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Abstract

Automatic detection of road cracks is an important task to support road inspec-

tion for transport infrastructure. Various methods have been proposed for road

crack detection and segmentation, however, there is no established method for

handling real road images that are noisy and of low quality. In this paper, a new

method utilising a two-stage convolutional neural network (CNN) is proposed

for road crack detection and segmentation in images at the pixel level. Our

novel contribution is a framework where the first stage serves to remove noise or

artifacts and isolate the potential cracks to a small area, and the second stage

is able to learn the context of cracks in the detected area. This is hence more

effective than learning over the entire original noisy image. Extensive experi-

ments on real datasets including public sources and our collected dataset have

been conducted. The experimental results show that the two-stage CNN model

outperformed existing approaches, especially for noisy, low-resolution images,

and imbalanced datasets. Our approach achieves an F1-measure of over 0.91 on

three datasets.

Keywords: Convolutional Neural Networks, Deep learning, Crack detection,

Crack segmentation, Crack condition survey

1. Introduction

Road crack detection is the process of inspecting and identifying cracks on

a road surface for road condition evaluation and maintenance. Road crack de-

tection can be performed manually by human eyes or automatically by machine

vision. Human inspection requires an expert’s knowledge, and is laborious and

time consuming. Methods for automatic crack detection from road images have

been developed to improve processing speed and obtain performance better than

that of humans (Oliveira, 2013). This is a challenging task in computer vision

and image processing that has been the subject of research for decades (Shahin

and Kohn, 1979; Zhang et al., 2016; Zakeri et al., 2017; Mohan and Poobal,
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2017; Liu et al., 2019). This paper will present an advanced machine learning

approach for automatic road crack detection and segmentation for road condi-

tion evaluation.

A key aspect to the calculation of the cracking index is obtaining accu-

rate estimates of the length and width of cracks, which is in turn enabled by

precise pixel-level segmentation of cracks. However the actual calculation of

the cracking index has subjective components not easily automated and hence

is ongoing work and is not within the scope of this article. In this work we

focus on accurate pixel-level segmentation of cracks using advanced machine

learning methods to support the eventual automatic calculation of the crack-

ing index. There is a potential for significant improvement in crack evaluation

by moving from manual measurement of the crack dimensions and density to

semi-automatic calculation of crack positions and structure using digital image

processing and machine learning. Semi-automatic detection methods are more

efficient for road surveys than human inspection (Oliveira, 2013; Mohan and

Poobal, 2017).

Some existing methods only focus on either detection at the region level

or segmentation at the pixel level, and try to optimize only the detection or

segmentation performance. However, by concentrating only on detection or

segmentation alone, these methods do not see the problem holistically, which

results in a reduction in overall performance. In particular, it is difficult to

achieve a significant result in the case of challenging data such as noisy images

with weak crack features, and imbalanced data. By developing a novel method,

addressing both detection and segmentation in a single framework, our solution

addresses this gap in the prior art and shows substantially improved performance

compared to previous approaches.

There are many proposed approaches to detect and segment cracks in road

images. Traditional digital image processing (DIP) methods such as the Canny

edge detector (Canny, 1987), and methods based on Gabor filters (Movellan,

2002) exploit the change in intensity between pixels to define the edge, so a crack

is considered as a feature which responds to edge detection filters. However,
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these algorithms are sensitive to many small details in road images and hence

don’t provide effective noise rejection. In addition, the optimal parameters

required to allow these filters to trade-off the removal of noise against weak

crack preservation change from image to image.

On the other hand, machine learning approaches, especially models based

on neural networks, are used widely for object detection. Convolutional Neural

Networks (CNN) are one of the most powerful recognition methods. Some work

uses CNNs for detection of cracks (Zhang et al., 2016; Fan et al., 2018) while

some use CNNs for pixel-wise segmentation of cracks in images (Liu et al., 2019).

In the training phase, images used for training are small sections of the overall

image, wherein the positive inputs contain cracks while negative inputs do not

contain cracks. The output of a detection model would be a binary decision as

to whether a crack was or was not in the input image section. Nguyen et al.

(2018b) proposed a CNN model for crack detection. The advantages of this

CNN architecture is its ability to remove almost all noise and artifacts in the

original image at a relatively large size of 750 x 1900 pixels, while detecting all

image patches that contain cracks. However, a disadvantage of this model is

that the detected cracks are not localised as precisely as in the ground truth.

The CNN model of Zhang et al. (2016) achieves a high score but suffers from

the problem that the detected cracks are larger than the ground truth cracks .

Liu et al. (2019) show that the handling of thin cracks of several pixels in width

and broken, intermittent cracks differs from the handling of wider crack regions,

so post-processing is necessary to improve the results .

The above analysis shows that models that focus on only one step of detec-

tion or segmentation are not effective, especially with thin cracks in noisy and

low resolution images. To tackle these problems, we propose a new method that

comprises CNNs in a two-stage framework for both detection and segmentation

of cracks in road images.

Figure 1 shows our framework for road crack detection and segmentation.

The image acquisition can be done by a camera attached to a car, a special

purpose drone, or a smart-phone. Following this, samples for training and
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Figure 1: Our proposed framework for road crack detection and segmentation.

testing are created with the support of road experts. Two separated stages

based on convolutional neural networks are trained from the samples, the first

stage for detection and the second stage for segmentation of cracks. Previous

work only focused on either detection or segmentation.

