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Abstract.   The influence of ambient water quality on the settlement of barnacles and the green alga Enteromorpha spp. 

to an artificial substratum in the estuaries of Sydney, Australia, was investigated to test the efficacy of both groups of 

organisms as indicators of changes in water quality due to urban stormwater runoff and/or sewage overflows. Wooden 

settlement panels were immersed for four months on 17 occasions between 1996 and 2005 at 11 locations known to 

vary in water quality parameters (conductivity, total uncombined ammonia, oxidised nitrogen, total nitrogen, filterable 

phosphorus, total phosphorus, faecal coliforms and chlorophyll-a) and ambient meteorological conditions (total rainfall, 

maximum rainfall). Water quality data were collected during the time that the settlement panels were deployed. Cover 

of barnacles was highly variable among locations (range 1.2 – 55.2%). Hierarchical partitioning found that chlorophyll-

a, total phosphorus and total nitrogen had significant independent positive effects on barnacle cover. Together, these 

variables explained 26% of the variation in barnacle cover. Mean cover of Enteromorpha spp., however, did not vary 

significantly among locations suggesting that other potentially more important factors are influencing its settlement and 

growth. The results of this study suggest that barnacle cover is likely to be a useful indicator of some components of 

water quality. 
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Introduction 

Urbanised estuaries are subjected to numerous anthropogenic stressors which are expected to intensify with increasing 

population growth and density. The impacts that many urbanised estuaries are experiencing include destruction of 

habitats, alteration to freshwater flow and deterioration of water quality due to nutrient enrichment and sewage inputs 

(Kennish 2002, Van Dolah et al. 2008; DiDonato et al. 2009). Urban wastewater inflows and sewage effluent, for 

example, may result in domination of benthic infaunal assemblages by particular species (sometimes exotic and 

invasive), increased variability in intertidal assemblages, changes to community biomass and reductions in settlement of 

macroalgal species (Nordby and Zedler 1991; Saiz-Salinas and González-Oreja 2000; Courtenay et al. 2005). 

Additionally, anthropogenic nutrients and organic matter may cause eutrophication and localised depletion of oxygen 

(Paerl et al. 1998).  

In addition to high temporal and spatial variability in water quality parameters in estuaries, physical and chemical 

variables lack the responsiveness to assess ecosystem change (Cohen and Fong 2006). Since monitoring of water 

quality parameters only provides a ‘snapshot’ of environmental conditions at the time of sampling, biological 

assessment has been identified as a key tool for developing a better understanding of ecosystem processes and for 

assessing changes in aquatic ecosystems and achievement of management goals and water quality objectives. Estuarine 

ecosystems evolve over time where multiple processes, such as the addition, growth, decline and elimination of 

populations, may interact at multiple scales to produce the observed communities (Thrush et al. 2000; Cadotte and 

Fukami 2005). The condition of an ecosystem is therefore dynamic and requires a long period of observation to reveal 

the magnitude of these dynamics (Cadotte et al. 2005). Consequently, the natural complexity and variability of estuarine 

ecosystems will need to be addressed in the design of monitoring programs by integrating water quality monitoring and 

biological processes. 

Estuarine biota, for example, continuously sample the surrounding water, responding to the biologically available 

nutrients and integrating conditions over time. Furthermore, juvenile organisms may show increased sensitivity to 

altered water quality which may be sublethal to adult organisms (Fairweather 1991). A pelagic phase is a feature of the 

early life history of many aquatic organisms and the transition from this pelagic phase to a more stationary or site-

attached benthic stage is termed ‘settlement’. The magnitude of settlement is spatially and temporally variable (Caffey 

1985; Tremblay et al. 2007) due to variation in physical transport processes such as upwelling and local wind patterns, 

the numbers and behaviour of larvae in the water column, the availability of space for colonisation, the magnitude of 

settlement cues and water quality conducive to settlement and survival of larvae (Tamburri et al. 1996; Olivier et al. 

2000; Browne and Zimmer 2001; Ellien et al. 2004). Since settlement is very site-specific and may change rapidly in 

response to disturbance, analysis of the magnitude of settlement and early growth of the juvenile stages may potentially 

indicate a more current picture of the environmental conditions and may provide the first indication of adverse changes 

in the estuary due to pollution input (Fairweather 1991; Lotze et al. 2000). 

