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Abstract 15 

Bioinformatics programs have been developed that exploit informative signals encoded 16 

within protein sequences to predict protein characteristics. Unfortunately, there is no program 17 

as yet that can predict whether a protein will induce a protective immune response to a 18 

pathogen. Nonetheless, predicting those pathogen proteins most likely from those least likely 19 

to induce an immune response is feasible when collectively using protein characteristics that 20 

can be predicted. Vacceed is a computational pipeline that manages different standalone 21 

bioinformatics programs to predict various protein characteristics, which offer supporting 22 

evidence on whether a protein is secreted or membrane associated. A set of machine learning 23 

algorithms predicts the most likely pathogen proteins to induce an immune response given 24 

the supporting evidence. This chapter provides step by step descriptions of how to configure 25 

and operate Vacceed for a eukaryotic pathogen of the user’s choice.  26 

 27 
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1. Introduction 32 

Proteins sequences are not random assemblies of amino acids. There is a precise biological 33 

reason why one particular amino acid is connected to another, which ultimately contributes to 34 

a protein’s distinctive characteristics [1]. Researchers, over the last two decades, have 35 

developed bioinformatics programs that exploit informative signals or patterns encoded 36 

within these amino acid sequences to predict protein characteristics. Examples of these 37 

characteristics are subcellular localization [2], presence and location of signal peptide 38 

cleavage sites [3], and transmembrane topology[4]. With respect to discovering protein 39 

vaccine candidates, no signal has yet been detected that helps predict a characteristic 40 

signifying a protein’s contributing capacity to a protective immune response in a host. 41 

Consequently, the current computational antigen discovery aspiration is to distinguish those 42 

pathogen proteins most likely (referred to henceforth as positives) from those least likely 43 

(referred to henceforth as negatives) to induce an immune response. 44 

Vacceed is the collective name for a configurable pipeline of linked bioinformatics programs, 45 

Perl scripts, R functions and Linux shell scripts [5]. It was inspired by the principles of 46 

reverse vaccinology [6], whereby antigen discovery starts in silico using the pathogen 47 

genome rather than the traditional culture-based method of cultivating and dissecting the 48 

pathogen itself. Vacceed has been designed to facilitate an automated, high-throughput 49 

computational approach to predict vaccine candidates against eukaryotic pathogens given 50 

protein sequences [7]. The pipeline uses various standalone bioinformatics programs to 51 

predict various protein characteristics. Vacceed is grounded on the underlying premise that 52 

there is an expected difference between the set of characteristics defining positives to those of 53 

negatives. These differences are typically not apparent to an observer and hence applying a 54 

rule-based approach to distinguish proteins is not feasible. Conversely, machine learning 55 
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(ML) has the capacity to detect obscure differences. Vacceed uses a set of ML algorithms 56 

trained on protein characteristics of known positives and negatives to distinguish if a yet to be 57 

classified protein is a positive or negative [8]. So far, Vacceed has been used in studies to 58 

predict vaccine candidates for Neospora caninum [9] and Cystoisospora suis [10]. 59 

This chapter provides step by step descriptions of how to configure and operate Vacceed for a 60 

eukaryotic pathogen of the user’s choice. A prerequisite for pathogen choice, nonetheless, is a 61 

substantial representation of the pathogen’s proteome in the form of quality protein 62 

sequences. 63 

2. Vacceed core background information  64 

Vacceed can be downloaded from: https://github.com/goodswen/vacceed/releases. The 65 

download package includes a comprehensive Vacceed User Guide and sample data. Note that 66 

Vacceed has been designed for a Linux operating system and has only been tested on Red Hat 67 

Enterprise Linux 7.5, but is expected to work on most Linux distributions.  68 

Each data processing stage in the Vacceed pipeline is an independent resource, which is built 69 

from a central Linux shell script encapsulating all programs needed to perform specific but 70 

related tasks. Typical tasks include predicting a particular protein characteristic. By default, 71 

Vacceed uses seven bioinformatics programs to predict protein characteristics: SignalP 5.0 72 

[11] (predicts presence and location of signal peptide cleavage sites using deep neural 73 

networks); WoLF PSORT 0.2 [12] and TargetP 1.1 [2] (predict subcellular localization); 74 