In this paper the two steps are done in one framework based on a machine

learning approach. Our method shows a strong performance improvement when

applied to unbalanced datasets such as crack datasets, where the number of

crack pixels is substantially smaller than the number of non-crack pixels. Our

main contributions are:

• A new two-stage architecture based on CNNs that is effective for noisy,

low-resolution images, and imbalanced datasets. We show that the perfor-

mance of this model is superior to models that use one stage for detection

or segmentation exclusively.

• The model achieves superior performance compared to combining prior

art detection and segmentation methods to create a two-stage approach,

demonstrating that our specifically tailored two-stage model takes full

advantage of a two-stage detection and segmentation paradigm.

• A new dataset of challenging road images containing cracks has been col-

lected. The images are carefully labeled by experts for training and testing

our model. The dataset will be made available to the research community.
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2. Related works

Segmentation and detection methods for cracks in road images can be di-

vided into two categories: the first one uses traditional digital image processing,

and the second one uses machine learning approaches, especially deep neural

networks. In this section, we will review related works for both detection and

segmentation.

Traditional digital image processing (DIP) for crack detection and segmen-

tation

Gabor filters are an image filtering method based on Gabor functions (Movel-

lan, 2002). This filter is also used for image feature extraction (Ma et al., 2002;

Kong et al., 2003). The Gabor filter is effective for texture segmentation (Bhoi

and Solanki, 2011) and since the detection of cracks in a road image can be

considered a form of texture segmentation, Gabor filters have been proposed

for pavement crack detection and segmentation (Salman et al., 2013; Zalama

et al., 2014). The advantage of this method is that most of the crack pixels are

detected and so the crack is well segmented. However, this method is sensitive

to noise.

Adaptive Thresholding is another common technique in many computer vi-

sion and graphics applications (Bradley and Roth, 2007). This technique works

by comparing a pixel to the average of nearby pixels and thresholds the results to

avoid boundaries across low gradient changes. This is a powerful technique for

image processing because it is not sensitive to spatial changes and can remove

noise. Fan et al. (2019) used a deep CNN model to detect areas of an image con-

taining cracks, then applied the adaptive thresholding method to segment the

cracks from the image . This method is simple and fast. Adaptive thresholding

also achieves high accuracy on road images containing strong cracks. However,

this technique cannot remove the small point-like noise characteristic of road

image data.

Neural Networks and deep learning approaches for crack detection and seg-

mentation
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Deep learning is a family of machine learning methods based on multiple

layers of artificial neural networks. Neural networks in machine learning are

widely used in crack detection and segmentation, and these models have many

advantages over traditional machine learning models (Zhang et al., 2016; Nguyen

et al., 2018a; Fan et al., 2018; Mandal et al., 2018; Sobol et al., 2019). Deep

learning models can learn features in images automatically, while traditional ma-

chine learning approaches need image features that are designed by users. Deep

learning can also learn subjective defects which are hard to train —like minor

product labeling errors. Recently, deep learning has become a powerful method

that is used for detection and segmentation problems. There are 12 techniques

that were examined for crack detection, six of which are based on neural net-

works including unsupervised and supervised methods (Oliveira, 2013). The

accuracy of block-based crack detection is high, around 90% . However, this

approach requires complicated pre-processing of the data before training and

testing.

Deep learning methods based on CNN for detection are used in various pub-

lications for crack detection (Medina et al., 2014; Zhang et al., 2016; Fan et al.,

2018; Maeda et al., 2018). Two crack datasets without pre-processing: CFD

(Shi et al., 2016) and AigleRN (Chambon and Moliard, 2011), were used by Fan

et al. (2018) to solves the problem of imbalanced data, with the ratio of posi-

tive pixels to negative pixels being 1:65 and 1:98.5 in the CFD dataset and the

AigleRN dataset respectively. The training phase uses crack images with labels,

and the experiments show that training ground truth with thinner crack labels

leads to thinner output cracks (Fan et al., 2018). The small sample size cannot

apply to low spatial resolution images that contain extensive noise and arti-

facts like the 2StageCrack dataset. Moreover, a high F1-score was achieved by

Fan with an imbalanced training set with twice the number of negative samples

compared to positive samples. This approach can lead to a high number of false

positives (He and Garcia, 2009). Zhang et al. (2016) developed a deep learning

method for crack detection, however the output crack detection probability map

shows that the probability of actual crack pixels and some surrounding pixels
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are the same . Hence the detected crack is bigger than the real crack. There is

a similar situation in Nguyen et al. (2018b), where the proposed method also

outputs cracks much larger than the ground truth .

The YOLO v2 model (Mandal et al., 2018) has been applied to automated

road crack detection and classification. YOLO v2 is based on the original YOLO

deep learning method for real-time object detection (Redmon et al., 2016). The

YOLO method works by dividing the input image into small boxes and predict-

ing the coordinates of bounding boxes and class probabilities for these boxes.

YOLO v2 method achieved an F1 score of 0.8780 overall for crack and other

damage detection on roads. However, this work focused just on detecting the

area that contained the cracks and not on pixel-level segmentation. A model

called RetinaNet (Ale et al., 2018), based on deep learning, has been proposed

for road damage detection. RetinaNet can use different neural networks as the

backbone for learning feature maps. A disadvantage of RetinaNet is this model

detects some artifacts like paint, and line shadows as cracks. A two-module

model was proposed to detect cracks rapidly (Park et al., 2019). The first mod-

ule extracts cracks from road images at the same size as the original image,

then patches that contain cracks are cropped, and the second module detects

the cracks from the cropped patches. This proposal obtained a high precision

and recall at 0.9774 and 0.9521, respectively. However, Park’s model failed for

images that contain both cracks and road markings, or images that have cracks

on the border of the image.

