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ABSTRACT

State space models play an important role in macroeconometric analysis and the
Bayesian approach has been shown to have many advantages. This paper outlines re-
cent developments in state space modelling applied to macroeconomics using Bayesian
methods. We outline the directions of recent research, specifically the problems being
addressed and the solutions proposed. After presenting a general form for the linear
Gaussian model, we discuss the interpretations and virtues of alternative estimation
routines and their outputs. This discussion includes the Kalman filter and smoother,
and precision based algorithms. As the advantages of using large models have become
better understood, a focus has developed on dimension reduction and computational
advances to cope with high-dimensional parameter spaces. We give an overview of a
number of recent advances in these directions.
Many models suggested by economic theory are either non-linear or non-Guassian,

or both. We discuss work on the particle filtering approach to such models as well
as other techniques that use various approximations - to either the time t state and
measurement equations or to the full posterior for the states - to obtain draws.

Keywords: State space model, filter, smoother, non-linear, non-Gaussian, high-
dimension, dimension reduction.
JEL Classification: C11, C22, E32
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1 Introduction

State space modelling using Bayesian methods has a long history (Kitagawa and

Gersch (1984)). These models, also called dynamic linear models, are an incredibly

powerful tool for capturing unobserved processes and the specification encompasses a

wide range of potential mechanisms. As such, they play an important role in macro-

econometric modelling. They have, for example, allowed us to better estimate trends

and cycles (Harvey (1985), Watson (1986) and more recently Morley (2002), Har-

vey, Trimbur and van Dijk (2007), Stock and Watson (2007), Chan, Léon-González,

and Strachan (2018), Grant and Chan (2017)), they arise rather naturally in DSGE

models (e.g., see Kulish, Morley and Robinson (2017) or for an excellent overview of

Bayesian estimation of the DSGE see Herbst and Schorfheide (2016)), they have been

used to improve forecasting and to account for structural change (Harvey and Todd

(1983), Aoki (1987), Clark (2011), D’Agostino, Gambetti, and Giannone (2013)),

they help us to understand how uncertainty and volatility have evolved and how the

transmission of monetary policy shocks has evolved over time (Cogley and Sargent

(2001, 2005), Primiceri (2005), Carriero, Clark and Marcellino (2016, 2018)).

There exists many alternative frameworks for models that evolve, such as non-

parametric Bayesian or Gaussian processes and local likelihood approaches (see, for

example, Kalli and Griffi n (2018) and Petrova (2019)). State space models share fea-

tures with many of the non-parametric models, but with the notable distinction that

they tend to define evolution of the time-varying parameters, or states, in the direction

of time (with an exception to this in Koop and Potter (2010)). State space models,

however, have a number of advantages such as the ease of developing economically

sensible specifications for the evolution of parameters and the existence of effi cient

and accessible algorithms for their estimation. For these reasons, a wide range of
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macroeconometric models have been framed in the state space form. Examples in-

clude single equation models such as unobserved components models, multivariate

models such as time-varying parameter vector autoregression models (TVP-VAR),

and both static and dynamic factor models.

The literature on state space modelling is quite extensive and so, in this article,

we focus upon its application in Bayesian macroeconometric analysis. Even with this

limitation, the survey will be incomplete as we attempt to focus on only a few of the

more recent contributions; although we will necessarily discuss more established ones.

We focus primarily upon the linear Gaussian state space model with some dis-

cussion of extensions later in the article. To set the specification and notation, for

t = 1, . . . , T, let yt be an n × 1 vector of variables of interest so that we have a

model for a multivariate process, and let xt be an n× k matrix of regressors. Then a

reasonably general form for the linear Gaussian state space model is:

yt = xtπt + εt (1)

πt − µ = P (πt−1 − µ) +Rηt (2) εt

ηt

 ∼ N

0,

 Σt 0

0 Ωt


 and π1 ∼ N (π1, V1) .

The dimensions of πt and µ (k × 1) and the known matrix P (k × k) are determined

by the column dimension of the regressor xt while the known matrix R (k × r) need

not be square, i.e., r ≤ k.

The equation (1) is commonly called the measurement equation or observation

equation and provides the link from the data to the states, πt. The distribution

chosen for εt and (1) for all t will in most cases define the likelihood. The state

equation or transition equation (2) governs the evolution of the states or time varying
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parameters πt. With the distributions for π1 and ηt in a Bayesian analysis, the state

equation defines the prior. Of particular importance is the prior correlation structure

this implies for the states.

In macroeconometrics, it is common to assume E (εtη
′
t) = 0 and that P and R

are (k × k) identity matrices; P = R = Ik and so r = k, although more general

specifications of the state space model have been employed. Cogley and Sargent

(2001), for example, extend this specification to allow E (εtη
′
t) 6= 0. In an unobserved

components (UC) model, Morley (2010) uses xt = (1, 1), Σt = 0 ∀t, an AR(2) for

the cycle (the first element of πt) and permits the shocks to the trend (the second

element of πt) and cycle to be correlated.

