRIPOS Inc.1699, St. Louis, MO, USA). 
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Figure 2. Two-dimensional structures of compound datasets from natural origin (Part 1) and synthetic origin (Part 2). The 
compound numbers and IC50 values are shown at the bottom of the respective compounds. The training sets are denoted 
with asterisks. 

2.3. Molecular Docking and Interaction Studies 
Molecular docking of 61 analog inhibitors was carried out using a Lamarckian ge-

netic algorithm (LGA) with AutoDock v4.2 tools with default docking parameters [41]. 
The receptor file was first prepared by deleting water molecules and adding polar hydro-
gens only. Gasteiger charges and any other atoms present were assigned AD4 atom types. 
Ligands with rotatable bonds were set to free, and the protonation state was maintained 
at physiological pH [35]. Grid parameter files were built, and atom-specific three-dimen-
sional affinity maps were constructed using AutoGrid v4.2. The three docking steps (van 
der Waals interactions, hydrogen bonds, and the electrostatic potential) were considered 
for the calculation of binding energy [42,43]. Each docking experiment was derived from 
20 different runs that were set to terminate after a maximum of 2,500,000 energy evalua-
tions, or 27,000 generations, yielding 20 docked conformations, while the population size 
was set to 150. After the generation of multiple runs, cluster analysis was performed. The 
docking solutions with inhibitors that had atomic root-mean-square deviations (RMSDs) 
within 2.0 Å of one another were clustered together and ranked by their lowest energy. 
The solution with the lowest energy was accepted as the best docking conformation for 
the binding energy calculation. Estimated binding free energy (kcal/mol), inhibitory con-
stant (Ki, μM), electrostatic energy (kcal/mol), van der Waals interactions (kcal/mol), hy-
drogen bonds (kcal/mol), desolvation energy (kcal/mol), total intermolecular energy 
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(kcal/mol), torsional energy (kcal/mol), and Gibbs free energy of binding were calculated 
for 61 cathepsin B inhibitors. 

2.4. Ligand-Based Three-Dimensional Pharmacophore Search and Virtual Screening 
A ligand-based three-dimensional pharmacophore model based on the chemical fea-

tures present in 61 active, moderately active, and inactive cathepsin B inhibitors was gen-
erated using LigandScout 3.1 software (Inte:Ligand GmbH, v3.1, Vienna, Austria) [44] 
from the docking of 61 cathepsin B inhibitors, so that these ligands (cathepsin B inhibitors) 
would be flexibly aligned into a rigid macromolecular (cathepsin B protein) environment, 
and later could be estimated for the fidelity of the interactions [45]. Pharmacophoric de-
scriptors—including H-bond donors (HBD), H-bond acceptors (HBA), hydrophobic (HY), 
ring aromatic (RA), positive ionizable (PI), and negative ionizable (NI) features—were 
mapped onto the chemical features of all training set molecules [42]. RA, PI, and NI fea-
tures were less significantly mapped when compared to the other features. Therefore, 
HBD, HBA, and HY were selected to generate 3D pharmacophore hypothesis protocols. 
The docked pose of each compound in the training set was used to generate maximum 
numbers of conformations (500), a root-mean-square (rms) threshold of 0.4, energy win-
dow of 10, and maximum pool of 4000 as the default values using the ligandset module 
in LigandScout 3.1. Furthermore, clustering was performed using similarity measurement 
via pharmacophore alignment score. The cluster distance calculation method was kept at 
0.4 and average in order to generate ligand-based pharmacophores using pharmaco-
phore-fit and atom overlap scoring functions. All of the other parameters were set as de-
fault. The IC50 values of individual training set compounds were selected as active prop-
erties. The test set analysis method was used to validate the pharmacophore model hy-
pothesis. This method was validated by the enrichment factor (E) to discriminate between 
active and inactive molecules, and expressed as: 

E = Ha × D/Ht × A (1)

False negative (A−Ha) (2)

False positive (Ht−Ha) (3)

Goodness of hit score (GH) (4)

The enrichment factor was calculated as the ratio of active hits (Ha) amongst all the 
molecules in database D and total hits (Ht) in database A (Equation (1)). The false nega-
tives were calculated by subtracting active hits (Ha) from the total number in the database 
(A) (Equation (2)), and the difference in total hits (Ht) and active hits (Ha) was used to 
calculate the rate of false positives (Equation (3)). The goodness of hit score (GH) ranged 
from 0 to 1, differentiating null models from ideal models (Equation (4)). 

2.5. Screening of Maybridge Database and Fast Docking Using AutoDock Vina 
To identify potential lead molecules from the large Maybridge database containing 

60,538 small molecules, virtual screening was performed by generating ligand-based 
three-dimensional pharmacophores (as described in the previous section). At the start of 
the virtual screening, we presumed that possible hit molecules from the Maybridge library 
should fit with the majority of the possible features of the pharmacophore query. Dupli-
cate Maybridge molecules were removed and not used for screening. Thereafter, the May-
bridge-screened compound hits were docked into the binding site of cathepsin B using 
AutoDock Vina (ADt-Vina) [46]—a fast-docking program to remove compounds with 
non-compatible geometries and energetics toward the ligand-binding site. ADt-Vina used 
an “iterated local search global optimizer” algorithm to evaluate the interactions between 
a ligand and its receptor. The search space for docking was restricted to a cubic box of 40Å 
× 40Å × 40Å centered on the binding site. ADt-Vina calculations were carried out using a 
default value of eight to ensure the exhaustiveness of the global search. Twenty poses 
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were generated for each ligand, which were ranked by ADt-Vina’s empirical scoring func-
tions, and the pose with the lowest docking score value was selected as the best iteration. 
The predicted binding energy from the docking provided a ranking of the compounds, 
which was compared to the known actives using two measures. Virtual screening perfor-
mance is commonly analyzed using a receiver operating characteristic (ROC) curve, 
which can easily be quantified by determining the area under the curve (AUC). The AUC 
and the Boltzmann-enhanced discrimination of receiver operating characteristic (BED-
ROC) metric were used to evaluate the robustness of the docking algorithm in order to 
select active compounds [47]. The identified hit molecules were further subjected to vari-
ous screening filters, such as Lipinski’s rule of five, which selects molecules with molecu-
lar weight less than 500 D, HBD less than 5, HBA less than 10, and a LogP (octanol/water 
partition coefficient) value of less than 5 [48] to achieve the possible set of potential ca-
thepsin B inhibitor molecules. 

2.6. Construction of Structural Interaction Fingerprints (SIFts), Similarity Analysis, and 
Hierarchical Clustering 

Structural interaction fingerprints (SIFts) were used for one-dimensional binary rep-
resentation of contact between ligands and macromolecule amino acids. The advantage of 
using the SIFt method is in generating protein–ligand interaction fingerprints to elucidate 
the interaction patterns [49–51]. Predefined binding site amino acid residues involved in 
ligand binding were used for SIFt calculations for both sets of ligands (inhibitors of ca-
thepsin B and virtual screen hits), while hydrogen bond interactions between ligands and 
amino acids were identified by UCSF Chimera software with default settings. The next 
step was to classify protein–ligand interaction fingerprints. The implementation of SIFt 
uses seven bits for each amino acid residue-contacting ligand. The seven bits were 
switched on (binary representation: 1) and off (binary representation: 0) depending on 
several factors, such as (1) the subsequent interactions specifying whether a contact was 
involved at a position, whether the (2) main-chain (MC) or (3) side-chain (SC) atoms were 
involved, and the presence of a (4) hydrogen bond acceptor (HBA) or (5) donor (HBD); 
the (6) polar and (7) nonpolar nature of the interactions thus represent each residue by a 
seven-bit-long string. The complete interaction fingerprints of the virtual screen molecules 
that complexed with the proteins were finally constructed by successively concatenating 
the bit string of each binding site residue simultaneously, in accordance with the ascend-
ant residue number. This results in each interaction fingerprint being similar in length, 
and enables easy comparison of protein–ligand binding interactions at a binding site po-
sition across a series of complexes. 

For the quantitative measure of bit string similarity, we used the Rogers–Tanimoto 
coefficient (RTc), which is widely used for binary data [52]. The RTc between the two 
strings A and B is calculated as: 

RTc (A, B) = 
|𝐀∩𝐁||𝐀𝐔𝐁| 

where |A∩B| represents the number of ON bits common in both A and B, and |A∪B| 
represents the number of ON bits present in either A or B. The SIFt signifies the protein–
ligand interaction pattern; however, similarity analysis of the fingerprints implies that the 
ligands carry out similar interactions with the protein. We then applied an algorithm that 
groups similar objects into groups of similar clusters—hierarchical clustering—in order to 
analyze the protein–ligand interaction fingerprints for each test case [53], using SYSTAT 
v13.2 software. The generated protein–ligand complex clusters were manually inspected 
based on their fingerprint interaction dendrograms. 

