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Abstract 

The COVID-19 pandemic presented a challenge to the global research community as scientists rushed to find solutions 

to the devastating crisis. Drawing expectations from resilience theory, this paper explores how the trajectory of and 

research community around the coronavirus research was affected by the COVID-19 pandemic. Characterizing 

epistemic clusters and pathways of knowledge through extracting terms featured in articles in early COVID-19 

research, combined with evolutionary pathways and statistical analysis, the results reveal that the pandemic disrupted 

existing lines of coronavirus research to a large degree. While some communities of coronavirus research are similar 

pre- and during COVID-19, topics themselves change significantly and there is less cohesion amongst early COVID-

19 research compared to that before the pandemic. We find that some lines of research revert to basic research pursued 

almost a decade earlier, whilst others pursue brand new trajectories. The epidemiology topic is the most resilient 

among the many subjects related to COVID-19 research. Chinese researchers in particular appear to be driving more 

novel research approaches in the early months of the pandemic. The findings raise questions about whether shifts are 

advantageous for global scientific progress, and whether the research community will return to the original equilibrium 

or reorganize into a different knowledge configuration. 
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1. Introduction 

In all the attention given to research on COVID-19, ample studies have focused on who is working with whom (Banda 

et al., 2020; Colavizza et al., 2020; Fry et al., 2020; Kokudo & Sugiyama, 2020; Kyhlstedt & Andersson, 2020; 

Mohamed et al., 2020). In contrast, the literature places much less focus on the type and direction of research during 

the pandemic. In earlier work, we showed that in the earliest days of the pandemic there was an explosion of research 

on coronavirus-related topics, and that China and the US led the effort, on their own as well as cooperating actively 

on COVID-19 research (Fry et al., 2020). Complementing this early analysis with data from additional months, we 

find that a total of 18,000 papers had been published on coronavirus-related topics between January and the end of 

June 20201. We find that the number of authors on coronavirus research articles immediately dropped at the onset of 

the pandemic, and it has continued to drop over the COVID-19 period. This rush to produce relevant research, 

combined with the observation that the structure of scientific teams has changed during the pandemic, raises the 

question of how the crisis influences the trajectory of research being conducted.  

 

In this paper, we explore how the crisis affected the trajectory of coronavirus research by viewing the scientific process 

as a complex system that can be modeled and studied (Contractor et al., 2006; Lee & Monge, 2011; Monge et al., 

2008). This approach includes modeling parts of a multilevel construct, as complex systems are characterized by 

hierarchies (Simon, 1991) or multiples levels (Monge & Contractor, 2003). We consider clusters of topics, and topics 

themselves, as levels of the hierarchy of the system of coronavirus research. The clusters represent the epistemic 

organization of fields. Expectations on how topics and clusters of topics are affected by the crisis are drawn from 

resilience theory, which was developed by ecologists to explain how systems achieve and maintain equilibrium, and 

how they recover after a catastrophic disruption (Folke, 2006; Holling, 1973; Walker & Salt, 2012). Prior research in 

this area has identified that a system will attempt to absorb a disturbance and re-organize whilst maintaining a similar 

structure and function, but at the same time disturbance allows for the emergence of new trajectories and some new 

features to emerge. By comparing the trajectory of coronavirus research and the stability of scientific topics before 

and during the COVID-19 crisis, we are able to contribute to a better understanding of the extent to which the research 

community draws on prior knowledge and re-stabilizes during the crisis, and whether coronavirus research becomes 

more novel during COVID-19. We expect that, following a disruption, the coronavirus topics will return to core 

clusters of topics (or ‘pillars’, strong ‘species’) and will begin to reorganize around these pillars. We further expect to 

see some ‘fragile’ and perhaps less relevant topics and clusters of topics fall off, while other topics reorganize or draw 

from previous periods in response to the crisis.  

 

In order to test these propositions, we analyze the various levels of the system of coronavirus research before COVID-

19 and in the early months of the pandemic. We compare topic clustering of the two time periods - the pre-COVID-

19 period (2009 – 2019) and the COVID-19 period (January – April 2020). This paper uses concepts from network 

analysis, combined with topic evolution and statistical analysis to reveal how coronavirus topics evolve and recombine 

across the corpus of knowledge to address a critical scientific problem. Specifically, we use data on key terms featured 

in scientific articles before and during the COVID-19 pandemic to view the evolutionary pathways of topics in order 

to characterize research trajectories and to see how much prior knowledge fed into early pandemic research. We also 

explore the impact of the disruption on the knowledge space surrounding coronavirus research. We study the 

relationships between communities of topics, and the prevalence of different actors across the map of research 

communities using network analysis and statistical methods.  

 

This paper is organized as follows: Section 2 discusses related work in topic analysis by reviewing previous studies. 

Section 3 details the data and methodology for this project, outlining the research framework and details about data 

acquisition and analysis. Section 4 presents the results and empirical insights identified during the study. Section 5 

offers discussion and conclusions. 

 

2. Literature Review 

A large literature has explored the determinants of the direction of research across a number of different disciplines. 

Studies have found that the direction of research across communities of scientists can be explained by incentives 

(Acemoglu & Linn, 2004; Azoulay et al., 2019; Finkelstein, 2004); peers and team composition (Catalini et al., 2020; 

 
1 Gathered from sources: Scopus, Web of Science, PubMed Central, and Preprints. 
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Ganguli, 2015) and the availability of supporting infrastructure and tools (Furman & Teodoridis, 2020). Despite this 

progress, however, this literature is limited in the extent to which it can help predict what would happen in a crisis. 

During a crisis all of these drivers of research direction change, in addition to a disruption to the underlying system 

that these researchers are embedded in. 

 

That said, resilience theory could provide some useful lessons on how research trajectories change during a crisis. 

Resilience analysis compares a system’s ability to adjust to disruption and to regain basic functionality after 

catastrophic events (Gao et al., 2016), and describes how a system persists or changes during a disruption, proposing 

that ‘‘resilience determines the persistence of relationships within a system and is a measure of the ability of these 

systems to absorb changes of state variables, driving variables, and parameters, and still persist’’ (Holling, 1973, p. 

17). The coronavirus research community can be viewed as a network of connections. The nodes self-organize into 

groups that cluster around epistemic topics of interest, and these topics themselves cluster into relevant groups. 

Scientific communities and topic clusters have been shown to be complex, self-organizing systems (Borrett et al., 

2014; Wagner & Leydesdorff, 2005) and epistemic communities often track with the map of science by reflecting 

disciplines and subdisciplines (Börner et al., 2012). Events leading to loss of order—in this case, a pandemic—are 

rarely predictable; in nature, they can cause irreversible damage depending upon resilience and the environment. In a 

knowledge system, the disruption and resilience of a knowledge community can reveal aspects of knowledge creation 

that provide insights into dynamics. 

 

Specifically, we expect that the epistemic cluster of coronavirus research will be disrupted and will reassemble to 

reflect new priorities imposed by the COVID-19 experience. However, not all is lost during a crisis, and a system 

begins to return to stability over time. In particular some species are more resilient than others during a crisis, and we 

argue that some topics that are most fit for the changing landscape will be resilient through a crisis whilst others that 

are less fit will either fall into extinction or reorganize and exhibit novelty. In the same vein, some communities of 

researchers will be able to stabilize or reorganize better than others, depending on the flexibility in their institutional 

systems and the underlying knowledge base driving their baseline stable state.  

 

We explore these hypotheses using a combination of topic extraction and network analysis. Topic extraction, 

clustering, mapping, and analysis is a tool of science, technology, and innovation policy (STIP) analysis (Zhang et al., 

2016), pioneered by Allan (2012). Specific software analyzes topics drawn from scientific documents (e.g., research 

articles, patents, and academic proposals) to trace evolutionary trends in research outputs. Collections of documents, 

or ‘bags of words,’ can be tapped to identify trends in technology development, manufacturing processes, materials, 

and the evolution of research areas (Blei, 2012). Chen et al., (2010) and Ding and Chen (2014) further developed the 

tools. Lee et al. (2009) and Zhang et al. (2017a) created tracings of the historical pathways of technological 

innovations. 