The above listed crack detection approaches have a common point: using

rectangular image region samples that contain cracks as positive examples and

image region samples that do not contain cracks as negative examples to train

an output model that classifies the rectangular regions as containing cracks or

not. The accuracy of experiments is evaluated at the image region classification

level, not the pixel classification level. Therefore, some segmentation methods

are proposed to detect the crack at the smallest unit of image, the pixel. In

the next sub-section we survey some segmentation methods that are used to

segment objects and cracks.
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FCN stands for Fully Convolutional Networks (Long et al., 2015). FCN

transfers knowledge from VGG16 (Simonyan and Zisserman, 2014) to perform

segmentation. In the FCN architecture, a 1 × 1 convolutional layer is used

to convert the fully connected layers in VGG16 into fully convolutional layers

that enable the classification net to output a low resolution heatmap. FCN is

complicated and it takes a long time for training because of the large number

of kernels in the convolutional layers.

U-Net is widely used for image segmentation (Ronneberger et al., 2015). The

U-Net uses a segmentation model that includes two parts: a contracting part for

computing features and an expanding part for spatially localizing patterns in

images. In the U-Net architecture, the authors use concat layers that concate-

nate feature maps in the same level of both the encoder and decoder parts and

improve the localization accuracy of objects. The U-Net model achieved a high

IoU (Intersection over Union) result, at 0.9203 on the ISBI (IEEE International

Symposium on Biomedical Imaging) cell tracking challenge.

SegNet is a deep convolutional encoder-decoder architecture for image seg-

mentation (Badrinarayanan et al., 2017). SegNet makes use of a special tech-

nique in that it only stores max-pooling indices, therefore using less memory

during training compared with fully convolutional networks. SegNet is effective

in boundary delineation and the experiments show that SegNet outperforms all

the other methods for most objects. XNet is another convolutional neural net-

work that is used for the segmentation of medical X-Ray image data (Bullock

et al., 2019). Although this net uses small datasets for training, the results show

an overall accuracy of 92% and an AUC (Area Under the Curve) of 0.98. XNet

obtains more than 90% in all evaluating indexes such as F1-Score and AUC

when applied to three categories of X-ray images.

DeepCrack is a new model that utilizes a deep hierarchical neural network for

crack segmentation in which Liu et al. (2019) proposed a deep hierarchical CNN

for crack segmentation at the pixel level. The DeepCrack model uses the first 13

layers which correspond to the first 13 layers in VGG-16, but the fully connected

layers and fifth pooling layer are removed to achieve meaningful side-output with
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different scales and decreased memory requirements and computation time. A

guide filter based on guided feathering is used by He et al. (2012) to achieve the

final refined prediction and to remove noise in the low level prediction.

In summary, the above image segmentation methods share some common

characteristics including that they are built based on a backbone CNN. Some

existing models only focus on either detection at the region level or segmentation

at the pixel level, and try to optimize only the detection or segmentation perfor-

mance. However, by concentrating only on detection or segmentation alone, it

is difficult to achieve a high performance result in the case of challenging image

data with noisy and weak features such as road images.

In this work, we will develop a new method for efficient learning and charac-

terization of road images. The new model combines the two levels of detection

and segmentation of cracks, and has the advantages of both state-of-the-art

detection and segmentation methods in a single unified approach.

3. Proposed method

In the following we will present our proposed model that combines two stages

of detection and segmentation. The first stage uses a CNN as a detection model

that is trained on image patches to seek all regions that contain cracks, while

also removing most of the noise and artifacts. The second stage involves seg-

mentation of the crack at the pixel level in small patches instead of the whole

original image. As a result, the combined model has the advantages of both the

detection and segmentation approaches.

Figure 2 shows the proposed two-stage architecture for crack detection and

segmentation at the pixel level.

CNN architecture for road crack detection

In the convolutional neural network, the convolution function is used for the

extraction of features (LeCun et al., 1998). An input image is considered as

a matrix Wm,n of size M × N . This input image is convolved with a kernel

kp,q of size P × Q. In our proposed approach, we use a square input image of
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Figure 2: The proposed two-stage model for detection and segmentation.
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size 96 × 96 pixels and a kernel of size 3 × 3. This operation can be written as

equation (1), where ci,j is the (i,j)th element of the convolutional layer.

ci,j = f(

M∑
p=m

N∑
q=n

wi,j · ki+p,j +q + bm,n) (1)

where f is a transfer function,
∑M

p=m

∑N
q=n wi,j ·ki+p,j +q is the convolution

operator of the input and the kernel, and bm,n is the bias input to the layer.

Each convolutional layer represents a feature map of the image such as shape,

edge or intensity. For enhancing useful features and emphasising weak crack

features, a number of neural network layers must be used. In this work, we use

a five-layer CNN model to extract the features of the crack samples. The number

of layers is chosen empirically. It is shown that for our particular problem, a

five-layer CNN architecture achieves the highest score. The number of kernels

in the first, second, third, fourth and fifth CNN layer are 12, 18, 24, 32, and

64, respectively. A one-pixel stride is applied for all CNN layers. This helps

to compute all of the features, even when the cracks are small. We did not

use padding for the layers of the detection-stage CNN, which means samples

used by the CNN are not given additional padding when convolved with the

kernel. This technique reduces the size of each layer and hence the number of

parameters. After each CNN layer, max-pooling layer with kernel size of 2×2 is

added. A max pooling function selects the maximum value in each 2×2 block,

also reducing the size of the layers of the network. In this way, the max pooling

layer helps to decrease the number of weights and avoids over-fitting.

