
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Evolutionary Machine Learning: A Survey

AKBAR TELIKANI, University Of Wollongong, Australia

AMIRHESSAM TAHMASSEBI, Florida State University, USA

WOLFGANG BANZHAF,Michigan State University, USA

AMIR H. GANDOMI∗∗, University of Technology Sydney, Australia

Evolutionary Computation (EC) approaches are inspired by nature and solve optimization problems in a stochastic manner. They can
offer a reliable and effective approach to address complex problems in real-world applications. EC algorithms have recently been used
to improve the performance of Machine Learning (ML) models and the quality of their results. Evolutionary approaches can be used in
all three parts of ML: preprocessing (e.g., feature selection and resampling), learning (e.g., parameter setting, membership functions,
and neural network topology), and postprocessing (e.g., rule optimization, decision tree/support vectors pruning, and ensemble
learning). This paper investigates the role of EC algorithms in solving different ML challenges. We do not provide a comprehensive
review of evolutionary ML approaches here; instead, we discuss how EC algorithms can contribute to ML by addressing conventional
challenges of the artificial intelligence and ML communities. We look at the contributions of EC to ML in nine sub-fields: feature
selection, resampling, classifiers, neural networks, reinforcement learning, clustering, association rule mining, and ensemble methods.
For each category we discuss evolutionary machine learning in terms of three aspects: problem formulation, search mechanisms, and
fitness value computation. We also consider open issues and challenges that should be addressed in future work.

CCS Concepts: • General and reference→ Surveys and Reviews; • Computing Methodologies→Machine Learning; Artifi-
cial Intelligence.

Additional Key Words and Phrases: Evolutionary Computation, Learning Optimization, Swarm Intelligence

ACM Reference Format:
Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, and Amir H. Gandomi. 2021. Evolutionary Machine Learning: A Survey.
ACM Comput. Surv. 1, 1, Article 1 (January 2021), 35 pages. https://doi.org/10.1145/3467477

1 INTRODUCTION

Finding patterns in data is the core and most important step in Machine Learning (ML). Doubtlessly, one of the most
successful early applications of its principles was conducted by Turing when he used it to help crack the Nazi military’s
vexing Enigma machine by building a machine that could quickly sort through millions of possibilities to divine the
code. Then in 1950, an approach called “learning machine” was proposed by Alan Turing to implement the principles
of evolution [175]. Today, the most recent and powerful ML techniques are inspired by nature and are known as the
field of natural computation. The concept and terminology of natural computation has two essential sources: 1) taking
inspiration from nature and 2) employing computers. This terminology can be used to simulate a natural phenomenon,
∗Corresponding author

Authors’ addresses: Akbar Telikani, akbar.telikani@gmail.com, University Of Wollongong, Australia, ; Amirhessam Tahmassebi, Florida State University, ,
Tallahassee, FL, 32306, USA, atahmassebi@fsu.edu; Wolfgang Banzhaf, Michigan State University, East Lansing, MI, 48824, USA, banzhafw@msu.edu;
Amir H. Gandomi, University of Technology Sydney, Ultimo, Sydney, Australia, 78229, gandomi@uts.edu.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).

Manuscript submitted to ACM Computing Surveys 1

https://doi.org/10.1145/3467477

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Telikani et al.

employ natural materials, or develop novel techniques to solve problems. As part of Artificial Intelligence, Evolutionary
Computation (EC) approaches are considered one category of this field, with their power stemming from the processes
nature used to produce intelligent organisms. The processes applied in EC are inspired by natural evolution and the
best solutions nature has evolved over millions of years. As a result, EC techniques can be expected to be efficient and
effective. EC algorithms generally work with populations of individuals that are associated with a specific problem to
be solved.

While evolution and learning are two aspects of adaptation in both natural and artificial systems, one can discern
them on the basis of the lifetime of an individual. We speak of learning adaptation if an individual, during its lifetime

adapts to a certain problem domain. We speak of evolutionary adaptation, if an individual is part of a hereditary
sequence of individuals whose features are changing over the course of generations. Similar to natural systems, where
evolution and learning complement each other, there is a bidirectional relationship in computing between EC techniques
and learning algorithms so that they can be combined to attack complex optimization problems in different domains
together, e.g., in the energy, machinery, medical, engineering, and pharmaceutical industry. On the one hand, learning
algorithms are integrated into evolutionary techniques to address problems with EC approaches, such as being trapped
in local optima and premature convergence. Some works presented in this regard are, for example, a Cuckoo Search
algorithm that has been improved using Q-learning [96][97], adaptive learning [94], the Taguchi method [95], and
balanced-learning strategies [98]. Learning algorithms have also been used in Particle Swarm Optimization (PSO)[148]
and elephant herding optimization [99][100].

On the other hand, evolutionary algorithms can be used to improve ML algorithms, the main topic of this paper.
Most problems in real-world applications contain inaccurate, noisy, discrete and complex data, for which evolutionary
computing algorithms, by virtue of being general-purpose and stochastic search methods, provide great optimization
opportunities [183]. In recent years, many researchers have integrated EC approaches into different phases of the ML
processes (i.e., preprocessing, learning, and postprocessing) in order to address the limitations of traditional approaches.
These new and hybrid methods are known as Evolutionary Machine Learning (EML). EC in the learning phase of ML
also refers to evolutionary AutoML concepts, in which different expert-designed components of ML models, such as
architecture and hyperparameters, are automatically determined using EC approaches. Also, optimization algorithms,
such as gradient-based training algorithms, are replaced by EC algorithms or even invented by an EC approach [103, 144].

A number of surveys and review papers have been published that cover specific aspects of EML. For example, Al-Sahaf
et al. [3] published a review paper that addresses major EML tasks such as classification, regression, and clustering.
Badhon et al. [15] published a review paper that addresses Multi-Objective Evolutionary Algorithms (MOEAs) for
Association Rule Mining (ARM). Also, Telikani et al. [169] published a review paper on the application of EC techniques
for ARM. In addition to the recently published paper regarding evolutionary feature selection [183] Barros et al. [17]
published a survey of evolutionary algorithms that were designed for Decision Tree (DT) induction. Four survey
papers were published to address evolutionary clustering with [61, 64, 129, 133]. Mukhopadhyay et al. [129] published
a survey of multi-objective evolutionary clustering techniques looking at different aspects including representation
techniques, objective functions, evolutionary operations, strategies for maintaining non-dominated individuals, and
final individual selection. Darwish et al. [38] reviewed the application of swarm intelligence and EC approaches to deep
learning. Mukhopadhyay et al. [130, 131] published a two-part survey discussing recent developments in multi-objective
evolutionary algorithms for data mining problems such as feature selection, classification, clustering, and ARM.

