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Abstract 29 

Antimicrobial resistance (AMR) is a growing threat to human and animal health. 30 

Progress in molecular biology has revealed new and significant challenges for AMR mitigation 31 

given the immense diversity of antibiotic resistance genes (ARGs), the complexity of ARG 32 

transfer, and the broad range of omnipresent factors contributing to AMR. Municipal, hospital 33 

and abattoir wastewater are collected and treated in wastewater treatment plants (WWTPs), 34 

where the presence of diverse selection pressures together with a highly concentrated 35 

consortium of pathogenic/commensal microbes create favourable conditions for the transfer of 36 

ARGs and proliferation of antibiotic resistant bacteria (ARBs). The recent emergence ARBs 37 

and ARGs as well as their potential health effects have re-defined the role of WWTPs as a focal 38 

point in the fight against AMR. By reviewing the occurrence of ARGs in wastewater and sludge 39 

and the current technologies used to quantify ARGs and identify antibiotic resistant bacteria 40 

(ARB), this paper provides a research roadmap to address existing challenges in AMR control 41 

via wastewater treatment. Wastewater treatment is a double-edged sword that can act as either 42 

a pathway for AMR spread or as a barrier to reduce the environmental release of anthropogenic 43 

AMR. State of the art ARB identification technologies, such as metagenomic sequencing and 44 

fluorescence-activated cell sorting, have enriched ARG/ARB databases, unveiled keystone 45 

species in AMR networks, and improved the resolution of AMR dissemination models. Data 46 

and information provided in this review highlight significant knowledge gaps. These include 47 

inconsistencies in ARG reporting units, lack of ARG/ARB monitoring surrogates, lack of a 48 

standardised protocol for determining ARG removal via wastewater treatments, and the 49 

inability to support appropriate risk assessment. This is due to a lack of standard monitoring 50 

targets and agreed threshold values, and paucity of information on the ARG-pathogen host 51 

relationship and potential risk evolution. These research gaps need to be addressed and research 52 
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findings need to be transformed into practical guidance for WWTP operators to enable effective 53 

progress towards mitigating the evolution and spread of AMR. 54 

Keywords: Antimicrobial resistance (AMR); Wastewater treatment; Antibiotic resistant genes 55 

(ARG) quantification; host identification; horizontal gene transfer (HGT); mobile genetic 56 

elements (MGEs). 57 

1. Introduction 58 

Municipal wastewater treatment is essential for the protection of public health and the 59 

aquatic environment. A typical wastewater treatment plant (WWTP) integrates multiple 60 

engineering processes, including physical, chemical, and biological treatment steps. Biological 61 

treatment involves the use of microorganisms to remove wastewater contaminants (i.e. organic 62 

carbon, nutrients, and micropollutants). The microorganisms performing this service are 63 

extremely diverse, and the microbial community structure of each treatment system is unique 64 

and evolves over time.  65 

One of the primary objectives of wastewater treatment is to reduce the transmission of 66 

waterborne diseases. Wastewater treatment also plays a critical role in controlling the release 67 

of antibiotic resistance genes (ARGs) to the environment. Multiple chemical factors including 68 

disinfectants, metals (e.g. copper and zinc), various pharmaceuticals (e.g. antibiotics), and 69 

other organic compounds exist within a WWTP. Chemical factors are among diverse selection 70 

pressures that influence the transmission, expression and mobilisation of ARGs and drive the 71 

emergence, persistence, and proliferation of antibiotic resistant bacteria (ARB) (Guo et al., 72 

2015; Li et al., 2019; Zhang et al., 2017b). Wastewater (sewage) also provides a continuous 73 

input of ARGs, ARB, and highly diverse commensal and pathogenic bacteria from human and 74 

animal microbiomes into WWTPs. ARGs often assemble in close proximity to one another on 75 

mobile genetic elements (MGEs) generating complex resistance regions (CRRs). In such cases, 76 

the acquisition of a single plasmid (a type of MGE) can confer a multiple drug resistance 77 
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(MDR) phenotype to the host bacterium that acquires it. This is particularly problematic when 78 

it occurs on plasmids that carry important virulence gene cargo (Venturini et al., 2010; 79 

Venturini et al., 2013; Mangat et al., 2017). There are examples in the literature where 80 

Escherichia coli with a commensal phylogroup (phylogroup B1) have caused serious human 81 

disease (urosepsis), as evidenced by their isolation from multiple body fluids. Subsequent 82 

genomic analysis shows the acquisition of a virulence plasmid with a CRR is likely to have 83 

precipitated these pathological events (McKinnon et al., 2018).  Together, conditions found in 84 

WWTPs create an ideal environment for the evolution of new and more complex CRRs as well 85 

as their horizontal gene transfer (HGT) to new hosts. Infections caused by ARB, especially 86 

those with MDR phenotype, are hard to treat due to reduced antibiotic efficacy, and result in 87 

higher medical costs due to prolonged hospital stays and increased morbidity and mortality 88 

(World Health Organization, 2020). 89 

Antimicrobial resistance (AMR) has become a cross-cutting, complex, and growing 90 

threat to global health. Not surprisingly, dedicated reviews have appeared on this topic, with 91 

many focussing exclusively on antibiotic resistance, the fate and distribution of ARGs/ARB 92 

during wastewater treatment (Pazda et al., 2019; Rizzo et al., 2013; Sharma et al., 2016), or on 93 

the proliferation of ARGs in the environment (Martínez et al., 2015; Partridge et al., 2018; Rice 94 

et al., 2020). Unlike these previous reviews, our work aims to provide a new perspective that 95 

focuses on the interface between wastewater treatment and microbial genetics. By coupling 96 

interdisciplinary perspectives in wastewater treatment with genetic and genomic epidemiology, 97 

this review defines a research roadmap to mitigate the evolution and transmission of AMR and 98 

to provide new insights to AMR characterization, surveillance and monitoring, and risk 99 

modelling and assessment during various stages of wastewater treatment. Discussion and 100 

literature data summarised in this review may guide the water industry to play an active role in 101 

addressing the threat of AMR to global health. 102 
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This review aims to be critical rather than exhaustive and descriptive. It first examines 103 

pertinent challenges in quantifying AMR in wastewater and key mechanisms of ARG 104 

proliferation. State of the art technologies that demonstrated the capacity to quantify ARGs and 105 

identify their hosts (especially pathogenic hosts) are presented, and the risks associated with 106 

ARG and ARB in wastewater are discussed. Factors governing ARG removal and transfer are 107 

also examined. Data and information compiled for this review are critically analysed to identify 108 

key challenges in the monitoring and control of ARGs during wastewater treament and to 109 

suggest a roadmap for future research. 110 

2. Antibiotic resistance in wastewater 111 

Numerous ARGs including types and subtypes of almost all common antibiotics have 112 

been detected in wastewater influent, effluent and biosolids or sludge. Examples of these ARGs 113 

are available in Table 1. The antibiotic classes included in Table 1 cover the most commonly 114 

prescribed and consumed antibiotics in the health care, veterinary, and livestock sectors 115 

(European Centre for Disease Prevention and Control, 2019; Pazda et al., 2019; Wang et al., 116 

2020). Table 1 provides a snapshot from the recent literature; a more comprehensive list of 117 

ARGs in WWTP compartments is available in previous reviews (Pazda et al., 2019; Wang et 118 

al., 2020). The occurrence of ARGs in treated effluent and wastewater sludge may pose a risk 119 

because these ARGs can potentially be acquired by new bacteria in downstream environments 120 

through HGT (Cantón et al., 2012; Perry and Wright, 2013). A major objective of wastewater 121 

treatment is to inactivate pathogens prior to effluent discharge. But this remit needs to be 122 

reconsidered in the context of AMR because commensal, non-pathogenic bacteria can also be 123 

important reservoirs for plasmids and other mobile genetic elements (MGEs) carrying ARGs. 124 

WWTPs could provide unparalleled opportunities to control the proliferation of ARGs. The 125 

potential role of wastewater treatment as a barrier against AMR is further discussed in Section 126 

4.5.2. 127 
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Table 1. Most commonly detected antibiotics and their associated ARGs in WWTPs.  128 

Antibiotic class  Antibiotic 

compounds 

(type) 

Antibiotic 

resistant 

genes 

(subtype) 

Sampling 

location 

Ref(s) 

Aminoglycoside 

 

Kanamycin, 

tobramycin, 

gentamicin 

aadA, 

aacA4,  

aadB, aadE, 

strB 

Sewage Sludge 

 

Tang et al. 