Topic extraction seeks groupings or patterns, items, and objects from text (Jain, 2010). Clusters of related terms are 

revealed through clustering algorithms, such as K-means (Jain et al., 1999), latent semantic analysis (Deerwester et 

al., 1990), and latent Dirichlet allocation (Blei et al., 2003). Granularity can be adjusted based upon the research 

question: for example, discipline-level topic extraction from a global database can provide the outlines of a discipline. 

Topic extraction can be combined with other data analytic techniques (e.g., network analysis and natural language 

processing) or specific bibliometric indicators (e.g., citation/co-citation metrics) to trace topic evolution in the 

bibliometric literature (Suominen & Toivanen, 2016; Waltman & Van Eck, 2013; Zhang et al., 2018). Novel topics 

can be difficult to identify if an analyst is limited to the historical list of scientific disciplines (Small et al., 2014), the 

advantage of this clustering approach is shown in the bottom-up organization of information, obviating the need to 

bin words into pre-existing categories of science.  

 

Measures of network resilience exist, but these are in early stages of development. Gao et al. (2016) suggested a 

measure for resilience that improves upon the one-dimensional linear equation common in ecology (Folke 2006). The 

system is measured in one of the stable fixed points and then again when it loses its resilience and undergoes a sudden 

transition to a different, often undesirable, fixed point of the equation. Gao et al. (2016) sought to improve upon this 

static measure by accounting for the dynamic state of a network, its many variables, by offering a multi-dimensional 

manifold over the complex parameter space characterizing the system. The Gao et al. (2016) method looks very 

appealing to us, but the technical specifications are difficult to achieve. Thus, we measure network centrality of topics 

to assess the network structure of coronavirus research in three different states before and during the pandemic. The 
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three states are the ten years prior to the pandemic, the first three months of COVID-19 research, and the six months 

prior to this publication, May-October, 2020. 

By combining network analysis with topic extraction, in this study we present two sets of networks, one, non-

directional networks showing coronavirus research in the ten years before the pandemic and then at two points during 

the pandemic, where topics are the nodes and connections between topics are the edges. Topics, and clusters of topics, 

are likened to species in an ecosystem which become disrupted by the pandemic event. In addition, we use directional 

networks to show topic evolution over time among, where nodes are topics and edges are directional, evolutionary 

relationships. We examine both networks and complement this with statistical analysis of changes in topics before 

and after the pandemic, for structural change as a result of COVID-19. 

 

3. Data and Methodology 

Data 

To study the knowledge system around the coronavirus, our study focused on two datasets, one before and one after 

start of the 2020 pandemic. To allow comparisons, we used a similar data search strategy and database as that used in 

our pilot study (Fry et al., 2020). One dataset contains articles about coronavirus in the 10 years leading up to the 

COVID-19 crisis (between January 1, 2009 and December 31, 2019). The second dataset contains articles, notes, 

letters, and preprints about coronavirus research during the COVID-19 crisis period (between January 1, 2020 and 

April 23, 2020).  

 

For the topic clusters, we continue the work begun in our pilot study Fry et al. (2020), where we showed the 

coronavirus research ecosystem before and in the early days of the COVID-19 crisis through examining research 

topics featured in published artefacts before and during the crisis. These networks use keyword analysis to reveal 

epistemic communities. 

 

For all of the analysis, we extracted all articles from the Clarivate Web of Science (WoS), Elsevier Scopus, PubMed 

Central, and Dimensions (including preprint servers: bioRxiv.org, medRxiv.org, and arXiv.org) that contain the 

following words in the Title/Abstract/Keywords: "COVID-19" OR "2019-nCoV" OR "coronavirus" OR "Corona 

virus" OR "SARS-CoV" OR "MERS-CoV" OR "Severe Acute Respiratory Syndrome" OR "Middle East Respiratory 

Syndrome" in the time period analyzed.  

 

Table 1 shows the summary of data collected. The searches produced 33,598 published articles with author-identifiable 

information across the two periods. Particularly, in the COVID-19 period, 2,147 preprints were pulled. Duplicate 

articles were eliminated.  

 

Table 1 Data source and publication data. 

Number of publications 

Source Pre-COVID-19 (January 1, 2009 to 

December 31, 2019 

COVID-19 (January 1, 

2020 to April 23, 2020) 

Scopus 10,012 1,714 

Web of Science 7,838 822 

PubMed 28,484 4,334 

Preprints (BioRxiv/MedRxiv/arXiv) N/A 2,147 

Combined (duplicates dropped) 30,660 6,337 

Combined, with topic data 28,543 3,485 

Combined, with topic and affiliation data 27,424 3,128 

 

Note: We included preprints in the COVID-19 period because the time pressures imposed by the pandemic crisis 

propelled ready and open sharing of even initial results, which may help us understand the early response of 

researchers to the COVID-19 crisis. 
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While our main analysis incorporates COVID-19 articles produced between January 1 2020 to April 23 2020, we 

collect additional data on articles published between May and October 2020, using the same search strategy. We use 

this supplemental medium to longer-term data to generate co-term map (as shown in Fig. 4). Unless otherwise 

specified, the COVID-19 period refers to January 1, 2020 to April 23, 2020. 

 

Methodology  

Fig. 1 illustrates the framework applied in this study of the coronavirus knowledge ecosystem before and during the 

COVID-19 pandemic. On the left, the triangle represents three distinct levels of knowledge creation whereby a variety 

of actors drive the knowledge flow through the levels. The first level of clustering of knowledge is at the topic or 

component level. We expect that topics can then be clustered at a higher level into communities (research area), and 

then, eventually, into disciplines (not addressed in this paper). Each level can be studied for characteristics.  

 
Fig. 1 Research framework 

 

As described in Fig. 1 in the main text, this study focused on terms and bibliographical information collected from 

scientific articles. The main methodology includes topic extraction and evolutionary pathways. Specifically, topic 

extraction profiles the technological landscapes of the coronavirus research in the pre- and COVID-19 periods. 

Evolutionary pathways trace the knowledge flow of the coronavirus research by identifying topics and their 

relationships over time. Further, we used network analytics to detect research communities from the evolutionary 

pathways, and then investigated the role of key actors (e.g., affiliations, international collaborations, and research 

communities) in driving this knowledge flow through statistical analysis. Each of these parts is described below, and 

in a more detailed Appendix. The aim is to thoroughly understand key research topics in the coronavirus research, to 

discover how these topics evolve from existing knowledge, and how new knowledge in the COVID-19 period is 

created.  

 

(1) Data pre-processing 

 

Data pre-processing creates the basic information for the analyses of topic mapping and evolutionary pathways. Using 

titles and abstracts from the articles in the datasets described above, we conducted two distinct data pre-processing 

functions on the dataset: First, we applied a natural language processing (NLP) function, integrated in VantagePoint2 

Software, to retrieve terms (i.e., multi-word phrases) from the combined field (titles and abstracts), and then a term-

clumping process (Zhang et al., 2014) to identify core terms by removing noise and consolidating synonyms. These 

become the input in an evolutionary pathways phase. Second, we applied the Word2Vec model (Mikolov et al., 2013) 

to the raw text of the combined field and generated phrase vectors by matching core terms and word vectors (each 

 
2 VantagePoint is a software platform for bibliometrics-based text analytics and knowledge management owned 

by Search Technology Inc. More details can be found at the website: www.vantagepoint.com. 
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word is represented by a vector, which is the raw output of the Word2Vec model). This set becomes an input in the 

topic extraction phase.  