2.7. Molecular Dynamics Simulation and Binding Free Energy Calculations 
The molecular mechanics Poisson−Boltzmann surface area (MM-PBSA) [54,55] and 

molecular-mechanics-generalized Born surface area (MM-GBSA) [56] methods, as 
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implemented in AMBER10 [57], were used to calculate ligand binding free energy. To 
generate a conformational ensemble for the binding free energy calculation, molecular 
dynamics simulation was carried out for compounds selected after docking. In each case, 
the proteins were immersed in the rectangular truncated octahedron filled with 8 Å TIP3P 
water molecules and neutralized by adding Na+ or Cl− ions. At first, the protein system 
was minimized by 500 steps of steepest descent, followed by 2000 steps of conjugate gra-
dient. After minimization, the system was gradually heated in the canonical ensemble 
from 0 to 300 K over 50 ps, and then equilibrated for 200 ps. Finally, a 20-ns MD simulation 
was performed under a constant temperature of 300 K [58]. The long-range electrostatic 
interactions were dealt with by employing the particle mesh Ewald (PME) method [59]. 
All hydrogen atoms were constrained using the SHAKE algorithm [60], and the time step 
was set to 2 fs. All simulations were performed using the SANDER module of AMBER10 
[61] with the AMBER force field (ff03). Binding free energy was calculated using the fol-
lowing equation: 

ΔGbinding = Gcomplex − (Gprotein + Gligand)  (5)

The above equation can be conceptually summarized as: 

ΔGbinding = ΔGMM + ΔGpolar solvation + ΔGnonpolar slovation − TΔS (6)

ΔGMM = ΔEvdw + ΔEelec + ΔEint  (7)

where ΔGMM is the molecular mechanics binding free energy between small molecules 
and cathepsin B. The ΔEvdw, ΔEelec, and ΔEint account for differences in van der Waals 
energy, electrostatic energy, and internal energy, respectively. ΔGpolar solvation is the 
polar contribution to solvation-free energy, and is computed by solving the Pois-
son−Boltzmann equation in MM-PBSA, or by using Onufriev’s generalized Born model 
[62] in MM-GBSA. ΔGnonpolar solvation is the nonpolar contribution to solvation-free 
energy, and is estimated using the following equation: 

ΔGnonpolar slovation = γSASA + b  (8)

where SASA is the solvent’s accessible surface area, as calculated using the LCPO method 
[63] for MM-PBSA and the ICOSA method [63] for MM-GBSA. The γ and b are empirical 
constants with default values of 0.0072 and 0, respectively. The TΔS represents the solute 
entropy that was not considered in this study, as we were mainly interested in the relative 
ranking of virtual screening hits, rather than absolute binding free energies. 

2.8. Cathepsin B Inhibitory Assay 
Cathepsin B inhibitory assay was performed using a fluorometric-based assay kit as 

per company instructions (ab185438). The assay kit utilizes the ability of cathepsin B to 
cleave synthetic AFC (7-Amino-4-trifluoromethyl coumarin) substrate to freely release 
AFC; moreover, this AFC can be quantified by a fluorometer. In the presence of cathepsin 
B inhibitors, the cleavage of the substrate was reduced, and there was a decrease in the 
total loss of the AFC fluorescence. The experiments were performed in triplicate. The test 
compounds (virtual screened hits) were prepared in different concentrations of 2.5, 5.0, 
10.0, 15.0, and 20.0 μM. The inhibitor screening protocol was performed by first incubating 
10 μL of test compound with cathepsin B enzyme in CTSB (cathepsin B) reaction buffer 
for 10–15 min at room temperature. one microliter of F-F-FMK (CTSB inhibitor) and 9 μL 
of CTSB reaction buffer were added to the cathepsin B enzyme well plate and treated as 
inhibitory controls (IC or positive control), whereas solvent with cathepsin B enzyme was 
used for enzyme control (EC or negative control). After incubation, 40 μL of cathepsin B 
substrate solution was added into each well and mixed. Next, fluorescence was measured 
in a kinetic mode for 30–60 min at 37 °C (Ex/Em = 400/505). Two timepoints were used—
0 and 15 min (ΔT = T2 − T1)—and corresponding values for the fluorescence (ΔRFU = 
RFU2-RFU1) were used to calculate the slope for all test inhibitor samples and EC, by 
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dividing the net ΔRFU values by the time ΔT. The percentage of relative inhibition was 
calculated using the following formula: % 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝐸𝐶 − 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝐸𝐶 ×  100 

3. Results 
The current study employed the power of a computational approach to generate a 

three-dimensional pharmacophore hypothesis, refine the pharmacophore model through 
structural interaction fingerprinting, and validate the novel hits from the Maybridge da-
tabase using molecular dynamics. The general strategy for the ligand-based pharmaco-
phore virtual screening is presented in Figure 3. In summary, the 61 known cathepsin B 
inhibitors were docked at cathepsin B protein (PDB ID: 1CSB) active sites. The lowest 
binding energy interactions were selected to create ligand-based three-dimensional phar-
macophore models. The validated Hypo III was utilized for the virtual screening of the 
Maybridge database. The Maybridge database of small molecules with diverse drug-like 
structures—containing 60,538 compounds—was screened within the matching features of 
the pharmacophore models. To our satisfaction, 1728 Maybridge molecules were closely 
mapped on all pharmacophoric features present in Hypo III. These molecules were addi-
tionally examined by subjecting them to fast-track docking using the ADt-Vina program, 
which provided 176 molecules with cutoff values of docking scores ≥ −6.0 kcal/mol. Fur-
thermore, Lipinski’s rule of five was applied to 176 molecules as an additional parameter, 
which provided 18 molecules. These 18 hits were finally subjected to re-docking, and 
structural interaction fingerprints were generated to prioritize and refine the drug-like 
compounds. Three novel hit compounds were selected for molecular dynamics simulation 
studies and validated for further in vitro activity using enzyme-based assay methods. A 
schematic representation of the pharmacophore generation and virtual screening pro-
cesses is shown in Figure 3. 
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Figure 3. Schematic representation of ligand-based virtual screening of cathepsin B inhibitors. The 
study was performed in 3 different steps: Step 1, data collection: The dataset of 61 ligands was 
docked in cathepsin B enzyme (PDBID: 1CSB), and then used to generate a 3D pharmacophore, 
followed by screening of the Maybridge library. Step 2, hypothesis, and screening: Maybridge hits 
were subjected to fast docking using AutoDock-Vina, screening using the structural interaction fin-
gerprint (SIFt) approach, and re-docking of the Maybridge virtual screen hits. Step 3, inhibitory 
activity: Biological evaluation of virtual screening hits against cathepsin B inhibitory activity and 
molecular dynamics; MM-PBSA and MM-GBSA were used to predict binding free energy compo-
nents. 

3.1. Binding Modes of the 61 Active Cathepsin B inhibitors Using the AutoDock v4.2 Docking 
Program 
Molecular docking not only provides a visualization of potential binding orientations, but 
also the iteration by which the ligand interfaces with the relevant amino acid [64]. The 
hydrogen-bonding interaction was observed with critical residues such as Cys29 and 
Gly74. Traditional protein–ligand docking was performed with AutoDock v4.2 for the da-
taset of 61 cathepsin B inhibitors using LGA. The docking results predicted binding ener-
gies, inhibitory constants, and interactions, which have been calculated for each of them 
(Table 1 and Figure 4A). Gln23, Gly24, Gly27, Cys29, Asn72, Gly74, His110, Glu122, 
Met196, Gly198, His199, and Trp221 amino residues comprise the cathepsin B protein-
binding site. One example each from both the natural and synthetic cathepsin B inhibitors 
with the lowest IC50 and binding energies has been selected here to explain the binding 
mode of these inhibitors into the cathepsin B protein. The natural molecule compound 
N14, containing an epoxide moiety, was oriented downwards, forming hydrogen bounds 
with Gln23, Gly74, and Gly198. As shown in Figure 4B, the oxygen atom of the C-5 car-
boxyl group and C-6 hydroxyl group of ligand-N14 is coordinated with Gln23 and 
Gly74m whereas the nitrogen atom of ligand-N14—the N-1 amine group—coordinated 
with Gly198 within the enzyme’s catalytic site. However, the synthetic class of inhibi-
tors—compound S1—with the same epoxide moiety analogue, showed a different pattern 
of hydrogen-binding scheme. For this class of compounds, amino acids His110, His111, 
and Met196 were the key residues, with distance constraints of 2.73 Å, 2.97 Å, and 2.81 Å, 
respectively. The pyrrolidine substituent at the side chain of the S1 inhibitor involved the 
oxygen atom; the C-14 carboxyl group coordinated with His110 and His111, whereas the 
nitrogen atom of ligand-S1—the N-2 amine group—was found to coordinate with Met196 
within the enzyme catalytic site (Figure 4C). 

Table 1. Dataset of 61 Cathepsin B inhibitors and reference ligand (CA030) with corresponding energies obtained from 
the docking test performed using AutoDock v4.2 program. 