TMHMM 2.0 [4] (predicts transmembrane domains in proteins); Phobius 1.01 [13] (predicts 75 

transmembrane topology and signal peptides); DeepLoc 1.0 [14] (predicts eukaryotic protein 76 

subcellular localization using deep learning); and IEDB peptide-MHC binding predictors 77 

(MHCI version 2.17 and MHCII version 2.16.3) [15] (see Note 1). Observe that each of the 78 
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seven programs have specific version numbers on which Vacceed has been tested. There is no 79 

assurance older or newer program versions will work. 80 

The most pertinent file from a user’s perspective is a species configuration file in a header-81 

key format (see Fig. 1). For example, [Resources] is the header, and ‘name’ is the key. Text 82 

following the ‘=’ sign is configurable. A suggested convention is to have one configuration 83 

file for each target pathogen. Vacceed is started by entering only one command in a Linux 84 

Shell (or terminal) e.g. perl startup xx, where xx is a user specified code that links Vacceed to 85 

the target pathogen configuration file. No other commands are required. 86 

Once Vacceed is started, each resource listed after the ‘name’ key is consecutively executed. 87 

Resource names can be in any order or even excluded with the exception of VALIDATE (see 88 

Note 2) and EVIDENCE (see Note 3), which must always be the first and last in the list, 89 

respectively. Any key in the configuration file can be used as a variable replacement in the 90 

rest of the configuration file. That is, a ‘$’ character preceding a word denotes a variable e.g. 91 

$work_dir is replaced by ‘$HOME/vacceed’ throughout the configuration file on execution.  92 

Typical Vacceed run times are dependent on various factors including numbers of proteins to 93 

process, programs to execute (resources), computer processors (cores), and the amount of 94 

memory. For example, a test with 500 proteins processed through all resources completed in 95 

3 hours, 21 minutes, and 17 seconds using Red Hat Enterprise Linux Workstation release 7.5, 96 

64 bit kernel, and 32 MB memory with 8 cores; however, the same test without the resources 97 

MHCI and MHCII completed in 23 minutes and 54 seconds. Vacceed takes advantage of 98 

multi-core processors. By default, the proteins to process are split into subsets by the number 99 

of cores and then each subset is processed in parallel. 100 
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3. Methods 101 

3.1 Running Vacceed with sample data 102 

The Vacceed installation provides sample data comprising a small collection of Toxoplasma 103 

gondii proteins as input. The purpose of this section is to test the Vacceed installation.  104 

1. Install Vacceed (see Note 4). 105 

2. Edit the species configuration file ‘toxoplasma.ini’ located in the directory 106 

<install_dir>/vacceed/start/config_dir (where <install_dir> is the directory in which 107 

Vacceed was installed). Under the [Resources] header, remove MHCI and MHCII 108 

(see Note 5). 109 

3. Under the [Main] header, change the current path assigned to work_dir to 110 

install_dir/vacceed/. 111 

4. Under the [Main] header, assign an appropriate e-mail address to email_url  112 

5. In a command-line terminal, change directory to install_dir/vacceed/start.  113 

6. Enter the command: perl startup tg 114 

7. An e-mail will automatically be sent either when the pipeline is successfully 115 

completed or immediately when an error occurs. A log file is attached to the e-mail 116 

providing details of success or failure (see Note 6).  117 

8. If successful, the main output file called ‘vaccine_candidates’ is created in the 118 

directory install_dir/vacceed/toxoplasma/proteome. This file contains a list of all 119 

processed proteins ranked on average ML scores (see Fig 2. and Note 7). 120 

3.2 Running Vacceed with user provided data 121 

Once the Vacceed installation has been successfully tested, Vacceed can be configured and 122 

operated for a eukaryotic pathogen of the user’s choice. Neospora caninum is used here for 123 

demonstration purposes.  124 
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1. Collect all known protein sequences of the target pathogen into one file (see Note 8). 125 

The sequences must be in a FASTA format with a sequence identifier in the following 126 

layout: >xx |protein Identifier (ID)| text (optional), where xxx can be any characters 127 

e.g. ‘tr’ or ‘sp’ as per UniProt identifiers. 128 

2. Copy file from step #1 into install_dir/vacceed/start/proteome  129 

3. Copy the entire template_species directory to a user-named directory, e.g., neospora. 130 

4. Copy the species configuration file ‘toxoplasma.ini’ located in the directory 131 

install_dir/vacceed/start/config_dir to ‘neospora.ini’. 132 

5. Add a new line to startup.ini located in install_dir/vacceed/start/:  133 

nc< Neospora caninum <pipeline<neospora.ini< install_dir/vacceed/start/config_dir 134 