 

In the pre-processing stage, the bibliographical information of articles was collected and would be used as indicators 

for further statistical analysis. At the article level, we categorized articles by author affiliation types and country of 

the institution affiliated by the author. Specifically, an article’s author affiliations were classified into ‘academic,’ 

‘industry,’ ‘government,’ or ‘other’ based on organization types, using full counting. That is, an article involving both 

‘academic’ and ‘industry’ affiliations are classified as both academic and industrial. This was done using Clarivate’s 

Incites database which allowed us to match extracted affiliations with Incites organizational names and classifications. 

Further, according to the countries identified in previous work (Fry et al., 2020), a set of dummies were set for each 

article indicating the presence of international collaboration where at least two distinct countries/regions of author 

affiliations, such as Chinese authorship, USA authorship, and China-USA collaboration. These data were used later 

to map topics to sectors.  

 

(2) Topic extraction 

 

Based on the phrase vectors (above), topic extraction was employed to profile the technological landscape of 

coronavirus research and to identify key research topics in the pre- and COVID-19 time periods. Here, a “topic” is a 

set of related core terms, representing specific components, such as technologies, research areas, equipment and 

materials within the corpus. Topics become the basis for co-word maps such as that shown in Figs. 1-3.  

 

At this stage, an additional analysis was conducted to better define and link terms. In earlier work, Zhang et al. (2018) 

showed that the incorporation of K-means approaches and word embedding techniques is superior in clustering 

bibliometric data to earlier methods. In this paper, we further refined the method by introducing an “elbow method” 

(Jain et al., 1999) which seeks the most local-optimal number of topics in an unsupervised way. We further conducted 

topic extraction by phrase vectors, which provides a richer solution for knowledge representation than would be seen 

for individual words. Technical details on this unsupervised K-means approach are described as below. 

 

Step 1: Determine the number of topics 𝑘 and the maximum times of iteration. 

 

Step 2: Randomly initialize 𝑘 phrase vectors as the starting centroids 𝐶 of 𝑘 topics. 

 

Step 3: Assign each phrase vector 𝑣 to its nearest centroid using cosine similarity maximization (Salton & McGill, 

1986), see Equation (1)  

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑣, 𝐶) =  
𝑣 · 𝐶

√𝑣 · 𝑣 · √𝐶 · 𝐶
(1) 

 

Step 4: Recalculate every centroid by averaging all allocated phrase vectors, see Equation (2)  

 

𝐶𝑖 =
1

𝑁𝑢𝑚𝑖
∑ 𝑣𝑖,𝑗

𝑁𝑢𝑚𝑖
𝑗=1 (2)                                          

 

where 𝐶𝑖 and 𝑣𝑖,𝑗 respectively represent the centroid of Topic 𝑖 and the 𝑗th phrase vector in Topic 𝑖, and 𝑁𝑢𝑚𝑖 is the 

total number of phrase vectors in Topic 𝑖; 
 

Step 5: Iterate Steps 3 and 4 until all the 𝑘 centroids stop moving or the maximum iteration is reached. 

 

The super parameter 𝑘 of K-means approaches has been criticized for decades because it could sensitively influence 

the performance of the approaches. Thus, we integrated the ‘elbow’ method to the above K-means algorithm, which 

then provides an unsupervised solution for deciding an optimal 𝑘 in a given interval. The elbow algorithm is described 

as follows: 

 

Step 1: Provide an interval for setting the number of topics 𝑘, and iteratively implement the above K-means algorithm 

with an incremental 𝑘. 
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Step 2: For each clustering solution, calculate the value of its corresponding distortion 𝐷(𝑘) which is expressed by 

the sum of squared distances from each phrase vector to the centroid of its assigned topic, see Equation (3) 

𝐷(𝑘) = ∑ ∑ 𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑖,𝑗 , 𝐶𝑖)

𝑁𝑢𝑚𝑖

𝑗=1

𝑘

𝑖=1

(3) 

                             

Step 3: Find the local maximum value of 𝐷(𝑘) − 𝐷(𝑘 − 1) to numerically identify 𝑘 that yields the largest decreasing 

rate in distortion. 

 

The phase of topic extraction produces a list of topics represented by a set of core terms related to the coronavirus 

research, which provides a clue to understand the technological landscape of related research. 

 

(3) Evolutionary pathways 

 

We applied the scientific evolutionary pathways (SEP) process introduced by (Zhang et al., 2017b) to trace the 

evolution of scientific topics. The design of the SEP was inspired by an assumption that scientific invention is the 

recombination of established knowledge (Fleming, 2001; Fleming & Sorenson, 2004), and we then assumed scientific 

evolution is the result of cumulative changes occurring within established scientific inventions, which could be 

represented by research topics (e.g., theoretical concepts and technological components). One example is the topic 

“data mining”, which referred to techniques in database management and data warehousing in the 1990s, but it is 

closely related to machine learning these days, even though database management could be still a part of the topic. 

That is to say, the evolution of topic “data mining” is reflected by the extension of its feature space (e.g., new features 

such as “machine learning” were involved) and the change of the distribution of those features (e.g., the proportion of 

“database management” was decreasing, while that of “machine learning” was increasing). Given the challenge, the 

SEP algorithm was developed to track scientific evolution by monitoring a topic’s feature space and the distribution 

of these features. Specifically, the connections between evolved topics (e.g., machine learning-based data mining) and 

their original topics (e.g., database management-based data mining) were defined as predecessor-descendant 

relationships. 

 

We applied the SEP approach to track the convergence and divergence of research topics on coronavirus research and 

reveal connections between COVID-19 research and prior knowledge (for technical details on the SEP approach, 

please see Appendix B). We traced the evolutionary pathways of coronavirus research in the past decades (2009-2020) 

through topics and their predecessor-descendant relationships, which help us to discover potential knowledge flows 

and knowledge recombination between COVID-19 and existing research topics. 

 

This analysis is conducted with articles as the core unit of analysis. Articles co-occurring in the same year are grouped 

in a ‘time slice’, then, the entire dataset is analyzed as a bibliometric stream. The stream connects topics across time 

by classifying them into categories based upon whether they have remained within the text corpus without interruption, 

called “live” topics, or, they dropped out of use, and therefore called “dead” topics. A third option is those topics that 

dropped out of use but are revived for coronavirus research, called “resurgent” topics. The latter type of topic recalls 

the ‘sleeping beauties’ concept defined by Van Raan (2004), who pointed out that some topics fall away but are 

revived later when needed for scientific explanation.  

 

This process defines that a ‘live’ topic could be ‘dead’ if it does not capture new knowledge (i.e., assigned articles) in 

two sequential time slices. A ‘dead’ topic may be revived and become ‘resurgent’ if a new topic shares high similarity 

with it. We specifically focused on three types of topics: 

• “Always alive” topics – topics that were born early (e.g., several years before 2020 – in this paper we specifically 

chose topics born in 2017 or before) and are always alive and never become ‘dead’, which may indicate key 

research areas of the field. 

• “Resurgent” topics – topics that are ‘dead’ but were resurged later, and are alive until the last time slice (i.e., 2020), 

which may indicate certain resurging interests of the community due to the sudden change of related situations 

(e.g., new materials and equipment, ground-breaking findings, and the upset of existing knowledge). 

• “Emerging” topics – topics that were born recently (i.e., 2020), which may indicate new and influential research 

areas. 
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Technically, we constructed a universal feature space for the entire dataset, in which each feature represents one term. 

Thus, one article could be represented as a vector, in which ‘1’ means the article contains the term represented by that 

feature, vice versa. Geometrically, we described a topic as a circle, using a ‘centroid’ (i.e., the mean of all involved 

articles) and a ‘boundary’ (i.e., the largest Euclidean distance between the centroid and its involved articles), and the 

analysis of evolutionary pathways seeks similarity between a current article and centroids of all “live” topics via 

Salton’s cosine (Salton & McGill, 1986). The similarity in the SEP algorithm is the key to monitor the change of 

topics (in either their feature space or the distribution of their features). We assigned each article to its most similar 

topic. If an article’s Euclidean distance to the centroid of a topic is smaller than its boundary, it will be directly assigned 

to the topic, indicating the content of this article is closely related to the topic. Or else, this article will be labeled as 

‘drift’, since its content is not exactly the same as this topic, indicating potential evolution might occur in the topic. 