Focus and content of this paper are somewhat different from those surveys. Whereas other surveys focused on EC
algorithms designed for a particular task/aspect such as feature selection [183], DT [17], ARM [15, 169], clustering
Manuscript submitted to ACM Computing Surveys

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Evolutionary Machine Learning: A Survey 3

Fig. 1. The intersection of natural and evolutionary computation in the context of machine learning and natural computation

Fig. 2. Taxonomy of machine learning

[61, 64, 129, 133], and deep learning [38], this paper investigates the more general question of how EC algorithms are
applied to different aspects of ML and how ML problems can be formulated for optimization using evolutionary search
mechanisms. We discuss EML in light of the following three aspects: problem formulation/individual representation,
search mechanisms, and fitness function.

The rest of the paper is organized as follows: Section 2 provides background information on ML and EC. Section 3
considers the application of EC to different parts of ML and presents an overview of EML approaches. Section 4 reviews
applications of EML approaches. Section 5 discusses current issues and challenges. Finally, Section 6 holds a critical
summary of the current state of the art in light of present issues and challenges.

2 FUNDAMENTAL CONCEPTS

The next subsections provide a categorization and the characteristics of machine learning and evolutionary computation.
Fig. 1 shows how neural and evolutionary computation concepts intersect and EC as they relate to ML and natural
computation.

2.1 Machine Learning

Machine learning, a subset of artificial intelligence techniques, applies algorithms to extract patterns by using mathemat-
ics, statistics, optimization, and knowledge discovery methods. Fig. 2 illustrates the basic taxonomy of ML, consisting of
three main categories: (1) Supervised Learning, (2) Unsupervised Learning, and (3) Reinforcement Learning (RL) [21].

Manuscript submitted to ACM Computing Surveys

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Telikani et al.

Supervised learning, the most well-known ML data processing task, attempts to find relationships between a set of
inputs and outputs that are provided for training the system [177]. A mapping function from an input x with the best
estimation of output y (f :x→y) is applied at the end of the training process. Supervised learning algorithms build a
model representing the relationships among the input features used to forecast the target outputs [84]. These algorithms
include two main categories: (1) classification (discrete modelling) and (2) regression (continuous modelling). Both
categories are predictive modeling techniques; the only difference is their target (response) variables. In classification,
the target variable is in the form of categories (class labels), as in binary-class or multi-class problems. In regression,
however, the target variable is continuous. Fig. 3 shows a schematic of model building using ML algorithms.

Raw data is the only input to unsupervised learning, which - unlike supervised learning - does not have target variables
available to supervise the learning process. Unsupervised learning can be categorized into three main categories: (1)
clustering, (2) association rule discovery, and (3) dimensionality reduction. This is discussed in more detail in Section 3.

The third category is reinforcement learning, widely used to address Markov decision processes. In RL, an agent
learns to act in its environment with its own optimal policy through interaction with said environment. RL focuses on
maximizing the reward for an agent by actions in the environment [177]. The essence of RL involves an autonomous
agent, as illustrated in Fig. 4, such as a person, animal, robot or software agent, that navigates an uncertain environment
with the goal of maximizing a numerical reward. That reward, however, is not immediate after an action, but only
after a sequence of actions that have gradually changed the environment for the agent. Sports are a good example of
RL; our autonomous agent would have to deal with the strategy and continual actions that occur in a sporting event
such as a tennis match. In a tennis match, the agent would have to consider actions like serving, returns, and volleys.
These immediate actions change the state of the game described by the current set; the player currently ahead; and
similar state variables which are part of the tennis rule book. Every action is performed to receive a future reward, such
as winning a point that leads to winning the game, set, or match. The agent is required to follow a policy, or a set of
criteria, rules, and strategies, to maximize the final score achieved at the end of the game. One important question to be
addressed is how agents can model the game when the agent’s actions change the state of the environment. At the
outset the initial inputs to the model are a state and the corresponding action that generates the maximum expected

Fig. 3. Schematic of model building using ML

Manuscript submitted to ACM Computing Surveys

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Evolutionary Machine Learning: A Survey 5

Environment

Agent

Reward r
t

State s t

st+1

rt+1

Action a t

Fig. 4. Schematic process of reinforcement learning

reward [128]. Over multiple attempts, RL refines those reactions based on the response of the environment and the
rewards it receives.

2.2 Evolutionary Computation

EC approaches are inspired by the principles of natural evolution. An EC approach encodes a problem in terms of
individual(s) to be evolved with the aim of improving the quality of problem solutions. Genetic operators, including
crossover, mutation, and selection, are applied to produce new individuals. Based on a differential fitness survival

mechanism, only the best individuals remain as source of further variation. EC algorithms explore the search space
using an iterative heuristic procedure to obtain gradually better solutions [143]. Before we go into details, we need
to clarify one point: There are two types of these meta-heuristic algorithms: population-based and single solution-
based. The former approaches start an evolutionary process using a set of initial random (or otherwise created)
solutions. Examples include the Genetic Algorithm (GA) [63], Ant Colony Optimization (ACO) [119], and Particle
Swarm Optimization (PSO) [74]. These are the ones we are discussing here in more detail. Then there are single
solution-based approaches, called trajectory optimization, which start from one initial random individual. Tabu search
[51] is an example of a single solution-based algorithm, as is simulated annealing [79]. Fig. 5 shows a categorization of
the population-based approaches, divided into four categories: bio-inspired, physics-inspired, geography-inspired, and
cultural-inspired.