S.No C.Name BEe (kcal/mol) 
Ki 

(µM) 
IMEe 

(kcal/mol) 
Vdw-Hb-Ds 

(kcal/mol) 
Ee 

(kcal/mol) 
IEe 

(kcal/mol) 
TFEe 

(kcal/mol) 

1 
CA030 

N1* 
−5.89 
−4.11 

48.10 
964.9 

−6.32 
−6.45 

−6.77 
−7.10 

+0.44 
+0.66 

+0.16 
−1.23 

+0.27 
+3.57 

2 N2* −7.30 4.47 −8.96 −8.18 −0.78 −2.45 +4.12 
3 N3 −8.15 1.06 −8.49 −8.49 +0.00 −2.13 +2.47 
4 N4* −10.28 29.17 −9.54 −9.31 −0.22 −2.94 +2.20 
5 N5 −5.37 115.2 −8.85 −7.81 −1.05 −2.01 +5.49 
6 N6* −6.55 15.77 −6.75 −4.98 −1.77 −3.09 +3.29 
7 N7 −6.07 35.48 −6.00 −5.95 −0.05 −1.72 +1.65 
8 N8* −7.11 6.17 −8.15 −8.96 +0.81 +0.22 +0.82 
9 N9 −6.61 14.25 −8.28 −7.61 −0.67 −2.72 +4.39 
10 N10* −5.71 65.31 −5.76 −5.65 −0.11 −0.77 +0.82 
11 N11 −10.35 26.10 −9.91 −10.00 +0.08 −1.53 +1.10 
12 N12 −6.29 24.31 −6.29 −6.34 +0.04 +0.00 +0.00 
13 N13* −6.26 25.83 −8.34 −7.26 −1.08 −1.21 +3.29 
14 N14* −9.47 97.11 −7.27 −7.76 +0.49 −0.95 +2.74 
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15 N15* −6.20 28.60 −7.08 −6.94 −0.15 −2.41 +3.29 
16 N16 −5.30 130.1 −7.19 −6.13 −1.05 −1.68 +3.57 
17 N17* −8.57 522.5 −8.31 −8.23 −0.08 −2.46 +2.20 
18 N18 −7.16 5.61 −8.16 −6.46 −6.46 −0.10 +1.10 
19 N19 −5.93 45.25 −7.83 −7.67 −0.15 −1.94 +3.84 
20 N20 −5.92 45.44 −7.52 −7.45 −0.07 −1.42 +3.02 
21 N21* −9.35 0.134 −9.59 −9.40 −0.19 −2.24 +2.47 
22 N22 −5.03 205.2 −5.03 −4.95 −0.08 +0.00 +0.00 
23 S1* −5.70 66.00 −7.28 −7.52 +0.23 −1.16 +2.74 
24 S2* −6.42 19.52 −8.01 −8.01 +0.16 −1.16 +2.74 
25 S3 −6.65 13.30 −8.07 −6.52 −1.55 −2.43 +3.84 
26 S4* −6.38 21.20 −8.16 −8.19 +0.03 −0.96 +2.74 
27 S5 −8.05 1.26 −6.94 −6.94 −0.08 −2.20 +1.10 
28 S6 −5.55 84.91 −6.15 −6.02 −0.13 −0.51 +1.10 
29 S7* −6.26 25.76 −8.32 −8.30 −0.03 +0.42 +1.65 
30 S8 −7.56 2.89 −8.65 −8.50 −0.15 −0.83 +1.92 
31 S9* −6.86 9.35 −7.11 −7.11 −0.06 −0.30 −0.30 
32 S10 −7.92 1.56 −8.14 −8.10 −8.10 −1.42 +1.65 
33 S11 −7.71 2.23 −7.80 −7.77 −0.04 −1.83 +1.92 
34 S12 −6.63 13.86 −6.46 −6.33 −0.14 −1.81 +1.65 
35 S13 −5.61 77.13 −5.72 −5.62 −0.10 −0.44 +0.55 
36 S14 −5.84 52.54 −6.80 −5.14 −1.66 −0.41 +1.37 
37 S15 −7.21 5.18 −8.10 −7.88 −0.22 −1.03 +1.92 
38 S16 −5.15 16.76 −5.39 −5.28 −0.11 −0.31 +0.55 
39 S17* −9.34 0.14 −9.77 −9.55 −0.23 −1.48 +1.92 
40 S18* −7.18 5.50 −7.85 −7.82 −0.04 −0.42 +1.10 
41 S19* −8.07 1.21 −9.05 −6.28 −2.77 −1.22 +2.20 
42 S20 −7.19 5.36 −8.17 −7.99 −0.18 −0.67 +1.65 
43 S21 −6.95 8.05 −7.99 −8.02 +0.03 −0.88 +1.92 
44 S22* −7.41 3.72 −8.12 −8.18 +0.06 −0.66 +1.37 
45 S23 −6.43 19.44 −7.98 −7.95 −0.03 −0.92 +2.47 
46 S24 −6.98 7.70 −7.66 −4.46 −3.20 −0.14 +0.82 
47 S25* −7.20 5.27 −7.01 −6.92 −0.09 −0.74 +0.55 
48 S26 −7.86 1.73 −8.21 −8.08 −0.13 −1.02 +1.37 
49 S27* −7.97 1.43 −8.72 −8.69 −0.03 −0.63 +1.37 
50 S28 −6.99 7.52 −7.17 −7.21 +0.04 −0.64 +0.82 
51 S29 −6.91 8.67 −7.23 −7.14 −0.10 −0.50 +0.82 
52 S30 −6.16 30.57 −5.97 −5.86 −0.11 −0.74 +0.55 
53 S31 −6.70 12.23 −7.66 −7.50 −0.16 −0.96 +1.92 
54 S32* −6.59 14.68 −8.48 −8.28 −0.21 +0.24 +1.65 
55 S33 −5.19 155.8 −6.13 −6.05 −0.08 +0.11 +0.82 
56 S34* −7.10 6.20 −7.82 −7.78 −0.04 −0.93 +1.65 
57 S35 −7.25 4.83 −7.85 −7.69 −0.16 −1.05 +1.65 
58 S36 −9.37 135.9 −10.31 −10.15 −0.16 −1.52 +2.47 
59 S37 −7.19 5.40 −8.38 −8.39 +0.02 −0.45 +1.65 
60 S38 −6.23 27.29 −7.21 −7.13 −0.08 −1.76 +2.74 
61 S39 −6.82 10.08 −6.65 −6.63 −0.02 −1.26 +1.10 

BEe Estimated binding free energy in kcal mol−1; Ki Inhibitory constant in micro-molar; IMEe Final Intermolecular Energy 
in kcal mol−1; Vdw–Hb–Ds Van der waals-hydrogen bond-desolvation energy component of binding free energy in kcal 
mol−1; Ee Electrostatic energy in kcal mol−1; IEe Final total internal energy in kcal mol−1; TFEe Torsional free energy in kcal 
mol−1. 
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Figure 4. The key residues of the cathepsin B protein involved in interaction studies. (A) Dataset of 
61 known cathepsin B inhibitors. LigPlot+ (EMBL-EBI, v2.2, Hinxton, Cambridge, UK) analysis re-
sults represent two-dimensional protein–ligand interactions for highly active compounds of (B) nat-
ural and (C) synthetic origins. Hydrogen bonds are shown in green dotted lines, while residues 
interacting by hydrophobic interactions are represented in red. 

3.2. Generation and Validation of Mixed-Feature Ligand-Based Pharmacophore Models Using 
LigandScout 3.1 

In total, 61 compounds were identified from various literature and, as described pre-
viously, 24 of them were selected manually, considering the structural diversity and wide 
range of activity, as the training set (marked with * in Figure 2), while the remaining com-
pounds were used as the test set. Structures and biological activities of the training and 
test set compounds are indicated in Figure 2. The training and test set compounds were 
divided based on distribution of biological activities and chemical features. The dataset 
was classified into three categories, according to biological activity data: active (+++, IC50 
≤ 0.3 μM), moderately active (++, 0.3 μM < IC50 < 2.5 μM), and inactive (+, IC50 ≥ 2.5 μM). 
These molecules were distributed between the training set and test set. A maximum num-
ber of active and moderately active compounds, along with a few inactive compounds, 
were assigned to the training set compounds. The rest of the molecules were assigned to 
the test set for validation. The training set molecules included epoxides, pyridine, pyrrol-
idine, and potent acetamide compounds with high affinity to inhibit the cathepsin B do-
main. These available compounds provide ideal chemical structures for the development 
of cathepsin B inhibitors. Thus, these mixed-features pharmacophores were used to gen-
erate hypotheses based on the activity value of training set compounds. 



Cells 2021, 10, 1946 13 of 31 
 

 

The qualitative top 10 hypotheses were generated based on the training set mole-
cules, which are tabulated in Table 2. The first three generated hypotheses were selected 
for the study because they had the highest pharmacophore-fit score in Hypo I (74.81, 7 
matching features), Hypo II (75.24, 9 matching features), and Hypo III (75.98, 8 matching 
features). The matching features contained a combination of three chemical features, in-
cluding hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor 
(HBD). Hypothesis I (Hypo I) consisted of seven chemical features including one HY, five 
HBAs, and one HBD. A nine-feature hypothesis, Hypo II consisted of two HYs, five HBAs, 
and two HBDs. Hypo III contained two HYs, four HBAs, and two HBDs, constituting 
eight features overall (Figure 5A). 