Then, we moved to analyze the next article. 

 

At the end of each ‘time slice’, we checked the status of each topic – i.e., set topics as ‘live,’ ‘dead,’ and ‘resurgent.’ 

For each ‘live’ topic, we applied the unsupervised K-means approach introduced above to those assigned ‘drift’ articles 

and grouped them into certain sub-topics.  

 

We measured the cosine similarity between each sub-topic and two sets of topics - its assigned ‘live’ topic and all 

‘dead’ topics. If the descendant topic is similar with its assigned one, their relationship is defined as ‘predecessor-

descendent’, or else, the most similar ‘dead’ topic will be revived and set as ‘live’, which then becomes a predecessor 

of the next sub-topic. This is the practice of ‘sleeping beauty’ detection, in which we semantically evaluated the 

connections between new knowledge (i.e., sub-topics) and resurgent ‘sleeping beauties’. 

 

Then, we labelled a descendant-topic via the term with the highest similarity to all other terms in this topic. If the term 

has been used before, we would choose the term with the second highest similarity, et cetera. This labelling strategy 

will select high-frequency terms in early time slices but along with time relatively low-frequency terms will be 

highlighted. This strategy provides a solution of using a set of labels to comprehensively describe a community, 

described in Fig. 1 – imaging some high-frequency terms representing basic knowledge in the root and some relatively 

low-frequency terms at the end representing their follow-up evolution. Due to the use of low-frequency terms, this 

labelling strategy may result in certain unexpected topics, whose labels could not exactly reflect the main content of 

their involved articles, because a perfect label for this content has been used by other topics but most of those topics 

might be their predecessors in the same community. Thus, as given in Fig. 1, the following statistical analysis for 

measuring the role of key actors emphasizes the community and category level, rather than individual topics.   

 

At the end of each time slice, we updated all ‘live’ topics by updating their centroid and boundary, and then moved to 

the next time slice and began the process again.  

 

Results of the SEP approach include a list of topics and their predecessor-descendant relationships as well as the 

statistical information of each topic, such as labels, descriptive terms, numbers of terms and records, and indicators of 

‘sleeping beauty’ detection (e.g., time of introduction, latency, and resurgence).  

 

The topics were then visualized in a directed network via Gephi (Bastian et al., 2009). In the network, each topic is 

represented by a node. A directed edge represents the ‘predecessor-descendant’ relationship between the connected 

nodes; the weight of an edge reveals the strength of the relationship measured by the cosine similarity. The color of 

nodes reflects their communities, which are identified using the community detection algorithm integrated in Gephi 

as “modularity” (Newman, 2006). Since nodes in the evolutionary pathways may represent detailed topics and 

concepts of COVID-19 research, a community could be considered a group of similar nodes, aligning within the same 

research areas but with different foci. The size of nodes represents diverse indicators – for example, 1) the importance 

of a topic, which is defined by the value of term frequency inverse document frequency (tf-idf) analysis, and 2) the 

role of China, which is calculated by the ratio of articles with at least one Chinese researcher in each topic.  

 

(4) Statistical Analysis 

  

The statistical analysis allows us to investigate the role of key actors driving the knowledge flow of coronavirus 

research in the COVID-19 crisis. We assessed the highest frequency topics, and the topic status (always alive, 

resurgent, or emerging), and research communities identified from the evolutionary pathways. Logistic regression 
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models were used to test the relationship between these selected topics and affiliation types, and geographical 

locations.  

 

Following data extraction and manipulation (see Table 2), we retrieved 601,103 raw terms from combined titles and 

abstracts of 35,745 articles and identified 64,776 core terms on the coronavirus research by removing non-technical 

words and consolidating technical synonyms. In parallel, using the Word2Vec model, we collected 63,720 and 11,048 

term vectors from articles published in pre-COVID-19 period and the COVID-19 period, respectively, which were 

then used as the input into the analysis of identifying knowledge clusters, described below.  

Table 2 Stepwise term clumping process for identifying core terms on coronavirus-related research 

Step Description #Terms 

1 Raw terms retrieved by an NLP function integrated in VantagePoint 601,103 

2 Remove meaningless terms, e.g., pronouns, prepositions, and conjunctions  594,116 

3 Remove common terms in scientific articles, e.g., “methods” 584,465 

4 Remove terms starting with non-alphabetic characters, e.g., “step 1” or “1.5 m/s” 517,502 

5 Consolidate terms with specific rules, e.g., abbreviations and related full names 506,283 

6 Remove terms appearing in only one record 89,497 

7 Consolidate terms with the same stem, e.g., “infectious disease” and “infectious 

diseases” 

81,871 

8 Remove single-word terms, e.g., “virus” 68,055 

9 Consolidate terms based on given topics, e.g., “MERS” and “MERS-COV” 64,776 

 

4. Results 

Identifying knowledge clusters 

In a preliminary assessment of the types of research taking place during COVID-19 (Fry et al., 2020), we analyzed 

clusters of knowledge in coronavirus research before and during the crisis. To do so, we grouped similar terms in the 

two periods, respectively, and present the clusters of terms found in Table 3. The table shows the clustering of terms 

collected and illustrated in Figs. 2 and 3. Visuals from Fry et al. (2020) are reproduced here in Fig. 2 and Fig. 3. 

Specifically, Fig. 2 illustrates the topics derived from the articles produced by the coronavirus research community in 

the two years prior to the COVID-19 pandemic. We interpret this graph as exhibiting a well-ordered system of 

coronavirus research, which includes clusters of research surrounding SARS-CoV (Severe Acute Respiratory 

Syndrome Coronavirus) and MERS-CoV (Middle East Respiratory Syndrome Coronavirus) (two previous 

coronavirus outbreaks), which also happen to be the most common and most central topics. Other organizing topics 

are phylogenetic analysis, epidemiology, respiratory viruses, viral infection, and porcine epidemic diarrhea virus. Fig. 

3 presents the topics in the first four months of the COVID-19 period where we see a more diverse and ‘chaotic’ set 

of research clusters around four broad topics: Wuhan, epidemiology, SARS-CoV, and fever. We suggest that Fig. 3 

shows a knowledge ecosystem thrown into chaos by the pandemic and the scramble to gain information about what 

was occurring. Such observations lead to our key interests in understanding topic evolution, disruption, and resilience 

in early COVID-19 research from an ecosystem point of view. Fig. 4 shows the same community after nine months 

of research (May-October 2020) of COVID-19 and other associated coronavirus research.  

 

The clear boundaries between clusters of terms, and cohesion within clusters in terms of the similarity in the 

knowledge base on coronavirus research in the pre-COVID-19 period shown in Table 3 coincide with our observation 

of ordered groups in Fig. 2. The pre-COVID-19 period shows distinct clusters of terms, such as epidemiology-related 

terms, virus-related terms, and clusters related to prior large coronavirus outbreaks (“SARS CoV” and “MERS CoV”). 

In contrast, Fig. 3 shows the eight clusters of terms identified in the initial shock of the pandemic which reveals a 

more chaotic situation. Fig. 3 shows the largest cluster to be ‘Wuhan’-related terms, followed by COVID-19-related 

terms, which may reflect efforts to simply define the event. “SARS CoV,” “MERS CoV” and “epidemiology” are 

retained from the pre-COVID-19 dataset, representing core pillars from the previous period. Fig. 4 shows the 

coronavirus research community after nine months of research—this figure represents articles published from the 

May-October 2020.  
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Fig. 2 Co-term map for the coronavirus research between 2018 and 2019 

Note that this version was re-generated based on the data in the source: Fry et al. (2020) 

 
Fig. 3 Co-term map for COVID-19 research in early 2020 (January-April 2020) 

Note that this version was re-generated based on the data in the source: Fry et al. (2020) 
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Fig. 4 Co-term map for the COVID-19 research in 2020 (May-October 2020) 

Note: In order to assess medium to longer-term trends, publications in May-October 2020 were used. 