The random walk specification for the state equation (P = R = Ik)

πt = πt−1 + ηt

is a popular default. Although it may not always have a sound justification as a prior,

this specification does have important virtues such as inducing a greater degree of

smoothness than the stationary specification. It may also more closely match our

prior beliefs than a stationary specification. In finance, to obtain a realistic model of

the variance it is common when specifying the state equation for stochastic volatility

(we discuss this in more detail in Section 4) to assume P is a scalar and |P | < 1.

However, the volatilities for macroeconomic processes are not well respresented by

stationary, mean reverting processes (Eisenstat and Strachan (2016)). Typical esti-

mates of the volatility of, say, inflation, log real per capita GDP or unemployment,

display deviations of long durations. They may be stationary processes but a linear

autoregressive process will not adequately capture the behaviour. Eisenstat and Stra-

chan (2016) make this argument and introduce a change-point stationary model for
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the state equation which allowed estimation of the time varying mean and persistence

of the states.

We structure the remaining sections of this paper as follows. In Section 2, we out-

line the most popular, almost universally adopted, estimation procedure - the Kalman

filter - as well as another procedure that shows promise for high-dimensional systems.

In Section 3, we consider approaches to deal with overparameterization. The discus-

sion first covers techniques that allow the data to decide whether each state should

vary over time. We then discuss approaches to reducing the dimension of the entire

model and thereby premitting estimation of larger models. The applications in both

cases are to TVP-VAR models. Section 5 considers popular and recent approaches

to estimation of non-linear and non-Gaussian state space models where the Kalman

filter cannot be applied. Section 6 concludes with suggestions for future research.

2 Estimation of the linear Gaussian model

Estimation of the (Tk × 1) vector of states π = (π′1, . . . , π
′
T )′ is most commonly done

using the Kalman filter and Kalman smoother. The Kalman filter, first proposed by

Kalman (1960) and Kalman and Busy (1961), has been studied extensively and expla-

nations are available in several books and articles; one excellent and very accessible

reference is Durbin and Koopman (2001). To begin establishing notation, denote by

y1:t the information available in the data up to time t such that y1:T represents all of

the information in the sample. Beginning with V1 and π1, the Kalman filter produces,

at time t, estimates of the mean and variance of the state πt using the data up to

t−1, that is pt = E (πt|y1:t−1) and Vt = V (πt|y1:t−1) . One representation of the steps
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in the Kalman filter is

νt = yt − xtπt Ft = xtVtx
′
t + Σt

Kt = Vtx
′
tF
−1
t Lt = I −Ktxt

pt+1 = pt +Ktνt Vt+1 = VtL
′
t +RΩtR

′.

The contemporaneous filtering equations (see Durbin and Koopman (2001) page 68)

are another representation of this filtering approach but produce estimates of the

mean and variance of the state πt using the data up to t, that is pt|t = E (πt|y1:t)

and Vt|t = V (πt|y1:t). The Kalman smoother, by contrast, produces estimates of the

mean and variance of the state πt using all available data, that is π̂t = E
(
πt|y1:T

)
and V̂t = V

(
πt|y1:T

)
and so from a statistical perspective can be said to be effi cient.

To obtain the smoothed estimates, computation begins with the end values rT = 0

and NT = 0 and works backwards from t = T to t = 1 through the recursions

rt−1 = x′tFtνt Nt−1 = x′tF
−1
t xt + L′tNtLt

π̂t = pt + Vtrt−1 V̂t = Vt − VtNt−1Vt.

There have been substantial improvements in Kalman filter-based algorithms over

the past thirty years in estimating linear Gaussian state space models. Important

examples include Carter and Kohn (1994), Frühwirth-Schnatter (1994), de Jong and

Shephard (1995) and Durbin and Koopman (2002).

When undertaking a study using the state space model, the statistician has the

choice to report either filtered estimates - pt and Vt (or pt|t and Vt|t) - or smoothed

estimates - π̂t and V̂t. Each of these estimators estimates different things in both a

statistical and an economic sense, and so each of these estimates will serve different

purposes. When using either the filter or smoother in macroeconometrics, it is worth-
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while to give some consideration to the economic meaning of the outputs in each case

and to what purpose each is best suited. Estimates from the Kalman filter pt and Vt

may include variation beyond actual variation in the underlying state and this excess

variation is due to learning (Sims (2001)). Such variation is incorporated into the

estimates from the Kalman smoother.

In comments on Cogley and Sargent (2001), Sims (2001) pointed out the signifi-

cance from an economic perspective of the differences in the outputs from the Kalman

filter and the Kalman smoother. The difference between the filtered and smoothed

estimates tells us something about the difference between the best estimates made

at the time t and ex-post estimates that use all available data today (or at time T ).

Another less formal way to look at this difference is to think of smoothed estimates

as estimating what was actually happening at the time t whereas filtered estimates

replicate estimates using the information available to the econometrician at time t;

possibly to then replicate forecasts made at that time. The latter view is not entirely

satisfactory because it does not take into account that the econometrician’s informa-

tion set at time t would include unrevised or real-time data, not final data. In this

sense it is less clear from an economic perspective how to interpret filtered estimates

produced using final data.