(2017) 

 

β-lactam Amoxicillin, 

cloxacillin, 

penicillin V, 

ampicillin 

blaCTX-M, 

blaTEM, 

blaOXA-A, 

blaSHV, mecA 

Raw Influent/ 

Tertiary Effluent/ 

Activated Sludge 

Zhang et al. 

(2019b); 

Ziembińska-

Buczyńska et 

al. (2015) 

Macrolides Clarithromycin, 

erythromycin/eryt

hromycin-H2O, 

azithromycin, 

roxithromycin 

ereA, ermB, 

ermC, erm43, 

mefC 

and mphG 

Raw Influent/ 

Secondary 

Effluent 

Sugimoto et al. 

(2017); Wang 

et al. (2020) 

 

Quinolone Ofloxacin, 

ciprofloxacin, 

norfloxacin 

qnrS, qnrC, 

qnrD 

Raw Influent/ 

Secondary 

Effluent/Digested 

Sludge 

Castrignanò et 

al. (2020a); 

Castrignanò et 

al. (2020b) 

Sulfonamides Sulfamethoxazole sul1, sul2 Raw Influent/ 

Secondary 

Effluent/ 

Activated Sludge 

Chen et al. 

(2019); 

Lorenzo et al. 

(2018); Lye et 

al. (2019); 

Rolbiecki et al. 

(2020) 

Tetracyclines Tetracycline tetA, tetB, 

tetE, tetG, 

tetH, tetS, 

tetT, tetX 

Raw Influent/ 

Secondary 

Effluent/ 

Anaerobic 

digested Sludge 

Huang et al. 

(2016); Wang 

et al. (2020) 

Trimethoprim Trimethoprim dhfrA1, 

dhfr14 

Activated Sludge Ziembińska-

Buczyńska et 

al. (2015) 

  129 

A major avenue for ARG proliferation is through HGT, which is expected to be 130 

prevalent during wastewater treatment. The fate of ARGs and ARB in an environment is 131 



   

 

7 

 

dynamic, and can be affected by changes in bacterial reproduction and decay rate (Fahrenfeld 132 

et al., 2014; Gothwal and Thatikonda, 2020). Conjugation frequencies and other mobile 133 

genetic events are also impacted by temperature and selection pressures. A standardised 134 

approach is thus required for calculating and comparing the removal or generation of ARGs 135 

by wastewater treatment. Moreover, although global efforts have been made to curate and 136 

regularly update databases of antibiotics and ARGs, such as the Comprehensive Antibiotic 137 

Resistance Database (CARD) and Structured Antibiotic Resistance Gene database (SARG) 138 

(Boolchandani et al., 2019), more antibiotics and ARGs will continue to evolve and be 139 

discovered into the future. Agreed surrogates for antibiotic resistance determinants are 140 

needed to effectively track the occurrence and fate of ARGs in WWTPs. These pertinent 141 

issues are further elaborated in subsequent sections. 142 

Currently, it is difficult to quantify the exact risk associated with the occurrence of 143 

ARGs in wastewater. Detection of ARGs in WWTPs is currently reported in units that cannot 144 

be directly used for assessing health consequences and risk. In wastewater treatment, chemical 145 

contaminants are commonly expressed in µg/L of wastewater or µg/kg of sludge. Likewise, 146 

pathogens are quantified in CFU/g of sludge or CFU/mL (CFU stands for colony forming unit) 147 

(World Health Organization, 2020). These units (i.e. µg/L, µg/kg, CFU/g and CFU/mL) can be 148 

directly linked to relevant guidelines or standards to evaluate the associated risk via a dose-149 

response relationship. In other words, there are defined threshold concentrations of chemical 150 

contaminants or pathogens to trigger regulatory responses. By contrast, ARG in water samples 151 

are expressed in ppm (one ARG per million reads), copies/mL or normalized by 16S copies to 152 

account for sequencing depth (Al-Jassim et al., 2015; Christgen et al., 2015; Ferro et al., 2016). 153 

Unlike the units of chemical contaminants and pathogens, these ARG concentration or 154 

abundance units are not comparable and can only be indirectly converted to one another with 155 

some uncertainties. Chandrasekaran and Jiang (2019) provided arguably the first example of 156 



   

 

8 

 

such indirect dose-response model by establishing the relationship between stochastic dead rate 157 

(indirect) and the occurrence of gentamicin resistant E. coli. A direct dose-response model 158 

would require a common unit for ARG concentration that can be used consistently across 159 

samples to establish a dose-response relationship for risk assessment.  160 

3. ARG development and proliferation 161 

A bacterial host cell can acquire antibiotic resistance through three different routes: 162 

vertical gene transfer (VGT), de novo mutation, and HGT (Hiller et al., 2019). VGT is the 163 

inheritance of ARGs through bacterial reproduction, and there is a difference in VGT of 164 

chromosomally-associated and plasmid-associated ARGs. Chromosomally-associated ARGs 165 

would undergo stable inheritance by all daughter cells. On the other hand, plasmid-associated 166 

ARG inheritance depends on plasmid incompatibility. When two or more incompatible 167 

plasmids (they have identical replication systems) are in the mother cell, each daughter cell 168 

will have a potentially different plasmid profile (Clark et al., 2019); thus, a different ARG 169 

profile. De novo mutations are single nucleotide polymorphisms that occur rarely due to low 170 

frequency errors arisen during DNA replication and proliferate under a selection pressure 171 

(Händel et al., 2014). The evolution and transmission of newly developed ARGs depend upon 172 

multiple factors, including the rate of mutation, level of resistance conferred, strength of 173 

selection pressure, and the relative fitness of ARB (Melnyk et al., 2015; Yadav and Kapley, 174 

2019).  175 

HGT is the process of transferring ARGs between different bacterial cells (Soucy et al., 176 

2015) and in the context of wastewater treatment, this is thought to play a significant role in 177 

the spread of ARGs. There are three HGT mechanisms: transduction, conjugation, and 178 

transformation (Figure 1). Transduction involves the transfer of bacterial DNA via 179 

bacteriophage or gene transfer agents (Gómez-Gómez et al., 2019; Lang et al., 2012). 180 
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Conjugation refers to the transfer of DNA between bacterial cells via physical contact through 181 

pili. Transformation is the uptake of naked extracellular DNA by bacteria.  182 

 183 

Figure 1. The three mechanisms of horizontal gene transfer: transduction, conjugation and 184 

transformation. Adapted from United States Centers for Disease Control and Prevention 185 

(2020).  186 

HGT of ARGs is more likely to occur when ARGs are carried by MGEs. Intercellular 187 

MGEs are those that can transfer between bacterial cells, including conjugative plasmids, 188 

bacteriophages, gene-transfer agents (phage-like particles), and integrative conjugative 189 

elements. By contrast, intracellular MGEs, including insertion sequences, transposons, and 190 

integrons, can only transfer within the same bacterial cell. Interestingly, intercellular and 191 

intracellular MGEs can interact with each other to enhance ARG stability and dissemination. 192 

For example, insertion sequences or integrons can be integrated into plasmids and then 193 

participate in HGT events (Che et al., 2019). In addition, insertion sequences can potentially 194 

influence a plasmid long-term stability in the host cell by mediating deletions of genetic regions 195 

within the plasmid’s backbone (Porse et al., 2016). Insertion sequence IS26 has the ability to 196 
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form pseudo-compound transposons (Harmer et al., 2020), facilitate plasmid fusion events and 197 

create hybrid plasmids (Du et al., 2020; Mangat et al., 2017). It is also linked with the 198 

mobilisation of many key ARGs of clinical significance (He et al., 2015; Partridge et al., 2018).  199 

Although each type of MGEs play a role in HGT, plasmids and class 1 integrons are 200 

recognised as the two most important MGE types involved in ARG proliferation. Plasmids can 201 

replicate themselves independently of the bacterial chromosome, cross phylogenetic barriers 202 

(i.e. transfer between phylogenetically distant Gram-positive and Gram-negative bacteria), and 203 

evolve to increase their stability in the host cell and broaden their host range (De Gelder et al., 204 