Numerous studies have demonstrated the influence of water quality on suspension feeders and algae. For example, 

settlement of barnacles is enhanced by sewage discharge and high phytoplankton concentrations (Scammell and Besley 

1995; Sanford and Menge 2001). Food concentration has a clear impact on barnacle larvae survival and growth  

(Hentschel and Emlet 2000) as nutrient limitations contribute to lower energy stores, inferior juvenile competitive 

abilities and consequently, for the intertidal barnacle, Balanus amphitrite, for example, poor settlement success, survival 

and growth (Jarrett and Pechenik 1997; Thiyagarajan et al. 2005; Tremblay et al. 2007). Barnacles, however, have not 

been assessed for their potential as indicators of urban runoff and sewage-related contamination. Under natural 

conditions, settlement and early growth of Enteromorpha spp. is influenced by the effect of freshwater runoff on 
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salinity, light availability and nitrogen-phosphorus ratios (Martins et al. 2001).  Spores of Enteromorpha spp. are 

extremely responsive to variation in ambient nutrient concentrations and preferentially settle in areas that are 

nutritionally favourable for growth (Fletcher and Callow 1992; Worm and Lotze 2006; Sousa et al. 2007). Sewage 

discharge, for example, enhances recruitment of Enteromorpha spp. (Bellgrove et al. 1997; Kamer and Fong 2001; 

Cohen and Fong 2004). Enteromorpha spp. proliferates in areas such as estuaries where nutrient inputs may be 

episodic, such as stormwater flows during high rainfall events (Barr and Rees 2003; Fong et al. 2004; Worm and Lotze 

2006). Furthermore, Cohen and Fong (2005) found accumulation of nitrogen in E. intestinalis tissue was predictable 

over a range of estuarine nitrogen concentrations. Consequently, E. intestinalis is a potential indicator organism to 

assess changes in eutrophication (Fong et al. 1998; Cohen and Fong 2006; Worm and Lotze 2006). Therefore, it may 

also be useful as a biological indicator of water quality. 

Between August 1996 and May 2005, artificial substrata were deployed on 17 occasions in the estuaries around 

Sydney, Australia, to assess the influence of estuarine water quality on the cover of barnacles and Enteromorpha spp. 

The following hypothesis was tested: cover of barnacles and Enteromorpha spp. are greater in areas of high nutrient 

concentrations and are not independently influenced by rainfall. If a relationship can be established between barnacles 

and Enteromorpha spp. cover and high nutrient concentration, measurement of settlement and early growth of barnacles 

and Enteromorpha spp. may be a potential indicator of variation in ambient water quality and may yield insight into the 

effect of urban stormwater and sewage-related contamination on intertidal settlement processes in estuaries and, 

consequently, estuarine health.  

 

Methods 

Study Locations 

Prior to the commencement of sampling, results from previous water quality studies of Sydney estuarine locations were 

considered to select study locations (AWT Ensight 1996). Eleven intertidal locations in the estuaries of the Sydney 

region were selected within Iron Cove, Lane Cove River, Cooks River, Port Jackson, Middle Harbour and Port Hacking 

(Figure 1). These locations were selected due to their historically high, but variable, levels of faecal coliforms, 

chlorophyll-a, total phosphorus, total nitrogen, oxidised nitrogen and/or total uncombined ammonia, relative to accepted 

guidelines (AWT Ensight 1996). To negate the confounding influence of reduced salinity due to dilution by stormwater 

and sewage-associated disturbances, only locations with a median salinity greater than 27‰ (approximately 42 mS.m-1 

conductivity, adjusted to 25ºC; UNESCO 1980) were included in the study. Reference locations were not included in 

this study due to the absence of available water quality data for suitable locations. Water quality data collection at 

potential reference locations had been discontinued prior to the commencement of this study because recorded 

concentrations of most variables at these locations were usually close to lower detection limits (AWT Ensight 1996).  
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Fig. 1 Sydney estuarine intertidal settlement sampling locations: Davidson Park (DP), Tunks Park (TP), Quakers Hat 
Bay (QB), Little Sirius Cove (LS), Fig Tree Bridge (FT), Iron Cove Creek (IC), Hawthorne Canal (HC), Blackwattle 
Bay (BB), Rushcutters Bay (RB), Cooks river (CR) and Maianbar (Ma). 
 