Integrating features is achieved by two fully-connected (FC) layers. While

the previous CNN layers extract the crack features, the FC layers are used

for collating all learned features. The first FC layer contains 200 neurons for

flattening the features and arranging them into a vector. The feature vector

collates all the feature information and high-weight elements from the prior

convolutional layers. The second FC layer includes two neurons corresponding

to the two classes to be classified: crack and non-crack.

Probability of samples being either a crack or non-crack region sample must
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be calculated and this is the final step to classify an image patch as crack or

non-crack. In this work, we use the softmax function in the last layer. The

output of this function is the probability that a given region sample contains a

crack. The range of this value is from 0 to 1, representing the certainty of the

region containing no-cracks or at least one crack, respectively.

Prevention of overfitting in this proposed model is achieved using a pool-

ing technique. After each convolutional layer, a max-pooling is performed to

decrease the number of weights. We also used image augmentation techniques

such as shifting, zooming, flipping, and rotation of the image patches to diversify

the training data, which also contributes to preventing overfitting.

CNN architecture for road crack segmentation

The proposed convolutional neural network architecture for segmentation

(Figure 2) comprises two parts: a contraction or encoding part and an ex-

pansion or decoding part. Encoder-decoder models are used widely in image

segmentation (Ronneberger et al., 2015; Badrinarayanan et al., 2017; Bullock

et al., 2019). These models are also used for semantic segmentation of cracks in

road image data.

The contracting part is designed to compute the features of objects in images.

We utilize a model that contains five layers of convolutional neural networks for

extracting image features. We use an architecture that increments the number of

filters in each layer in a manner consistent with previous work on segmentation

and object detection (Simonyan and Zisserman, 2014; Ronneberger et al., 2015;

Nguyen et al., 2018b). As the network is built for segmentation, this task aims

to detect and classify an object not only at the block level but also at the pixel

level, so we do not use a small number of kernels as in previous work (Nguyen

et al., 2018b). In addition, by contrast with U-Net, which contains a very large

number of filters in each CNN layer, we decrease the number of kernels in each

successive layer by a factor of two, such that there are 32, 64, 128, 256, 512

kernels in sequence from the first layer to the fifth layer. We used padding in

all convolutional layers in the segmentation stage. This means that all samples

are given additional padding when convolved with the kernel, so size of output
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segmented images is kept the same as the input images. A difference in the

number of elements between the detection and segmentation stages is due to

the use of padding in the segmentation stage that is not used in the detection

stage. A max-pooling layer is added after each convolutional layer to decrease

the number of weights and the sample size.

The expanding part is the inverse of the contraction process. While the

contracting part is used for extracting features, the expanding part is used for

spatially localizing patterns in images. We use a symmetric structure of decoder

and encoder. The expanding part expands the input into a larger image as we

pass through each layer. So, the expanding part can work as a deconvolutional

network, which acts in some sense as the inverse of the convolutional network.

In addition, we use up-sampling with a size of 2x2 to restore the size to that of

the input samples. After the fifth layer, the output image is the same size as

the input.

Convolution 1×1 can be used to increase or decrease the number of channels

while maintaining the size of the image. In this architecture, a convolution layer

with a 1 × 1 kernel that acts as a sigmoidal activation function is used. This

layer acts to process the feature maps to generate a segmentation map and thus

categorize every pixel of the input image.

The concatenation layer is used for concatenating two layers together along

one axis. The aim of concatenating layers is to enhance the shuffling of informa-

tion across many layers of the network. In this model, we use four concatenation

layers, each concatenation layer concatenates a pair of convolutional and decon-

volutional layers into a single layer that contains both feature maps of the two

input layers.

4. Experiments and Results

4.1. Dataset preparation and experimental environment

For the purpose of comparing and assessing the proposed method, the fol-

lowing benchmark and self-created datasets are used.
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DeepCrack dataset. This dataset contains 537 images for training and

testing each with a size of 544x384 pixels (Liu et al., 2019). Ground truth

images at the pixel level are available. We use this dataset in the detection and

segmentation phases for assessing our proposed method.

CrackIT dataset. The CrackIT dataset (Oliveira, 2013) was collected in

Portugal and Canada. This dataset has no ground truth at pixel level, so we

initially used this dataset in the detection phase. We apply previous detection

methods as well as our proposed detection method to this dataset and our

dataset and compare the results of these methods. We also created ground truth

at the pixel level for this dataset in order to further evaluate the performance

of our approach. We used a tool from the Matlab commercial software package

(The MathWorks, 2019) to allow experts to manually create the ground truth

in the same manner as ground truth for the 2StagesCrack dataset as described

below.

2StagesCrack dataset. This dataset was collected in Vietnam and the

images were taken from a monochrome camera attached to a trailer, driven

across a variety of roads (Nguyen et al., 2018b). The images were collected under

a variety of weather conditions, and in many cases the road was not clean, so the

dataset contains noise. Moreover, the monochrome camera used is low quality

and attached to a high speed car, so the captured images are low resolution. In

this work, we created our ground truth crack samples by annotating the images

at the pixel level and denoted the resultant ground truth augmented dataset

as the 2StagesCrack dataset. The ground truth annotation for the dataset is

supported by road experts. The 2StagesCrack dataset is used in the experiments

for the segmentation phase, and contains a total of 4000 samples, including 2000

original images of size 96 × 96 pixels and 2000 associated ground truth images.