(1) Bio-inspired: This category includes swarm intelligence (SI)-based approaches and evolution-inspired algorithms,
which originate from the natural behavior of organisms. SI simulates how swarms (e.g., birds, fish, and insects) behave in

Nature-

inspired

Bio-inspired
Geography-

inspired

Physics-inspired Cultural-inspired

Evolutionary

Algorithms

Swarm

Intelligence

Fig. 5. Taxonomy of nature-inspired algorithms, with evolutionary algorithms as one branch

Manuscript submitted to ACM Computing Surveys

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Telikani et al.

Evolutionary ML

Post-

processing

Preprocessing

Learning

Feature selection Re-sampling

Ensembles

Pruning

Rule optimization

Classification

ARM

Neural networks

Clustering

Reinforcement learning

Fig. 6. A classification of evolutionary machine learning approaches

their group life in a colony. Swarm entities can collaboratively perform many complex tasks required for their survival.
Self-organization and decentralized control are two main features of swarm-based systems that lead to emergent behavior
due to the local interactions between swarm agents [138]. ACO and PSO are the two first mainstream algorithms of SI.
The origins of evolutionary algorithms lie in the Darwinian principles of natural evolution that cause living organisms
to become well-adapted to their environment. Self-organization and strong adaptability are the two main features of
these approaches. In these algorithms, entire populations can be replaced from one generation to the next by operators
like Selection, crossover and mutation. Genetic algorithms (GAs), evolution strategies (ES), evolutionary programming
(EP), and genetic programming (GP) are the four main kinds of evolution-inspired mechanisms.

(2) Physics-inspired: The origin of physics-inspired algorithms resides in physical/chemical rules. For instance,
the gravitational search algorithm is an algorithm of this category.

(3) Geography-inspired: These algorithms generate random solutions in the geographical search space; Tabu
search falls into this category.

(4) Cultural-inspired: These algorithms are inspired by human behavior seen during cultural interactions with
others. Observing natural and inherent behaviors of other people helps individuals to learn new knowledge and improve
their own behavior. The Memetic algorithm can be considered one of these approaches that imitates the mutation
process through a local heuristic.

3 EVOLUTIONARY MACHINE LEARNING

Evolutionary computation has a wide range of applications in ML. The most important research contributions of EC
across different ML areas are summarized in what follows. The three main aspects are: (i) how to formulate an ML
problem into an optimization problem in the form of individual representation, (ii) which search mechanism to use for
solving a specific ML problem, and (iii) how to compute the quality of solutions for generating a new generation. We
organize the EML works into nine sub-fields, focusing on specific ML tasks in which EC has made contributions. Fig. 6
gives a diagrammatic overview of the topics dealt with by the considerations presented in this section.

3.1 Evolutionary Feature Selection/Construction

Some datasets in real-life applications, such as gene selection, comprise thousands, if not tens or hundreds of thousands
of dimensions. This is a challenge not only for ML in general, but also for statistics and biology. This problem can be
Manuscript submitted to ACM Computing Surveys

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Evolutionary Machine Learning: A Survey 7

Initialization
Subset

Discovery
Subset

Modeling

Termination
condition

NO

YES Relevant
Subset

Machine

Learning

Evolutionary

Computation

Subset
Evaluation

Fig. 7. General evolutionary feature selection process

handled by feature selection and feature construction methods that enhance the quality of the feature space. The former
choose only informative features from the original feature set, while the latter create new high-level features [172].
Feature construction can achieve better performance than feature selection if the original features are not informative
enough [183]. The application of EC methods in feature selection is known as wrapper approaches. A greedy search
strategy is implemented to find an appropriate set of features by utilizing ML as a fitness function [23]. Fig. 7 presents
the general framework of evolutionary feature selection.

Step 1 – Encoding: Binary encoding has been commonly used for the feature selection problem. Each solution is
a bit-string representation comprising N bits standing for the number of features in a dataset. "1" indicates that the
corresponding feature was selected, while "0" indicates that the corresponding feature was deselected. In contrast, most
GP work uses a representation in which features that are used appear (e.g., in a tree representation, as leaf nodes, in
a linear representation, as registers) and are subsequently considered the final feature set. GP is capable of handling
large-scale feature selection since the individual representation does not require information about the selection of
all features (e.g. their index). Additionally, there is no need in GP for predefined structures for solutions in order to
produce the optimum solution [160]. In ACO, the feature selection problem is represented by a graph in which each
feature is considered a node of the graphical model. A node is selected as one of the selected features if an ant visits
that node. Fig.8 shows an example of tree-based (Fig. 8a) and graph-based encodings (Fig. 8b).

-

* +

f4 f12f5 f10

(a) Tree-based feature selection of
𝑓 4, 𝑓 5, 𝑓 10, 𝑓 12

f1

f2

f3 f5

f4

f6

{f1,f2,f3,f4,f5}

(b) Graph-based feature selection of 𝑓 1, 𝑓 2, 𝑓 4, 𝑓 5

Fig. 8. Examples of individual representations of feature selection/construction

Manuscript submitted to ACM Computing Surveys

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Telikani et al.

Step 2 – Initialization: Determination of a starting feature subset is important because initialization directly
influences the performance of a search strategy. Forward selection and backward selection are two typical initialization
strategies. The process of evolution starts with an empty set in the former; however, missing some of the features in a
large search space is the main drawback of forward selection. The latter strategy starts with a full set of features and
removes some iteratively. Lengthy computational time is the main disadvantage of backward selection [182]. A Bernoulli
process is another well-known technique for generating an initial population. This technique selects corresponding
features using a function that produces a random number from [0, 𝐷], where D is the size of individuals.

Step 3 – Search Strategy: The use of many heuristic approaches is not practical because of the large search spaces of
most of these problems. However, EC algorithms such as a GA, can be used to perform the search process via evolution
successive populations [58]. GP is considered a useful search mechanism in filter approaches, in which it is mainly
used as a search algorithm, and in wrapper approaches, in which it can be employed as both a search strategy and a
classification technique.

Step 4 – Subset Modeling: ML algorithms are employed to build a classification/prediction model using the subset
of features that were selected by the EC algorithm.