The use of the Kalman filter and smoother to estimate the state space model

has become so commonplace that the estimation routine and model are sometimes

referred to synonymously. It is important to distinguish the model from the estima-

tion, however, as there do exist alternative approaches to estimation. More recently,

a new class of algorithms has been proposed for estimating, primarily, linear Gaussian

state space models. These are the precision-based algorithms, or precision samplers,

and they have been proposed a number of times. For example, Rue (2001), Chan

and Jeliazkov (2009) and McCausland, Miller, and Pelletier (2011) all propose sim-
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ilar approaches. These estimators do not use a filtering approach, rather they draw

all states in one step in much the same way one would draw a vector of regression

coeffi cients from its posterior distribution.

In outlining the precision sampler, we follow the approach of Chan and Jeliazkov

(2009). Stacking all states into one large (Tk × 1) vector π = (π′1, . . . , π
′
T )′, the

conditional (upon the parameters) posterior for this vector is normal with (Tk × 1)

mean vector π and covariance matrix V π. To see this, stack (1) over time as

y = Xπ + ε ε ∼ N (0,Σ)

where y = (y′1, . . . , y
′
T )′ and ε = (ε′1, . . . , ε

′
T )′ with dimensions (nT × 1) and (nT × 1)

respectively, and

X =



x1 0 · · · 0

0 x2 0

...
. . .

...

0 0 · · · xT


and Σ =



Σ1 0 · · · 0

0 Σ2 0

...
. . .

...

0 0 · · · ΣT


.
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Then stack the state equation (2) over time to obtain

Dπ = Mη η ∼ N (0,Ω)

D =



Ik 0 0 · · · 0

−P Ik 0 0

0 −P Ik · · · ...
...

. . . . . .

0 0 · · · −P Ik


, η =



η1

η2

...

ηT−1

ηT


,

Ω =



V1 0 · · · 0

0 Ω2 0

...
. . .

...

0 0 · · · ΩT


, π =



π1

0

...

0

0


,

and M = (IT ⊗R) . Assuming r = k and R = Ik, Chan and Jeliazkov (2009) show

the resulting posterior mean (π) and covariance matrix are (V π) defined by

V π =
[
D′Ω−1D +X ′Σ−1X

]−1

π = V π

[
D′Ω−1π +X ′Σ−1y

]
and the full vector of states has posterior π ∼ N

(
π, V π

)
= p (π|y) .

The precision algorithms take advantage of the sparse and banded structure of

many of the very large matrices that enter into the posterior for the states. For

example, since each of D, Ω, X and Σ are banded - that is, they mostly consist of

zeros and the relatively few non-zero elements are arranged along the main diagonal

- the matrices D′Ω−1D and X ′Σ−1X are also banded. As a result, the (Tk × Tk)
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inverse covariance matrix of the precision matrix

Pπ = V
−1

π = D′Ω−1D +X ′Σ−1X

is banded as well. These features, plus the fact that the matrix Pπ is symmetric, imply

a much lower cost of storage and fewer computations are needed. Importantly, we

need not compute the inverse V π = P−1
π ; doing so would involve O (T 3) operations.

Taking into account this structure an using effi cient functions in standard software

packages (e.g., Matlab), the algorithms avoid many redundant computations and

reducing the order of operations to O (T ). Having Pπ, we first take the Cholesky

Pπ = C ′C where C is an upper-triangular matrix, and write the equations defining

the mean vector as

C ′Cπ = D′Ω−1π +X ′Σ−1y.

Second, we define γ = Cπ and solve by forward substitution the following system of

equations for γ :

C ′γ = D′Ω−1π +X ′Σ−1y.

Finally, having γ, we then solve the system of equations Cπ = γ for π. Similarly,

we can use the same type of operations to obtain a draw of the (Tk × 1) vector

of states, π. That is, we draw a (Tk × 1) vector of independent standard Normal

random variables, z ∼ N (0, ITk) and solve Cπ = z for π. The resulting vector π is

a draw from N
(
π, V π

)
. These operations result in a lower order of computations to

produce each estimated state than the Kalman smoother, but the algorithm produces

the same outputs as does the Kalman smoother. The significance of this precision

based approach is that, with a lower cost of computation, macroeconometricians

are able to consider estimation of larger models. As the precision sampler saves on
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computations, and this saving increases with dimension n, they enable estimation of

higher dimensional systems for less additional cost. In a recent paper, Chan et al.

(2020) take advantage of this in estimating a high dimensional time varying parameter

(TVP) vector autoregressive (VAR) model. In their specification, P = R = Ik and

Ωt = Ω has reduced rank.

3 Approaches to overparameterization

Macroeconometricians have come to understand the importance, for a range of rea-

sons, of allowing model parameters to evolve over time. One important example of

this is in VAR models with time varying parameters and, in particular, with het-

eroskedasticity. These models have lead to an improved understanding of policy

and the macroeconomic environment (see, among many others, Cogley and Sargent

(2005), Cogley, Morozov and Sargent (2005), Primiceri (2005), Koop, Léon-González

and Strachan (2009) and Canova and Ferroni (2012)). A natural candidate specifica-

tion to permit evolution of the parameters, and one that is frequently used for time

varying parameter models, is the state space model. The TVP-VAR in state space

form has proven very successful.