Examination of the topic clusters shows that the epidemiology and immunology communities have been highly 

resilient and have reorganized and reemerged as research communities early in the pandemic. The genetics research 

community is nearly completely focused on Angiotensin-converting enzyme 2 (ACE2), which is an enzyme that 

attaches to the cell membranes--a feature of coronavirus infection. Next to immunology and epidemiology we see that 

patient care has persisted during the pandemic as major topic clusters (clinical characteristics, intensive care, 

respiratory distress, severe disease) while it was not apparent in pre-COVID research. Moreover, there remains a 

focus, although not as prominent as in the first days, on the geographic locations of the apparent locus of COVID-19 

in Wuhan and Hubei Province, also not evident in the pre-COVID years. These two aspects—patient care and 

geographic focus--are completely new to the community as they did not pre-exist the COVID-19 pandemic. Some 

specific coronavirus diseases that were being researched prior to COVID-19 disappear from the map, as might be 

expected, while most of the community turns to the crisis. SARS and MERS both continue to appear in the clusters, 

however.  
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Measuring the centrality of the topic cluster networks shows that prior to the COVID pandemic coronavirus topics 

were highly decentralized with a betweenness centrality measure of 0.079 in the 10 years leading up to the pandemic. 

This suggests a broad frontier of research with multiple foci for research. Very early in the pandemic, the topic 

clustering becomes much more centralized with a betweenness centrality measure of 0.110. We can see this illustrated 

in Fig. 2 where the topics becomes hyper-centralized around ‘fever’ and ‘Wuhan’ and many disciplinary terms are 

greatly reduced. Search appears be highly constrained by symptoms and geography. Centrality drops in the May-

October 2020 cluster, with the centrality measure of 0.013 now below the pre-COVID-19 period, suggesting a great 

deal of search and exploration with little focus on a frontier. An entire new cluster around patient care has been created.  
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Table 3 Topic extraction for the pre- and COVID-19 periods 

ID Topic label Topic description 

Pre COVID-19 period (2009-2019) 

1 epidemiology (996) host cells (539), United States (463), infected cells (450), spike protein (393), co-infection (357), Central Nervous System 

(287), influenza-like illness (252), early stage (251), T cells (243), healthcare workers (228), antibody response (225), S 

protein (217), host response (203), nucleic acid (200), dendritic cells (190), nucleocapsid protein (181), Receptor-Binding 

Domain (176), cross-sectional study (175), flow cytometry (173), mammalian cells (172) 

2 viral infection (1482) viral replication (714), Saudi Arabia (585), public health (569), viral pathogens (371), viral RNA (368), viral proteins (320), 

World Health Organization (267), viral genome (264), human health (256), infection control (254), viral load (237), viral entry 

(228), genetic diversity (220), human infection (195), Intensive Care Unit (191), case report (184), interferon (177), viral 

diseases (173), PEDV infection (171), health care workers (168) 

3 infectious diseases 

(1392) 

fever (480), severe disease (417), cell culture (416), disease control (416), clinical signs (408), infectious agents (259), young 

children (248), feline infectious peritonitis (241), clinical trials (231), Dromedary Camels (219), clinical features (203), control 

group (199), developing countries (197), human disease (196), West Africa (193), clinical characteristics (189), Clinical 

presentation (179), IFN-gamma (159), prevention (155), common cold (152) 

4 respiratory viruses 

(1081) 

respiratory syncytial virus (1061), respiratory infections (462), respiratory viral infections (363), respiratory disease (358), 

respiratory tract infections (354), Middle East (317), acute respiratory infections (300), respiratory syndrome virus (300), 

respiratory tract (275), respiratory pathogens (249), acute respiratory distress syndrome (210), Feline coronavirus (203), 

respiratory virus (203), respiratory symptoms (201), coronavirus infection (182), Bovine Coronavirus (180), respiratory illness 

(164), human coronaviruses (161), human coronavirus (160), Acute respiratory tract infections (147) 

5 SARS-CoV  

(2370) 

immune response (771), HIV (588), gene expression (321), immune system (321), innate immune response (303), H5N1 (283), 

South Korea (280), Molecular Mechanisms (270), Monoclonal Antibodies (268), mouse model (256), study period (212), 

electron microscopy (202), inflammatory response (200), inhibitory effect (183), host immune response (175), molecular 

characterization (172), adaptive immune responses (166), mathematical model (156), endoplasmic reticulum (150), multiplex 

PCR (150) 

6 MERS-CoV  

(2403) 

phylogenetic analysis (683), antiviral activity (508), human metapneumovirus (408), animal models (352), causative agent 

(324), Hong Kong (301), real-time PCR (282), vaccine development (263), ages (233), human population (230), clinical 

samples (202), crystal structure (201), high mortality (200), age groups (198), human bocavirus (197), licensee MDPI (193), 

virus-host interactions (189), antiviral effects (180), fecal samples (179), etiological agent (177), mortality rate (177) 

7 H1N1  

(558) 

RT-PCR (432), innate immunity (302), Polymerase chain reaction (273), sequence analysis (228), community-acquired 

pneumonia (197), rapid detection (193), Escherichia coli (187), enzyme-linked immunosorbent assay (182), H7N9 (180), 

cross-reactivity (173), real-time RT-PCR (171), complete genome sequence (168), complete genome (167), porcine epidemic 

diarrhea (160), Multiple sclerosis (150), nasopharyngeal aspirates (150), host factors (147), control measures (141), protective 

immunity (140) 
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8 porcine epidemic 

diarrhea virus (719) 

infectious bronchitis virus (654), influenza virus (639), virus infection (552), RNA viruses (437), virus replication (421), 

influenza viruses (379), pandemic influenza (309), Ebola virus (271), transmissible gastroenteritis virus (268), mouse hepatitis 

virus (239), hepatitis C virus (229), avian influenza (211), virus entry (211), Dengue virus (186), Zika virus (186), enveloped 

viruses (176), influenza virus infections (161), Ebola virus disease (155), virus detection (152), influenza vaccination (149) 

COVID-19 Period (2020) 

1 COVID-19  

(2235) 

COVID-19 outbreak (230), COVID-19 epidemic (127), clinical characteristics (116), United States (75), clinical features (74), 

mainland China (52), retrospective study (33), clinical manifestations (32), COVID-19 transmission (23), clinical outcomes 

(22), severe COVID-19 (22), clinical symptoms (21), Hong Kong (20), COVID-19 spread (18), traditional Chinese medicine 

(16), travel restrictions (16), Chinese government (15), retrospective cohort study (14), modeling studies (13), Case Study (12) 

2 SARS-CoV-2  

(751) 

disease control (41), healthcare workers (34), common symptoms (27), chest CT (26), Saudi Arabia (24), viral pneumonia 

(24), Intensive Care Unit (23), CT images (21), Informa UK (21), global spread (20), clinical course (19), clinical practice 

(18), etiological agent (17), Molecular Mechanisms (17), SARS-CoV-2 outbreak (17), intensive care (16), SARS-CoV-2 

pandemic (16), C-reactive protein (14), CT findings (14), viral genome (14) 

3 Wuhan  

(635) 

Hubei province (131), fever (99), coronavirus disease (62), confirmed cases (54), mathematical model (50), severe disease 

(49), coronavirus (41), epidemiological characteristics (39), spike protein (39), phylogenetic analysis (38), immune response 