Step 5 – Model Evaluation: Evaluation methods for models are categorized into three groups: Wrapper, filter, and

embedded methods. Wrapper methods use the performance of the ML algorithm as its evaluation criterion, while filter
methods use the intrinsic characteristics of the data. Longer computation times result for wrapper methods, although
the target features usually perform better than features selected/constructed by filter methods. Embedded approaches
simultaneously select/construct features and learn a classifier. Only GP and learning classifier systems (LCSs) can
perform embedded feature selection/construction [183].

3.2 Evolutionary Resampling

A dataset is known as ”imbalanced” or ”skewed” if the number of the instances of a class is much higher compared
to that of another class. Skewed distributions influence the effectiveness of ML models, which are biased toward
majority classes. Resampling is the most common approach for balancing data distributions and is performed in the
preprocessing stage. There are two kinds of resampling methods: undersampling and oversampling. The former removes
instances belonging to the majority class, while the latter generates additional samples for the minority class. On the
one hand, undersampling may potentially remove useful information regarding the majority classes. On the other hand,
oversampling increases the size of the training set, which makes training more complex and burdensome. In addition,
random duplication of minority instances makes the oversampling strategy prone to overfitting [168]. Fig. 9 depicts the
evolutionary resampling process.

Traditional evolutionary resampling approaches [50] use a binary representation, in which a value of "1" indicates
that a record was selected and a value of "0" indicates the absence of an instance in the training set. However, these
methods perform poorly when faced with large datasets, because the length of individuals and the search space increase
proportionally with the size of the dataset [105]. Modern approaches, in contrast, attempt to circumvent large search
space by introducing sparse representations that only contain the indices of those majority class samples that were
selected [47]. Fig. 10 shows the difference between binary and sparse representations.

Regarding the fitness function, performance measures such as the accuracy rate are inappropriate for assessing the
quality of acquired models, since the performance of both classes is not equally weighted. The F1-score is more suitable
for a problem with class imbalance, because it takes into consideration both precision and recall, which generates a
single metric that can be used to gauge performance [17].
Manuscript submitted to ACM Computing Surveys

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Evolutionary Machine Learning: A Survey 9

Imbalanced dataset

Train subset Test subset

Evolutionary

Over/Under

sampling

Selected Samples Classification

Evaluation

Fig. 9. Evolutionary resampling process [49]

3.3 Evolutionary Classifiers

Data preprocessing methods such as data balancing, feature selection/construction, and data cleansing can provide
appropriate data as input to data classifiers. However, these methods are classifier-independent and have their own
challenges, such as overfitting and poor generalization caused by resampling methods [19]. Therefore, a modification of
classifiers by EC methods is considered next. This section discusses the application of EC algorithms in well-known
classifiers such as decision trees, the Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN) algorithms.

3.3.1 Evolutionary Decision Trees. Decision trees (DTs) are one of the most widely used ML representations due to their
simple interpretation and their fast construction without the need for domain knowledge. Classic heuristic approaches
use a greedy method to select a node for subtree construction. Hence, these approaches apply a locally optimal "test
and fail" to converge to globally optimal solutions. EC approaches can be used in DT induction in two ways (Fig. 11):
Evolutionary induction of DTs and evolutionary design of DT components. Each individual is a DT in the former, while
individuals are components of DT classifiers in the latter.

The training data is split using either a single attribute per node or a (non-)linear combination of attributes in an
evolutionary classification tree. Single attribute-based DTs are more common compared to multi-attribute-based DTs,
due to their easy interpretation. However, multi-attribute-based DTs are more accurate and smaller, though they require
more computation time and loose comprehensibility. A regression tree can be considered a particular type of DT, in
which the target value at each leaf node of the tree is a continuous value as opposed to a discrete or nominal value [137].

1 10 110 0 0 0 0 0 0 0

0 2 76

Binary Representation

...

N

0

1

2

Sparse Representation

Training set

0 1 2 N

.

.

.

. . .

Fig. 10. Difference between a binary and a sparse representation for resampling methods [173]

Manuscript submitted to ACM Computing Surveys

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Telikani et al.

Evolutionary DT

DT induction
Component

design

Classification
tree

Regression tree

Fig. 11. Evolutionary decision tree types

With regard to problem encoding, tree-based encoding and linear individuals (i.e., fixed-length string representations)
are two common approaches used to code individuals in evolutionary DT induction. It is tricky to implement linear
individuals for non-binary DTs, so in most studies this type of DT is converted into a binary tree before applying EC
algorithms. DTs encoded as linear individuals are easier to handle than those encoded by a tree-encoding technique.
However, the need of fitness evaluation for constant mapping between genotype and phenotype and the difficulty
with handling non-binary DTs, and of defining a maximum number of bits are some drawbacks of fixed-length
string encoding. Some previous studies used dynamic-length string; this generated unnecessary complexity because
evolutionary operations, similar to crossover, may have to be modified. As for the fitness function, single-objective
optimization and multi-objective optimization are used to evaluate the quality of a DT. Classification accuracy is the
most common measure of a single-objective optimization. Some other criteria, such as accuracy, tree size, the number
of nodes, sensitivity, and specificity, can be formulated for a multi-objective fitness function.

Escaping from local optima and performing a robust global search are the main advantages of evolutionary DT
algorithms, which are able to better cope with attribute interactions compared to greedy DT methods. Another benefit of
evolutionary DTs is their ability to apply different measures in multi-objective optimization. However, the evolutionary
DTs introduce some negative features as well. For one, EC algorithms for DTs are computationally expensive for
large-scale data, because they generally evaluate all candidate solutions in a population for every generation [69].
Fortunately, EC approaches can be parallelized easily, and both the search mechanism and fitness evaluation can be
performed on different parallel and distributed platforms such as GPU, and MapReduce.

3.3.2 Evolutionary Support Vector Machine. The idea of support vector machines is based on an optimally separating
hyper-plane. The original pattern space in SVMs is first mapped into a high dimensional feature space by using nonlinear
functions; then, an optimally separating hyper-plane of the feature space is generated [65]. First, SVMs were successfully
applied to binary classification problems. For multi-class classification problems, the problem is divided into multiple
binary sub-problems through a decomposition approach. Each sub-problem is then solved by a SVM and the outputs of
all predictors are combined [108]. SVMs were subsequently used for regression prediction and time series forecasting.