Over recent years, there has been an increasing interest in estimating higher dimen-

sional state space models with the TVP-VAR being an important example. Alongside

the literature on time varying parameters has been work pointing out emipircal and

theoretical issues that arise from using small VARs, that is VARs with only a few

variables (Carriero, Kapetanios and Marcellino (2011), Giannone, Lenza, Momfera-

tou and Onorante (2014), Koop (2013) and Koop and Korobilis (2013)). Mapping

from a dynamic stochastic general equilibrium (DSGE) model to a VAR involves ap-

proximations to the implied specification (such as log linearization or truncating the
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lag length of the VAR(∞)) (Giacomini (2013)) or encounters the issue of nonfunda-

mentalness (resulting in the errors in the DSGE not mapping to the structural errors

of the VAR) (Fernández-Villaverde and Rubio-Ramírez (2007)). Moving to a larger

VAR will often mitigate these concerns. In the case where we map from a DSGE,

using a larger VAR is an effort to better match the information set of the econome-

trician to that of agents acting in the model. Theoretical issues such as these have

naturally led to consideration of how to estimate larger models.

Larger models also have empirical advantages. For example, in forecasting there

has been growing evidence that large VAR models perform better than factor mod-

els (Banbura, Giannone and Reichlin (2010), Carriero, Clark and Marcellino (2019),

Carriero, Kapetanios and Marcellino (2009), Giannone, Lenza, Momferatou and Ono-

rante (2014), Koop (2011)).

These two streams of literature have naturally led to work developing higher di-

mensional and time varying models. As the number of variables included in the

VAR increases, however, such models quickly become overparametarized or overfit-

ting leading to poor estimation and inference. Allowing for time-variation, with large

TVP-VAR models, significantly exacerbates this issue. To mitigate the overpara-

meterization issues, researchers have sought ways to reduce the dimensions of such

models to improve estimation.

One approach to achieving parsimony is to allow the data to select parameters to

be set to zero: an application of a technique commonly called variable selection. A

second approach is to allow the distribution of the parameter to be shrunk towards

zero, so that the parameter can effectively be treated as if it were zero. This is the

shrinkage approach. A third approach treats the entire model structure (rather than

individual parameters) to reduce the dimension of the model. We leave discussion of

this last approach to the end of this section.
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Variable selection (see, for example, George and McCulloch (1993) and Smith and

Kohn (1996)) involves equating the value of a binary indicator, γ ∈ {0, 1}, to the

the restriction that a parameter is set to zero or not. This gives a prior distribution

for the parameter that is a discrete-continuous mixture: the prior has a spike at zero

with a continuous distribution elsewhere and for this reason is commonly called the

spike-and-slab prior. The aim in using this prior is to empirically determine whether a

parameter is exactly zero, or is drawn from a continous distribution. Shrinkage priors,

on the other hand, do not set parameters to zero but place mass around zero and are

continuous everywhere. The advantage of shrinkage priors is that they are generally

computationally more effi cient. The idea in this approach is that parameters that

are really zero will have posteriors that are shrunk towards zero. When this occurs,

the parameter is treated as effectively zero. The researcher must decide between the

computational advantages of the shrinkage priors (with no dimension reduction) and

the actual dimension reduction (but computational challenges) of using spike-and-slab

priors for variable selection.

Gerlach, Carter and Kohn (2000) and Frühwirth-Schnatter and Wagner (2010),

use related approaches to let the data decide which parameters are time varying. The

more general and earlier approach is that of Gerlach et al. (2000) in which the time-

variation is allowed to switch on and off where necessary. To do this, they developed

a dynamic mixture approach that could allow time variation of the states at some

points in time but to turn off time variation at other times. This approach uses an

indicator variable, γt, that could turn off the shocks to the states. The state equation

is specified as α̃t = α̃t−1 + γtηt where γt ∈ {0, 1}. A value of γt = 0 implies the state

does not vary from time t − 1 to t. One way to interpret this is that the shock at

time t was zero, ηt = 0. Another interpretation is that the variance of the shock is

zero, E (η2
t ) = 0. We will return to this latter interpretation shortly.
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As the indicator’s value can change over time, computation can prove to be slow or

challenging. An important contribution of Gerlach et al. (2000) was the development

of an effi cient algorithm for sampling the indicators by first integrating out the states.

The model proposed by Gerlach et al. (2000) permits more general specifications than

the one we have discussed here and the approach has been applied in a number of

macroeconometric studies including Koop et al. (2009), Chan, Koop, Léon-González

and Strachan (2012), Koop and Korobilis (2012), Groen, Paap and Ravazzolo (2013),

Korobilis (2013) and Clark and Ravazzolo (2015).

Frühwirth-Schnatter and Wagner (2010) frame the question of which parameters

should vary over time as a variable selection problem. The set up resembles that

of Gerlach et al. (2000) with the addition of a transformation to the non-centered

parameterization, although it is less general in that it does not allow an indicator for

each point in time. In Frühwirth-Schnatter and Wagner (2010), the parameter that

is to be set to zero if γ = 0 is the variance of the state equation in which case the

time variation is turned off.