 

Field Sampling 

At each location, untreated hardwood fence palings (1.8 m long by 0.1 m wide and hereafter called ‘settlement panels’) 

were deployed for 4 months on 17 occasions between August 1996 and May 2005. The settlement panels were deployed 

at the lowest growing height of established mangroves, or at a similar tidal height, and were forced vertically into the 

mud leaving approximately 1.5 m exposed to the tidal range. At each location, two settlement panels were placed 

adjacent to each other at each of two randomly selected sites separated by approximately 100 m. Pilot studies indicated 

that barnacle larvae (predominantly Balanus spp. but with a number of other species belonging to the genera Elminius 

and Hexaminius) and spores of Enteromorpha spp. were ubiquitous in the plankton at all study locations (Scammell and 

Besley 1995). Panel deployment coincided with times of the year (June to February) when the greatest numbers of 

Balanus spp. larvae were likely to be present based on studies of barnacle reproduction in the Sydney region (Wisely 

and Blick 1964; Egan and Anderson 1986). The 4 month deployment period was selected as a balance between 

obtaining sufficient settlement (such that differences could be measured if they exist) and limiting the effects of 

competition and other ecological processes so that they would not interact with the effects associated with 

anthropogenic disturbance on settlement.  

In the laboratory, replicate quadrats (10 cm length x 1 cm width) were measured at 0, 2, 20, 22, 40, 42, 60, 62, 80 

and 82 cm height from the mud line on each side of each panel. Cover of algae was estimated visually as a percentage 

of a quadrat covered by algae. The number of barnacles in each quadrat was counted and the diameter of the five 

barnacles nearest to one end of each quadrat was measured. The average diameter of the five barnacles was used to 

calculate the average barnacle size and this value was multiplied by the density of barnacles within a quadrat to estimate 

barnacle cover. Results obtained during the pilot study indicated that the consistent measurement of barnacle cover in a 

quadrat in this way was representative of cover in the rest of that quadrat. Subsequently, percentage cover for each 

taxon on each panel was estimated by averaging the cover measured in each quadrat on each side of each panel (i.e. n = 

40 quadrats).  

151º 15’ 

-33º 45’ 
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Water samples were collected manually at each of the eleven locations and analysed for total phosphorus (P), 

filterable phosphorus (FP), total nitrogen (N), oxidised nitrogen (NOx), total uncombined ammonia (TUA), chlorophyll-

a (Chl-a), faecal coliforms (FC) and conductivity. Water samples were collected monthly during the period of 

deployment and mean values for each parameter were calculated. When a wet weather event occurred during panel 

deployment, data collected during the event was combined with monthly dry weather data to calculate the mean. 

Fourteen wet weather events, triggered when at least 25 mm of rainfall was recorded over a 24-hour period, occurred 

while panels were deployed during the study period. Prior to water sampling, each sampling container was rinsed with 

70% ethanol and then with an aliquot of sample water. Water sampling was conducted by plunging the mouth of the 

sample container into the water to a depth of approximately 50 cm to avoid introducing surface scum into the container. 

The container was pointed into the current and away from hands to minimize contamination. Since composite samples 

are more useful for determining the average concentration of a system, two replicate samples were collected 

approximately 20 m apart at each site and composited in a separate container. After collection, the composited sample 

was initially poured into the FC sample bottle and then the other labelled sample bottles were filled to the level 

recommended by the National Association of Testing Authorities (NATA) accredited laboratory. All sample bottles 

were then stored on ice and returned to the Sydney Water Laboratory for processing and analysis. Determinants and 

methods for sample analysis are described in “Standard Methods for the Examination of Water and Wastewater” by 

APHA (1998). All sampling equipment was prepared according to these standards. Monthly rainfall data was collected 

at the rainfall station nearest to each sampling location and were provided by the Bureau of Meteorology (Figure 2). 

These data were used to calculate maximum monthly and total rainfall for each 4 month period of panel deployment. 
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Fig. 2 Sydney rainfall gauges accessed during the intertidal settlement study: Chatswood (066011), Sydney Airport 
(066037), Miranda (066040), Sydney Observatory (066062) Riverview (066131) and Northbridge (066167).  
 
Statistical Analyses 

Prior to testing for a relationship between water quality variable and cover of algae and barnacles, a one-factor analysis 

of variance (ANOVA) was used to test whether mean cover of barnacles and algae differed significantly among 

locations. The coverage of each taxon at each location was calculated as the mean of the two site means (which were 

each calculated from the mean of the two settlement panels in each site). However, individual panels or all four panels 

were occasionally damaged or destroyed. Approximately 77% of panels were retrieved without damage or loss. 