Table 2. Details of top ten hypotheses generated using pharmcophore-fit and atom overlap scoring 
function. 

Hypothesis 
Name Features Matching 

Features 
Pharmacohore -

Fit Score b 
Hyp I HY, HBA, HBA, HBA, HBA, HBA, HBD 7 74.81 
Hyp II HY, HY, HBA, HBA, HBA, HBA, HBA, HBD, HBD 9 75.24 
Hyp III HY, HY, HBA, HBA, HBA, HBA, HBD, HBD 8 75.98 
Hyp IV HY, HBA, HBA, HBD, HBD, HBD 6 74.22 
Hyp V HY, HY, HBA, HBA, HBA, HBA 6 74.17 
Hyp VI HY, HBA, HBA, HBA, HBD, HBD 6 73.96 
Hyp VII HY, HY, HBA, HBA, HBA, HBA, HBA, HBD 9 74.65 
Hyp VIII HY, HBA, HBA, HBA, HBD, HBD, HBD 7 74.57 
Hyp IX HY, HY, HBA, HBA, HBD, HBD, HBD 7 73.42 
Hyp X HY, HY, HBA, HBA, HBA, HBA, HBA, HBD 8 74.11 

a HY = Hydrophobic; HBA = Hydrogen Bond Acceptor; HBD = Hydrogen Bond Donor. b Higher 
the pharmacophore – fit score, lesser the probability of chance correlation. The best hypothesis 
shows the highest value. 

The pharmacophore fit score calculates the matching of number of pharmacophore 
features. This could predict the activity of compounds in the training set with the lowest 
deviation, while the RMSD represented pharmacophore alignment to estimate average 
activity, since the pharmacophore fit scores of the first three hypotheses were selected to 
validate the pharmacophore models. The validity of any pharmacophore model needs to 
be determined by applying that model to the test set to find out how correctly the model 
predicts the activity and, most importantly, whether it can correctly differentiate between 
active and inactive molecules. The pharmacophore model hypothesis was validated by 
assessing the predictive ability of the pharmacophore on the test set database consisting 
of 37 known inhibitors of cathepsin B, along with a subset of the World of Molecular Bio-
activity (WOMBAT) database consisting of 741 molecules, active against different proteins 
than those used in present study, considered here as inactive. This validation gives confi-
dence to select the best pharmacophore from amongst the three generated pharmacophore 
hypotheses. The results for pharmacophore validation are summarized in Table 3. A num-
ber of parameters such as hit list (Ht), active percentage yield (% Y), percentage ratio of 
active molecules in the hit list (% A), enrichment factor (E), false negatives, false positives, 
and goodness of hit score (GH) are presented (Table 3). Using the pharmacophore hypoth-
esis Hypo I, 93 false positives were found, but only 28 active molecules were picked  

Table 3. Statistical parameters employed in mixed feature ligand-based pharmacophore generation 
of cathepsin B test set molecules. 

No. Parameter Hypo I Hypo II Hypo III 
1 Total number of molecules in the database (D) 796 796 796 
2 Total number of actives in the database (A) 37 37 37 
3 Total hits (Ht) 121 60 45 
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4 Active hits (Ha) 28 30 35 
5 % Yield of actives (Ha/Ht x 100) 23.15 50 77.78 
6 % Ratio of actives (Ha/A x 100) 75.68 81.1 94.6 
7 Enrichment factor (E) a 4.98 10.78 16.74 
8 False negatives (A - Ha) 9 7 2 
9 False positives (Ht - Ha) 93 30 10 
10 Goodness of hit score (GH)b 0.32 0.56 0.81 

a E = Ha x D/Ht x A. b GH = (Ha/4 Ht x A) (3A + Ht) X (1 − [(Ht - Ha)/(D - A)]. 

among the 37 in the test set. On the other hand, Hypo II showed 30 active hits, with 
7 and 30 false negatives and false positives, respectively. The pharmacophore hypothesis 
Hypo III (Figure 5A) showed minimal false positives and negatives, good enrichment fac-
tor and goodness of fit score, and was considered to be the best model for virtual screening 
among the three pharmacophore hypotheses. Overall, amongst the 45 hit molecules, 35 
molecules were observed to be correct, thus showing only 10 false positives and 2 false 
negatives. In addition, Hypo I, Hypo II, and Hypo III showed enrichment factors (E) of 
4.98, 10.78, and 16.74, and GH scores of 0.32, 0.56, and 0.81, respectively indicating that 
the quality of the pharmacophore models is within an acceptable range. These results in-
dicate that Hypo III is accurate enough to discriminate the active inhibitors from inactive 
or low-activity compounds. 

In addition to the pharmacophore validation, Hypo III was tested against the predic-
tive power of the pharmacophore model to differentiate between the most, moderately, 
and least active compounds in the training datasets. The training set molecules were clas-
sified into three categories based on their activity values: highly active (IC50 ≤ 0.3 μM, 
+++), moderately active (0.3 μM > IC50 < 2.5 μM, ++), and inactive (IC50 ≥ 2.5 μM, +). The 
error value is the ratio between the estimated and experimental activities. The positive 
error value indicates that the estimated IC50 value is higher than the experimental activ-
ity, whereas the negative error value indicates that the estimated IC50 value is much lower 
than the experimental activity. An error value of < 10 signifies the prediction of activity 
lesser than one order of magnitude. Among the 24 training set compounds, only 2 com-
pounds had an error value of greater than 3. The estimated activity values of the training 
set compounds were predicted with the same activity scale as the experimental activity, 
and are represented in Table 4. Among the 24 training set compounds, 1 active compound 
(+++) in the training set was estimated as moderately active (++), 1 moderately active com-
pound (++) was estimated as active (+++), and 2 moderately active compounds (++) were 
estimated as inactive compounds (+). The remaining compounds were estimated in their 
activity scale by Hypo III (Table 4). The most active compounds of the training set (Com-
pound S1, IC50: 8.65 μM) and their features flexibly aligned in Hypo III, and the least 
active compound (Compound N8, IC50: 125 μM) demonstrated poor alignment in the 
pharmacophore model (Figure 5B,C). The validated pharmacophore model could be used 
for searching structurally diverse compounds from the Maybridge molecular library da-
tabase  

Table 4. Experimental and estimated IC50 values of the training (shown *) and test set compounds 
based on the pharmacophore hypothesis ‘Hyp III’. 

Compound 
pIC50 

Error a Fit Value b 
Activity Scale c 

Experimental Estimated Experimental Estimated 
*N1 7.14 6.22 −1.1 74.21 +++ +++ 
*N2 6.89 7.24 +2.3 73.29 +++ ++ 
N3 5.76 5.45 +3.2 72.34 ++ ++ 
*N4 6.21 6.33 +0.9 71.91 ++ ++ 
N5 6.23 6.1 +2.9 70.14 ++ + 
*N6 6.58 6.44 −1.3 72.14 +++ +++ 
N7 6.55 6.44 −1.8 71.36 +++ +++ 
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*N8 3.91 4.23 +2.4 69.15 + + 
N9 5.59 6.27 −1.9 71.85 + + 

*N10 8.03 8.11 +1.2 75.12 +++ +++ 
N11 9.1 9.22 +2.5 69.71 +++ ++ 
N12 7.99 8.14 +1.5 72.49 +++ +++ 
*N13 8.28 8.22 −0.6 75.16 +++ +++ 
*N14 8.47 8.84 +2.2 76.12 +++ +++ 
*N15 6.57 8.53 +3.2 73.11 +++ +++ 
N16 6.49 6.78 −1.5 72.44 ++ ++ 
*N17 6.26 8.23 +3.1 71.94 ++ +++ 
N18 6.24 6.21 +1.3 72.45 ++ ++ 
N19 6.36 6.26 +2.2 71.88 ++ ++ 
N20 8.47 7.98 +3.7 72.67 +++ ++ 
*N21 5.77 5.72 −0.5 71.26 ++ ++ 
N22 7.34 7.31 +2.8 72..12 +++ +++ 
*S1 8.65 8.62 −0.3 77.68 +++ +++ 
*S2 8.55 8.53 −0.4 76.23 +++ +++ 
S3 8.4 8.34 −0.5 70.11 +++ +++ 
*S4 8.03 8.01 −0.3 75.1 +++ +++ 
S5 4.47 3.29 +3.1 72.4 + + 
S6 4.94 5.13 −1.6 71.85 + + 
*S7 5.7 4.91 −1.8 71.22 ++ + 
S8 4.91 4.9 +0.4 69.36 + + 
*S9 7.15 7.78 +1.6 74.29 +++ +++ 
S10 5.9 5.56 +3.4 71.36 ++ + 
S11 5.2 5.16 −0.3 70.88 + + 
S12 5.76 5.73 +2.4 71.73 ++ ++ 
S13 7.14 6.78 +1.2 71.49 +++ ++ 
S14 4.35 4.36 −0.1 70.34 + + 
S15 6.03 6.05 +1.9 71.13 ++ ++ 
S16 5.67 5.41 +3.7 72.55 ++ + 
*S17 5.02 6.01 +1.4 70.63 + + 
*S18 5.17 5.23 +1.1 70.89 + + 
*S19 4.71 4.67 −1.6 70.25 + + 
S20 5.05 5.03 +0.4 71.61 + + 
S21 4.39 4.38 +0.6 70.78 + + 
*S22 4.41 4.41 −0.8 70.16 + + 
S23 5.68 5.7 +1.5 71.64 ++ ++ 
S24 4.85 4.83 +2.1 69.52 + + 
*S25 5.38 5.96 +1.7 71.13 + + 
S26 4.43 4.42 +1.4 71.47 + + 
*S27 4.34 4.39 +0.6 69.67 + + 
S28 5.15 5.17 −0.5 71.45 + + 
S29 5.49 5.48 +1.6 70.43 + + 
S30 5.93 5.91 +1.1 69.71 ++ ++ 
S31 6.16 6.15 +1.1 72.43 ++ ++ 
*S32 6.36 7.63 +1.9 71.98 ++ + 
S33 6.07 6.08 +1.3 69.11 ++ ++ 
*S34 6.61 5.56 −1.8 73.45 +++ +++ 
S35 5.07 5.06 −1.1 74.23 + + 
S36 4.74 4.75 +1.2 71.26 + + 
S37 5.65 5.41 +1.3 72.84 ++ + 
S38 6.92 6.94 +1.1 71.04 +++ +++ 
S39 6.09 6.07 −0.3 70.09 ++ ++ 