To demonstrate this approach, consider a scalar state and a standard form of the

measurement and state equations as discussed above with respect to the approach of

Gerlach et al. (2000), but with a single time-invariant indicator

yt = α̃t + εt

α̃t = α̃t−1 + γηt

where γ ∈ {0, 1}, ηt ∼ N
(
0, σ̃2

)
(and so we could roughly write γηt ∼ N

(
0, γ2σ̃2

)
)

and α̃1 = α ∼ N (0, ω2) . By subtracting the initial state from all states and dividing

this by γσ̃ (we ignore the obvious problem of dividing by zero when γ = 0 to pre-

serve the conceptual link between Gerlach et al. (2000) and Frühwirth-Schnatter and
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Wagner (2010)) we have the non-centered parameterization, α̃t = α + γσ̃αt and the

model becomes

yt = α + γσ̃αt + εt

αt = αt−1 + zt

where zt ∼ N (0, 1) and α1 = 0. The constraint σ̃ > 0 is treated as an identification

issue in Frühwirth-Schnatter and Wagner (2010) although here we provide a different

interpretation and parameterize this identification issue. To see this, introduce an

unidentified bivariate random variable ι ∈ {−1, 1} where P (ι = 1) = 1− P (ι = −1)

and insert this into the measurement equation as σ̃αt = σ̃ιιαt = σαt where σ = ισ̃.

The state equation is now yt = α̃0 + γσαt + εt. Athough αt has been transformed

we do not change the notation as it has the same distribution before and after the

transformation. This transformation using the unidentified ι is a form of parameter

expansion (see discussions in Liu, Rubin and Wu (1998) and Liu and Wu (1999))

that is commonly used to improve computation. An important requirement for a

parameter expansion to improve computatoin is that the prior distribution of the

unidentified parameter (ι) is independent of the parameters in the model, which it is

in this case.

The state equation error standard deviation, σ, is now just a regression coeffi cient

on the state with support R. If the state is not varying over time then we would

expect to see this coeffi cient restricted to σ = 0, restricting the ‘variable’αt out of

the equation. To implement variable selection the binary indicator γ ∈ {0, 1} in the

measurement equation is given a prior, P (γ = 1) = P (γ = 0) = 1
2
say. Thus we

see the link to Gerlach et al. (2000) as yt = α̃0 + γσαt + εt. If γ = 0 then σ = 0

and the state is constant, whereas if γ = 1 then σ 6= 0, and the state may vary
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over time. It is for this reason Bitto and Frühwirth-Schnatter (2019) refer to this

as a variance selection problem. The posterior probability P (γ = 0|y) tells us the

empirical support for the restriction that the state is time invariant.

There have been a number of applications and extensions of the non-centered

parameterization for state space models in macroeconometrics. Chan (2018), for

example, uses this specification with the Savage-Dickey density ratio to compute the

Bayes factor for the restriction to time-invariance of parameter in various models of

inflation. Towards the end of this section we discuss an extension and generalization

of the specfication in Frühwirth-Schnatter and Wagner (2010) by Chan, Eisenstat and

Strachan (2020).

Despite its strong theoretical appeal, variable selection tends to be more computa-

tionally diffi cult than the approximation to variable selection through shrinkage. For

this reason there have been many approaches inducing shrinkage including Belmonte,

Koop, and Korobilis (2014), Kalli and Griffi n (2014), Uribe and Lopes (2017), Rockova

and McAlinn (2017), Huber, Koop and Onorante (2020) and Bitto and Frühwirth-

Schnatter (2019). In the following discussion we consider a few implementations of

shrinkage.

An important contribution of Frühwirth-Schnatter and Wagner (2010) is the argu-

ment for using a normal prior on the parameter σ rather than the traditional default

of the inverted gamma on σ̃2. The difference, which is important for questions of

parismony, is in how these two priors treat values near zero. The more commonly

used inverted gamma distribution on σ̃2 prevents shrinkage as it is bounded away from

zero. The normal prior on σ, which implies a gamma prior on σ2, is more innocuous

in that it allows weight around zero. In an inflation forecasting exercise, Belmonte

et al. (2014) remove the variable selection parameter (γ) and use shrinkage priors

on the prior variance of the initial state (α̃0) and the state variance (σ̃) in the non-
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centered specification. The prior uses a Lasso prior for the standard deviation. Bitto

and Frühwirth-Schnatter (2019) take a similar approach to Belmonte et al. (2014)

but use a Normal-gamma prior for shrinkage which encompasses the Lasso prior as a

special case. The prior in Bitto and Frühwirth-Schnatter (2019) can produce a more

pronounced peak at zero while allowing considerable mass away from zero, effectively

bringing the continuous shrinkage approach closer to the variable selection or spike-

and-slab approach. Giannone, Lenza and Primiceri (2018) explore the support for

sparse (as could result from spike-and-slab priors) versus dense (models with many

parameters shrunk towards zero) time invariant models. They find support for dense

models over sparse models. A paper that brings together selection and shrinkage is

Huber et al. (2020) using sparsification (see Barbieri and Berger (2004)) where sparsi-

fication involves setting parameters with low posterior probabilities of being non-zero

to zero. In a TVP-VAR, and in contrast to the results of Giannone et al. (2018),

they find strong evidence of sparsity and that large sparse models forecast well.