2008; Porse et al., 2016; Sota et al., 2010; Yang and Walsh, 2017). A recent analysis of 10,000 205 

reference plasmids showed that 60% of plasmids have host ranges beyond the species barrier 206 

and up to 10% can cross order barriers; forming a vast network for HGT in bacteria (Redondo-207 

Salvo et al., 2020). The plasmid transfer rate can increase in heterogeneous bacterial 208 

communities, such as those in WWTPs (Svara and Rankin, 2011). Besides plasmids, class 1 209 

integrons also play a major role due to their ability to acquire and disseminate gene cassettes, 210 

in a process of site-specific recombination (Partridge et al., 2000). The combination of class 1 211 

integrons with insertion sequences allows recruitment of multiple ARGs and the duplication 212 

and transfer of large chromosomal inversions, resulting in the co-localization of ARGs, 213 

development of complex ARG cassettes and MDR bacteria (Johnson et al., 2016). Class 1 214 

integrons have been found in the environment (Zhang et al., 2020; Zhu et al., 2019), in the 215 

commensal flora of swine (Reid et al., 2017; Zingali et al., 2020) and poultry, and in pathogenic 216 

E. coli causing colibacillosis (Cummins et al., 2019) indicating that they are globally important 217 

environmental pollutants (Gillings, 2018). Class 1 integrons are often components of other 218 

MGEs (transposons and plasmids) and CRRs (Zhu et al., 2017). Clinical class 1 integrons 219 

appear to have a single origin, indicating HGT as their dissemination mechanism (Gillings et 220 

al., 2008).  221 
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Plasmids and class 1 integrons linked to the proliferation of ARGs through HGT have 222 

been detected in all compartments of a typical WWTP (Figure 2). Of particular note is the 223 

significantly higher abundance and diversity of plasmids and Class 1 integrons in activated 224 

sludge and anaerobically digested sludge compared to primary (raw) sludge and tertiary 225 

effluent. Although it has been challenging to confirm the actual presence of ARGs in plasmid 226 

and class 1 integrons in a high throughput manner, previous studies have shown a linear 227 

correlation (Pearson’s R2 = 0.78-0.92) between the ARG abundance and diversity of these 228 

MGEs (Han and Yoo, 2020; Ma et al., 2014; Tian et al., 2016). However, the number of studies 229 

on plasmids and class 1 integrons is far fewer compared to that on ARGs in wastewater, and 230 

most of these studies are relatively recent. Due to the difference in reporting units of plasmid 231 

and integron abundance and different sequencing depths, it is not possible to normalise all 232 

available data for an exhaustive list. However, Figure 2 provides an illustration of relative 233 

abundance and diversity of plasmids and class 1 integrons in WWTP compartments using 234 

available data reported in ppm. The whisker-plots in Figure 2 are constructed from one data 235 

point for raw sewage and effluent, and 2-4 data points for activated and anaerobically digested 236 

sludge. 237 

The current lack of data on the occurrence and fate of plasmids and class 1 integrons in 238 

wastewater treatment can also be attributed to technical difficulties in detecting and quantifying 239 

these MGEs due to their variable nature (e.g., frequent recombination and ancestral versions). 240 

Further research is recommended to elucidate the exact role of MGEs in the proliferation of 241 

ARGs during wastewater treatment. 242 
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Figure 2. The abundance and diversity of (A) plasmids and (B) Class 1 integrons in WWTP 244 

compartments. Data from: Han and Yoo (2020); Lira et al. (2020); Ma et al. (2014); Tao et al. 245 

(2016); Tian et al. (2016); Yoo et al. (2020) with reported abundance and diversity. The ppm 246 

unit means one read of plasmid or Class 1 sequence in one million reads of metagenomic 247 

sequences. The whisker-plots are constructed from one data point for raw sewage and effluent, 248 

and 2-4 data points for activated and anaerobically digested sludge. AD sludge: anaerobically 249 

digested sludge.  250 

4. ARG-ARB-pathogen relationships 251 

A major challenge in ARG management is the identification of ARG-hosts (ARB), of 252 

which human pathogens present the greatest risk. Host-identification is necessary to understand 253 

how ARGs might spread to pathogens – both existing and emerging. This section will discuss 254 

the context in which ARGs in wastewater microorganisms can become problematic, provide 255 

an overview of current technologies that can be used to elucidate ARG and host relationships, 256 

and summarise relevant findings revealed using these technologies to date.  257 

4.1.  Risks associated with ARGs and ARB in wastewater 258 

 ARGs in wastewater impact routes on humans 259 

ARGs in WWTPs can pose human health risks through several routes (Figure 260 

3). WWTPs can act as a reservoir of ARGs and facilitate ARG exchange via HGT. Indeed, 261 
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non-ARG hosts in WWTP influents can potentially acquire ARGs while passing through the 262 

wastewater treatment process (Hultman et al., 2018). This premise is supported by Jacquiod et 263 

al. (2017) who reported that WWTP effluent microbiome had a higher diversity of ARG hosts 264 

than the WWTP influent microbiome. During the treatment process, a large proportion of ARB 265 

and ARGs are removed from the water phase and partitioned into the sludge phase, resulting 266 

in high concentrations of ARGs in sludges and biosolids (up to 109 copies/g) (Munir et al., 267 

2011).  Many ARGs also remain in the treated effluent (Calero-Cáceres et al., 2014; Hiller et 268 

al., 2019), and as biosolids and effluent are eventually returned to the natural environment, 269 

wastewater-derived ARB and ARGs can potentially come into contact with environmental 270 

bacteria, wildlife, domestic animals, and humans. WWTP effluents contribute significantly to 271 

the number of detected ARGs, transposon, and integrons in the receiving river’s water and 272 

downstream sediments (Berglund et al., 2015; Makowska et al., 2016; Quintela-Baluja et al., 273 

2019).  274 

 275 

Figure 3. Impact routes of antibiotic resistance genes (ARGs) on humans.  276 

Once in contact with humans, ARG-hosts can transfer ARGs to commensal 277 

bacteria and pathogens via HGT. For example, the widespread ARG blaCTX-M (encoding 278 

extended-spectrum-β-lactamases - ESBLs), which is mobilised globally on plasmids, is 279 



   

 

14 

 

suggested to originate from the chromosomal bla gene of soil Kluyvera species (Cantón et al., 280 

2012). Similarly, globally disseminated quinolone resistance genes probably had their origins 281 

in the chromosome of Shewanella spp. (Melvold et al., 2017). There is also evidence of ARG 282 

exchange between environmental bacteria from soil and swine farms with clinical pathogens, 283 

including two high-risk species Klebsiella 284 

pneumoniae and Acinetobacter baumannii (Forsberg et al., 2012; Johnson et al., 2016; Perry 285 

and Wright, 2013). These putative HGT events were proposed based on 100% gene sequence 286 

similarity between species, encompassing ARGs, MGEs (integrons and insertion 287 

sequences) as well as non-coding regions (Forsberg et al., 2012). Of particular concern, ARG 288 

and virulence genes can co-localize on the same MGE, hence allowing bacteria to acquire both 289 

resistance and virulence in a single conjugation event and develop the ability to 290 

infect the human body (Beceiro et al., 2013). An example of this phenomenon is the co-291 

localization of ARGs and virulence genes on the same plasmids (McKinnon et al., 2018; 292 

Venturini et al., 2010; Venturini et al., 2013). The global spread of pathogens carrying such 293 

plasmids (e.g. E. coli B2 025:H4-ST131 strains) in recent years may indicate the simultaneous 294 

selection of resistance and virulence (Beceiro et al., 2013; Bevan et al., 2017).    295 

 Risks associated with ARGs  296 

It is noteworthy that not all ARGs pose the same risk level to human health. A 297 

conceptual framework was proposed to classify ARG candidates into different risk levels 298 

(Martínez et al., 2015). The classification criteria include sequence similarity between the 299 

ARG candidate and known ARGs, co-localization with MGEs (mobility), types of 300 

resistance mechanism (e.g. efflux pump, target modification, or novel mechanism), type 301 

of antibiotics the ARG confers resistance to, and presence in human pathogens. A publicly 302 

available tool for ranking ARG risk using metagenomic data – MetaCompare – was also 303 

introduced (Oh et al., 2018). This tool evaluates ARG candidates based on similar criteria with 304 



   