Higher risk can be expected for a classifier with a smaller margin. Some slack variables are generated if the data
cannot be separated linearly. Therefore, a convex quadratic programming problem should be solved to construct a
maximal margin [14]. The input space in SVM is mapped into a high-dimensional dot product space when the problem
of obtaining an optimal separation plane is not solved in linear space. In this case, a kernel function (“kernel trick”)
is employed to find the hyper-plane in high-dimensional space without significantly increasing computational cost.
Radial Basis Functions (RBFs) (Eq. 1) are a commonly used kernel function technique in SVMs.
Manuscript submitted to ACM Computing Surveys

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Evolutionary Machine Learning: A Survey 11

1024.0 0.001 10.0 1.25 96 0.5

C1 σ1 C2 σ2 C3 σ3

Classifier1 Classifier2 Classifier3

Fig. 12. Different parameter values for each binary classifier in a three-class classification problem [108]

𝐾 (𝑥𝑖 , 𝑥 𝑗) = 𝑒𝑥𝑝 (−
∥(𝑥𝑖 , 𝑦 𝑗)∥2

2𝜎2
) (1)

The kernel parameter 𝜎 influences the data mapping process and alters data distribution of the higher dimensional
feature space [65]. Overall, the high performance of SVMs stem from three factors, the choice of a kernel function, the
choice of kernel parameters, and parameter C. An optimization problem is formulated in a SVM to construct a maximal
margin classifier, as Eq. 2:

minimize 1
2 ∥𝑤 ∥2 +𝐶∑𝑘

𝑖=1 b𝑖

subject to 𝑦𝑖 (𝑤𝑖𝑥𝑖 + 𝑏) > 1 − b𝑖 ;
(2)

C is a penalty parameter and imposes a trade-off between training error and generalization. The generalization
capability of SVMs may be reduced if the selected value of C is too large or too small. The choice of this parameter
becomes even more difficult if a decomposition approach is used in multi-class problems, because the number of
parameters increases with each binary classifier. The terms 𝑘, b,𝑤,𝑏 are the number of data points, slack factor, a normal
vector, and a scalar quantity, respectively.

Several approaches can be used to adjust hyper-parameters: a grid-search algorithm, trial and error, cross-validation,
generalization error estimation and gradient descent, and evolutionary algorithms. Using a grid-search algorithm is
complex and time-consuming. Trial and error procedures are time-consuming and the results are also unreliable. The
cross-validation method requires long and complicated calculations [56]. The gradient descent algorithm in SVM is
sensitive to initial parameters. Parameter optimization using EC algorithms to address the aforementioned challenges
has received more attention [14].

The actual encoding representation is employed when encoding hyper-parameters in the SVM problem, which avoids
the postcrossover overload problem. In this case, an individual X is represented as X = {C, 𝜎}, where C and 𝜎 denote
the aforementioned penalty and kernel function parameters. Fig. 12 shows an example of a chromosome representation
for a classification problem with three classes [108].

The SVM parameter selection task is often performed by retaining the best combination of parameters. Using an
exhaustive procedure to explore the parameter space may lead to good results, although this strategy should be avoided
for obvious practical reasons. Therefore, optimization techniques are good choices for preventing exhaustive or random
exploration of parameters because they explore the search space using good values for the selected objective function. A
drawback of these techniques is, however, that they have to start with random settings that are uniformly sampled from
the search space. This can make convergence slow, and the algorithm might get stuck in local minima. Meta-learning is a
useful strategy for addressing SVM parameter selection and considers this process a supervised learning task [52]. SVM
parameter values are recommended by this strategy according to parameter settings that were successfully determined
in previous, similar problems. Fig. 13 presents the general framework of evolutionary SVM based on meta-learning.

The SVM algorithm often generates many support vectors which increases the computational time for calculating
decision functions. Postpruning is a strategy that can be used to eliminate inappropriate support vectors generated by

Manuscript submitted to ACM Computing Surveys

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Telikani et al.

the standard algorithm. The length of each individual is equal to the number of support vectors in binary representation
(which is widely used). The i-th support vector is included in the decision function if a bit is equal to "1" and is excluded
if a bit is equal to "0".

3.3.3 Evolutionary k-nearest Neighbors. The nearest neighbor technique [33] and its derivatives are a subset of the
lazy learning methods. The k-NN algorithm is an extended version of the nearest neighbor algorithm [174]. The k-NN
algorithm is a non-parametric classifier, which means that it does not depend on any prior assumptions regarding the
data distribution. k-NN algorithms classify an object by a majority vote of its k neighbors, where k is a user-defined
parameter. The output classes are obtained through a voting metric that is applied to all distance vectors between the
test pattern and the training patterns. To define the number of neighbors, k, is challenging because a certain value of k
may result in good performance for one classification problem and fail for another, depending on the distribution of
classes in feature space. It has been shown that when k = 1 and the number of training samples n → ∞ , the probability
of inaccurate classification by k-NN can be at most twice the risk of the Bayes classifier [33]. However, this is not
applicable if the number of training instances available is finite.

In addition to k and the distance function, the importance of neighbor, class, and feature affect the performance
of the k-NN algorithm. Similar to neural networks and SVMs, a k-NN algorithm’s accuracy benefits from weight
optimization in the training phase. These weights can be assigned to neighbor, class, or feature and each type of weight
has a special impact on the performance of the algorithm. Class-specific weighting provides a k-NN algorithm with
additional knowledge regarding class properties; attribute-specific weighting can be used to remove the effect of noisy
and redundant features [22]. The aim of a weighting scheme is to use a good metric that will lead to high classification
accuracies with a given set of raw prototypes. An investigation of differential evolution in a weighting system in terms
of different aspects of data was previously published [10].