6. Edit neospora.ini to match the following:  135 

work_dir="install_dir/vacceed"  136 

species_dir="neospora"  137 

email_url="your_email@address" (user e-mail address) 138 

proteome_fasta="proteome.fasta" (protein sequence file as per step #1) 139 

prot_id_prefix="xxx" (needs to match the sequence identifier as per step #1) 140 

7. Modify the [Resources] in neospora.ini, if required. That is, remove any resource 141 

names between VALIDATE and EVIDENCE that are not required e.g. MHCI and 142 

MHCII. 143 

8. Change directory to install_dir/vacceed/start in a command-line terminal.  144 

9. Enter the command: perl startup nc (where ‘nc’ is as per step #5).  145 

10. Check results in ‘vaccine_candidates’ in install_dir/vacceed/neospora/proteome 146 

3.3 Creating pathogen specific training data 147 

Training data here is essentially the collection of predicted evidence (referred to henceforth 148 

as evidence profiles) from the seven bioinformatics programs for those proteins known to be 149 
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positive or negative. A training data file called ‘train_profiles’ is provided with the Vacceed 150 

package as part of the T. gondii sample data (see Note 9). A previous study [8] tested 151 

Vacceed with different evidence profiles compiled from different eukaryotic species. It 152 

concluded that there is no fundamental difference in evidence profile patterns, e.g., a model 153 

trained on one species can be used to classify proteins from another. This is because the 154 

bioinformatics programs are designed or ML trained for eukaryotes in general. Therefore, the 155 

creation of a pathogen specific training dataset is not a mandatory step. However, an ideal 156 

training dataset is one that contains the greatest variety of evidence profiles (see Note 10) 157 

irrespective of the source species, e.g., quality and variety are indisputably the most 158 

important factors that impact the accuracy of ML algorithms [8]. A new or amended training 159 

file is recommended under any of the following circumstances: a bioinformatics program is 160 

upgraded, i.e., it has improved accuracy; experimentally proved immunogenic proteins 161 

become available; and a new prediction program is added (see Section 3.5). 162 

1. Collect as many proteins as possible for the target species that are known to induce an 163 

immune response in the relevant host. The proteins will represent the ‘positives’ for 164 

the training file (see Note 11). 165 

2. Collect proteins that do not induce an immune response. These proteins will represent 166 

the ‘negatives’ (see Note 12). 167 

3. Create a file (e.g., positives.fasta) containing the positive sequences in a FASTA 168 

format. 169 

4. Create a file (e.g., negatives.fasta) containing the negative sequences in a FASTA 170 

format. 171 

5. Copy both FASTA files into install_dir/vacceed/start/proteome 172 

6.  Copy the entire template_species directory to a user-named directory, e.g., training. 173 

7. Copy ‘toxoplasma.ini’ to ‘train.ini’. 174 
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8. Add a new line to startup.ini located in install_dir/vacceed/start/:  175 

train< Neospora caninum <pipeline<train.ini< install_dir/Vacceed/start/config_dir  176 

9. Edit train.ini to match the following:  177 

work_dir="install_dir/vacceed"  178 

species_dir="training"  179 

email_url="your_email@address" (user e-mail address) 180 

proteome_fasta="positives.fasta" (as per step #3) 181 

prot_id_prefix="xxx" (needs to match the sequence identifier) 182 

11. Modify [Resources] in train.ini if required e.g. remove any resource not installed or 183 

required.  184 

12. Change directory to install_dir/vacceed/start in a command-line terminal.  185 

13. Enter the command: perl startup train (where ‘train’ is as per step #8).  186 

14. Copy the file ‘evidence_profiles’ from 187 

install_dir/vacceed/training/pipeline/evidence/output to 188 

install_dir/vacceed/training/pipeline/evidence/training_files 189 

15. Rename evidence_profiles to a user-defined name e.g. neospora_profiles 190 

16. Add ‘,YES’ to the end of each row in the new training file (exclude the first row). The 191 

‘YES’ is the required target label for the positives. 192 

17. Edit train.ini to match the following:  193 

proteome_fasta="negatives.fasta" (as per step #4) 194 

18. Change directory to install_dir/vacceed/start in a command-line terminal.  195 

19. Enter the command: perl startup train  196 

20. Add ‘,NO’ (i.e., the required target label for the negatives) to the end of each row in 197 

evidence_profiles in install_dir/vacceed/training/pipeline/evidence/output  198 
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21. Append the entire contents of the amended evidence_profiles (except first row) to the 199 

new training file, e.g., neospora_profiles. 200 

22. Copy new training file to install_dir/vacceed/<new species>/evidence/training_files 201 

where <new species> is the directory created for the target species, e.g., neospora. 202 