a Positive value indicates that the estimated IC50 is higher than the experimental IC50; negative 
value indicates that the estimated IC50 is lower than the experimental IC50. b Fit value indicates how 
well the features in the pharmacophore map the chemical features in the compound. c Activity 
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scale: active, +++, IC50 ≤ 0.3 μM; moderate active, ++, 0.3 μM > IC50 < 2.5 μM; less active, +, IC50 ≥ 2.5 
μM). 

 
Figure 5. LigandScout was used to generate a three-dimensional pharmacophore model. (A) An 
eight-feature hypothesis (Hypo III) and its geometric constraints. Yellow indicates hydrophobic 
(HY), green indicates hydrogen bond donor (HBD), and red indicates hydrogen bond acceptor 
(HBA). (B) The best pharmacophore model (Hypo III) aligned to the training set’s most active mol-
ecule (compound S1; IC50 0.00224 μM) and (C) the inactive molecule compound N8 (IC50 125 μM). 
HY: hydrophobic, yellow; HBD: hydrogen bond donor, green; HBA: hydrogen bond acceptor, red. 

3.3. Virtual Screening and Hit Filtration 
3.3.1. Maybridge Database Screen and Fast Docking of Maybridge Molecular Library 
Hits Using AutoDock-Vina 

The three-dimensional pharmacophore-validated Hypo III model was utilized for 
virtual screening of the diverse compounds in the Maybridge molecule library. A total of 
60,538 small molecules from the Maybridge database were added in the LigandScout da-
tabase library to identify potential hit molecules against the cathepsin B protein. As a re-
sult, 1728 compounds (2.9% of the Maybridge database) were perfectly matched and 
aligned to all features in the Hypo III model. These molecules were subjected to fast dock-
ing using ADt-Vina. From the resulting data, the compounds were ranked based on their 
predicted binding energies. These rankings were used to evaluate the ability of ADt-Vina 
to preferentially select the active compounds. The binding pocket of the cathepsin B pro-
tein (PDB: 1CSB) was considered based on the bound ligand (CA030) in the crystal struc-
ture (Figure 6A). In general, the default parameters were used for ADt-Vina. The docking 
program reported multiple conformations and associated binding energies. In case of 
ADt-Vina, the lowest energy conformation was selected. The compound rankings were 
determined and then compared against the active CA030 ligand. ADt-Vina reduced the 
Maybridge datasets to 176 molecule hits (0.3% of the Maybridge database) after applying 
a cutoff value of ≥ −6.0 kcal/mol (Figure 3). As shown in Figure 6B, ADt-Vina displayed 
an accurate ranking of active compounds in cathepsin B. Quantified by an AUC measure 
(Table 5), ADt-Vina showed similar docking results for the Maybridge datasets (0.73) 
when compared to the AutoDock v4.2 (0.63) results. In terms of early recognition, utilizing 
the BEDROC measure, Vina (0.17) performed significantly better than AutoDock v4.2 
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(0.10) in the Maybridge database and the cathepsin B dataset (0.18 vs. 0.13) (Table 5). These 
molecules were further examined using Lipinski’s rule of five and visual inspection [65].  
This led to a reduction in the number of virtual screening hits to 18 molecules. These 18 
small hit molecules were subjected to re-docking analysis using AutoDock v4.2. The dock-
ing results of the 18 virtually screened small hit molecules are tabulated in Table 6, and 
their binding pose in the active site showed ligand conformations (Video S1). 

Table 5. Virtual screen statistics. Area under the curve (AUC) and Boltzmann-enhanced discrimi-
nation of receiver operating characteristic (BEDROC) 20 values were calculated based on the data 
shown in Figure 6. p-values were estimated using a bootstrap procedure based on 100,000 random 
rankings of the active compounds. 

Library   AUC p-Value BEDROC 20 p-Value 
Cathepsin B 

dataset 
Autodock v4.2 

Adt-Vina 
0.74 
0.72 

0.00039 0.00086 
0.13 
0.18 

0.12 
0.03 

Maybridge 
dataset 

Autodock v4.2 
ADt-Vina 

0.63 
0.73 

0.00067 
0.00088 

0.10 
0.17 

0.51 
0.0075 

 
Figure 6. (A) Cathepsin B and ligand CA030 interaction determined through LigPlot. (B) Virtual screen ranking of the 
Maybridge compound library. A total of 1728 screened Maybridge compounds were docked to cathepsin B using Auto-
Dock-Vina, then ranked by predicted binding energy. The plot shows the number of active compounds retrieved versus 
the total number selected (blue line for AutoDock 4.2 and green line for AutoDock-Vina). The grey line indicates the 
number of active molecules that would be expected to be returned based on a random selection of compounds. 

3.3.2. Structure Interaction Fingerprint Based Clustering 
The SIFts were generated for 61 inhibitors of cathepsin B and 18 virtually screened 

hit molecules obtained after docking and scoring as described above (Figure 7A). The den-
drogram was created by clustering SIFts of cathepsin B inhibitors and virtual screening of 
hit molecules and is shown in Figure 7B. The dendrogram showed two major clusters, 
each of which represents a distinct binding pattern in the ligand–protein complexes (Fig-
ure 7B). Cluster 1 (green color) was composed of 32.88% inhibitor molecules of cathepsin 
B (mostly less active) and 89.27% virtual screening hit molecules interacting with the ca-
thepsin B protein. Similarly, Cluster 2 (brown and pink color) was composed of 67.12% 
cathepsin B inhibitors, which were mostly highly and moderately active, and 10.73% vir-
tual screening hit molecules. Interestingly, each of these clusters was comprised of poses 
with similar binding patterns to the receptor; Cluster 1 contained molecules that repre-
sented distinct binding patterns that resulted in dissimilar interactions within the active 
site pocket formed by Gln23, His199, and Trp221 amino acid residues. Cluster 2 molecules 
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bound in a similar manner to the known inhibitor in the X-ray crystal structures of PDB 
ID: 1CSB (Figure 7C). Most of the inhibitors of cathepsin B were located at the interface 
between the active molecule and the substrate-binding cleft (Supplementary Figure S1A). 
The moieties such as pyridine, sulfanyl and phenyl present in the hits belonging to Cluster 
2 were predicted to occupy the protein’s active cleft. These played a critical role in peptide 
bond cleavage by Cys29 and interacted with His199 (Supplementary Figure S1B). These 
hits were buried deep within the binding groove and reached the catalytic residue Cys29 
and were involved in π–π interactions. These moieties are also predicted to be involved 
in strong hydrogen bonding interactions with the conserved residues Gln23, Gly27, and 
Gly74. In most cases, the virtual screening hit molecules protrude outside of the catalytic 
pocket and occupy the neighborhood position composed of Gln23, Gly74, and Gly198 
amino acid residues, belonging to the less active Cluster 1 (Supplementary Figure S1C). 

Table 6. Screened 18 hits from Maybridge database and corresponding energies values obtained from the re-docking val-
idation test performed using AutoDock program. 