 

15 

 

the abovementioned conceptual framework and assigns a resistome risk score. The ARGs with 305 

the highest risk scores are those that confer resistance to antibiotics currently in use, are 306 

associated with MGEs, and present in human pathogens. In contrast, the detection of an ARG 307 

is of lesser significance if the ARG presents in environmental bacteria, with a low likelihood 308 

of transferring into human pathogens (e.g. not associated with MGEs). The classification of 309 

ARGs into health risk levels within an environmental context, could assist the development of 310 

high resolution risk models and specific recommendations for AMR mitigation (Pruden et al., 311 

2018). 312 

 Risks associated with ARB 313 

The likelihood of ARG introduction into human pathogens should be assessed based on 314 

their hosts (ARB), rather than the ARGs themselves. ARB can be differentiated as reservoirs, 315 

carriers, and vectors (Vaz-Moreira et al., 2014), with different risk levels to human health, and 316 

they are linked together in a transmission chain (Figure 4). Reservoir bacteria consists of ARB 317 

with intrinsic resistance (develop/acquire antibiotic resistance naturally), most of which are 318 

probably strictly environmental (Costa et al., 2006). Carrier bacteria and vector bacteria refer to 319 

bacteria that are abundant in the environment, have high genome plasticity, and acquire ARGs 320 

from reservoirs under selective conditions of anthropogenic activities. Carriers and vectors are 321 

the key players in ARG spread among different bacterial populations. Carriers cannot colonize 322 

or infect the human body; however, their proliferation can increase the abundance and diversity 323 

of ARGs in vectors. Vectors can colonize and proliferate in the human body. Pathogens are 324 

vectors that can infect the human body. Non-pathogenic vectors can transfer ARGs to 325 

commensal bacteria and opportunistic pathogens, which might subsequently cause an infection 326 

(Manaia, 2017). DNA sequences encoding ESBLs have been detected in vectors of vegetable 327 

origin including Rahnella aquatilis and Pseudomonas teessidea (Raphael et al., 2011; Ruimy 328 

et al., 2010). ARG transfer from a vector of fish origin (Aeromonas salmonicida subsp. 329 
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salmonicida) to human pathogens (e.g. Aeromonas hydrophila, E. coli, and Salmonella) has 330 

also been widely documented (Heuer et al., 2009; Rolain, 2013). Vectors can also become 331 

opportunistic pathogens, especially in immunocompromised patients (Raphael and Riley, 332 

2017). Humans and animals can also act as carriers and vectors for ARB spread through 333 

migration (Cummins et al., 2020; Nesporova et al., 2020); however, this topic is beyond the 334 

scope of this review.  335 

 336 

Figure 4. Chain of antibiotic resistance genes (ARGs) transfer between reservoir, carriers, 337 

vectors and pathogens. The colour of each circle represents the associated risk, with green 338 

representing the lowest risk level and red representing the highest risk level. The size of each 339 

circle represents the number of bacteria belonging to each category. HGT: horizontal gene 340 

transfer. 341 

The risk associated with a particular ARB depends on multiple factors in addition to 342 

its classification as reservoir, carrier, vector, or pathogen. These factors include the frequency 343 

of exposure to a human body (Johnson et al., 2016), modes of transmission and portal of 344 

entry, the infectious dose (the number of cells required to colonize or infect humans), 345 

the capacity to acquire and disseminate ARGs to the host microbiome, and the types and 346 

diversity of ARGs it harbors (Manaia, 2017). A pathogen with a low infectious dose, residing 347 

in an environmental compartment with high exposure to humans, conferring resistance to 348 
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last-resort antibiotics or multiple antibiotics, will be classified at the top level of risk. It is 349 

important to note that bacteria can occur in high-density aggregates (i.e. biofilm) where they 350 

can reach clinically relevant infectious doses, even if their average abundance in the 351 

environmental is below the infectious dose (Manaia, 2017). 352 

4.2. Technologies to identify, quantify and track ARGs in wastewater and hosts  353 

Advances in culture-independent molecular biology techniques have facilitated the 354 

study of ARGs both qualitatively and quantitatively. Several analytical tools can be deployed 355 

for detecting and/or quantifying ARGs in wastewater (Table 2). Many of these tools are based 356 

on polymerase chain reaction (PCR) and have been developed further to incorporate recent 357 

advancements in microbial genetics. Details on the advantages and disadvantages of each tool 358 

are available elsewhere (Ishii, 2020; Rice et al., 2020). For ARG quantification, amplification-359 

dependent methods such as quantitative PCR (qPCR), high-throughput qPCR (HT-qPCR) and 360 

digital PCR (dPCR) are particularly useful, in part due to their ease of execution, robustness, 361 

specificity and sensitivity. qPCR can provide information on the abundance of the targeted 362 

ARGs in different genetic contexts including viable bacteria, mobile DNA fragments like 363 

MGEs and “free” environmental DNA (extracellular DNA), depending on the DNA extraction 364 

technique (Dong et al., 2019; Eramo et al., 2019). For example, propidium monoazide can be 365 

used to remove DNA from dead cells and extracellular DNA in the sample during the extraction 366 

process, thus allowing for the obtainment of DNA from live cells only (Wagner et al., 2008). 367 

Similarly, it may also be possible to selectively target plasmids and separate them from 368 

chromosomal DNA. qPCR has also been used to estimate plasmid transfer frequency in 369 

bacterial communities since 2010 (Bonot and Merlin, 2010). Several tools in Table 2 can be 370 

used to identify ARG-hosts. Further discussion of these tools for ARG-host identification and 371 

findings from their recent applications are discussed below. 372 
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Table 2. Summary of current technologies for ARG quantification and host identification. 373 

qPCR – quantitative polymerase chain reaction, HT-qPCR – high-throughput qPCR, dPCR – 374 

digital PCR, FACS - fluorescence-activated cell sorting.  375 

Method Quantitative Host 

identified 

Ref. 

qPCR Yes No Cheng and Hong (2017); 

Du et al. (2015); Kappell 

et al. (2018); Munir et al. 

(2011) 

HT-qPCR Yes No Bueno et al. (2020); 

Karkman et al. (2016); 

Sandberg et al. (2018) 

dPCR Yes No Gao et al. (2018); Griffin 

et al. (2019); Stachler et 

al. (2019 

Single-cell fusion PCR No Yes Hultman et al. (2018) 

16S rRNA sequencing + 

correlation analysis 

 

Yes Yes* Li et al. (2015); Luo et al. 

(2017); Narciso-da-Rocha 

et al. (2018); Quintela-

Baluja et al. (2019); Su et 

al. (2017); Tian et al. 

(2016) 

Metagenomic sequencing Yes Yes* Arango-Argoty et al. 

(2019); Che et al. (2019); 

Jia et al. (2017); Liu et al. 

(2019); Ma et al. (2016) 

FACS + sequencing Yes Yes Gallego et al. (2020); 

Jacquiod et al. (2017); Li 

et al. (2018b); Qiu et al. 

(2018) 

Genomic cross-linking Yes Yes Stalder et al. (2019) 

 * ARG hosts are inferred (potential hosts) but not directly identified.  376 

 Single-cell, fusion PCR 377 

Single-cell fusion PCR or emulsion paired isolation and concatenation PCR (epicPCR) 378 

involves single-cell encapsulation, followed by fusion of a bacterial phylogenetic marker gene 379 

(e.g. 16S rRNA) with ARGs using PCR, and subsequent sequencing of the PCR products for 380 

taxonomical identification. Although the epicPCR technology has similar primer bias and off-381 
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target amplification drawbacks to the conventional PCR method (Rice et al., 2020), it can 382 

directly identify ARG hosts. The majority of identified hosts in wastewater belong to phyla 383 

Proteobacteria and Firmicutes, and a few were associated with phyla Fusobacteria, 384 

Gracilibacteria, and Tenericutes (Hultman et al., 2018). Arcobacter was found to harbor all 385 

the investigated ARGs (tetM, bla, intl, qac) and are considered important carriers in wastewater 386 

(Hultman et al., 2018). These results were in agreement with findings from other studies using 387 

the combination of 16S rRNA sequencing and correlation analysis as well as fluorescence-388 

activated cell sorting (FACS) (Jacquiod et al., 2017; Narciso-da-Rocha et al., 2018). In 389 

addition, the wastewater treatment process appears to decrease the ARG-host range, despite 390 

the HGT of ARGs to bacterial species (taxa) that were previously not ARG-hosts.  391 