23. Edit the species configuration file, e.g., neospora.ini and change the value of the 203 

train_file key under header [EVIDENCE] to the new training file, e.g., 204 

neospora_profiles (see Note 13). 205 

24. The new training data should be evaluated with techniques such as k-fold cross 206 

validation (see Note 14) and the ML algorithm parameters tweaked to improve 207 

performance (see Note 15).  208 

3.4 Creating MHCI and MHCII training data 209 

This section is only applicable when using resources MHCI and/or MHCII and the target 210 

pathogen host is not human. By default, Vacceed uses human alleles (e.g. HLA-A*01:01) for 211 

peptide-MHC binding predictions. The following describes steps required to setup MHCI for 212 

a host other than human, e.g., mouse. 213 

1. Follow steps #1 to #5 from Section 3.3.  214 

2. Create a file (e.g. mouse_mchI_alleles) in a comma delimited format containing all 215 

required mouse alleles and peptide lengths e.g. H-2-IAb,8 where each ‘allele,length’ 216 

is on a separate line (see Note 16).  217 

3. Copy the entire template_species directory to a user-named directory, e.g., mouse. 218 

4. Copy mouse_mchI_alleles to < install_dir/Vacceed/mouse/pipeline/mhci/alleles 219 

5. Copy ‘toxoplasma.ini’ to ‘mouse.ini’. 220 

6. Add a new line to startup.ini located in install_dir/vacceed/start/:  221 

m< mouse <pipeline<mouse.ini< install_dir/Vacceed/start/config_dir  222 

7. Edit mouse.ini to match the following:  223 
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work_dir="install_dir/vacceed"  224 

species_dir="mouse"  225 

email_url="your_email@address" (user e-mail address) 226 

proteome_fasta="positives.fasta"  227 

prot_id_prefix="xxx" (needs to match the sequence identifier) 228 

allele_file="mouse_mchI_alleles" (located under the resource [MHCI_files]) 229 

8. Modify [Resources] in mouse.ini to ‘name=VALIDATE,MHCI’  230 

9. Change directory to install_dir/vacceed/start in a command-line terminal.  231 

10. Enter the command: perl startup m (where ‘m’ is as per step #6).  232 

11. Copy mhci_ml.txt from install_dir/vacceed/mouse/pipeline/mhci/output from 233 

install_dir/vacceed/mouse/pipeline/mhci/training_files 234 

12. Rename mhci_ml.txt to a user-defined name e.g. mouse_mhci_ml.txt 235 

13. Add ‘,YES’ to the end of each row in the new training file (exclude the first row) 236 

14. Edit mouse.ini to match the following:  237 

proteome_fasta="negatives.fasta"  238 

15. Change directory to install_dir/vacceed/start in a command-line terminal.  239 

16. Enter the command: perl startup m  240 

17. Add ‘,NO’ to the end of each row in mhci_ml.txt in 241 

install_dir/vacceed/mouse/pipeline/mhci/output 242 

18. Append the entire contents of the amended mhci_ml.txt (except first row) to the new 243 

training file, e.g., mouse_mhci_ml.txt. 244 

19. Copy new training file to install_dir/vacceed/<new species>/mhci/training_files 245 

where <new species> is the directory created for the target species, e.g., new_mouse. 246 
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20. Edit the species configuration file, e.g., new_mouse.ini, and change the value of the 247 

train_file key under header [MHCI_files] to the new training file, e.g., 248 

mouse_mhci_ml.txt 249 

21. Repeat the steps above to create a MHCII training file, but change mhci to mhcii (see 250 

Note 17).  251 

3.5 Add a new resource 252 

New programs to predict protein characteristics will inevitably be developed in the future. 253 