S.No C.Name BEe (kcal/mol) 
Ki 

(µM) 
IMEe 

(kcal/mol) 
Vdw-Hb-Ds 

(kcal/mol) 
Ee 

(kcal/mol) 
IEe 

(kcal/mol) 
TFEe 

(kcal/mol) 
 

1 AW01196 −6.52 22.02 −6.37 −6.83 +0.46 −0.62 +2.47 
2 BTB03075 −8.17 1.02 −8.45 −8.42 −0.03 −1.37 +1.65 
3 BTB11814 −7.07 6.52 −8.04 −7.94 −0.10 −1.50 +2.47 
4 HTS05162 −7.65 2.46 −7.88 −7.77 −0.11 −0.87 +1.10 
5 JFD02054 −6.08 35.21 −7.56 −7.60 +0.04 −1.26 +2.74 
6 JP00474 −7.60 2.69 −8.08 −8.45 +0.36 −1.71 +2.20 
7 KM02757 −7.31 4.41 −7.72 −7.43 −0.28 −2.61 +3.02 
8 KM02759 −8.16 1.04 −9.25 −9.19 −0.06 −1.93 +3.02 
9 KM02760 −7.31 4.41 −7.42 −7.37 −0.05 −2.91 +3.02 
10 KM02777 −7.53 3.01 −8.22 −8.25 +0.03 −2.61 +3.29 
11 KM02922 −8.19 0.99 −8.47 −8.47 −0.03 −2.19 +2.47 
12 RF02795 −9.18 0.18 −9.44 −8.00 −1.44 −0.84 +1.10 
13 RJC00586 −6.29 24.43 −7.84 −7.81 −0.03 −1.20 +2.74 
14 S12294 −6.87 20.92 −6.45 −6.75 +0.30 −0.79 +1.37 
15 SPB02418 −7.15 5.75 −7.91 −7.62 −0.29 −0.61 +1.37 
16 SPB03394 −6.76 11.11 −7.01 −7.08 +0.08 −0.85 +1.10 
17 SPB03600 −8.01 1.35 −8.27 −8.15 −0.12 −0.83 +1.10 
18 SPB08054 −6.56 15.53 −8.21 −8.16 −0.05 −0.82 +2.47 

BEe Estimated binding free energy in kcal mol−1; Ki Inhibitory constant in micro-molar; IMEe Final Intermolecular Energy 
in kcal mol−1; Vdw–Hb–Ds Van der waals-hydrogen bond-desolvation energy component of binding free energy in kcal 
mol−1; Ee Electrostatic energy in kcal mol−1; IEe Final total internal energy in kcal mol−1; TFEe Torsional free energy in kcal 
mol−1 . 

Here, these hit molecules were involved in hydrophobic interactions with Tyr75 and 
Tyr177 residues (not shown here) and hydrogen bond interactions with residues His110 
and His199. Some other interactions were also found to occur in most of the inhibitors of 
cathepsin B viz. a hydrogen bond between O3 of the pyridine base and the Trp221 side 
chain, a hydrogen bond between Glu122 and N1 of the pyridine ring, and O4 hydrogen 
bonds with the imidazole ring of His199. 
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Figure 7. Screening based on structural interaction fingerprints (SIFts). (A) An illustrative representing the SIFt method-
ology. Fingerprints generated based on binding modes or pairwise interactions (H-bonds and vdW) formed between the 
proposed docking ligand conformation and a receptor. Step 1: identify the key binding residues of the receptor protein in 
the complex; step 2: represent each key residue by a bit string (contact, main chain (MC), side chain (SC), polar, non-polar, 
hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD)) according to the kind of interaction at that residue; 
step 3: concatenate 7-bit strings of all key residues to form a unique fingerprint, called an SIFt. (B) Dendrogram derived 
from agglomerative hierarchical clustering of SIFts of known cathepsin B inhibitors and virtual screening hits. Tanimoto 
similarity coefficient was used to calculate the similarity between the SIFts. (C) The key residues of the cathepsin B protein 
involved in interaction with virtual screening hit molecules. 

3.4. Prioritization and Binding Modes of Hit Molecules 
In order to prioritize virtual screening hits, visual inspection of the clusters and their 

binding modes was carried out with the following considerations: (1) the compound 
should be from Cluster 2; (2) the degree of occupancy of the enzyme, in particular related 
to the achieved protein–ligand surface complementarities; (3) the distance and the orien-
tation of the aromatic, aliphatic, or hydrophobic group in relation to His199 for π-stacking 
interaction; (4) the formation of a hydrogen bond with His110 and His111; and (5) the 
quality of the overall binding conformation. Overall, out of 18 compounds, 3 com-
pounds—i.e., BTB03075, KM02922, and RF02795—showed acceptable binding poses and 
met all five of the mentioned criteria. Table 6 shows the binding scores of the 18 May-
bridge hit compounds and, in comparison to the co-crystalized ligand (CA030), BTB03075, 
KM02922, and RF02795 demonstrated better binding scores. Figure 8 shows the binding 
pattern of the three representative compounds (BTB03075, KM02922, and RF02795) in the 
cathepsin B binding site (PDB ID: 1CSB). These molecules achieved hydrogen-bonding 
interactions with the key amino acids His110 and His111 in cathepsin B’s binding site via 
the imidazole side chain of the histidine amino acid. These require less distance to form 
hydrogen bonds with ligands, as the polar hydrogen atom of the imidazole ring acts as a 
hydrogen bond donor, while the basic nitrogen moiety is a hydrogen bond acceptor. The 
predicted binding modes of the Maybridge lead hits BTB03075, KM02922, and RF02795 
are shown in Figure 8. Similarly, to most of the cathepsin B inhibitors, identified hits were 
all anchored to the cavity by hydrogen bonds between the ligand and Trp221, along with 
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the p–p stacking interaction with His111 and His199. Aromatic rings of compounds 
BTB03075 (Figure 8A, a’), KM02922, and RF02795 (Figure 8B, b’ and C, c’) were embedded 
in the cavity formed by Trp221, Gln23, and His199 residues. Compound RF02795 showed 
the best results in terms of binding pattern and docking score amongst the 18 compounds 
in the 3 crystal structures, and its predicted binding affinity exceeded that of the co-crys-
talized ligands in the cathepsin B protein structure (Table 6). Regarding the binding pat-
tern of compound RF02795, its triazinyl is well accommodated at the binding site, inter-
acting with its amide functional group through hydrogen bonding with the key amino 
acids His110 and His111, fitting the hydrophobic methoxy phenyl ring in the vicinity of 
the hydrophobic side chains of the amino acids Trp30, Val176, Leu181, and Trp221, creat-
ing the hydrophobic pocket. These lead hits showed π–π stacking interactions and hydro-
gen bonding within the binding pocket of cathepsin B. The promising compounds all 
share common pharmacophoric features, such as a sulfur- and nitrogen-rich moiety (pyr-
idine, sulfonyl, thiophenyl,, triazinyl, etc.). 

 
Figure 8. Binding modes of lead hits obtained after virtual screening. (A) BTB03075 ligand in red, cathepsin B protein 
surface view (golden yellow); (a’) Maybridge BTB03075 ligand demonstrating interaction with cathepsin B protein key 
amino acid residues. (B) KM02922 ligand in yellow, cathepsin B protein surface view (green); (b’) Maybridge KM02922 
ligand demonstrating interaction with cathepsin B protein key amino acid residues. (C) RF02795 ligand in blue, cathepsin 
B protein surface view (purple); (c’) Maybridge RF02795 ligand demonstrating interaction with cathepsin B protein key 
amino acid residues. 

3.5. Molecular Dynamics Simulations 
BTB03075, KM02922, and RF02795 complexes with the cathepsin B protein were se-

lected for molecular dynamics (MD) simulation to determine the long-term stability of the 
docked complex. An additional purpose underlying the MD studies was to investigate the 
positional and conformational changes of lead compounds in relation to the active pocket 
and specific residues, in order provide insight into the binding stability. The stability and 
interactions of the receptor–ligand complex was analyzed after 20-ns MD runs, and the 
root-mean-square deviations (RMSDs) of binding site residues and ligand trajectory were 
plotted against longer time frames (Figure 9). To elucidate the flexibility in the ligand–
protein complex, we examined the root-mean-square fluctuation (RMSF) in each case of 
receptor–ligand complex (Figure 9A). RMSF analysis of protein–ligand complexes gave a 
maximum value of 6 Å for 1CSB-CA030. Initial stable RMSF flexibility was observed be-
tween 1 and 3 Å in the 1CSB protein backbone. Three large peaks of RMSF were seen 
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between residues at 30–60, 100–130, and 200–225, arising from the α-helix, loop, and β-
strand regions, and fluctuating between 3 and 6 Å (Figure 9A). This large peak was due 
to the binding of CA030, which affected the secondary structure of cathepsin B. There was 
no change in the secondary structure, although fluctuations in RMSF were observed in 
the α-helix, loop, and β-strand regions of cathepsin B upon BTB03075, KM02922, and 
RF02795 binding (Figure 9A). The average RMSD values of binding site residues of ca-
thepsin B while bound with compounds BTB03075, KM02922, and RF02795 were observed 
to be 1.87, 0.92, and 0.91, respectively, suggesting stable binding sites. However, signifi-
cant movements were observed for CA030, the bound inhibitor in the crystal structure of 
cathepsin B (PDB code 1CSB) (Figure 9B). MD further revealed that after 20 ns of simula-
tions, no significant changes in ligand-docked conformation were observed for lead hits 
(BTB02922, KM02922, and RF02795) either, with average RMSD values of 2.93, 2.15, and 
2.13 for BTB03075, KM02922, and RF02795, respectively (Figure 9C). Large movements 
were again observed in the case of the inhibitor-bound crystal structure of cathepsin B 
(Figure 9C, D). The results shown here confirm the docking stability of the predicted bind-
ing modes of BTB02922, KM02922, and RF02795. The trajectory generated from 20-ns MD 
simulation was then used to calculate ligand binding free energy using the MM-PBSA [66] 
and MM-GBSA methods [67]. Both the MM-PBSA and MM-GBSA methods can be used 
to quickly reproduce relative binding affinities for a set of ligands, with reasonable accu-
racy [68,69]. The MM-PBSA- and MM-GBSA-predicted ligand binding free energies are 
presented in Table 7, and strong correlation was observed between ligand binding free 
energies calculated from both the MM-PBSA and MM-GBSA methods. The MM-PBSA- 
and MM-GBSA-predicted ligand binding free energies for the three virtual screening hits 
were either much lower than or comparable with the known inhibitor of cathepsin B (Sup-
plementary Figure S2). 