 16S rRNA sequencing and correlation analysis 392 

Potential ARG-hosts can be inferred from the correlation between ARG abundance 393 

(obtained using qPCR) and bacterial species abundance (obtained using 16S rRNA 394 

sequencing). This method assumes that a positive correlation indicates co-occurrence between 395 

an ARG and a taxon, and a stronger correlation means a higher likelihood of the taxon to be 396 

the ARG-host. Using a combination of qPCR/16S rRNA sequencing and correlation analysis 397 

between ARG abundance and bacterial taxa abundance, previous studies have identified 398 

multiple potential ARB at the species level such as Bacteroides, Clostridium, and Escherichia 399 

(Supplementary Information). Most potential ARB belong to Proteobacteria, Firmicutes, and 400 

Bacteroidetes phyla, which are dominant bacterial phyla in wastewater and sludge (Quintela-401 

Baluja et al., 2019; Su et al., 2017). The application of the correlation method has also yielded 402 

novel findings on the relationship between ARGs (i.e. co-localization of multiple ARGs), and 403 

the impact of environmental factors (i.e. temperature, seasonal changes) and MGEs on ARGs 404 

(Li et al., 2015; Luo et al., 2017; Narciso-da-Rocha et al., 2018; Su et al., 2017; Tao et al., 405 

2016; Tian et al., 2016). It is noteworthy that spurious correlations can emerge through the data 406 
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normalization process (i.e. relative abundance data), and further research using whole-genome 407 

sequencing or genomic cross-linking methods (Section 4.2.5) are needed to confirm the actual 408 

link between ARG and the correlated hosts (Rice et al., 2020). 409 

 Metagenomic sequencing 410 

Metagenomic sequencing relies on the assembly of contigs or reconstructed microbial 411 

genomes from sequencing reads to link ARGs to a specific taxonomy. ARG-hosts can be 412 

identified from the assembly of ARGs with host phylogenetic biomarkers (16S rRNA gene), 413 

or the annotation of genes co-located with the ARG of interest (Rice et al., 2020). Nevertheless, 414 

caution needs to be taken in interpreting results derived from the assembly of short sequence 415 

reads due to the possibility of assembly errors (Arango-Argoty et al., 2019; Suzuki et al., 2019). 416 

Metagenomic sequencing yielding long reads (e.g. Nanopore sequencing) can reveal more 417 

information about the ARG genetic context and potential for mobility, whether it is plasmid- 418 

or chromosomal-associated, and if it is co-located with MGEs and metal resistance genes 419 

(MRGs). Besides Proteobacteria, Firmicutes, and Bacteroidetes members, taxa within the 420 

Actinobacteria and Spirochaetes have been identified as ARG-hosts using this method (Jia et 421 

al., 2017; Liu et al., 2019; Luo et al., 2017). ARGs in WWTPs were found to be frequently 422 

associated with MGEs (i.e. plasmid and class 1 integron) (Che et al., 2019), and the genetic 423 

context exerts a substantial impact on ARGs persistence and expression, with plasmid-424 

associate ARGs more likely to be expressed than exclusively chromosomal ARGs (Liu et al., 425 

2019). In addition, it has been observed that the microbial community composition determines 426 

ARG composition (Jia et al., 2017; Liu et al., 2019; Luo et al., 2017), and ARGs frequently co-427 

occur with MGEs due to co-localization (Che et al., 2019; Luo et al., 2017; Ma et al., 2016).   428 

 Fluorescence-activated cell sorting and sequencing 429 

FACS combines flow cytometry with cell sorting based on fluorescence emission. 430 

ARG-hosts can be tagged with fluorescent labels using bioreporter genes (enabled by HGT 431 
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events) (Pinilla-Redondo et al., 2018), or detected using fluorescence in situ hybridization 432 

(FISH) techniques such as rolling circle amplification FISH (RCA-FISH), tyramide signal 433 

amplification FISH (TSA-FISH) (Gallego et al., 2020) and catalyzed reporter deposition FISH 434 

(CARD-FISH) (Rice et al., 2020). The FACS-sorted bacterial cells are subjected to sequencing 435 

for taxonomical identification. Studies applying this method to track ARG-hosts have revealed 436 

multiple ARG-host taxa belonging to the Gammaproteobacteria class, as well as some novel 437 

ARG-hosts from Chloroflexi, Ignavibacteriae, Nitrospirae, Planctomycetes, and 438 

Gemmatimonadetes phyla (Jacquiod et al., 2017; Li et al., 2018b; Qiu et al., 2018). Among 439 

them, Arcobacter showed a high plasmid transfer potential and was suggested as a keystone 440 

taxon involved in HGT between distant Gram‐positive and Gram‐negative phyla.  441 

 Genomic cross-linking method 442 

Similar to epicPCR, the genomic cross-linking method also relies on the fusion of 443 

ARGs and 16S rRNA genes to create hybrid products for sequencing (Lieberman-Aiden et al., 444 

2009). However, the hybrid product was created using proximity ligation cross-linking and 445 

restriction enzymes rather than PCR (Schmitt et al., 2016). Stalder et al. (2019) reported using 446 

this method to identify 12 taxa as ARG-hosts, among which Aeromonadaceae was considered 447 

a keystone taxon in wastewater. This taxon is linked to at least 18 ARGs in two WWTPs, 448 

conferring resistance to eight antibiotic classes. The broadest host range in wastewater was 449 

observed for IncQ plasmids and class 1 integrons, while several narrow-host-range plasmids 450 

were almost exclusively linked to Enterobacteriaceae. 451 

4.3. ARGs detected in pathogenic hosts  452 

Many studies investigating ARG-hosts have not identified whether these hosts are 453 

reservoirs, carriers, vectors, or pathogens. Thus, there is still a gap in the literature regarding 454 

the relationship between ARGs and pathogenic species. For example, pathogens were detected 455 

in activated sludge, swine wastewater, and the receiving water, but there was no information 456 
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on whether they are ARB or not (Jia et al., 2017; Yadav and Kapley, 2019). This is due to the 457 

existence of multiple strains within a species (with different ARG carriage) as well as the 458 

limitations of ARG-host identification technologies (discussed in Section 4.2) in resolving the 459 

host down to strain, and sometimes species level in complex microbial communities found in 460 

WWTPs. Nevertheless, a few studies have successfully identified ARG-hosts with high 461 

sequence identity to MDR pathogenic species (Arango-Argoty et al., 2019; Che et al., 2019), 462 

including those in the ESKAPEEc panel (Enterococcus faecium, Staphylococcus aureus, 463 

Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, Enterobacter spp., and E. 464 

coli) (De Angelis et al., 2018). These pathogens are the major culprits responsible for severe 465 

infection in the clinical context, and their acquisition of resistance to last-resort antibiotics has 466 

significantly contributed to morbidity and mortality (Göttig et al., 2014; Rice, 2008). 467 

Che et al. (2019) have detected 10 ARB species that are potential pathogenic bacteria 468 

across the treatment process in three WWTPs, and five of them are members of the ESKAPEEc 469 

panel. These pathogens, including E. coli, Enterococcus faecium, Klebsiella pneumoniae, A. 470 

baumannii, and P. aeruginosa, possess high ARG diversity (at least four ARG types). Four of 471 

them were found at all treatment stages, indicating their risk of passing the wastewater 472 

treatment process and entering the receiving environments. Arango-Argoty et al. (2019) also 473 

identified A. baumannii, Enterobacteriaceae, Neisseria gonorrhoeae, and P. aeruginosa as 474 

ARG-hosts in WWTP samples, with P. aeruginosa carrying up to 74 ARGs. The presence of 475 

ARG-carrying pathogens in WWTP effluent is a water quality concern and a major risk factor 476 

associated with water recycling. 477 

4.4. ARB and ARGs in wastewater 478 

 ARB in wastewater 479 

Previous studies have revealed some common ARB detected in WWTPs (Section 4.2, 480 