We used the ”Image Segmenter” tool in the ”Image Processing and Computer

Vision” toolbox in the Matlab software (The MathWorks, 2019) to create binary

images for training. Each original image is processed for ground truth with the

”Draw Freehand” function in the Matlab Segmenter tool to outline the boundary

of the cracks. The image is then binarised such that the crack pixels appear in
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Figure 3: Examples of images and ground truth for the 2StagesCrack dataset.

black and the background pixels are in white.

Figure 3 shows examples of samples belonging to the 2StagesCrack dataset.

The first row shows negative samples, that contain no cracks and are used in the

detection stage. The second row shows the positives samples, that contain some

cracks and are used in the detection stage and segmentation stage as original

images. The third row shows the associated ground truth images of the samples

in the second row. In the two last rows, the first and second images show

connected cracks and cracks with strong intensity. The first and the second

images contain connected cracks. In addition, the cracks in the second row are

thin in some parts. The third image shows a large crack suffering a degree of

blur which may be due to the movement of the sensor vehicle when the image

was captured. The fourth example is a discontinuous, thin and unclear crack,

possibly affected by dirt on the road. The last example is a sample of a single,

weak crack.

Figure 4 shows examples of samples belonging to the CrackIT dataset. The

first row shows negative samples, the second row shows positive samples, the

third row shows the original ground truth (Oliveira, 2013), and the last row

shows the ground truth created for the experiments in this paper. The original

ground truth contained only a one-pixel representation of the centerline of the

crack. We enhanced the ground truth images to cover all pixels belonging to
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Figure 4: Examples of images and ground truth for the CrackIT dataset.

the crack in a manner that can be used for pixel-level segmentation.

Table 1 shows a comparison of the key features of the three datasets used in

this work: CrackIT, Deepcrack, and 2StagesCrack. Each of these crack datasets

are imbalanced. The total number of pixel cracks in whole dataset is less than

1% in the CrackIT dataset (Oliveira, 2013), 3.54% in the DeepCrack dataset (Liu

et al., 2019), and around 0.3% in our dataset. With our strategy of detection at

the sample level and segmentation at the pixel level, the imbalance present in

the original images is mitigated, with the imbalance in the segmentation stage

becoming 8.3%, 16% and 6% in the CrackIT, Deepcrack, and 2StagesCrack

dataset, respectively. Table 1 also illustrates that the 2StagesCrack dataset

is a large scale dataset, at low resolution and contains a variety of noise and

artifacts.

To increase the number of samples and diversify the images, we applied

data augmentation techniques to the images before the training phase such as

rotations, shifts, zoom, and flipping to create additional data samples.

All experiments in this work are implemented on a PC with a single CPU

Intel core i5 processor and processor speed of 2.81 GHz, 8GB of RAM, running

the Windows 10 operating system.
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Table 1: Comparison of datasets.

hhhhhhhhhhhhhhhCharacteristics
Datasets

CrackIT Deepcrack 2StagesCrack

Size of image
(pixels)

600 ×800 544 ×384 750 ×1900

Spatial resolution 1 pixel 1 square mm No information 4 pixels area 1 square mm

Noise and artifacts Shadow, paint No information
A lot of shadows from trees and cars;
paint, water streaks,
wheel streaks, waste material on road

Percentages of
crack pixels

Less than 1% 3.54 % 0.31%

Other characteristics

Road and sidewalk images
Various types of image
such as roads, building

Road images

Strong intensity cracks Strong intensity cracks
Various level of cracks,
from weak to strong intensity;
including cracks under shadows

Thin crack Large crack From thin to large cracks
Collected in Portugal No information Collected in Vietnam

4.2. Methods for evaluation

The commonly used metrics for evaluation of detection and segmentation

methods are Precision Pr, Recall Re and F1-score F1. These are defined as

below:

Pr =
TP

TP + FP
(2)

Re =
TP

TP + FN
(3)

F1 =
2 · Pr ·Re

Pr + Re
(4)

where TP, FP, FN are the numbers of True Positive, False Positive, and False

Negative samples, respectively. In the detection stage, a positive sample is a

region sample of the image that contains at least one crack, and a negative

sample is an area that contains no cracks. In the segmentation phase, a positive

sample is a crack pixel, and a negative sample is a background pixel.

In testing, with N patches (N×96×96 pixels) of images in total and n patches

(n×96×96 pixels) among the N are detected as crack areas, it follows that (N-n)

are non-crack areas. The second stage segments the crack pixels from the results

of the detection phase, so the F1 for the (N-n) non-crack samples is F1-Det, and
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the F1 of the n crack patches is F1-Det*F1-Seg. For the experiments in this paper,

we use a stride of one pixel in the detection stage, so the number of detected

patches is equal to the number of input pixels to the segmentation stage. Since

the degrees of freedom of F1-Det and F1-Seg are the same, they can be combined

to create a final F1-score. The final F1-score for crack segmentation at the pixel

level in whole image can be calculated as per equation (5):

F 1-final = F 1-Det ∗
F 1-Seg ∗ n + (N − n)

N
(5)

where F1-Det is the F1 score of the first stage of detection and F1-Seg is the

F1 score of the second stage of segmentation.

Road crack datasets are imbalanced data, where the number of true crack

pixels is very small compared with the number of true background pixels. F1-

score compensates for this effect and is hence a reasonable method for evaluating

the performance of the proposed method.

4.3. Results

Table 2 shows the Precision and Recall results of various models for the

detection stage. We implemented a SVM (Support Vector Machine) with a

linear-kernel and using HoG (Histogram of Oriented Gradients) features for

crack detection. We also compared the results of the proposed model with

some other traditional machine learning methods and some existing models.

Our architecture used a smaller number of parameters than prior convolutional

neural networks as shown in the last column of Table 2. The results show that

the proposed model achieves the highest F1-score, at 92%.