Table 7. MM-PBSA and MM-GBSA predicted binding free energy components and standard deviations for the Maybridge 
virtual screen hits and reference ligand CA030. 

Compounds ΔEvdw ΔEelec ΔGMM ΔGPBpolar 

solvation 
ΔGPBnonpolar 

solvation 
ΔGGBpolar 

solvation 
ΔGGBnonpolar 

solvation 
ΔGMM−PBSA 

binding 
ΔGMM−GBSA 

binding 
CA030 −25.81 −40.86 −66.67 41.45 −5.42 36.62 −5.42 −25.22 −30.06 

BTB03075 −19.43 −39.35 −58.78 39.53 −5.94 31.97 −5.64 −19.25 −26.81 
KM02922 −29.50 −51.66 −81.66 46.48 −6.61 38.96 −6.61 −34.68 −42.20 
RF02795 −17.39 −58.86 −76.25 44.32 −6.38 37.24 −6.38 −31.93 −39.01 
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Figure 9. Molecular dynamic simulation performed for 20 ns. (A) The flexibility in the ligand–protein complex was exam-
ined by the root-mean-square fluctuation (RMSF) in each receptor–ligand complex. Evolution over time of the root-mean-
square deviation (RMSD) of (B) binding site residues, (C) ligands, and (D) proteins. 

3.6. Cathepsin B Inhibition Activity of Virtually Screened Hit Compounds 
To validate our mixed-feature 3D pharmacophore modeling and ligand-based virtual 

screening approach, we tested the cathepsin B inhibitory effects of the test compounds in 
vitro. The three hit molecules BTB02922, KM02922, and RF02795 were selected after pass-
ing our high-throughput screening protocol and showing higher pose stability in MD 
studies. These drug-like compounds were incubated with human cathepsin B in a concen-
tration-dependent manner. F-F-FMK was used as a positive control and was tested for % 
inhibition at a concentration of 10 μM only. The compounds—namely, BTB02922, 
KM02922, and RF02795—were tested at dose-dependent concentrations of 2.5 μM, 5.0 μM, 
10.0 μM, 15.0 μM, and 20.0 μM, and exhibited inhibition of the cathepsin B enzyme in the 
kinetic assay. KM02922 showed the best relative inhibitory activity at a relative inhibition 
of 44.67, 51.0, and 58% at concentrations of 2.5, 5.0, and 10 μM,, respectively (Figure 10). 
The second-best compound was BTB02922, which also showed a high percentage relative 
inhibition, but did not reach the level of compound KM02922. The control inhibitor (F-F-
FMK) demonstrated 69.67% relative inhibition of cathepsin B at a concentration of 10 μM. 
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Figure 10. The activity of virtually screened molecules using a cathepsin B inhibitory screening as-
say kit. Dose-dependent inhibition of cathepsin B activity by the virtually screened molecules. F-F-
FMK was used as a standard inhibitor of cathepsin B activity (positive control, 10 μM concentration), 
represented as inhibitor control (IC), whereas the solvent with enzyme only (negative controls) is 
represented as enzyme control (EC). Experiments were performed in triplicate. Data are represented 
as the mean ± SEM. 

4. Discussion 
AD is a neurodegenerative disease that affects neuronal cells, eventually leading to 

irreversible damage and death of neurons [70,71]. Identification of target-directed inhibi-
tors to combat this complex disease can greatly help in mechanism-based drug develop-
ment. Aβ plaques and tau hyperphosphorylation are two hallmark features of AD, and 
various reports have indicated that these events are not mutually exclusive [71–73]. The 
development of inhibitors against the cysteine protease cathepsin B, which participates in 
the breakdown of APP and is involved in Aβ pathology by acting as a beta-secretase, may 
be of vital importance. Hook et al. reported that the cysteine protease inhibitor E64d re-
duces Aβ in the brain and improves memory deficits in AD animal models by inhibiting 
cathepsin B, but not beta-secretase activity [74]. A neuroprotective role of cathepsin B is 
also reported in some of the studies by lowering Aβ levels and improving neuronal dys-
function in AD animal models [75–77]. Thus, a dual role of cathepsin B as a neurodegen-
erative and neuroprotective enzyme provides an important therapeutic target for AD. We 
have previously reported novel molecular scaffolds for Alzheimer’s acetylcholinesterase 
inhibitors using a rational drug design approach [42]. 

The current study investigated the step-by-step in silico drug screening protocol to 
identify new small molecules with cathepsin B inhibitory activity using a combination of 
molecular docking, pharmacophore mapping, SIFts, and molecular dynamics approaches. 
Firstly, anti-cathepsin-B compounds of both natural and synthetic origins were initially 
docked to the cathepsin B active site using AutoDock v4.2 (Table 1). The molecular dock-
ing technique is a fast method to analyze the binding affinity of the protein–ligand inter-
actions and has been implicated in the discovery of several drug molecules [78,79]. A lig-
and-based virtual screening (LBVS) pharmacophore model was developed using the lig-
andset module in LigandScout 3.1 [45]. This method was useful to identify the structural 
features of compounds interacting with cathepsin B, and to define the three-dimensional 
alignment of unique pharmacophoric features [80]. The LBVS method exploits the infor-
mation of compounds with inhibitory activity in order to retain important chemical and 
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physical properties required for the ligand to bind to the protein and elicit biological ac-
tivity and a pharmacological response [81]. Importantly, all LBVS is based on the common 
conception that all bioactive compounds interact with the protein (receptor) in a similar 
manner, leaving ample diversity in the dataset with similar functional groups, which can 
later be converted to pharmacophoric features that are related to ligand biological activity 
[82]. Therefore, these pharmacophoric features could underscore the chemical features of 
cathepsin B interaction. To generate 3D pharmacophore models, 24 potent cathepsin B 
inhibitors of both natural and synthetic origins were randomly selected as training set 
compounds, mainly comprising a broad range of small scaffold molecules previously re-
ported as having anti-cathepsin-B activity (Figure 2, marked with *). The training set rep-
resents the following classes: ethylene oxide, benzopyran, nitramide, pyrrolidine, diazo-
nium, triazine, and sulfonyl pyrazol (Figure 2, Table S1). Ten different hypotheses (Hypo 
I to Hypo X) were generated using pharmacophore-fit and atom-overlap scoring func-
tions, as shown in Table 2. The refinement of the hypothesis was carried out by adding 
the WOMBAT database of 741 compounds inactive against cathepsin B. This refinement 
process allowed us to validate the three pharmacophore hypotheses with the highest 
goodness of fit scores and enrichment factors. Finally, Hypo III, with eight features (2 HYs, 
4 HBAs, and 2 HBDs), was selected because it demonstrated the best features to distin-
guish between the active and inactive compound libraries described in Table 3. It was 
noted that all LBVS models share HBA and HBD features, reflecting that the group pre-
sent in all molecules that acts as H-bond acceptors and donors—expected to form H-bond 
interactions at the cathepsin B catalytic site with Cys29 and His199 (Figure 4A)—is crucial 
for anti-cathepsin-B activity [10]. 

The greatest challenge of the pharmacophore model is to discriminate the active and 
inactive compounds and predict the activity of the test/training sets at the same time. 
Thus, in order to carefully examine the quality of the proposed pharmacophore models, 
the following validation methods were used: (1) formation of the raining set to confirm 
that the used ligands are detected; (2) differentiation of the highly active, moderately ac-
tive, and less active compounds in the test set; and (3) non-active molecules (decoys) and 
active molecules to validate the predictability of the hypothesis, in order to pick the active 
from the unknown database. Furthermore, the performance of the 3D pharmacophore 
model is more accurately measured in larger, rather than smaller, datasets [83]; thus, the 
validation dataset consisted of 796 (759 decoys and 37 active) molecules. Hypo III correctly 
estimated the highly active (IC50 ≤ 0.3 μM, +++), moderately active (0.3 μM > IC50 < 2.5 
μM, ++), and less active (IC50 ≥ 2.5 μM, +) molecules (Figure 5, Table 4). 