Two commonly used techniques to perform data reduction in neural networks are prototype selection and prototype
generation. Prototype selection selects a subset of instances from the original training set by removing redundant and
noisy examples [27]. Prototype generation methods are able not only to select data but also to generate and replace
original data with new artificial data [174]. Both prototype selection and prototype generation are combinatorial
optimization problems; therefore, EC approaches can be used to solve these types of problems and generate excellent
results. Prototype selection and prototype generation can be encoded as binary or as continuous space search problems,
respectively. EC techniques for prototype generation are based on the positioning adjustment of prototypes, which
optimizes the position of prototypes. A drawback of EC techniques, however, is that they are often dependent upon
an initial subset of the prototypes extracted from the training set. Also, scaling-up to large datasets is a challenge in
prototype selection, since it results in excessive storage requirements, higher time complexity, and lower generalization

Parameters
Evaluated
candidates

Meta-
examples

Meta-learning
Evolutionary
computation

SVM

Input problem
Best

parameters

Initial
candidates

Fig. 13. General framework of meta-learning for evolutionary SVM

Manuscript submitted to ACM Computing Surveys

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Evolutionary Machine Learning: A Survey 13

accuracy. A prototype-selection algorithm needs to search through all available instances to classify a new input vector
and is therefore slow during classification [27].

3.4 Evolutionary Neural Networks and Deep Learning

A standard neural network consists of many connected processors called neurons. Input neurons receive values from
the environment while other neurons receive activated values via weighted connections from previously active neurons.
The main focus of learning is to find an optimal or sufficiently close to optimal set of connection weights. The success
of neural networks largely depends on the architecture, the training algorithm, and the choice of features used in
training. Back-propagation learning requires tuning parameters such as learning rate, momentum, and a predetermined
structure. Due to its gradient nature, error back-propagation encounters challenges such as slow convergence speed
and getting trapped in local minima [70]. It has been proven that gradient descent with manually defined parameters
performs poorly in deeper networks, resulting in underfitting or overfitting of the training data [91]. As a result, it is
challenging to adjust the parameters and structure of a near-optimal neural network for applications [186].

Evolutionary computing can be applied to neural networks by learning their building blocks (e.g., activation functions),
hyper-parameters (e.g., learning rates), architectures (e.g., the number of layers and neurons in each layer), and even
the rules for learning. In the early 1980s researchers focused on evolving only the weights of the networks with
constrained architectures, including a fixed number of layers and neurons [155]. But in 1994, [54] developed an artificial
developmental system for the automatic generation of complex neural networks.

In evolutionary neural networks, the weight matrices are encoded as individuals and are optimized by means of
evolutionary operations, such as crossover and mutation. The error produced by a neural network is used as fitness
measure. Evolutionary neural networks have two encoding schemes: direct and indirect. The former expresses the
existing connections between nodes. This approach requires background knowledge to define a topology (e.g., the
number of layers and the number of hidden units). A number is assigned to each neuron and a binary 2D structure
N × N is generated once the topology comprising the N nodes is set up. A value of "1" indicates that a connection
exists between two neurons. Feed-forward connections can be guaranteed by only enabling connections between units
in layer 𝑖 and layer 𝑖 + 1. The necessity of assumptions about the topology of the network is the main shortcoming
of a direct encoding schema, imposing O(N2) complexity [16]. Indirect encodings, on the other hand, only consider
certain important features of the neural network topology rather than the full connectivity pattern, leading to a more
compact encoding compared to the direct one. Indirect encodings can be categorized into three main approaches: (1)
connectivity parameters that specify the parameters and describe the topology and architecture of a neural network;
(2) developmental rules (e.g., recursive equations or production rules) that are used to build a topology; (3) fractal
representations of connectivity inspired by some of the processes of biological development [185]. NeuroEvolution of
Augmenting Topologies (NEAT) [157] is a well-known algorithm that uses a GA to evolve both structure and connection
parameters of a neural network. NEAT used direct encoding with two vectors, one for nodes and one for connections.
Each gene defines the connection weight between two nodes; as a result, NEAT is suitable only for small networks.
HyperNEAT [156] used an indirect encoding to optimize NEAT for more complex networks.

In deep learning, the use of evolutionary computing has a long history that started quickly after deep learning began
to receive significant attention. Cheung and Sable proposed an early approach to neuro-evolution for deep neural
networks in 2011 [32] in which EC was used to find optimal values of the architectural parameters of a Convolutional
Neural Network (CNN). CoDeepNEAT [127] is an enhancement of NEAT [157] for optimizing topology, components,
and hyper-parameters of Long-Short-Term Memory (LSTM). Significant progress in hardware has made the use of

Manuscript submitted to ACM Computing Surveys

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Telikani et al.

deeper architectures increasingly popular, leading to more complex neural networks models with many layers and
hyper-parameters.

Despite the successful application of evolutionary learning to address the automatic design of neural networks,
one of the major shortcomings of evolutionary neural networks is that they consume a huge amount of resources
during the optimization process. Often, thousands of different individuals are evolved, each of which representing a
complete training phase of a deep learning model with a complex architecture and evaluation. It was shown early on that
evolutionary training is usually computationally intensive and is slower than back-propagation [80]. These algorithms
were not practical until 2012 due to the lack of computational resources such as GPUs [53]. Manufacturing specific
chipsets and product lines for deep learning is a current technology trend used to address this challenge. Examples of
these types of technologies include Google Cloud Tensor Processing Units [41], Amazon EC2 P3 instances [11], and
large AI supercomputers such as NVIDIA’s DGX SATURNV consisting of 125 servers with a total of 1000 powerful
GPUs optimized for deep learning [134].

Today, the field of Neural Architecture Search (NAS) is thriving, with an explosion of research in this area since about
2016 [43]. In NAS, very often hybrid methods are used, in which only architectural hyper-parameters are optimized
using evolution, while learning is left to gradient methods. Multi-objective evolutionary algorithms show substantial
success recently, as exemplified by [112]. In many of these applications, architectures with minimal complexity are
searched, that perform as accurate as possible. This allows more generalization performance with less computational
time for training. A further acceleration can be gained by using surrogate fitness functions [111].