Another approach to computing high dimensional state space models is to change

the model specification in such a way that results in significant computational and

memory savings. We discuss three such approaches. The first of these makes use of

techniques developed over fifty years ago when computing power was very limited. In

a series of papers Koop and Korobilis (2011, 2012, 2013) (among others) apply this

technique in a dynamic model averaging approach suggested by Raftery, Karny and

Ettler (2010). The updating equation for the filtered estimate of the state covariance

matrix, Vt+1, in the contemporaneous filtering equations representation is

Vt+1 = Vt|t +RΩtR
′.

Raftery et al. (2010) introduce the forgetting factor λ, where 0 < λ ≤ 1, and replace
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the above updating equation with

Vt+1 =
1

λ
Vt|t.

If we assume Ωt =
(
λ−1 − 1

)
Vt|t, then this is the correct updating equation for a

properly defined state space model. Using forgetting factors to alter the model spec-

ification in this way significantly reduces the computational burden. This compu-

tational advantage comes from not needing to compute or simulate Ωt. Koop and

Korobilis (2013) clearly demonstrate this advantage when they compute a TVP-VAR

with four lags for 25 variables, implying a state vector with dimension k = 2, 525.

They demonstrate that this is particularly useful in a forecasting exercise.

Koop and Korobilis (2013) avoid a full exploration of the posterior distribution

which is appropriate for a forecasting exercise. However, there are important ques-

tions that do require knowledge of the full posterior. For example, a simple mea-

sures of uncertainty are the highest posterior density or the percentile range (e.g.,

inter-quartile range) for objects of interest. Chan, Eisenstat and Strachan (2020)

present an approach that provides a full MCMC exploration of the posterior for a

high-dimensional TVP-VAR with stochastic volatility. This approach also imposes

a change in the model specification but one that is suggested by the data. That is,

they impose rank reduction on the state equation covariance matrix Ω such that they

estimate a singular state space model. This feature of the state covariance matrix

was noted in Cogley and Sargent (2005). This simple and empirically supported re-

striction results in a reduction of the dimesion of the model by around 90% to 99%,

thereby making the model computable. Chan et al. (2020) improve computation by

implementing a number of techniques: the rank restriction, they estimate the VAR

in structural rather than reduced form, generalize the non-centered parameterization
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of Frühwirth-Schnatter and Wagner (2010) to the matrix case, employ parameter

expansions and use the precision sampling approach of Chan and Jeliazkov (2009).

They apply this to a study of the evolution of the transmission of news and non-news

shocks in a system with 15 variables.

The approach in Chan et al. (2020) works by reducing the dimension of the

parameter space by reducing the sources of variation in the states. Koop, Korobilis

and Pettenuzzo (2019) achieve a reduction in the dimension of the parameter space by

using compressed regression to reduce the dimension of the data. Bayesian compressed

regressions, introduced by Guhaniyogi and Dunson (2015), radomly project the data

into a lower dimension. Importantly, the draws of these projections are not informed

by the data. To demonstrate this in the linear regression model for a (T × 1) vector

y with a T × k matrix of regressors X, the compression is applied as follows

y = Xβ + ε = XΦγ + ε = XΦγ + ε

where XΦ = XΦ, γ is an (q × 1) vector and Φ is the (k × q) random projection

matrix. Each element of Φ depends upon a single scalr parameter, ν, which is drawn

independantly of the data. The (i, j)th element of Φ, Φij, takes one of three discrete

values determined by the probability of each value. Specifically, Φij ∈
{
− 1√

ν
, 0, 1√

ν

}
with probabilities ν2, 2 (1− ν) ν and (1− ν)2 respectively. The unknown parameter ν

might be drawn, for example, from a uniform distribution bounded away from zero and

one for numerical stability. When choosing q, Guhaniyogi and Dunson (2015) suggest

using Bayesian Model Averaging. Koop et al. (2019) apply this to the TVP-VAR

by combining it with dynamic model averaging. By using the structural form of the

VAR, they apply compression to each equation one at a time and the computational

result is impressive. They are able to apply this to a system with n = 129 variables
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and 13 lags. The state vector for a full TVP-VAR with these specifications would

have dimension over k > 210, 000. The approach is demonstrated to be empirically

useful in a foreacsting exercise in which it performs well.

In this section we have discussed various approaches to dealing with parameter

proliferation which often occurs in state space models used in macroeconomics. The

range of approaches involve shrinkage, variable selection or alterations to the struc-

ture of the model to either reduce its dimension or permit easier computation. As

models grow and the advantages of large models become more apparent and better

understood, this is likely to remain a very active area of research.

4 Non-linear and non-Gaussian models

An issue that arises in a range of models is that the states πt evolve nonlinearly,

enter the measurement equation non-linearly and/or εt or ηt are non-Gaussian. To

allow for these possibilities, we write the measurement and state equations in a more

general form as

yt = F (πt, εt) for t > 1 (3)

πt = H (πt−1, ηt) for t > 1 (4)

π1 ∼ f (π1) (5)
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or, slightly more generally again,

yt ∼ p (yt|πt) for t > 1 (6)

πt ∼ f (πt|πt−1) for t > 1 (7)

π1 ∼ f (π1) . (8)

In these cases the Kalman filter and smoother cannot be employed or require exten-

sions to enable inference. A number of alternative approaches have been proposed

and in this section we discuss three such approaches. The first involves respecifying

the model into a linear Gaussian form such that the Kalman filter can be used. Next

we outline an alternative filtering algorithm that allows for very general forms for the

state space model, the particle filter. Lastly, we discuss another approach that draws

upon the precision sampler approach discussed in Section 2.