Table 2: Precision and Recall of different models in the Detection stage

Method
CrackIT dataset DeepCrack dataset 2StagesCrack dataset Total

parametersPr Re F1-score Pr Re F1-score Pr Re F1-score
Support Vector Machine 0.89 0.57 0.70 0.87 0.59 0.70 0.90 0.55 0.68 N/A
Decision Tree 0.82 0.59 0.68 0.80 0.65 0.72 0.94 0.51 0.66 N/A
Random Forest 0.99 0.54 0.69 0.99 0.50 0.66 0.98 0.52 0.68 N/A
Fan’s method (Fan et al., 2018) 0.64 0.70 0.67 0.70 0.75 0.72 0.99 0.57 0.72 924,562
Zhang’s method (Zhang et al., 2016) 0.74 0.97 0.83 0.83 0.86 0.84 0.85 0.82 0.77 205,466
Proposed method 0.92 0.89 0.90 0.93 0.90 0.91 0.92 0.91 0.92 58,404
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Table 3: Precision and Recall of different models in the Segmentation stage

Method
CrackIT dataset DeepCrack dataset 2StagesCrack dataset Total

parametersPr Re F1-score Pr Re F1-score Pr Re F1-score
Gabor Filter 0.54 0.64 0.59 0.55 0.85 0.67 0.61 0.23 0.34 N/A
Adaptive Thresholding 0.17 0.82 0.28 0.25 0.90 0.40 0.53 0.31 0.38 N/A
K- Nearest Neighbour 0.52 0.48 0.49 0.66 0.50 0.57 0.69 0.28 0.40 N/A
SegNet 0.62 0.62 0.62 0.67 0.67 0.67 0.55 0.55 0.55 29,475,866
U-Net 0.71 0.84 0.77 0.87 0.73 0.79 0.49 0.88 0.63 31,031,685
Proposed Method 0.88 0.85 0.87 0.93 0.94 0.93 0.70 0.78 0.74 7,672,549

Table 3 shows the results of the proposed segmentation stage and four other

models on the two datasets that have pixel-level ground truth available. Firstly,

we used two classical DIP methods on the images, Gabor filter and Adaptive

Thresholding. K-Nearest Neighbour (K-NN), one of the most fundamental and

straightforward methods (Peterson, 2009), is used in our experiments for crack

segmentation and compared with the proposed method. After that, we imple-

mented two CNN models for segmentation, U-Net and SegNet. The results

indicate that the proposed method has improved segmentation performance in

both datasets. We also compare the number of parameters between the three

models based on CNN. It is clear that the proposed model for segmentation

needs a smaller number of parameters, while still achieving better performance.

Figure 5 shows the accuracy and loss of the proposed architecture in training

for detection and segmentation for the 2StagesCrack dataset. Figure 5a and

Figure 5b show the training and validation accuracy and loss of the detection

model and segmentation model, respectively. These graphs indicate that our

proposed models have high accuracy and low loss in both the detection and

segmentation phases. For the model we selected, the convergence was rapid.

This is consistent with the observations of Zhang et al. (2016), where less than

20 epochs where shown to be sufficient for convergence. A total of 500 epochs

are shown here to demonstrate the stability of the model.

To calculate the final F1-score as equation 5, the F1-Det and F1-Seg of the

detection phase and the segmentation phase of the different methods are shown

in Table 2 and Table 3. If an original image is of size 1900x750 pixels, there are

155 non-overlapping region samples of size 96x96 pixels, so N = 155. Assuming
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(a) Accuracy and loss during training for the detection
stage for the 2StagesCrack dataset.

(b) Accuracy and loss during training for the segmenta-
tion stage for the 2StagesCrack dataset.

Figure 5: Accuracy and loss during training for the detection and segmentation stages for the
2StagesCrack dataset.

that the number of regions with cracks detected from the detection stage is 10,

then n = 10. Table 4 shows the final F1-score of the various models when com-

bining different detection methods with different segmentation methods when

applying for the 2StagesCrack dataset. It is shown that:

• If the segmentation stage is only applied to the regions flagged as con-

taining cracks by the detection step, the final performance is improved

compared to the use of a single stage of segmentation applied to the entire

image. While the segmentation model only achieves around 70% when

applied to the entire image, the two-stage model achieves about 90% in

terms of F1-score.

• The proposed architecture achieves superior performance in both the de-

tection and segmentation steps alone compared to prior detection or seg-

mentation methods. Hence, the proposed two-stage approach achieves

superior performance compared to the other detection/segmentation com-

binations.

It can be seen that the F1-2stages score increases as n decreases. So, for the
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Table 4: F1-score for different combinations of detection and segmentation for the 2Stage-
sCrack dataset.

hhhhhhhhhhhhhhhhhhhhhSegmentation methods

Detection methods
Fan’s method Zhang’s method

Proposed
Detection stage

SegNet method 0.69 0.74 0.88
U-Net method 0.69 0.75 0.89
Proposed Segmentation stage 0.71 0.76 0.91

Table 5: The MCC score for the examined methods at the Segmentation stage for the three
datasets.

Method CrackIT dataset DeepCrack dataset 2StagesCrack dataset
Gabor Filter 0.57 0.69 0.25
Adaptive Thresholding 0.60 0.63 0.31
K- Nearest Neighbour 0.44 0.47 0.33
SegNet 0.59 0.61 0.52
U-Net 0.77 0.75 0.72
Proposed Method 0.85 0.92 0.74

2StagesCrack dataset, which contains a lower density of cracks and a higher

level of noise, this method achieves a high F1 score in total.