(30), personal protective equipment (29), angiotensin-converting enzyme 2 (27), rapid spread (26), porcine epidemic diarrhea 

virus (21), retrospective analysis (21), severe pneumonia (21), suspected cases (21), severe cases (20), transmission dynamics 

(20) 

4 SARS-CoV  

(254) 

South Korea (40), incubation period (32), respiratory infections (31), early detection (24), cardiovascular diseases (21), 

preventive measures (15), Open Access article (14), co-infection (13), online version (13), viral load (13), high morbidity (12), 

exponential growth (11), cross-infection (10), Pleural effusion (10), acute respiratory infections (8), bacterial infections (8), 

Chinese General Practice (8), early identification (8), Feline coronavirus (8), medical countermeasures (8) 

5 COVID-19 pandemic  

(237) 

global pandemic (53), International Concern (51), ongoing outbreak (41), close contact (35), medical staff (33), causative agent 

(32), median age (30), imported case (24), Coronavirus Pandemic (23), coronavirus Outbreak (22), machine learning (20), 

healthcare systems (18), mechanical ventilation (17), global concern (14), case definition (13), Monoclonal Antibodies (13), 

real time (13), age groups (12), illness onset (12), diagnostic tests (11) 

6 MERS-CoV  

(183) 

early stage (43), case fatality rate (30), respiratory syncytial virus (28), early phase (26), host cells (23), Receptor-Binding 

Domain (22), mortality rate (21), respiratory illness (20), Cytokine Storm (19), infectious bronchitis virus (17), Shanghai 

Shangyixun Cultural Communication Co. Ltd (17), genome sequence (14), convalescent plasma (13), decision-making (12), 

intermediate host (12), adverse effects (11), family Coronaviridae (11), family members (11), John Wiley (11), serial interval 

(11) 

7 epidemiology (112) infectious diseases (91), ill patients (36), case report (35), urgent need (35), infected patients (31), clinical trials (30), general 

population (25), influenza virus (25), Clinical presentation (18), immune system (18), cancer patients (15), infected individuals 

(14), Clinical management (13), influenza viruses (12), Lopinavir/ritonavir (12), severe illness (12), antibody response (11), 

HIV (11), Northern Italy (11), pediatric patients (11) 
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8 World Health 

Organization  

(90) 

public health (73), public health emergency (64), viral infection (56), control measures (40), acute respiratory distress 

syndrome (38), clinical data (33), infection control (30), pregnant women (30), respiratory viruses (30), coronavirus infection 

(29), global health (28), human-to-human transmission (28), respiratory disease (28), RT-PCR (27), viral replication (27), 

antiviral activity (26), vaccine development (25), licensee MDPI (24), symptom onset (23), infection prevention (22) 

 

Note: The number following each term indicates the frequency of the term in the given dataset. 
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Evolutionary pathways 

The raw dataset was run through the refined algorithm of Scientific Evolutionary Pathways (SEP) developed 

by Zhang et al. (2017b). This process produced 135 topics and 7 communities, with the predecessor-

descendant relationships between these topics, which are plotted in an evolutionary pathway in Fig. 5. Table 

4 shows the descriptive statistics for the basic results of the topic analysis including the numbers of records 

and terms. 

Table 4 Descriptive statistics for SEP topics 

  Max Min Average Std. Dev. 

Node Number of terms 9483 1 237.23 867.33 

Number of articles 4837 1 457.53 704.01 

Edge Weight 0.1272 0.0003 0.0142 0.0162 

 

 

Fig. 5 Evolutionary pathways of the coronavirus research from 2009 to 2020 

Note: Red dash circles mark topics where articles published/uploaded in 2020 are assigned, and the red digits 

indicate the number of those articles. 

 

(1) Disruption and Resilience in the COVID-19 Crisis 

 

Fig. 5 shows the evolutionary pathways for the full dataset of pre- and COVID-19 topic evolution. Examining 

the map using compass points, we defined “SARS-CoV” as the starting point in 2009 and it serves as the 

central point in the entire map with links leading in all directions. From SARS-CoV we see the evolutionary 

pathway spin off several lines of research mostly via the topics “viral infections” and “infectious diseases”. 

We also see evolutionary pathways heading east into the community of topics under the header “respiratory 
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viruses.” Looking northwest, from “viral infections,” a line of research evolves into “central nervous system,” 

which seeds genetic research activities (north). It is also worth pointing out that the new terms cooccur with 

the time of certain global or domestic epidemic outbreaks, such as “MERS CoV” (2013), “HIV” (2014), and 

“Zika Virus” (2017) although we do not see the name of cities or regions associated with those diseases as 

we see with Wuhan. This indicates a timely reaction conducted by the research community as a response to 

the outbreaks (Zhang et al., 2020; Porter et al., 2020).  

 

Evolutionary pathways span out over time and newly born topics in 2020 could be observed in each 

community, indicating the disruption of those communities with the involvement of new knowledge in 

diverse levels. Among them, communities 1 (viral infection) and 4 (global health) have the largest number 

of new topics and community 1 appears to be more disrupted than other communities such as communities 

6 (acute respiratory distress syndrome) and 7 (immune response), which might be considered relatively 

resilient in this COVID-19 crisis.  

 

When tracing the assignment of those articles published/uploaded in 2020 (see red dash circles in Fig. 5), it 

is intriguing to see that two of the new topics emerging are “Wuhan” and “control measures.” Similar to our 

earlier discussion, we interpret this as attempts to define the event given very limited knowledge. Having 

said that, as expected, in 2020 most pathways in the map return to the ‘core pillars’ of coronavirus research 

such as “infectious diseases” (including “SARS CoV” and “MERS CoV”), and “respiratory viruses”—the 

dominant species--whose knowledge bases have been well established for years. Similarly, along the pathway 

that was spawned by “phylogenetic analysis”, we see “epidemiology” as a ‘core pillar’ for 2020 articles, 

along with topics “molecular mechanisms” and “Wuhan”. Along the newly developed “global health” 

pathway, in addition to “disease control,” we see two topics of note in 2020: “World Health Organization” 

and “cross-sectional analysis”. Other pathways from viral infections are not a focus in the early days of 

COVID-19. 

 

(2) Topic Similarity 

 

In order to assess the level of disruption to the community during COVID-19 at the topic level, Table 5 shows 

topic similarity between all topics in the full sample by averaging the sum of cosine similarity between each 

focal topic and all other topics within a specified sample. Three broad similarity measures were created: 1) 

similarity between topics in the pre-COVID-19 period; 2) similarity between topics in the COVID-19 crisis, 

and 3) the similarity between the set of topics in the pre-COVID-19 period and the set of topics in the COVID-

19 crisis. We find internal consistency of topics within the pre-COVID-19 period is 0.0432, and that of topics 

in the COVID-19 crisis is 0.0402. However, the consistency between the two sets of topics in pre- and during 

COVID is much lower, at 0.0267, which indicates different knowledge bases from one period to the other, 

or, a reorganization of the knowledge system around new priorities.  