In some cases, it is possible to respecify a non-linear and non-Gaussian model

into a linear Gaussian form to permit application of standard estimation procedures.

An example is the stochastic volatility model. A simple specification (e.g., Jacquier,

Polson and Rossi (1994) or Kim, Shephard and Chib (1998)) of the measurement and

state equations for stochastic volatility is

yt = eht/2εt,

ht = µ+ ρht−1 + ηt,

where εt ∼ iidN (0, 1). The measurement equation is non-linear in the state, ht,

but Gaussian. Kim et al. (1998) apply a sequence of transformations to obtain a

linear and (conditionally) Gaussian form. They begin by squaring both sides and

then taking the log. The actual transformation of yt is y∗t = ln (y2
t + c) where c > 0
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is a small number added to induce stability. The resulting measurement equation is

now

y∗t = h2 + ε∗t where ε
∗
t = ln

(
ε2
t

)
∼ ln

(
χ2

1

)
.

The error ε∗t is distributed as ln (χ2
1) which is clearly non-Gaussian. The next step is to

approximate the distribution p (ε∗t ) by a mixture of normals, p (ε∗t )
∼=

7∑
i=1

wiN (µi, σ
2
i ).

By drawing from each of the seven normals with probability wi the overall draws are

approximately draws from p (ε∗t ). To implement this, a random latent state is intro-

duced for each point in time t, st = i for i = 1, ..., 7 and Pr (st = i) = wi. Conditional

upon the drawn state st = i, ε∗t ∼ N (µi, σ
2
i ) and the model is now linear and Gaussian

which permits the use of the Kalman filter or smoother. Introducing the latent state

or auxiliary variable st results in a significant simplification of the sampling algorithm.

This approach - the auxiliary mixture sampling - has been applied widely. Examples

include Frühwirth-Schnatter and Wagner (2006), Omori, Chib, Shephard and Naka-

jima (2007), Frühwirth-Schnatter, Frühwirth and Rue (2009), Barra, Borowska and

Koopman (2018) and Mao and Zhang (2018).

In cases in which the measurement or state equations are non-linear, and such a

transformation to a linear form is not possible or practical, then the Extended Kalman

Filter (EKF) (Anderson and Moore (1979), Jazwinski (1970)) has often proven useful.

The EKF essentially involves taking a locally linear approximations to the non-linear

functions F and H. This linearization uses a first order Taylor series expansion of

F and H to develop linear approximations to these functions which are then used in

Gaussian approximations to the predictive distributions, p (πt|y1:t−1) and p (πt|y1:t).

As with any approach, a number if issues have been identified with the EKF (Creal

(2012)). For example, if the true predictive distributions are not well approximated

by Gaussian distributions (e.g., if they are bi-modal or heavily skewed) then the EKF
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will not perform well (Arulampalam, Maskell, Gordon, and Clapp (2002)). In the case

of non-linear measurement and state equations with possibly non-Gaussian shocks,

the particle filter approach can be used and have some advantages over the EKF in

that there is no need for functional approximation.

Particle filters or sequential Monte Carlo samplers (Del Moral, Doucet and Jasra

(2006) and Doucet, de Freitas and Gordon (2001)) are a powerful tool for estimating

a very wide range of processes and so have proven useful in many recent applications.

The price to pay for this power and flexibility is computational burden, but this cost

has been decreasing or, equivalently the computational power has been increasing.

This latter phenomenon, along with advances in algorithms, have made particle filters

increasingly viable. Accessible tutorials on particle filters are given in Arulampalam

et al. (2002) or, more recently, Doucet and Johansen (2011) and a recent survey by

Creal (2012).

The particle filter uses importance sampling and resampling to draw from an ap-

proximation to a sequence of probability distributions. Unlike the EKF which uses an

approximation of F and H, the particle filter approximates the distributions p and f.

This has advantages in cases where the local linearization and Gaussian approxima-

tion poorly match the true distribution. Another useful feature of this technique is

that the probability distributions need only be known up to the normalizing constant

and are approximated by a ‘cloud’of weighted random samples. The weights wt are

attached to each sampled value to approximate the density of the states. Sequen-

tial Monte Carlo methods are employed to propagate these samples, or particles, over

time. An empirically and theoretically important problem with sequential importance

sampling is that the mass is degenerate. That is, as the algorithm progresses, one

weight converges to one while the other weights collapse to zero. A solution to this

issue using a Bootstrap filter was proposed by Gordon, Salmon and Smith (1993).
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These authors propose a resampling step to obtain equally weighted particles. With

independent propagation the degeneracy problem is avoided.