3.5 Evolutionary Reinforcement Learning

The three approaches addressing reinforcement learning problems are value functions, policy search, and actor-critic. The
value function approach aims to estimate the expected value of being in each state. In contrast, policy search approaches
do not require a value estimation model but instead search directly for an optimal policy. The actor-critic approach
employs both of the aforementioned methods [12]. Despite the success of these approaches in RL, there are three main
problems: Temporal credit assignment with sparse rewards, a lack of effective exploration, and brittle convergence
properties, extremely sensitive to the choice of hyper-parameters. EC algorithms are well-suited to handle each of the
problems [75]. Consolidating returns across an entire episode using a fitness function makes EC algorithms invariant
to sparse rewards with long time horizons. A population-based approach can lead to diverse exploration. Finally, the
inherent redundancy of a population also strengthens resilience and sustainable convergence properties, especially
when combined with elitism [35].

In an evolutionary RL algorithm, the fitness value of an individual is the accumulated reward received after an
individual operates in its environment. Fig. 14 shows the actor-critic-based evolutionary RL approach in which the
reinforcement learner uses the data experiences that the population generates. The policy gradient method is often used
to maximize returns in the form of the minimum value of a loss function. This method uses the actor-critic architecture
to maintain a deterministic policy and an action-value function critic. In conventional RL, a single reward is achieved
once an action is performed by the individual; however, in evolutionary RL, a fitness value (return) is considered
for an individual at the end of the lifetime of a population solution or after a sequence of actions (an episode). This
characteristic of EC approaches enables them to be directly applicable to episodic RL tasks, such as game playing, where
EC algorithms search for optimal function values or optimal policies [126].

One of the major problems with RL is high-dimensional input spaces, such as visual input. This dimensionality
problem can be mitigated in two ways: (1) a preprocessor (compressor) can be applied to transform the high-dimensional
Manuscript submitted to ACM Computing Surveys

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Evolutionary Machine Learning: A Survey 15

Evaluation

Operators

Selection RL-Critic

RL-Actor

Finesses Experiences

Environment

Actor Population

Actor 1

Actor 2

Actor 3

Actor n

.

.

.

New population
Inject leaned behavior

into population

P
o

li
cy

 G
ra

d
ie

n
t

Fig. 14. A schematic of evolutionary reinforcement learning that emphasizes the incorporation of EC population-based learning into
gradient-based optimization (inspired by [75])

input spaces into feature spaces with lower dimension, and (2) the representation of neural network controllers can
be compressed [82]. The main approach is indirect encoding for transforming small neural networks into networks
of arbitrary size through a complex mapping. Another alternative is the combination of action learning with an
unsupervised learning compressor to provide a lower-dimensional feature vector as the input of the agent [34]. The
combination of unsupervised learning and evolutionary RL was presented in [34, 82]. In contrast, it is not required to
perform a compressor phase when a compressed representation of neural network weights is used by evolutionary
approaches to train large networks. The use of this technique introduced the first deep neural networks to learn an RL
task, directly from the high-dimensional visual inputs [12].

A completely new method for applying EC methods to RL tasks, also introduced in 2017, is the Tangled Program
Graph (TPG) method [72], in which a set of linear genetic programs is used to work as a team for solving the RL
task. TPGs can work directly on the high-dimensional video input, and have been examined in a variety of game
environments. The efficiency gained over deep network reinforcement learning has been used to allow the method
approach multi-task learning [73]. Such et al. [158] investigated the performance of GA on deep reinforcement learning
for numerous Atari games that are difficult to solve by RL (e.g., Q-learning or policy gradients). The authors found that
the combination of DNNs with GA can address sparse reward functions and high-dimensional problem.

3.6 Evolutionary Clustering

Clustering is an unsupervised learning method that partitions unlabeled data objects into several groups according to
the similarities among them [64]. The main characteristic of clustering is that there is no prior knowledge required of
the data distribution [67]. Partitional clustering and hierarchical clustering are the two main categories of clustering
algorithms. Partitional clustering methods divide a dataset into certain groups based on fitness measures over a
predefined number of iterations [7, 133]. Simplicity and low computational cost are two main advantages of partitional
clustering algorithms, such as k-means [107]. However, there are two main problems with these algorithms. First, they
are very sensitive to the initialization and the probability of being trapped in local optima. Second, before running the

Manuscript submitted to ACM Computing Surveys

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Telikani et al.

clustering algorithm, the number of clusters must be determined. A small number of clusters can result in a loss of key
hidden information. In contrast, a large number of clusters can lead to a high homogeneity of clusters.

A tree topology is used to represent relationships among cluster sets in hierarchical cluster methods. Hierarchical
methods can cluster data using either a divisive approach or an agglomerative approach. The former method merges
smaller clusters into larger ones, while the latter method splits large clusters into smaller ones [7]. Hierarchical clustering
offers an advantage over partitional clustering in that the number of clusters does not need to be specified in advance.
However, the disadvantage of hierarchical clustering is that each element can be assigned to only one cluster [4] and
performance suffers if a separation of overlapping clusters is done.

Seen from a optimization perspective, clustering is a NP-hard problem. Evolutionary data clustering approaches
either use optimization techniques for data clustering or add an optimization technique to existing clustering algorithms.
EC approaches attempt to either minimize or maximize an objective function. In the clustering context, intra-cluster
distance should be minimized while inter-cluster distance should be maximized [4]. In clustering, EC algorithms have
two main goals: determining the number of clusters and specifying the cluster centers. There are two types of individual
representations in evolutionary clustering: prototype-based and point-based. The size of individuals is usually smaller
and less-redundant when applying prototype-based representations than when applying point-based representations.
However, prototype-based encoding tends to prefer round-shaped clusters, where each cluster is represented by a single
prototype. In contrast, point-based representations allow capturing clusters with an arbitrary shape.

EC can use many clustering validity measures as fitness function to evaluate individuals. Some studies focus on
minimizing the sum of distances between N objects in the dataset and the medoids encoded into the individuals (Eq. 3):

𝐹 =

𝑁∑
𝑖=0

𝑑 (𝑥𝑖 +𝑚) (3)

where m represents the closest medoid to object 𝑥𝑖 . This measure is suitable for medoid-based representations.
Minimizing the sum of squared Euclidean distances of the objects from their respective cluster means is another

measure of fitness that can be used, (Eq. 4):

𝑓 (𝐶1, ...,𝐶𝑘) =
𝑘∑
𝑗=1

∑
𝑥𝑖𝑐 𝑗

∥(𝑥 𝑗 , 𝑧 𝑗)∥2 (4)

where 𝑥𝑖 is an object in the dataset and 𝑧 𝑗 is the mean vector of cluster 𝐶 𝑗 . This criterion is appropriate for a centroid-
based encoding.