The MCC (Matthews Correlation Coefficient) is another metric for mea-

suring the quality of binary classification (Matthews, 1975). The MCC score

provides a less biased evaluation compared to F1-score when the dataset is neg-

atively imbalanced (Chicco and Jurman, 2020). All datasets used in this paper

are positively imbalanced datasets. However, for further comparison, we also

calculate the MCC score in the segmentation stage for the three datasets, as is

shown in Table 5. Our method achieves the highest MCC score for all given

datasets.

Table 6 shows the total parameters of various models used for detection

and segmentation, and testing time for the 2StagesCrack dataset. The testing

time is the average time used for processing one sample in milliseconds. It can

be seen that our architecture has a smaller number of total parameters and

a shorter testing time in comparison with that of the combination of Zhang’s

method and U-Net model. In all experiments, we used the same hardware

configuration for the testing phase. In addition to the number of total model
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parameters, there are various factors that affect the testing time, including the

software library used (in our experiments we used numba instead of numpy),

the hardware platform (CPU or GPU, in our experiments we used the CPU)

and the pixel stride chosen during testing. After investigation, we found that a

sizeable percentage of the testing time was taken by the time for software and

hardware to extract samples from the images for testing. Hence testing time

scales with the number of parameters only to a certain extent.

Table 6: Total parameters and testing time for the 2StagesCrack dataset.

Model Total parameters
Average testing time

per sample

Detection
Zhang’s model for detection 205,466 19.2ms
Proposed stage for detection 58,404 13.5ms

Segmentation
U-Net model for segmentation 31,031,685 153ms
Proposed stage for segmentation 7,672,549 103ms

Two stages
model

Two stages of Zhang and U-Net 31,052,151 172.2ms
2StagesCrack model 7,730,953 116.5ms

In figures 6,7,8,9, 10 and 11, we show some typical examples of detection

and segmentation results produced by different methods. The first five original

images are from the 2StagesCrack dataset and have a size of 750x1900 pixels,

the last images are from the CrackIT dataset and have a size of 600×800 pixels.

Each of these figures contains 6 sub-figures: the original image, ground truth

image, the detection result obtained by the method of Zhang et al. (2016), the

result obtained from combining the detection method from Zhang et al. (2016)

and the segmentation method from Ronneberger et al. (2015), detection result

from the first stage of the proposed model, and the final image is the result

by the proposed two-stage architecture. For post-processing, the method Otsu

(1979) and some other techniques are applied to obtain the binary images from

the segmented results (Ni et al., 2019). The results from Otsu or a median filter

may be not stable across the different variety of inputs encountered. In our

method, we apply an automatic threshold to classify pixels as cracks when their

probability exceeds the F1-score of the positive crack segmentation and export

the results as binary images. Our experiments show that a threshold that is
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equal to the F1-score achieves the best output images.

Figure 6 shows a typical example. The original image, Figure 6a, contains

a single crack. There are many artifacts in this image, such as a shadow, and

wheel tracks in the water. While the first stage of the proposed method detects

the true crack with the surrounding area, the method from Zhang et al. (2016)

also identifies one side of the shadow area as a crack. The proposed method is

more robust compared to prior methods and less likely to misidentify shadows

and artifacts on the road surface as cracks. Figure 7 shows a similar example

with a single crack and once again, we can observe that the proposed method

works very well.

Figure 8a is an example of connected cracks. The method from Zhang cannot

detect all regions containing cracks, and detects a number of false negative

regions. For the detected crack in Figure 8c, the U-Net model also has poor

segmentation in parts that results in false negative samples.

Figure 9 shows other experimental results on connected cracks. The image

in Figure 9a is a challenge because it was captured in weak light and the road

surface is covered with water in many places. The first stage of the proposed

model detects all patches that contain cracks but also detects some background

pixels that surround the true crack pixels. Following this, the second stage

subtracts the remaining non-crack pixels. In contrast, the two other methods

ignore many true positive cracks.

Figure 10 is a special instance because the cracks are thin and in the shadows.

These cracks were captured under poor illumination conditions because of the

shadows, and this image contains white noise around the cracks. The proposed

method detects and segments most of cracks, while the other methods recognize

only a small proportion of the cracks.

Figure 11 shows an example from the CrackIT dataset with thin cracks with

a width of only one or two pixels. The results of Zhang’s method shows a

number of false positives, and the U-Net model segments many noise pixels as

cracks. The proposed method detects and segments the thin cracks with few

false positives.
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5. Conclusion

This paper proposed a novel two-stage model based on CNN for segmentation

at the pixel level of cracks in road images. This method integrates state of the

art detection and segmentation into a single unified framework that outperforms

existing approaches while significantly reducing the effective imbalance in the

data and achieves this with reduced computational requirements.

Experimental results show that our method achieves a higher accuracy than

either detection or segmentation alone. The experiments show that the two-

stage model works well for noisy, low resolution road images, and imbalanced

datasets with artifacts with an F1-score of more than 90% compared to a result

of under 80% from other state of the art methods. This architecture may also

be considered for other object detection problems that use low quality input

data.

For future work, we will adapt our two-stage model for crack detection to

other surfaces such as concrete tunnels and bridges, or steel surfaces. More

studies should also be attempted to search for better CNN architectures for the

proposed model. We also plan to improve our model with the addition of 3D

data to create a multi-stage model that is based on CNNs for crack detection

and segmentation on three dimensional (3D) images. In addition, future work in

this area will involve automating the calculation of the cracking index to avoid

the human judgement component of current methods.
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(a) Original image. (b) Ground truth.