Supplementary Information). At the phylum level, Proteobacteria harbour the highest number 481 
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of identified ARB, followed by Firmicutes and Bacteroidetes (Liu et al., 2019). At the order 482 

level, Bacteroidales, Clostridiales, Burkholderiales and Enterobacterales are notable ARG-483 

hosts. These are also the most common taxa in wastewater. Liu et al. (2019) reported that 484 

activated sludge samples of Taiwanese WWTPs contained Proteobacteria harbouring a diverse 485 

range of ARGs (88 were identified), while Burkholderiaceae were hosts to 50 different ARGs. 486 

The order Burkholderiales contains environmental saprophytic organisms, human and animal 487 

pathogens, which therefore pose a risk of spreading AMR. Several genera including 488 

Acinetobacter and Pseudomonas have been frequently detected in wastewater as active ARG 489 

carriers and vectors (Jia et al., 2017; Manaia, 2017). 490 

It is possible that the frequently detected taxa above act as ARG transfer hubs and form 491 

a “core permissive fraction” (Jacquiod et al., 2017; Li et al., 2018b). This core fraction of 492 

keystone taxa possesses high plasmid permissiveness (i.e. the capability to transfer an 493 

exogenous plasmid within a microbial community) (Musovic et al., 2010). Plasmid 494 

permissiveness may be influenced by factors such as the type of plasmid donor and recipient, 495 

and exposure to metal and antibiotic stressors (Jacquiod et al., 2017). Li et al. (2018b) reported 496 

different plasmid transfer frequencies across different types of ARG-carrying plasmids and 497 

plasmid donor bacteria (i.e. E. coli and P. putida) within an activated sludge microbial 498 

community. The plasmid recipient community (i.e. the transconjugant pools) was dominated 499 

by Acinetobacter genera, Enterobacteriaceae and Pseudomonadaceae families.   500 

To further support the “core permissive fraction” theory, it has been proposed that 501 

specific microbial taxa carry specific ARGs. Liu et al. (2019) reported that among the 159 502 

ARGs detected in activated sludge samples, only seven ARGs were shared by the primary 503 

ARG-carrying phyla. A significant number of ARGs (62.3%) were carried by unique host phyla 504 

(Liu et al., 2019). This phenomenon can be linked to the capability of specific species to host 505 

specific plasmids (Qiu et al., 2018; Redondo-Salvo et al., 2020). Thus, developing a database 506 
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of ARGs and their associated hosts is crucial in managing and mitigating ARG dissemination 507 

in general, and in identifying suitable ARB and ARG surrogates in particular.  508 

The lack of agreement on ARB and ARG surrogates to serve as environmental 509 

monitoring targets is a major challenge for antibiotic resistance mitigation (Pruden et al., 2018). 510 

Faecal coliforms, P. aeruginosa, Enterococci, and Enterobacteria have been considered as 511 

ARB surrogates (Hiller et al., 2019). They are omnipresent in the wastewater ecosystem and 512 

frequently detected as active ARG carriers and vectors. In addition, their abundances are highly 513 

quantifiable, as they have already been used as faecal contamination indicators. Thus, these 514 

bacteria appear to be ideal ARB surrogates, and in fact, ESBL-producing E. coli has been 515 

chosen as the target for a pilot surveillance program initiated by WHO, the EU, and several 516 

Asia and Africa countries (Jorge Matheu, 2017). Other representative Gram-positive and 517 

Gram-negative indicator bacteria are also worthy of consideration.  518 

 ARGs in wastewater 519 

An ARG surrogate should allow for direct confirmation of the existence of antibiotic 520 

resistance. Similar to the requirements for suitable ARB surrogates, ARG surrogates should 521 

ideally be ubiquitous in wastewater, and easily and accurately quantified using current 522 

technology. Frequently detected ARGs conferring resistance to broad-spectrum antibiotics 523 

such as sulphonamide (sul1 and sul2) and tetracycline (tetA, tetB, tetO and tetW) are likely to 524 

be useful surrogates for the evaluation of treatment efficiencies (Hiller et al., 2019). As noted 525 

in Section 4.2.2, multiple ARGs show strong co-occurrence due to their co-localization on the 526 

same MGE (e.g. plasmids and conjugative transposons) (Jia et al., 2017; Soge et al., 2009). 527 

Frequently detected ARGs (Table 1) exhibited higher non-random co-occurrence events in 528 

wastewater samples than random events (Jia et al., 2017). Their co-occurrence expands the 529 

possibility of identifying suitable ARG surrogates. For example, Li et al. (2015) revealed that 530 

tetM and aminoglycoside resistance protein were the main hubs of an ARG co-occurrence 531 
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network built from 50 environmental samples using metagenomics and network analysis. 532 

These ARGs could be useful surrogates to quantitatively estimate the abundance of 23 other 533 

co-occurring ARG subtypes by power functions. Besides correlation and network analysis, 534 

modelling and machine learning approaches can be applied to identify ARG surrogates and 535 

develop ARG-predictive models for routine monitoring (Ishii, 2020; Li et al., 2018a). MGEs 536 

should also be taken into consideration; for example, the class 1 integron integrase gene can 537 

serve as an excellent indicator of MDR bacteria and anthropogenic pollution (Gillings et al., 538 

2015; Leverstein-van Hall et al., 2003). It is also suggested that data on associated 539 

environmental variables (e.g. temperature, water turbidity, faecal indicator, and pathogen 540 

levels) should be collated for the determination of potential ARG indicators.  541 

4.5. Factors governing ARGs removal or transfer 542 

An important aspect of AMR dissemination is the interplay among the various factors 543 

that can affect ARG removal and transfer (Figure 5). This section will discuss previously 544 

identified factors and their mechanisms of promoting/reducing ARG in WWTPs. 545 

 546 

Figure 5. Conditions that promote/reduce antibiotic resistance genes transfer in wastewater 547 

treatment. 548 
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 ARG transfer during wastewater treatment  549 

Stress-inducing conditions such as exposure to antimicrobials, heavy metals, and 550 

disinfectants at low doses, can stimulate ARG development and dissemination. These stressors 551 

share a common stimulating mechanism through multiple alterations in bacterial gene 552 

expression. Stressors increase the expression of the SOS response system, which in turn 553 

increases genetic instability, promoting DNA mutations (Händel et al., 2014). The reactive 554 

oxygen species generated in response to stress can also damage bacterial membranes, resulting 555 

in enhanced cell permeability and facilitating HGT events. In addition, stressors can alter the 556 

expression of conjugation-relevant genes, e.g. inducing more sex pili on cell surfaces. These 557 

act as pathways for ARG transfer (Guo et al., 2015), and reduce the activity of regulatory genes. 558 

Despite the understanding of their stimulating mechanisms, controlling stress-inducing 559 

conditions in WWTPs is highly challenging, since these stressors are ubiquitous in wastewater 560 

at trace levels.  561 

Exposure to antibiotics accelerates the transfer rate of ARGs in environmental samples. 562 

This arises from an antibiotic’s ability to exert pressure on exposed microorganisms/bacteria 563 

thus inducing resistance to itself, and/or stimulate the transfer of MGEs responsible for the 564 

dissemination of resistance determinants (Depardieu et al., 2007). Exposure to the antibiotic 565 

trimethoprim significantly increased the rate of HGT in an activated sludge bacterial 566 

community (Li et al., 2019). Triclosan exposure at concentrations frequently detected in 567 

wastewater (0.02–20 μg/L) could stimulate HGT of plasmid-encoded MDR genes within and 568 

across genera (Lu et al., 2018). Even at a low concentration of tetracycline (10 μg/L which is 569 

150 times below the minimal inhibitory concentration (MIC) of the ARG recipient), HGT of 570 

ARG determinants in WWTP activated sludge and effluent could still be stimulated (Jutkina et 571 

al., 2016; Kim et al., 2014). This may explain the higher ARG abundance and diversity in 572 

sludge from pharmaceutical wastewater treatment compared to municipal WWTP sludge (Tao 573 
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et al., 2016). Efforts in antimicrobial stewardship (i.e. strategies to improve appropriate use 574 

and minimise adverse effects of antibiotics) within hospitals and communities could contribute 575 

significantly to the mitigation of ARG occurrence in wastewater. These stewardship programs 576 

have proven to effectively reduce antibiotic dosages and resistance (Nathwani et al., 2019; 577 

Zhang et al., 2017c), and provide greater opportunities for engineers to monitor and mitigate 578 