-33º 45’ 
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Retrieval of panels during the study was lowest at Little Sirius Cove (53%) and greatest at Hawthorne Canal (96%). 

Panels were retrieved on most occasions from Hawthorne Canal (n=17) and on the least occasions from Little Sirius 

Cove (n=13). Consequently, mean cover for each sampling occasion was calculated using the remaining panels, if any. 

Data used for the one-factor ANOVA were the mean covers for each taxon at each location for each sampling occasion. 

Variances for barnacles were heterogeneous and transformation did not make them homogenous; however ANOVA is 

robust to departures from the assumption of homogeneity of variances for sample sizes of the magnitude used in these 

analyses (Underwood, 1997). A regression-type approach was used to test for significant relationships between water 

quality and mean cover of barnacles and algae. Data recorded from all sampling occasions were combined for analysis. 

The water quality data for each location was the mean of the four composite samples collected during the period of 

deployment (or five composited samples if a wet weather event was experienced during the period of deployment) with 

the exception of FC which was calculated as the geometric mean (Hunter 2002). Initial, exploratory analysis (by box 

plots and scatter plots) of the raw data for the water quality variables revealed that most had skewed distributions with 

several outliers. Log10-transformation of TUA, NOX, N, FP, P, Chl-a and FC removed right-skewness and most 

outliers. Transformation of conductivity data by reflection followed by square-root (Quinn and Keough 2002) corrected 

the left-skewed distribution. Raw data for total rainfall and maximum rainfall were used because they were near-normal 

with no outliers. Water quality variables were recorded in different units and were therefore standardized (by 

subtracting the mean and dividing by the standard deviation) prior to analysis (Quinn and Keough 2002). Spearman 

rank correlation coefficients were calculated for all pairwise combinations of water quality variables to check for the 

likelihood of multicollinearity.  

Hierarchical partitioning (Chevan and Sutherland 1991; MacNally 2000; 2002) was used to identify the water 

quality variables that made a significant, independent contribution to variation in the cover of barnacles. Hierarchical 

partitioning assesses all possible explanatory models (i.e. 210 in this case where 10 was the number of water quality 

variables tested and meteorological variables collected) that relate the dependent variable (in this case, cover of 

barnacles) to each water quality variable singly and in combination, and partitions the contribution of each water quality 

variable to explained variation into its independent contribution and its joint contribution with other variables. This 

method of identifying important water quality variables was used in preference to other methods (e.g. stepwise multiple 

regression) because extensive multicollinearity in the water quality variables meant that it would be impossible to 

distinguish variables that were independently important from variables that were unimportant but correlated with 

another variable that was itself important (Quinn and Keough 2002).  

The statistical significance of each water quality variable’s independent contribution (Iobs) to explained variation was 

determined by randomizing (n=1000) the data matrix to produce a distribution of I values. An Iobs is regarded as being 

significant (and therefore capable of explaining a significant amount of variation) when it is extreme i.e. greater than the 

95 percentile of the randomized values. The results of the hierarchical partitioning for each water quality variable are 

expressed as Z-scores ([observed – mean{randomizations}]/SD{randomizations}) with statistical significance based on 

the upper 95% confidence limit of Z ≥ 1.65 (MacNally 2002). The hier.part and rand.hp packages in the R Statistical 

package (available as freeware) were used for the hierarchical partitioning and statistical testing respectively (Walsh 

and MacNally 2004). The variables that were identified as being independent contributors to variation in cover of 

barnacles were then used to develop explanatory models using multiple regression (with SPSS v.16).  
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Results 

Water Quality 

All water quality and meteorological variables were significantly positively correlated with one another. All correlations 

were significant at α=0.01 and therefore there is little chance of a type 1 error in the 45 correlations. The largest 

correlations (i.e. Rs>0.80) were between P, TUA and NOx; N, FP and FC; NOx, TUA and N; and between total and 

maximum rainfall. 

Mean conductivity and mean total and maximum monthly rainfall for the deployment period did not vary greatly 

among locations (Table 1). Mean values for the other variables differed between locations and the greatest mean values 

for most variables were measured at Tunks Park (adjacent to Northbridge sewage overflow) or Cooks River 

(downstream from the South Western Suburbs Ocean Outfall System (SWSOOS). Lowest mean values were generally 

measured at Little Sirius Cove (in Port Jackson) or Maianbar (adjacent to Royal National Park) (Table 1).  