After validation of pharmacophore Hypo III, it was employed for rapid screening of 
the drug-like chemical library obtained from the Maybridge database [84]. As a bench-
mark of the current study, small molecules were required in order to significantly reduce 
the database size by both satisfying pharmacophores and detecting the promising hits 
correctly. Around 1728 drug-like compounds matched to the Hypo III pharmacophore 
model, thereby yielding 2.85% of the Maybridge screen library. In addition, fast docking 
of 1728 drug-like molecules using ADt-Vena was employed to predict the binding confor-
mation and classify the ability of these molecules to form a stable complex within the 
binding cavity of the cathepsin B protein [85]. These hits were also predicted online for 
blood–brain barrier (BBB) penetration using an online BBB predictor [86] (Figure 3), re-
duced to 176 drug-like compounds. Moreover, the analysis of the ROC curves also as-
sesses the performance of the pharmacophore hypotheses in separating active from decoy 
compounds (Figure 6, Table 6), and could be effectively used to find novel anti-cathepsin-
B compounds. To this end, the pharmacophore model Hypo III, was employed to rapidly 
screen 176 drug-like compounds passing through visual inspection, Lipinski’s rule of five, 
and docking score; a total of 18 hits survived [87,88]. The ligand-binding energies for the 
protein–ligand complexes of each one of these 18 hits docked to the cathepsin B protein, 
and were obtained by performing LGA calculation (Table 6) [89]. LGA estimates the bind-
ing affinity for flexible ligand–receptor docking, which allows the accommodation of 
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many degrees of freedom. The top docked hits, with binding energy scores < −8.00 kcal 
mol−1, were sorted based on binding energy score (Table 6). The binding poses of these 
ligands were analyzed for their relative positions and orientations, and the various mo-
lecular interactions they formed in the binding site of cathepsin B, through the generation 
of SIFt profiles, which were utilized as a virtual screening tool to predict protein–ligand 
interaction contours when studied in the same target protein (Figure 7). Key representa-
tions of the interactions in binding pockets were similarly employed by Ritschel et al. for 
quantifying the similarities of binding site subpockets in order to explain the pharmaco-
logical effects of statin (HMG-CoA reductase) inhibitors based on pharmacophore finger-
prints [90]. The best docking poses from known cathepsin B inhibitors and virtual screen-
ing hits were clustered using similarity matrices (Rogers–Tanimoto coefficient) between 
all of the fingerprints (Figure 7B,C). The dataset used for the generation of SIFt profiles 
consisted of 79 molecules (61 known cathepsin B inhibitors and 18 virtual screening hits). 
Figure 7B shows a dendrogram of the less active (Cluster 1) and most active (Cluster 2) 
clusters obtained via the hierarchical clustering approach [53]. The binding mode of hit 
molecules presented in Cluster 2, identified through hierarchical clustering, suggested 
that the bound conformation of virtual screening hits strongly mimics the observed con-
formation of cathepsin B inhibitors at the protein-binding site. In the specialized case en-
vironment, the thiol and imidazole side chains of cathepsin B Cys29 and His199 amino 
acid residues form an ion pair [91]. The cleavage is then mediated by nucleophilic attack 
by S- from Cys29 on the carbon atom, followed by proton donation from His199 [91]. The 
SIFt outcome was promising because, although the SIFt dataset was assigned to the less 
active side of the cathepsin B inhibitors, ultimately, smaller clusters of active compounds 
containing lead-like molecules were obtained. These molecules form hydrogen bonds 
with His110 and His111 and π-stacking interactions with His199 (Figure 8). The promising 
lead compounds (BTB03075, KM02922, and RF02795) share common pharmacophoric fea-
tures, such as a sulfur- and nitrogen-rich moiety (pyridine, sulfonyl, thiophenyl, triazinyl, 
etc.). 

Molecular dynamic simulations are a key component of the drug discovery process 
to assess the conformational stability of the docked protein–ligand complexes, as well as 
to analyze the molecular interactions between the ligands and the protein-binding site 
residues [92,93]. The top three prioritized drug-like molecules, along with the cathepsin B 
crystal structure (PDB 1D: 1CSB) used for the virtual screening, were subjected to the same 
simulation parameters (Supplementary Materials). The RMSF and RMSD analyses re-
vealed that, for all four systems, there was minimal fluctuation in the flexibility of the 
protein backbone atoms, suggesting that binding of all three ligands remained stable, and 
that ligand binding did not affect protein stability throughout the course of the simulation 
run (Figure 9). In rational drug design, MM-PBSA and MM-GBSA are powerful tools for 
optimizing lead compounds, because they can critically analyze the interactions of ligand–
receptor bonds [55]. It has been suggested that electrostatic interactions dominate over 
non-covalent bonding in the recognition of molecular interactions between drug and tar-
get molecules [94]. However, this cannot always be true, as the geometric shape is also an 
important aspect, which is affected by other forces, such as van der Waals interactions, 
solvation/desolvation energy, and entropy. MM-PBSA and MM-GBSA predicted the 
binding free energy components of CA030, BTB03075, KM02922, and RF02795, as shown 
in Table 7 and Supplementary Figure S2. There are numerous studies where the critical 
interactions of the ligand–receptor pairs employed MM-PBSA and MM-GBSA approaches 
in a computing framework [95–98]. For example, by using biological and computational 
MM-PBSA free energy evaluation, a series of resveratrol derivatives to provide an expla-
nation for the anti-β-secretase (BACE-1 in neurons involved in Aβ deposition in the brain) 
activity in BACE-1 and oxytosis inhibition assay [99], while in another study, application 
of MD and explicit water thermodynamics was used to identify a new class of cathepsin 
B inhibitors [100]. 
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5. Conclusions 
In this study, we carried out LBVS of 60,538 Maybridge drug-like molecules by 

screening these compounds through a 3D pharmacophore model generated from novel 
inhibitors of cathepsin B, of both natural and synthetic origins. The pharmacophore model 
Hypo III represents a spatial orientation of eight specific molecular features, including 
two HYs, four HBAs, and two HBDs, which facilitate sufficient interactions for binding to 
cathepsin B and, consequently, the potential inhibition of its protease function. The most 
active molecule in the training set fits the pharmacophore model perfectly with the highest 
scores. We found 1728 compounds with the relevant eight-feature pharmacophore. These 
1728 Maybridge compounds were then tested by fast docking using AutoDock-Vina to 
perform virtual screening and assess their ability to cross the BBB, which reduced the 
number of drug-like compounds to 176. Docking score and Lipinski’s rule of five further 
lowered the number to 18 compounds. SIFt mapping made it possible to quickly shortlist 
promising compounds and automate the visualization of putative active binding modes 
using hierarchical clustering. The active Cluster 2 demonstrates important interactions, 
including hydrogen bonding and π–π stacking with the key residues in the cathepsin B 
binding site residue, viz. Gln23, Gly24, Gly27, Asn72, Gly74, His110, Glu122, Met196, 
Gly198, His199, and Trp221. Enzyme assay was performed on three virtually screened 
compounds to validate the pharmacophore hypothesis, and KM02922 was found to be a 
potent cathepsin B inhibitor. However, compounds BTB03075 and RF02795 showed a 
lower percentage of relative inhibitory activity. Furthermore, the stability of the lead mol-
ecules was subjected to 20-ns scale MD simulations in order to satisfy the selected phar-
macophore model. MM-PBSA and MM-GBSA calculation are predicted to inhibit the ca-
thepsin B activity, with significant binding energies. We successfully identified new enti-
ties—including pyridine, acetamide, and benzohydrazide derivatives—that have not 
been previously characterized in the published literature as AD cathepsin B inhibitors. 
These findings may be useful from a medicinal chemistry and combinatorial chemistry 
perspective to obtain new molecular starting points for the design and optimization of 
novel cathepsin B inhibitors for AD. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/cells10081946/s1, Figure S1: (A) Active site of cathepsin B, displaying the binding mode 
of some cathepsin B inhibitors; (B) virtual screening hits belonging to active Cluster 2 compounds 
displaying π–π interactions; and (C) virtual screening hits belonging to less active Cluster 1, which 
contains molecules with distinct binding modes. Some representative images of structures are 
shown; Figure S2: Correlation plot between MM-PBSA- and MM-GBSA-predicted binding free en-
ergy of in silico screening hits; Table S1: Ligand dataset used to generate three-dimensional pharma-
cophores. Physicochemical properties of the ligand dataset. MW: molecular weight; XLogP3-AA: oc-
tanol-water partition coefficient; HBD: hydrogen bond donor; HBA: hydrogen bond acceptor; RBC: 
rotatable bond count; TPSA: topological polar surface area; HAC: heavy atom count; IC50: half-max-
imal inhibitory concentration (nM); Table S2: In silico absorption, distribution, and toxicity predic-
tion of natural compounds. HIA: human intestinal absorption; IVCCP: in vitro Caco-2 cell permea-
bility; IVMCM: in vitro MDCK cell permeability; LogKp: in vitro skin permeability; IVPPB: in vitro 
plasma protein binding; BBP: in vivo blood–brain barrier penetration (C.brain/C.blood); Table S3: In 
silico absorption, distribution, and toxicity prediction of synthetic compounds. HIA: human intesti-
nal absorption; IVCCP: in vitro Caco-2 cell permeability; IVMCM: in vitro MDCK cell permeability; 
LogKp: in vitro skin permeability; IVPPB: in vitro plasma protein binding; BBP: in vivo blood–brain 
barrier penetration (C.brain/C.blood); Video S1: Binding mode of virtually screened hit molecules. 
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