AMR in hospital effluent before discharging it to local sewer systems. 579 

The presence of antimicrobial organic compounds, nanoparticles, and heavy metals in 580 

wastewater can significantly influence the ARG transfer rate. The frequency of HGT of ARG-581 

carrying plasmids in textile dyeing wastewater increased up to 200-fold under low doses of 582 

quaternary ammonium compounds (e.g. malachite green, ethylbenzene, trioxymethylene and 583 

o-xylene) (Jiao et al., 2017). Qiu et al. (2012) revealed a similar increase in HGT frequency 584 

under the presence of nanomaterials (e.g. nanoalumina). Copper nanoparticles and copper ions 585 

have also been reported to stimulate the HGT of MDR genes at environmentally-relevant and 586 

sub-inhibitory concentrations (i.e. 1–100 μmol/L) (Zhang et al., 2019c). Notably, metal stress 587 

can increase the plasmid permissiveness of the microbial community by more than 1000-fold 588 

(Klümper et al., 2017). These findings highlight the vital importance of source control to 589 

decrease the release of metals, nanoparticles and organic contaminants into wastewater and the 590 

wider environment. 591 

Besides the aforementioned stimulators, other conditions such as wastewater 592 

disinfection, oxygen level, and the spatial distribution of bacteria can also accelerate ARG 593 

dissemination. Several studies have demonstrated that sub-inhibitory (0.1–1 mg Cl2/L) or low 594 

doses of chlorine (< 40 mg Cl2 min/L) led to the increases in intra-genera and inter-genera HGT 595 

of ARGs by 2 to 7.5-fold (Guo et al., 2015; Zhang et al., 2017b). Meanwhile, oxygen level can 596 

affect bacterial community composition and in turn affect ARG profileration. For example, 597 

aerobic sludge reportedly has a higher proportion of Proteobacteria (27%) than anaerobic 598 
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sludge (21%), thus allowing for two times higher plasmid abundance (Tao et al., 2016). 599 

Furthermore, bacterial biofilms, particularly at the air-liquid interface (i.e. higher oxygen 600 

level), are potential hotspots for plasmid-mediated ARG transfer due to the high densities of 601 

plasmid donor and recipient cells (Król et al., 2011). 602 

 ARG reduction during wastewater treatment  603 

The type of wastewater treatment processes can impact the removal of ARG and ARB. 604 

Membrane-based technologies such as membrane bioreactors (MBR) are regarded as the most 605 

effective technologies among primary and secondary treatment processes (Hiller et al., 2019; 606 

Lu et al., 2020; Wang and Chen, 2020). Le et al. (2018) observed that MBR outperformed 607 

conventional activated sludge (CAS) in the elimination of ARB (5.0–7.1 vs. 1.0–5.3 log 608 

removal) and 13/16 selected ARGs (1.3–6.5 vs. -0.3–6.1 log removal). Munir et al. (2011) also 609 

reported significantly higher removal of ARG (tetW and tetO) and ARB in MBR facility (2.57–610 

7.06 log removal) compared to conventional treatment plants that employ CAS, oxidative ditch 611 

and rotatory biological contactors (2.37–4.56 log removal). Better performance of MBRs can 612 

be attributed to the ability to effectively separate sludge from effluent and retain ARB inside 613 

the reactor. Nevertheless, the fact that some ARB and ARGs can persist through the MBR 614 

process (Ng et al., 2019) highlights the need for further research on this topic.  615 

The retardation of ARG transfer and the removal of antibiotic resistant determinants in 616 

WWTPs can also be facilitated through chemical treatment processes, including advanced 617 

oxidation (AOP) and disinfection (e.g. chlorination, ultraviolet irradiation and ozonation). 618 

Fenton oxidation offers complete reduction (5-log decrease) of ARB to below the detection 619 

limit with relatively short treatment time (20 minutes) and lower energy (0.98 kJ/L) compared 620 

to other solar driven AOPs (i.e. H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight) (Ferro et 621 

al., 2015). A sufficiently high dose of chlorine (>80 mg Cl2 min/L) applied within a short 622 

contact time (~30 min) can inactivate ARB and mitigate their regrowth or reactivation (Guo et 623 



   

 

29 

 

al., 2015), thus decreasing ARG abundance (Guo et al., 2015; Pei et al., 2019). Zhang et al. 624 

(2017b) also observed that exposure to chlorine, chloramine and hydrogen peroxide 625 

concentrations higher than MICs significantly suppressed conjugative transfer within E. coli 626 

strains and across genera from E. coli to Salmonella enterica serovar Typhimurium. Similarly, 627 

high UV doses (>10 mJ/cm2) can exhibit lethal effects on bacterial communities, thus reducing 628 

the number of ARB to below 104 CFU/mL, and suppressing the conjugative transfer of ARG-629 

carrying plasmids (i.e. HGT) (Guo et al., 2015). 630 

Although disinfection demonstrates high efficacy in ARG removal, it is also necessary 631 

to recognise their limitations and disadvantages. For example, UV treatment processes at 632 

WWTPs are less efficient than in simulated laboratory experiments partly due to the high doses 633 

required (Chen and Zhang, 2013; Zhang et al., 2017a). High doses of chlorine (>80 mg Cl2 634 

min/L) needed for efficient ARB inactivation are also not practical due to high corrosion risk, 635 

toxicity and harmful chemical byproducts, thus requires increased dechlorination and safety 636 

regulations. Ozonation process offers greater reduction of ARB, pB10 plasmids, and pB10 637 

plasmid transfer rate  compared to chlorination (Pak et al., 2016). However, an excessive ozone 638 

dose (>0.55 g O3 g DOC−1) can result in harmful by-products (e.g. nitrosamines or bromate) 639 

(Czekalski et al., 2016). Disinfectants might also result in the selection of more resistant strains 640 

that can regrow during and subsequent treatment (Huang et al., 2011; Xi et al., 2009). 641 

Similar to disinfectants, exposure to metal stressors at high doses (mainly at the influent e.g. 642 

from animal manure discharge) can decrease HGT. Klümper et al. (2017) demonstrated that 643 

the presence of heavy metals (e.g.: Cu, Cd, Ni, and Zn) at inhibitory concentrations (i.e. 644 

causing 20 and 50% bacterial growth inhibition) reduced the plasmid conjugative transfer 645 

events by 30 to 100%. It is noteworthy that the current knowledge regarding the mechanism 646 

behind the influence of metal stressors to plasmid transfer inhibition is still insufficient. It is 647 

likely that high metal doses inhibit bacterial growth and reduce ARB abundance, thus 648 
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limiting ARG transfer rate. However, metal stressors can select for MRG which co-localize 649 

with ARGs as discussed in Section 4.2.3. 650 

Several studies have highlighted how operating temperature influences ARG transfer 651 

and removal rate in sewage sludge (Ghosh et al., 2009; Ma et al., 2011; Zhang et al., 2015). 652 

Thermophilic anaerobic digestion (50 – 60 °C) can effectively remove 50 – 99% of 653 

tetracycline ARGs and class 1 integrons in both lab-scale digesters and full-scale WWTPs 654 

(Diehl and LaPara, 2010; Ghosh et al., 2009). ARG abundance was also decreased by 50% 655 

after thermophilic anaerobic digestion (Tian et al., 2016), suggesting that increased 656 

temperature can potentially reduce ARG abundance by inhibiting both HGT (e.g. plasmids, 657 

insertion sequences, and integrons) and VGT (i.e. regeneration of potential bacterial hosts) 658 

pathways. However, several studies have pointed out that the removal efficiency of various 659 

sludge digestion conditions (i.e. different temperatures) may be ARG-specific. For example, 660 

Ma et al. (2011) revealed that mesophilic anaerobic digestion was effective at removing sulI, 661 

tetC, tetG, and tetX but enriched tetW, ermB and ermF abundance. In the same study, 662 

thermophilic process significantly reduced ermB, ermF, tetO, and tetW but poorly removed 663 

other ARGs. Zhang et al. (2015) also reported > 90% removal of quinolone resistance gene 664 

after thermophilic anaerobic digestion, but a simultaneous enrichment of chloramphenicol 665 

resistant gene was observed. These results imply that further research is necessary to have a 666 

complete understanding of the impact of operating temperature on ARG removal in sewage 667 

sludge.   668 

A targeted treatment method using phage therapy or engineered phage lysin to control 669 

high-risk ARB was suggested by Rice et al. (2020). Phage/phage lysin can kill specific bacteria 670 

with high effectiveness and specificity with minimal disruption of the normal microbial 671 

community (Jassim et al., 2016; Yang et al., 2014). Phages are self-replicating and self-672 

limiting, and phage therapy has shown promising results in controlling foaming bacteria in 673 
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CAS process. Keystone taxa in the ARG-transfer network (Section 4.4.1) could be regarded as 674 