 

Table 1  Locations where mean high and mean low values of environmental variables were recorded during 4 months 
of deployment in Sydney estuaries for 1996-2005. Data are for total rain recorded during 4 months of deployment 
(Total Rain), maximum monthly rain (Max. Rain), and means of conductivity (Cond), total uncombined ammonia 
(TUA), oxidised nitrogen (NOx), total nitrogen (N), filterable phosphorus (FP), total phosphorus (P) and chlorophyll-a 
(Chl-a), and geometric mean of faecal coliforms (FC). 

 

Variable Location (high values) Location (low values) 

Cond Maianbar (51.5 mS.cm-1) Fig Tree Bridge (42.6 mS.cm-1) 

Total Rain Tunks Park (410 mm) Cooks River (359 mm) 

Max. Rain Little Sirius Cove (213 mm) Cooks River (184 mm) 

TUA Tunks Park (0.26 mgL-1) 
Cooks River (0.24 mgL-1) 

Little Sirius Cove (0.02 mgL-1) 
Maianbar (0.03 mgL-1) 

NOx Cooks River (0.28 mgL-1) Maianbar (0.02 mgL-1) 

N Cooks River (0.88 mgL-1) 
Tunks Park (0.82 mgL-1) 

Little Sirius Cove (0.20 mgL-1) 
Maianbar (0.20 mgL-1) 

FP Tunks Park (0.054 mgL-1) 
Cooks River (0.047 mgL-1) 

Maianbar (0.013 mgL-1) 
Little Sirius Cove (0.014 mgL-1) 

P Tunks Park (0.10 mgL-1)  
Cooks River (0.09 mgL-1) 

Little Sirius Cove (0.02 mgL-1) 
Maianbar (0.02 mgL-1) 

Chl-a Hawthorne Canal (7.9 µgL-1) 
Fig Tree Bridge (7.5 µgL-1)  
Iron Cove Creek (7.5 µgL-1)  

Maianbar (1.3 µgL-1) 

FC Tunks Park (683 cfu.100 mL-1)  
Rushcutters Bay (662 cfu.100 mL-1) 

Maianbar (4 cfu.100 mL-1) 
Little Sirius Cove (9 cfu.100 mL-1)  

 

Patterns of Cover of Biota 

Four taxa were observed on settlement panels with cover dominated by barnacles (predominantly Balanus spp.) and/or 

the alga Enteromorpha spp. Settlement of Galeolaria spp. (Polychaeta) and Bryozoa was also observed but at 

insufficient frequencies and cover (<1%) to justify inclusion in the data analysis. Variation in mean barnacle cover 
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among locations was greater than the variation in algal cover (Fig. 3a). Mean algal cover was greatest at Iron Cove 

Creek (40.6%), Blackwattle Bay (37.7%) and Rushcutters Bay (38.4%) which drain older industrial and residential 

areas of Sydney. Mean algal cover at the remaining seven locations was relatively similar (ranging from 20.6% at 

Maianbar to 31.2% at Hawthorne Canal) despite the type of catchment they drain. Overall, mean cover of algae did not 

vary significantly among locations (F10,157=1.64, P=0.10) and so was not analysed further for its relationship with water 

quality variables. 

Barnacle cover varied significantly among the 11 locations (F10,157=11.69, P<0.001) (Fig. 3b). Hawthorne Canal and 

Cooks River, which drain older industrial and residential areas of Sydney, had higher mean barnacle cover (55.2% and 

51.7% respectively) than other locations. Barnacle cover was least at Quakers Hat Bay (1.5%), Maianbar (1.2%), and 

Davidson Park (2.2%). Quakers Hat Bay is a small inlet surrounded by residential housing on steep terrain. The latter 

two locations are surrounded by national parks.  
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Fig. 3 Mean (± SE) of (a) algal cover and (b) barnacle cover at each sampling location in the Sydney region. Location 
codes are shown in Figure 1. 
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Barnacle cover was significantly correlated with all water quality variables, except total rainfall and maximum 

rainfall during the deployment period. However, hierarchical partitioning found that only three variables had a 

significant, independent association with barnacle cover: Chl-a (Z=21.70), P (Z=4.05) and N (Z=3.66). Chl-a had the 

strongest association, accounting for 54.0% of the total independent effects. The magnitude of the independent 

contribution of Chl-a was similar to its contribution in common with other environmental variables (as evidenced by the 

large joint contribution in Table 2). Total phosphorus and nitrogen accounted for 9.8% and 9.1% of total independent 

effects, respectively. Other environmental variables had only minor and non-significant independent associations with 

variation in barnacle cover. The relationship between barnacle cover and the variables identified by hierarchical 

partitioning is described by the following multiple regression model: barnacle cover = 17.80 + 5.23 (P) + 13.28 (Chl-a) 

– 3.07 (N), R2
adj = 0.26, F3,164 = 20.78 (P < 0.001). 