(c) Detection result from the method of Zhang et al.
(2016)

(d) Segmentation result from the combination of Zhang
et al. (2016) and U-Net (Ronneberger et al., 2015).

(e) Detection result from the first stage of the proposed
method.

(f) Final segmentation result from the two-stage model.

Figure 6: Experiment on an image with a long, single crack and a large shadow.
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(a) Original image. (b) Ground truth.

(c) Detection result from the method of Zhang et al.
(2016).

(d) Segmentation result from the combination of Zhang
et al. (2016) and U-Net (Ronneberger et al., 2015).

(e) Detection result from the first stage of proposed
method.

(f) Final segmentation result from the two-stage model.

Figure 7: Experiment on an image with a short, single crack and a large shadow.
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(a) Original image. (b) Ground truth.

(c) Detection result from the method of Zhang et al.
(2016).

(d) Segmentation result from the combination of Zhang
et al. (2016) and U-Net (Ronneberger et al., 2015).

(e) Detection result from the first stage of proposed
method.

(f) Final segmentation result from the two-stage model.

Figure 8: Experiment on an image with a connected crack on a wet surface with dotty noise.

28



(a) Original image. (b) Ground truth.

(c) Detection result from the method of Zhang et al.
(2016).

(d) Segmentation result from the combination of Zhang
et al. (2016) and U-Net (Ronneberger et al., 2015).

(e) Detection result from the first stage of proposed
method.

(f) Final segmentation result from the two-stage model.

Figure 9: Experiment on connected, wet cracks captured under weak light conditions.
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(a) Original image. (b) Ground truth.

(c) Detection result from the method of Zhang et al.
(2016).

(d) Segmentation result from the combination of Zhang
et al. (2016) and U-Net (Ronneberger et al., 2015).

(e) Detection result from the first stage of proposed
method.

(f) Final segmentation result from the two-stage model.

Figure 10: Experiment on a crack under a shadow.
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(a) Original image. (b) Ground truth.

(c) Detection result from the method of Zhang et al.
(2016).

(d) Segmentation result from the combination of Zhang
et al. (2016) and U-Net (Ronneberger et al., 2015).

(e) Detection result from the first stage of proposed
method.

(f) Final segmentation result from the two-stage model.

Figure 11: Experiment on thin cracks in the CrackIT dataset.

31



References

L. Ale, N. Zhang, and L. Li. Road damage detection using retinanet. In 2018

IEEE International Conference on Big Data (Big Data), pages 5197–5200.

IEEE, 2018.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. IEEE transactions on

pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

K. Bhoi and D. K. Solanki. Texture Segmentation Using Optimal Gabor Filter.

PhD thesis, 2011.

D. Bradley and G. Roth. Adaptive thresholding using the integral image. Jour-

nal of graphics tools, 12(2):13–21, 2007.

J. Bullock, C. Cuesta-Lázaro, and A. Quera-Bofarull. Xnet: a convolutional

neural network (cnn) implementation for medical x-ray image segmentation

suitable for small datasets. In Medical Imaging 2019: Biomedical Applica-

tions in Molecular, Structural, and Functional Imaging, volume 10953, page

109531Z. International Society for Optics and Photonics, 2019.

J. Canny. A computational approach to edge detection. In Readings in Computer

Vision, pages 184–203. Elsevier, 1987.

S. Chambon and J.-M. Moliard. Automatic road pavement assessment with im-

age processing: Review and comparison. International Journal of Geophysics,

2011, 2011.

D. Chicco and G. Jurman. The advantages of the matthews correlation coef-

ficient (mcc) over f1 score and accuracy in binary classification evaluation.

BMC genomics, 21(1):1–13, 2020.

R. Fan, M. J. Bocus, Y. Zhu, J. Jiao, L. Wang, F. Ma, S. Cheng, and M. Liu.

Road crack detection using deep convolutional neural network and adaptive

thresholding. arXiv preprint arXiv:1904.08582, 2019.

32



Z. Fan, Y. Wu, J. Lu, and W. Li. Automatic pavement crack detection based on

structured prediction with the convolutional neural network. arXiv preprint

arXiv:1802.02208, 2018.

H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions

on Knowledge and Data Engineering, 21(9):1263–1284, 2009.

K. He, J. Sun, and X. Tang. Guided image filtering. IEEE transactions on

pattern analysis and machine intelligence, 35(6):1397–1409, 2012.

W. K. Kong, D. Zhang, and W. Li. Palmprint feature extraction using 2-d gabor

filters. Pattern recognition, 36(10):2339–2347, 2003.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-

plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998.

Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li. Deepcrack: A deep hierarchical feature

learning architecture for crack segmentation. Neurocomputing, 338:139–153,

2019.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3431–3440, 2015.

L. Ma, Y. Wang, T. Tan, et al. Iris recognition based on multichannel gabor

filtering. In Proc. Fifth Asian Conf. Computer Vision, volume 1, pages 279–

283, 2002.

H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata. Road dam-

age detection using deep neural networks with images captured through a

smartphone. arXiv preprint arXiv:1801.09454, 2018.

V. Mandal, L. Uong, and Y. Adu-Gyamfi. Automated road crack detection using

deep convolutional neural networks. In 2018 IEEE International Conference

on Big Data (Big Data), pages 5212–5215. IEEE, 2018.

33



B. W. Matthews. Comparison of the predicted and observed secondary struc-

ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein

Structure, 405(2):442–451, 1975.

R. Medina, J. Llamas, E. Zalama, and J. Gómez-Garćıa-Bermejo. Enhanced
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