To give a feel for the flexibility of the particle filtering approach, recall the the state

space model in a very general form (6)-(8), one that is potentially non-Gaussian and

non-linear. Applying the particle filter at step t involves drawing a number of potential

states πt, keeping those that are most likely or probable, and then propagating forward

to πt+1. A simple version of the Bootstrap filter of Gordon et al. (1993) begins with

m draws of the initial state π1.

1. Initialize:

• For i = 1, ...,m draw π
(i)
1 ∼ f (π1) and set w(i)

1 = 1
m
.

For t = 2, ..., T

2. Importance sampling:

• For i = 1, ...,m draw π
(i)
t ∼ f

(
πt|π(i)

t−1

)
and set π̃(i)

1:t =
(
π

(i)
1:t−1, π

(i)
t

)
• For i = 1, ...,m compute and normalize the weights w(i)

t ∝ p
(
yt|π(i)

t

)
.

3. Resampling:

• Resample m pariticles
{
π

(i)
t

}m
i=1

with replacement from
{
π

(i)
t , w

(i)
t

}m
i=1

• Return to Step 2.

From the notation used to demonstrate the particle filter, it is clear that there is

no theoretical constraint on the dimension of the state πt. In practice, however, the

approximation error grows exponential in the dimension of the state (Rebeschini and

van Handel (2015)). There is generally much greater variation in the weights with
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higher dimension state vectors and so one particle will take almost all of the weight;

leading again to a degeneracy issue. There have been a number of papers developing

methods to address degeneracy in high dimensional filtering methods (see, for exam-

ple, Djuríc and Bugallo (2013), Naesseth, Lindsten and Schön (2015), Rebeschini and

van Handel (2015), Beskos, Crisan, Jasra, Kamatani and Zhou (2017), Robert and

Künsch (2017) and Wigren, Murray and Lindsten (2018)). However, there remain

few applications of such techniques to what could be regarded as high-dimensional

states in macroeconomics.

Above we mentioned the advantage of approximating the distributions rather than

the functions in the model and in Section 2 we discussed the computational advan-

tages of the precision sampler (in which we draw all states at once) over the filtering

approach. This computational gain becomes more important if we take into account

that there is clearly a need for modelling high-dimensional systems in macroecono-

metrics. Chan and Strachan (2012) develop an approach to drawing states from a

possibly non-linear and non-Gaussian state space model of (moderately) high dimen-

sion. Their application is to evaluation of credit shocks near the zero lower bound for

interest rates. For this application, they estimate of a TVP-VAR-SV where the non-

linearity and non-Gaussianity are induced by the truncated support of interest rates

at zero. Using second order expansions and Gaussian approximations to the likeli-

hood p (y|π) and the density for p (π) implied by the state equations, they develop

an approximation to the posterior for the states, p (π|y) . They then develop three

sampling schemes for drawing the states from the posterior: a Metropolis-Hastings

algorithm, an Accept-Reject Metropolis-Hastings algorithm and finally a collapsed

sampler using the cross-entropy method (e.g., Chan and Kroese (2012)) to develop

the proposal density. This general approach of estimating non-linear state space mod-

els has been used in various applications such as Chan, Koop and Potter (2013 and
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2016), Lanne and Luoto (2017), Chan and Eisenstat (2018), Cross and Poon (2019),

Chan (2020), Dimitrakopoulos and Kolossiatis (2020) and Hou (2020).

5 Summary and conclusion

In this paper, we have provided a review of recent developments in state space mod-

elling in macroeconomics taking a Bayesian approach. For the purpose of estimating

a linear Gaussian state space model, the Kalman filter remains the most popular

choice for analysts. The precision based samplers show promise as an alternative

to the Kalman smoother, particularly when economists prefer larger models for em-

pirical or theoretical reasons, however, a return of dynamic model averaging using

forgetting factors shows considerable potential for estimation of large models. These

latter models have been shown to perform very well in forecasting exercises. While

we found only application of the Kalman filter using forgetting factors, there does not

appear to be any impediment to applying the smoother with this approach and doing

so could resolve some interpretational issues as well as broaden its application. As the

rationale for large models has strengthened, the focus on computational costs has in-

creased leading to approaches that save on computation by dimension reduction - such

as turning off time-variation - or better algorithms, or both. Advances in the theory

around particle filters has improved inference in non-linear and non-Gaussian models

but challenges remain when applying this approach in high-dimensions. A precision

based approximation to the posterior for the states, however, shows promise in some

applications.

Recent interest has turned to large models, including time-varying parameter mod-

els where state space models dominate. There have been considerable advances into

computation, specification and inference in these high-dimensional models and this
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research continues. Challenges, and so new directions for state space modelling, in-

clude estimation and inference in TVP-VARMAs and treatment of identification in

large factor models; both of which have theoretical justifications when the underlying

model is assumed to be a DSGE model. This takes us beyond using these models only

for forecasting and evidence on time variation. Once VARs and VECMs were estab-

lished as workhorse models, research turned to consider restrictions on these models

as a way to establish support for economic theories or features implied by economic

theories. Similarly, evidence on time-variation in the support for restrictions (see, for

example, Koop, Léon-González and Strachan (2010, 2011)) offers further opportuni-

ties for new applied work.
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