 
 
Table 2  Results of hierarchical partitioning of R2 for the relationship between cover of barnacles and water quality 
variables in Sydney estuaries from 17 sampling events between August 1996 and May 2005. The contribution of a 
water quality variable to variation in cover of barnacles is measured as R2 independently (Ind.) and jointly with other 
predictor variables (Joint.). % Contribution (Cont.) is the independent contribution of a water quality variable to total 
variation in the cover of barnacles. Ind. R2 values have been rounded to 2 decimal places (* P < 0.05). (See Table 1 for 
abbreviations). 
 

 
Barnacle 

cover 

 R2  % Cont. 

 Ind. Joint Ind. 

Cond. 0.01  0.04 3.86 

Total Rain 0.00  0.00 1.54 

Max. Rain 0.01     -0.01 3.60 

TUA 0.01  0.03 4.35 

NOx 0.01  0.04 4.07 

N 0.02  0.07   9.10* 

FP 0.01  0.03 3.80 

P 0.02  0.07    9.81* 

Chl-a 0.11  0.16 54.02* 

FC 0.01  0.05 5.85 
 
 
 
Discussion 

Although a number of recent studies have identified changes in biota due to altered water quality (Bellgrove et al. 1997; 

Calcagno et al. 1998; Hindell and Quinn 2000; Saiz-Salinas and González-Oreja 2000; Courtenay et al. 2005), the 

impact of sewage and stormwater-related contamination on the settlement and/or early growth of estuarine organisms 

has received little attention. The present study assessed the potential of several measures of estuarine water quality to 

influence the cover of green algae and barnacles to an artificial wooden substrate. Despite dominating settlement at 

eight of the eleven locations, mean cover of algae did not differ among locations. Three variables (chlorophyll-a, total 

phosphorus and total nitrogen), however, had significant, independent associations with barnacle cover. In contrast, 
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total rainfall and maximum monthly rainfall during the deployment period were not identified as being significantly 

associated with variation in barnacle cover. Furthermore, the hierarchical partitioning suggests that the significant 

correlations between barnacle cover and the other water quality variables most likely occurred because of the high 

degree of multicollinearity amongst the water quality variables (Chevan and Sutherland 1991, MacNally 2000). That is, 

spurious significant correlations are likely to occur when an unimportant water quality variable is itself significantly 

correlated with an influential water quality variable.  

Water quality data indicated that nutrient levels were generally high at all locations relative to accepted guidelines. 

Furthermore, mean barnacle cover was clearly greater at locations where the highest levels of chlorophyll-a were 

measured. In a related study, conducted in the same estuaries from 1995 to 1999, chlorophyll-a was the best single 

environmental variable that correlated with spatial variation in whole assemblages of intertidal organisms on natural 

rock surfaces in most years (1997-1999) (Courtenay et al. 2005).  Point-source effluent discharge of nutrients has been 

shown to cause increased primary production of phytoplankton, measured as chlorophyll-a concentration (Day et al. 

1989; Hargrave 1991; Valiela 1991; Kennish 1992; Mann 2000; Pierson et al. 2002). Starr et al. (1991) found the 

release of larvae of the barnacle Semibalanus balanoides to be directly influenced by phytoplankton abundance. 

Furthermore, reproductive development of another barnacle, Balanus amphitrite, is positively related to chlorophyll-a 

concentration (Desai et al. 2006). Since barnacles feed on phytoplankton and detritus, higher levels of productivity 

would result in greater rates of growth, reproductive output and settlement of barnacles (Bertness et al. 1991; Sanford 

and Menge 2001). Overall, the results of the current study support the previous published findings of the potential link 

between nutrients, chlorophyll-a and barnacle settlement, growth and abundance. 