This section describes how to incorporate a new program into Vacceed, which essentially is 254 

adding a new resource with the goal of extracting relevant evidence from the new program 255 

output to append to evidence profiles.  256 

1. Install and test new program with sample data to ensure it runs successfully from any 257 

directory (see Note 18). 258 

2. Determine the input requirements and the output format of new program. 259 

3. Add a new resource name, e.g., program_Z in an appropriate configuration file:  260 

[Resources]  261 

name=VALIDATE,WOLF,TMHMM,PROGRAM_Z,EVIDENCE  262 

4. Add a new section to the same configuration file. The easiest way to do this is to copy 263 

an existing resource and amend accordingly (see Fig. 3). The texts highlighted in red 264 

are the only parts expected to be changed.  265 

5. Create a new directory in install_dir/vacceed/new_species/pipeline using the same 266 

name as the new resource (but in lowercase), e.g., program_z. 267 

6. Create two directories called ‘output’ and ‘scripts’ in the program_z directory. 268 

7. Copy ‘template_resource_script’ from 269 

install_dir/vacceed/new_species/pipeline/common_programs to 270 

install_dir/vacceed/new_species/pipeline/program_z  271 



 
 

13 
 

8. Rename ‘template_resource_script’ to a user-named file e.g. program_z_script (see 272 

Note 19) 273 

9. Amend program_z_script where it states << Add new programs here >>, e.g.,  274 

echo "script_step=\">> executing program_z\"" >> $script_dir/script$chr_no  275 

echo "program_z $required_input $out_dir" >> $script_dir/script$chr_no || error_exit  276 

Where $required_input is the input as determined in step #2.  277 

10. A generic Perl script called ‘get_evidence.pl’ (located in: 278 

install_dir/vacceed/new_species/pipeline/common_programs) can be amended 279 

accordingly to extract the relevant evidence from the program_z output file (see Note 280 

20). Alternatively, any programming language can be used to write a program to 281 

extract evidence. In such a case, the program name would need to replace 282 

‘get_evidence.pl’ in program_z_script. Regardless of the extraction program, 283 

evidence needs to be saved in a user-named file with the suffix ‘_evd’, e.g., 284 

programz_evd in the directory 285 

install_dir/vacceed/new_species/pipeline/evidence/output. 286 

4. Notes 287 

1. The bioinformatics programs are third-party and are not part of the Vacceed package. 288 

Furthermore, installation steps for the third-party programs are not described in this 289 

chapter. Most of the programs provide a ReadMe file with instructions. Even so, 290 

these installations are still a challenging aspect to preparing Vacceed ready for use. It 291 

is highly recommended to seek the help of an administrator or an experienced Linux 292 

user. 293 

2. Vacceed checks to see if a protein sequence contains invalid letters, e.g., characters 294 

other than [ACDEFGHIKLMNPQRSTVWY]. 295 
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3. Vacceed collates relevant, predicted protein characteristics (typically in the form of 296 

numerical values) into one file called evidence_profiles, i.e., contents of all files with 297 

the extension ‘_evd’ in the evidence/output directory are combined as columns into 298 

evidence_profiles. 299 

4. Ensure that each third-party program runs successfully before testing Vacceed. 300 

5 The computation of peptide-MHC predictions takes less than a few minutes 301 

depending on the computer environment to run the test when both MHCI and MHCII 302 

are removed. Furthermore, MHCI and MHCII predictions on the whole are not 303 

accurate [16] (particularly MHCII [17]) and only marginally contributed to the 304 

Vacceed end result when tested with the T. gondii sample data [8]. 305 

6 If Vacceed fails with the test data then it will inevitably fail with any other data. The 306 

expected reason for the failure is installation issues of one or more of the third-party 307 

programs (see Note 4). The log file may give clues as to which third-party program(s) 308 

is the culprit.  309 

7 The ML algorithms used are listed in the configuration file under the header 310 

[Evidence] and the key ‘algorithms’.  311 

8 It is recommended that all known pathogen proteins are processed irrespective of 312 

protein name or expected function. This allows for an unbiased approach.  313 

9 This training file contains 475 positives of mainly T. gondii proteins (nine are N. 314 

caninum). A small selection of these proteins are known to induce an immune 315 

response, but most are proteins predicted to be membrane-associated or secreted, i.e., 316 

proteins exposed to the immune system. There are 501 T. gondii proteins representing 317 