“Achilles heels” to be targeted using phage therapy (Pinilla-Redondo et al., 2018). However, 675 

bacteria can develop mechanisms to prevent phage infection such as the restriction-676 

modification system (i.e. CRISPR/Cas system) and modification to their cell wall receptors 677 

(Jore et al., 2012). Phage can also contribute to bacterial virulence and HGT of ARG through 678 

transduction (lysogenic cycle) or release of ARG during cell lysis (lytic cycle) that can be 679 

uptaken by other bacteria via transformation (Section 3). Besides, successful phage therapy 680 

requires a comprehensive understanding of the target bacteria in the microbial population, 681 

phage–host interactions, dose optimization, and other chemical and physical factors (Jassim et 682 

al., 2016). Additional research is thus necessary to evaluate the feasibility of phage therapy for 683 

ARG control.  684 

5. Current challenges to monitor and control ARGs 685 

5.1. ARG referencing conditions 686 

The presence of ARGs in any environment is a natural phenomenon. ARGs have been 687 

detected in pristine environments not affected by anthropogenic activities (e.g. Antarctic 688 

marine water) (Brown and Balkwill, 2008; De Souza et al., 2006; Van Goethem et al., 2018). 689 

ARGs should not be merely quantified and reported but need to be interpreted based on the 690 

significance of their presence and how it is related to rapid evolution and spread of MDR 691 

bacteria (Zhang et al., 2019a). The identification of critical risk thresholds for ARB and ARG 692 

exposures that influence human health is also important in developing mitigation strategies 693 

(Pruden et al., 2018). However, ARG quality thresholds or standards have not been established 694 

even in wastewater and sludge. Several studies have attempted to use ARG concentration in 695 

pristine environments (i.e. river’s source water) as the natural “resistance background” level or 696 

reference to determine the magnitude of the ARG problem in urban stream, hospital effluent, 697 

and animal husbandry wastewater (Ouyang et al., 2015; Rowe et al., 2017). This approach 698 
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appears impractical since the “background” concentration would be different for each 699 

geographical location and require re-assessment. A potential solution is to establish a set of 700 

threshold values and standardised conditions to serve as the ARG reference, such as those 701 

developed by the European Commission for endocrine-disrupting compounds (European 702 

Commission, 2011). 703 

5.2. Standardization of ARG unit  704 

ARG quantity in a sample is usually reported in terms of relative or absolute abundance 705 

using various units such as one ARG read per one million reads (denoted as ppm), copies of 706 

ARG per copies of 16S rRNA gene, or copies of ARG per mL. The difference in methods used 707 

for ARG quantification is the underlying reason for these different units. Standardization of an 708 

ARG unit is necessary to allow for comparisons between results and effective management of 709 

the ARG issue. Ideally, ARGs should be reported in terms of concentration (copies per mL) or 710 

relative abundance (copies per bacteria cell) for consistency with the WWTP context and 711 

removal calculation. The method for unit conversion was introduced recently, through 712 

normalization of ARG abundance by the absolute copy number of 16S rRNA (which can be 713 

obtained reliably using qPCR), or by the number of bacterial cells per litre (which can be 714 

estimated from 16S rRNA copy number) (Ouyang et al., 2015; Su et al., 2017). However, the 715 

current unit conversion method has limitations when applied to microbial communities with 716 

very different copy numbers of 16S rRNA. Further details of the conversion method are 717 

available in the Supplementary Information. 718 

5.3. Assessment of WWTP performance in removing ARG 719 

The removal efficiency of ARGs by WWTPs is often considered by the difference 720 

between the total abundance of ARGs in the influent (i.e input) and effluent (i.e. output) 721 

(Section 4.5.2). In some studies, the performance of individual treatment stages (e.g. primary, 722 

secondary, and tertiary treatment) on ARG removal within the overall WWTP workflow has 723 
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been reported. This process of reporting neglects the behaviour of ARGs and ARB within each 724 

treatment processes (Cheng and Hong, 2017; Du et al., 2015; Kappell et al., 2018; Liang et al., 725 

2021; Lin et al., 2021). In the context of ARGs in WWTP, apart from the ARG input in the 726 

influent, other contributing factors such as bacterial growth and decay, ARG transfer due to 727 

VGT and HGT, and ARG loss from a host (segregation) must all be assessed. Many of these 728 

factors have not been mathematically described and fully understood to assess the performance 729 

of WWTP in the literature. Thus, an insignificant difference between the ARG 730 

abundance/richness in the influent and the effluent does not necessarily imply a poor 731 

performance of WWTP process. 732 

6. Future roadmap 733 

AMR will continue to be a priority global issue for the foreseeable future. Previous 734 

studies have revealed part of the AMR picture, such as the stimulators contributing to ARG 735 

dissemination. Future research will need to address current challenges such as the inconsistent 736 

ARG reporting units or the lack of standard ARG threshold for monitoring. Three key areas 737 

need to be prioritised in the future: AMR characterization, surveillance and monitoring, and 738 

risk modelling and assessment. 739 

More studies are needed to clarify the mechanism of ARG selection, transfer, 740 

propagation, and the impact of environmental and operational, socioeconomic, and 741 

legal/regulatory factors (Pruden et al., 2018). Methods to enhance the removal efficiency of 742 

ARG as part of the current effective treatment technologies (e.g., MBR, advanced 743 

oxidation/disinfection) needs to be identified (Wang and Chen, 2020), especially for waste 744 

streams with high AMR potential, such as those from pharmaceuticals and hospitals. Research 745 

findings on AMR characterization needed to be translated into practical, meaningful, and 746 

actionable guidance for WWTP designers and operators. Mitigation strategies must be 747 
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harmonized with the need for water sustainability and reuse. For example, developing countries 748 

would require cost-effective ARG treatment technologies. 749 

AMR surveillance and monitoring can provide an overall picture and help identify 750 

effective actionable points to place AMR barriers. It is essential to agree upon monitoring 751 

targets (surrogates), monitoring thresholds, and standard reporting methods as soon as possible. 752 

Modelling and machine learning approaches can pinpoint ARG surrogate, the most influential 753 

factors, and the most promising targets to control. Predictive models can also be used for 754 

routine monitoring of ARGs (Ishii, 2020; Li et al., 2018a). Li et al. (2019) successfully 755 

described HGT kinetics using an epidemic infection model combined with quantitative 756 

measures of HGT and VGT using microfluidics. This microfluidic system provides a promising 757 

tool to study and predict ARG dynamics spread in real-world microbial communities. 758 

Advanced digital tools such as machine learning, data mining, and predictive analytics have 759 

the potential to improve ARG identification (Arango-Argoty et al., 2018), more accurately 760 

predict resistance phenotypes from whole genome sequencing data (Kim et al., 2020; Liu et 761 

al., 2020; Mahé and Tournoud, 2018), and track ARG pollution from different sources (Li et 762 

al., 2018a). Last but not least, epidemiological studies that examine the extent of ARB/ARG 763 

exposures (e.g. on livestock farmers/ WWTP operators) in the environment and correlate such 764 

exposures to associated health risks would be of value. 765 

7. Conclusions 766 

Recent progress in metagenomics and molecular microbiology has generated database 767 

of ARGs and ARG-hosts (ARB). These databases are essential to the understanding of ARG 768 

dissemination, especially in the wastewater system. Solutions for AMR control, such as ARB-769 

targeted therapy, must be developed from this expanding knowledge of ARGs and the 770 

associated context (e.g. environmental conditions and genetic elements that influence their 771 

abundance). This review highlights the role of WWTP in AMR mitigation and reveals a dearth 772 
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of data on the risk associated with ARGs and ARB, the relationship between ARGs and 773 

pathogenic species, and standardized approaches to assess ARG removal efficiency in 774 

WWTPs. More research is also necessary to shed light on how WWTPs can evolve into 775 

effective gatekeepers guarding us against AMR. 776 
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