Predation, local hydrodynamics, the presence of established recruits and environmental variables can all influence 

variation in settlement (Keough 1998; Ross 2001; Pech et al. 2002). However, in this study, there was no direct 

evidence of predation on settlers as no predators were identified in the taxa on the panels.  Similarly, another study of 

estuarine barnacles suggested that predation was an unlikely source of mortality (Ross 2001). Although current 

velocities vary considerably in magnitude throughout the estuary, sampling locations were selected so that panels would 

be exposed to similar hydrodynamics. Also, there is little variation in the amplitude and phase of the tidal range 

throughout the estuary, thus reducing the likelihood that variation in current would be responsible for differences in 

settlement (Das et al. 2000).  

Settlement of estuarine organisms onto artificial substrata may differ from natural hard surfaces (McGuinness 1989; 

Anderson and Underwood 1994; Atilla 2000). Nevertheless, artificial substrata such as concrete, tiles and plastic, have 

been used in numerous studies of settlement (Dean and Hurd 1980; Gombach et al. 1992; Keough 1998; Fairfull and 

Harriott 1999; Fairweather 1999; Satumanatpan et al. 1999; Atilla 2000; Bulleri and Chapman 2004; Bulleri et al. 2005; 

Moreira 2006; Worm and Lotze 2006). Although natural variability in settlement may render the process unreliable as a 

single indicator of anthropogenic impact (Fairweather 1999), settlement of larvae to artificial substrata may provide a 

measure of the existing and potential conditions (Dean and Hurd 1980; Gombach et al. 1992; Keough 1998; Fairfull and 

Harriott 1999; Fairweather 1999; Satumanatpan et al. 1999; Atilla 2000). 

Heterogeneity and complexity of an artificial substrate can also significantly influence settlement in an epibenthic, 

subtidal assemblage. Pech et al. (2002) showed that abundance of settlers was higher on panels with small scales of 

heterogeneity and intermediate orders of complexity and that abundance of Balanus sp. decreased with increasing 

complexity. However, in this study, the untreated hardwood fence palings deployed as settlement panels were all 

sourced from the same distributor and it is expected that the characteristics of all panel surfaces were relatively similar. 

Therefore, it is unlikely that differences in small-scale surface heterogeneity were responsible for the observed 

differences in settlement.  
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Relating physical and chemical water quality data to ecological impacts is not precise (Loeb 1994; Lopez and Dates 

1998; Jones et al. 2001; Cohen and Fong 2006) and intense (and expensive) water quality sampling is required to make 

appropriate conclusions (Fry et al. 2003). This study, however, suggests that the use of cover of encrusting organisms 

on artificial settlement substrata is a potentially useful indicator of relative differences in nutrient levels in estuaries. 

The analyses of the settlement of barnacles and Enteromorpha spp. on artificial substrata in Sydney’s estuaries has 

confirmed that correlation exists between high levels of nutrients and secondary production demonstrated by enhanced 

settlement cover of barnacles in Sydney’s estuaries. The relationship between water quality and algal settlement in 

Sydney estuaries is less clear suggesting that there are other factors influencing the settlement and growth of 

Enteromorpha spp.  

The finding that cover of barnacles is influenced by nutrient levels highlights the great potential for further research 

into the application of this technique in other contexts such as before-after-control-impact assessments of changes in 

water quality management (e.g. infrastructure development). While the relationships demonstrated here between cover 

of barnacles and water quality variables were based on water quality data collected at intervals over the sampling 

period, more detailed research on these relationships could involve water quality data collected continuously over the 

period of deployment of settlement panels and a re-examination of their influence on cover of barnacles and 

Enteromorpha spp. Further research of this sort could also usefully address questions relating to sampling design (e.g. 

optimal number of replicate samples, relevance of small-scale spatial variation), effect sizes, and statistical power. 

 

Summary 

Ecological responses to water quality impacts within estuarine systems are difficult to predict. Nevertheless, the cover 

of barnacles in Sydney Harbour and surrounding estuaries appears to be influenced by the quality of runoff from 

urbanised catchments. The monitoring of physical and chemical water quality parameters, however, only provides a 

‘snapshot’ of environmental conditions. While measurement of cover on artificial substrata does not provide a definitive 

measure of nutrient concentrations, the results of this study suggest that barnacle cover may be a useful indicator of 

some components of water quality. For comprehensive monitoring of estuarine health, the settlement panel approach 

could be used concurrently with measurement of intertidal rock and mangrove tree assemblages to quantify the complex 

relationship between eutrophication and secondary production in estuaries (Courtenay et al. 2005). 
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