 

Table 5 Similarities of 2020 topics with topics in the pre-COVID-19 period 

 Topic label Similarity Community 

1 viral vaccines [2020] 0.0001 #1 viral infection 

2 clinical assessment [2020] 0.0005 #3 respiratory viruses 

3 serial interval [2020] 0.0015 #1 viral infection 

4 global scale [2020] 0.0019 #1 viral infection 

5 overall prevalence [2020] 0.0022 #4 global health 

6 health systems [2020] 0.0091 #1 viral infection 

7 pregnant women [2020] 0.0188 #2 infectious diseases 

8 case fatality rate [2020] 0.0200 #7 immune response 

9 Non pharmaceutical interventions [2020] 0.0216 #2 infectious diseases 

10 public health emergency [2020] 0.0246 #4 global health 

11 mathematical model [2020] 0.0247 #4 global health 

12 convalescent plasma [2020] 0.0259 #1 viral infection 

13 N95 respirators [2020] 0.0263 #5 epidemiology 

14 World Health Organization [2020] 0.0278 #4 global health 

15 mitigation strategies [2020] 0.0294 #5 epidemiology 
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 Topic label Similarity Community 

16 angiotensin converting enzyme 2 [2020] 0.0305 #1 viral infection 

17 general public [2020] 0.0306 #3 respiratory viruses 

18 infectious disease outbreaks [2020] 0.0348 #2 infectious diseases 

19 antiviral activity [2020] 0.0387 #1 viral infection 

20 diagnostic tests [2020] 0.0404 #7 immune response 

21 respiratory failure [2020] 0.0434 #6 acute respiratory distress syndrome 

22 clinical features [2020] 0.0459 #5 epidemiology 

23 cross sectional study [2020] 0.0508 #4 global health 

24 control measures [2020] 0.0524 #3 respiratory viruses 

25 Wuhan [2020] 0.0653 #5 epidemiology 

 

From the perspective of community disruption and resilience, the disruption of community 1 “viral infection” 

shows that all its seven new topics in 2020 share low similarities with pre-COVID-19 topics. We interpret 

this to mean that “viral infection” cluster is disrupted and not resilient. In contrast, communities 5 

“epidemiology” and 3 “respiratory viruses” appear to be more resilient with more terms coexisting in both 

the pre- and COVID-19 periods, from which the two largest newly born (emerging) topics in 2020 share the 

highest similarities with pre-COVID existing knowledge bases. 

Further insights can be gained by examining topics that persist from the pre-COVID-19 period into the 

pandemic period, which ones die off, and which are newly introduced into the community in the pandemic. 

We defined those persistent topics as “always alive”, those which resurge from earlier times as “resurgent”, 

and those that appear for the first time in 2020 as “emerging”. We identified 27 “always alive” topics, 9 

“resurgent” topics (Table 6), as well as quite large number of 25 “emerging” topics (Table 5), suggesting 

significant disruption. Briefly, those “always alive” topics serve as the core pillars of the coronavirus 

research, “resurgent” topics might indicate specific interests raised along with technological change in the 

past decades, while “emerging” topics could represent frontier ideas or novel recombinations of past 

knowledge.  

 

Table 6 reveals that the previous pandemics, namely “SARS CoV” and “MERS CoV” are persistent topics, 

representing stable pillars of the coronavirus research space. In contrast, most of the “resurgent” topics relate 

to common but distinctive symptoms of coronavirus infection, such as “fever” and “respiratory symptoms”. 

It is possible that between pandemics these topics were not in frequent use amongst the research community 

but are needed once again to understand COVID-19. The topic “global health” is also a “resurgent” topic, 

which may indicate the urgent need for public health during the COVID-19 crisis, and perhaps an 

underinvestment in this capacity. As for other “emerging” topics, we see a range of technical topics, global 

health-focused topics, and ones topics related to clinical information and patient care. This diversity could 

represent the willingness of researchers to rapidly share hands-on experience with the virus—which may not 

have been published in years when preprint servers were not available. In the remainder of the paper we 

investigate these different types of topics using statistical analysis to better understand the specific interests 

of international collaborative communities and diverse affiliations.  

 

Table 6 Status of sample topics  

No Label Status TF-IDF 

1 Central Nervous System [2011] Resurgent 0.5748 

2 IFN alpha [2012] Resurgent 0.4717 

3 phylogenetic analysis [2013] Resurgent 0.4851 

4 respiratory symptoms [2013] Resurgent 0.6230 

5 viral replication [2013] Resurgent 0.6211 

6 global health [2013] Resurgent 0.1675 

7 acute respiratory distress syndrome [2014] Resurgent 0.1721 

8 cell culture [2015] Resurgent 0.2483 

9 fever [2015] Resurgent 0.3979 

10 SARS CoV [2009] Always alive 0.5173 

11 viral infection [2010] Always alive 0.8175 
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No Label Status TF-IDF 

12 infectious diseases [2011] Always alive 0.6786 

13 respiratory viruses [2012] Always alive 0.6649 

14 MERS CoV [2013] Always alive 0.6681 

15 porcine epidemic diarrhea virus [2014] Always alive 0.4979 

16 epidemiology [2014] Always alive 0.5101 

17 infectious bronchitis virus [2015] Always alive 0.4938 

18 feline infectious peritonitis [2015] Always alive 0.2278 

19 immune response [2015] Always alive 0.5533 

20 public health [2015] Always alive 0.3173 

21 host response [2015] Always alive 0.1614 

22 respiratory pathogens [2015] Always alive 0.2139 

23 RNA viruses [2016] Always alive 0.3874 

24 viral proteins [2016] Always alive 0.3138 

25 respiratory syncytial virus [2016] Always alive 0.4118 

26 disease control [2016] Always alive 0.2762 

27 United States [2016] Always alive 0.2718 

28 viral RNA [2017] Always alive 0.2913 

29 fecal samples [2017] Always alive 0.1640 

30 crystal structure [2017] Always alive 0.1541 

31 Hong Kong [2017] Always alive 0.1392 

32 coronavirus spike protein [2017] Always alive 0.0786 

33 endoplasmic reticulum [2017] Always alive 0.0888 

34 amino acids [2017] Always alive 0.2088 

35 septic shock [2017] Always alive 0.0276 

36 biological properties [2017] Always alive 0.0805 

 

Statistical analysis of COVID-19 topics 

(1) Topics and author location 

 

Given the documented importance and benefits of international collaboration for scientific progress (Fry et 

al., 2020; Wagner et al., 2017), we further explored the relationship between international team structure of 

articles and article topics during the pandemic. Table 7 shows how different team structures (i.e., 

international, Chinese authorship, US authorship, China-US collaboration) correspond with the selection of 

topics during the COVID-19 pandemic. We find that international collaborative articles and those from the 

United States favor “always alive” topics, compared to resurgent or emerging topics. This finding supports 

other research that shows the tendency of international collaborative research towards conventional rather 

than novel research (Wagner et al., 2019). In contrast to international collaborative and US work, Chinese-

authored articles are more likely to work on emerging topics as compared to “always alive” or “resurgent” 

topics. It may also be that, in the early days, Chinese researchers were facing unknown situations and needed 

to improvise their work more quickly than other regions. 

 

To complement the findings from the statistical analysis on Chinese researchers, we focused specifically on 

the topics pursued by Chinese researchers compared to researchers from the rest of the world. Specifically, 

we re-ran the analysis of the evolutionary pathways to illustrate the pathways of articles emanating from 

China. To visually represent this, we adjusted the node size of the original SEP to represent the relative use 

of a given topic by Chinese based researchers in Fig. 6.  

 

Fig. 6 reveals that compared to those dominant species topics (e.g., core pillars of coronavirus research), 

Chinese researchers tended towards emerging topics, with the largest nodes representing topics at the end of 

the evolutionary pathways and born in more recent years. Chinese research also puts more emphasis on 

selected communities, namely, community 1 “virus infection” and community 5 “epidemiology” - the most 

disruptive and resilient communities observed from Fig. 5. On the other hand, nodes in more stable 
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communities of research, community 7 “immune response” and community 4 “global health” are much 

smaller, indicating less frequently researched topics of Chinese researchers. This observed trend could be for 

a number of reasons, including the fact that Chinese researchers dominated early research on COVID-19 (Fry 

et al 2020). This early response to the outbreak, which corresponded to the location of the earliest cases, 

could present more opportunity to Chinese researchers to pursue novel research trajectories.  
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Table 7 Logistic regression on the relationship of authorship and topic status in COVID-19 

Location of authors Always alive Resurgent Emerging 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

International collaboration 0.262***     -0.335**     -0.167**     

(0.084)     (0.167)     (0.084)     

Chinese authorship  -

0.424*** 

  -

0.368*** 

 0.153   0.148  0.366***   0.307*** 

 (0.079)   (0.092)  (0.140)   (0.162)  (0.078)   (0.090) 

US authorship   0.402***  0.280***   -0.181  -0.098   -

0.345*** 

 -0.252** 

   (0.086)  (0.103)   (0.167)  (0.207)   (0.086)  (0.104) 

China-US collaboration    0.061 0.075    -0.153 -0.160    -0.020 -0.015 

   (0.163) (0.201)    (0.318) (0.387)    (0.161) (0.198) 

Mean of the dependent 

variable 

0.173 0.173 0.173 0.173 0.173 0.519 0.519 0.519 0.519 0.519 0.318 0.318 0.318 0.318 0.318 

               

Obs. 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 

Pseudo R2 0.026 0.025 0.025 0.024 0.025 0.026 0.025 0.025 0.024 0.025 0.034 0.039 0.037 0.033 0.041 

 

Note: Estimates stem from logistic regression models with dependent variables being dummy variables indicating status of topics (always alive, resurgent, 

emerging). Publication type and a dummy for whether the article is a preprint are controlled in all models. 

Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1
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Fig. 6 Evolutionary pathways of the coronavirus research from 2009 to 2020 resized to show China’s 

research emphases 

Note: The size of nodes indicates the percentage of Chinese articles in global articles. 

 

(2) Topics and author sector  

 

We explored whether there is a relationship between authors with academic or industrial affiliations and the 

prevalence of always alive, resurgent, or emerging topics in Table 8. Research from government labs are 

more likely to use “always alive” topics and they are less likely to use resurgent topics. In contrast, academic 

or industrial researchers are more likely to use resurgent topics. Articles authored by academic researchers 

are also more likely to focus on emerging topics, although this difference is not statistically significant. These 

findings suggest that academic researchers, and industrial researchers (to a certain extent), are more likely to 

leverage unique recombination or pursue topics outside of the stable core pillars than those researchers 

affiliated with governmental organizations.  
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Table 8 Logistic regression on the relationship between researcher affiliations and topic status in COVID-19 

Researcher type Always alive Resurgent Emerging 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Academic -0.047   0.010 0.037   -0.075 0.035   0.010 

(0.134)   (0.138) (0.242)   (0.248) (0.133)   (0.136) 

Industry  0.538  0.562  -0.487  -0.540  -0.416  -0.423 

 (0.357)  (0.358)  (0.731)  (0.721)  (0.367)  (0.367) 

Government   0.285* 0.297*   -0.676* -0.705*   -0.111 -0.116 

   (0.164) (0.168)   (0.370) (0.382)   (0.165) (0.169) 

Mean of the dependent variable 0.384 0.384 0.384 0.384 0.074 0.074 0.074 0.074 0.541 0.541 0.541 0.541 

            

Obs. 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 2949 

Pseudo R2 0.021 0.021 0.021 0.022 0.024 0.024 0.026 0.027 0.033 0.033 0.033 0.033 

 

Note: Estimates stem from logistic regression models with dependent variables being dummy variables indicating status of topics (always alive, resurgent, 

emerging). Publication type and a dummy for whether the article is a preprint are controlled in all models. 

Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
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(3) Variation between communities  

 

Fig. 7 shows the prevalence of topic types “always alive,” “resurgent”, and “emerging” in each topic 

community in COVID-19 articles. Overall, more than half of COVID-19 articles featured emerging topics. 

However, some communities have a larger proportion of emerging topics than others, such as communities 

5 “epidemiology” and 4 “global health” (82% and 67%, respectively). It is necessary to point out that the 

largest proportion of 2020 articles in community 5 “epidemiology” is within the topic “Wuhan”, which shares 

the highest similarity with epidemiology as generated before the COVID-19 crisis. In contrast, communities 

2 “infectious diseases” and 7 “immune response” are much less likely to have emerging topics. This 

descriptive evidence is intriguing, but it is outside the scope of this paper to interpret the meaning of these 

facts to the coronavirus community. The reasons behind these variations is a subject for future research.  

 

 
 

Fig. 7 Distribution of topic status in each community based on COVID-19 articles 

Note: Among articles with each topic community in 2020, percentages of articles associated with always 

alive, emerging, and resurged topics are calculated, respectively. 

5. Discussion and Conclusions 

The onset of COVID-19 greatly disrupted the ecosystem of coronavirus research subjects that had formed 

into ordered clusters in the 10 years leading up to the crisis. Prior to the pandemic, the ecosystem was 

represented by well-organized clusters around SARS/MERS CoVs, porcine bronchitis virus, respiratory 

virus, viral infection, epidemiology, and phylogenetic analysis. Following the initial shock associated with 

the onset of COVID-19, topics reorganized, but around a different set of pillars than before the pandemic. In 

the initial shock period from January-April 2020, we see research related to definition of the event such as 

“Wuhan” as the largest cluster of research. In addition, research topics in the wake of COVID-19 retreat to 

strongly focus on SARS-CoV and MERS-CoV; these are the topics around which the whole community 

organized. We interpret this finding to mean that the SARS virus (which preceded the MERS epidemic in 

time) is the initiating event for this line of research and an evolutionary pathway that became COVID-19 

research as the novel coronavirus appeared in 2019. As time progressed into the COVID-19 crisis we see that 

two research topic clusters have reemerged in the ecosystem: immunology and epidemiology. We interpret 

these communities to have high resilience, while other communities appear to have dispersed or reorganized 

into emergent communities. 

 

While the pandemic in 2020 caused a disruption to coronavirus research, rendering some lines of research 

more peripheral than others, the community exhibits some return to core pillars of research, as would be 

expected of an ecosystem in crisis. It may be that over a longer period some subjects that had been the focus 

of research in the pre-COVID-19 period will diminish as attention is turned to COVID-19. Future research 

will seek to explore how the knowledge base adapts and changes as a response to the pandemic, and which 

of the actors (academic, industry, government) take the lead in the stabilization process.  
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Limitations 

Although we consider the findings from the analysis as providing insight into the theoretical framework, the 

study has limitations. First, the analysis of COVID-19 as presented is based on a dataset of coronavirus 

articles published or posted on preprint servers before the end of April 2020. It is entirely possible that once 

pre-prints are subjected to peer review and articles are published, the research would present a different story. 

In fact, data collected later in 2020 showed an explosive growth of COVID-19 articles with about 39,000 

new articles between April and mid-July 2020 and 43,500 new articles from mid-July to the start of October 

(Cai et al. forthcoming), and we anticipate different dynamics than those revealed in this data. Having said 

that, the theoretical predictions and focus of this study of the early months of the pandemic focused on the 

response of the ecosystem, and we can see clear patterns in the actions of the community. We explored the 

immediate response from a sudden shock. Future work will explore longer term consequences, including any 

possible returns to equilibrium.  

 

Second, although we tried to define the involvement of different types of researchers in terms of their 

affiliation, i.e., academic, industry, and government, we acknowledge that the classification of the affiliation 

types (through the use of affiliation text in articles) is limited. For example, the involvement of government 

institutions is likely to be an underestimate as some national labs that are affiliated with universities are 

counted as ‘academic’ rather than ‘government’. In China in particular, national labs are always listed as a 

sub-institution of a university or an institute, therefore they do not contribute to the publication shares of 

‘government’.   

 

In the SEP methodologies, labels are derived from scientific terms, based on frequency of occurrence in 

topics. We used the most representative term to label a topic, which in most cases is a high-frequency term, 

but duplicate terms are not allowed, even if subjects are closely aligned. This means that topics might result 

in the label that does not well represent the central ideas of involved articles, but in the next emergent term 

on the pathway. As we see with the term surge of the term “Wuhan” the topic itself is part of evolutionary 

emergence rather than representing underlying science. Thus, it is important to see the terms as the evolution 

of knowledge pathways rather than the advancement of science in individual topics. 
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