negatives, which were defined by the protein’s predicted sub-cellular location, i.e., 318 

neither membrane-associated nor secreted. 319 
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10 Variety, in this instance from a ML perspective, is having a generalised selection of 320 

proteins in the training file that are representative of all conceivable types of positive 321 

and negative proteins, e.g., with a limited selection, a ML algorithm may not 322 

generalize to evidence profiles not seen when it was learning (i.e., poorly predicts 323 

when given new data). 324 

11 Finding training proteins for most species is not a trivial task. The expectation is that a 325 

thorough search of the literature will be required. Even then, there may still be an 326 

inadequate number of examples to create a training file. A suggested compromise is to 327 

use positive proteins from a closely related organism or proteins ‘expected’ to induce 328 

or not induce an immune response. For instance, use proteins known to be exposed to 329 

the immune system (e.g., membrane associated or secreted proteins) for positives and 330 

non-exposed proteins (e.g., proteins normally located in the interior of the organism) 331 

as negatives. 332 

12 A drawback for collecting negative examples is that a protein cannot definitively be 333 

defined a negative unless it has been explicitly tested in a laboratory.  334 

13 The same proteins should never be used for training and evaluation. This would 335 

introduce biased results. Typically, the proteins are randomly divided into two sets. 336 

One set containing the majority of data e.g. 80% for training. The other set (e.g., 20%) 337 

used to evaluate the trained model’s performance.  338 

14 k-Fold cross-validation is a resampling statistical method used to estimate the 339 

performance of ML models. The ‘k’ refers to the number of groups that a given data 340 

sample is to be split, e.g., 10-fold cross-validation indicates the sample data is split 341 

into 10 groups. One group in turn is used as a test dataset and the remaining groups 342 

used for training. The average of the k evaluation scores provides an indication of 343 
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how the model is expected to perform when used to make predictions on data not used 344 

during model training. 345 

15 The distributed version of Vacceed is configured to run ML algorithms via R 346 

functions contained in packages. The algorithms are executed using Rscript. There are 347 

three R functions in install_dir/vacceed/<new species>/evidence/ that encapsulate the 348 

relevant command for each algorithm: <al>_wrapper.R, <al>_runPred.R, and 349 

<al>_makePred.R, where <al> is the algorithm abbreviation. Parameters to fine tune 350 

the algorithms can be modified in <al>_makePred.R e.g parameters ‘ntree’ and/or 351 

‘mtry’ in rf_makePred.R, where rf = random forest, ntree = number of decision trees, 352 

and ‘mtry’ = number of variables to try at each split in the decision tree. 353 

16 Run the following command to see available class I alleles: ./src/predict_binding.py 354 

IEDB_recommended mhc (only listed alleles can be used).  355 

17 Run the following command to see available class II alleles: 356 

python mhc_II_binding.py allele (only listed alleles can be used). 357 

18 May need to append new program location to the PATH variable.  358 

19 This is a template script only and will need to be edited appropriately to suit the new 359 

program. There are user comments denoted by a ‘#’ symbol, but a familiarity with 360 

Linux scripting is expected.  361 

20 Amending get_evidence.pl requires experience in writing Perl scripts. Reading step 362 

#8 under the section ‘Adding a new resource’ in the Vacceed User Guide may prove 363 

useful when amending get_evidence.pl.  364 
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Figures  418 

 419 

Fig. 1 Extract from a species configuration file 420 
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 422 

Fig. 2 Extract from main Vacceed output file ‘vaccine_candidates’ 423 

Where ID = protein identifier, ada = adaptive boosting, knn = k-nearest neighbour classifier, 424 

nb = Naive Bayes classifier, nn = neural network, rf = random forest, and svm = support 425 

vector machines. vaccine_candidates is a comma delineated file containing an ordered list of 426 

all machine learning (ML) algorithm scores for each protein processed (seven in this 427 

instance). Each ML algorithm generates probabilities that the YES and NO classifications are 428 

correct, but only YES probabilities are displayed in the output. The ‘average ML score’ for 429 

each protein is the average probabilities of the YES classifications. The list order is 430 

descending based on ‘average ML score’ value. An appropriate threshold value (e.g., 0.5) can 431 

be compared to the average ML score to determine the relevant class, positive or negative. 432 
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Fig. 3 Example of new resource added to species configuration file 435 
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