3.6.1 Fixed Clusters. Some evolutionary clustering algorithms work with a predefined number of clusters (k). This
technique can be appropriate especially for applications in which there is information about the number of clusters.
Evolutionary clustering algorithms focus on addressing the challenges associated with prototype-based clustering,
meaning that centroids, medoids, or other vectors that represent a cluster are optimized. Evolutionary algorithms
include operators that use probabilistic rules to explore the search space and select better fit partitions with higher
probabilities. The parallel nature of EC also allows a straightforward handling of multiple individuals with different
distance criteria and fitness functions.

There are three encoding schemes in evolutionary clustering: binary, integer, and real. In a binary encoding scheme,
each solution has a length equal to the number of instances in the dataset. Each bit corresponds to an instance, i.e., the
i-th bit represents the i-th instance. If the i-th bit is "1", then the i-th instance is a prototype. Fig. 15a shows an example
of a binary representation with four clusters (k) with objects 1, 5, 7, and 10 being cluster prototypes. These four objects
Manuscript submitted to ACM Computing Surveys

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Evolutionary Machine Learning: A Survey 17

1 0 0 0 1 0 1 0 0 1

C1 C2 C3 C4

C1

C2

C3

C4

(a) String binary encoding

1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0

C1

C2

C3

C4

(b) Matrix encoding(b) Matrix encoding

1 0 0 0 1 0 1 0 0 1

C1 C2 C3 C4

1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0

C1

C2

C3

C4

1 1 1 3 3 4 4 2 2 2 1 5 7 9

1.5 2.3 3.4 1.6 3.3 4.2 1.5 2.4

C1 C2 C3 C4

(a) String binary encoding (b) Matrix encoding

(c) Label-based representation (d) Medoid-based representation

(e) Centroid-based representation

(c) Label-based encoding

1 0 0 0 1 0 1 0 0 1

C1 C2 C3 C4

1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0

C1

C2

C3

C4

1 1 1 3 3 4 4 2 2 2 1 5 7 9

1.5 2.3 3.4 1.6 3.3 4.2 1.5 2.4

C1 C2 C3 C4

(a) String binary encoding (b) Matrix encoding

(c) Label-based representation (d) Medoid-based representation

(e) Centroid-based representation

(d) Medoid-based
encoding

1.5 2.3 3.4 1.6 3.3 4.2 1.5 2.4

C1 C2 C3 C4

based representation (d) Medoid-based representation

(e) Centroid-based representation(e) Centroid-based encoding

Fig. 15. Different types of encoding in evolutionary clustering

are selected and the similarities of other objects to these instances are calculated. Matrix encoding is another type of
individual representation, in which the size of a matrix is k × N (Fig. 15b). This type of representation requires O(kN)
memory space against O(N) space for binary string encoding. However, the computational cost of calculating distance
similarity for the matrix encoding is lower than for the string encoding as only the selected objects are considered
when computing fitness value.

There are two types of integer encoding: The label-based representation (Fig. 15c) and the medoid-based representation

(Fig. 15d). The former is a vector of N positions, where N is the number of objects. Each bit has a value between 1 and k.
The latter provides a medoid-based representation of the dataset using an array of k elements. The length of individuals
is equal to k and each element represents the index of an object between 1 and N. The complexity of label-based
representations is O(N) whereas it is O(k) for medoid-based representations. However, unlike medoid-based encoding,
a label-based representation does not require additional processing to recover clusters encoded in the individual.

In real encoding, the centroid of each feature of the partitions is represented in a centroid-based representation. This
encoding involves a vector with length nk, where n is the number of attributes and k the number of clusters. Fig. 15e
shows an example of a real representation for a dataset with two variables and four clusters.

3.6.2 Variable Clusters. A major benefit of evolutionary clustering algorithms is that they can automatically pratition
the data without a prespecified number of clusters and cluster centers [89]. Automatic clustering is helpful, because
there is no need to have a priori information regarding the number of clusters. Evolutionary algorithms aim to optimize
the number of clusters (k). Certain encoding schemes, such as binary encoding (Fig. 15a and label-based encoding (Fig.
15c) employed in fixed clustering algorithms can be used to encode the variable clustering problem. Also, a different
kind of encoding was proposed in which there is a set of axis-aligned hyper-rectangular rules (Fig. 16). Each rule
consists of n positions, where n is the number of attributes. The boundaries of the corresponding variables are encoded
in each position: 𝑙𝑖 and 𝑢𝑖 are the lower and upper bounds. Based on Fig. 16, a sample rule could read: if (1≤ 𝐴1 ≤ 6)
AND (2 ≤ 𝐴2 ≤ 5) THEN (instance belongs to Cluster 1).

Manuscript submitted to ACM Computing Surveys

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Telikani et al.

GA-based evolutionary clustering was proposed by Bezdek et al. [18] and is one of the earliest successful applications
of EC algorithms in clustering. Authors employed the exploratory and exploitative traits of a GA to discover the best
centroids. Sarkar and Yegnarayana [149] proposed a clustering algorithm that uses evolutionary programming to
determine the number of clusters and cluster centers. EC approaches for partitional clustering were reviewed in [133].

3.6.3 Evolutionary Fuzzy Clusters. Each data object in a fuzzy clustering approach belongs to more than one cluster
with a fuzzy membership grade. In order to convert fuzzy clustering into crisp clustering, this approach assigns each
data point to the cluster with the highest membership value [133]. Most of fuzzy clustering methods suffer from
several inherent drawbacks, such as (1) the user requires a prior knowledge to use a clustering method; (2) different
clustering solutions can be generated using random initial choices; and (3) a gradient method is used by an objective,
function-based algorithm to search the optimum which can lead to becoming trapped at a local minimum [42]. One
other application of EC approaches is to optimize the objective function of a fuzzy clustering algorithm.

3.7 Evolutionary Association Rule Mining

Association rule mining (ARM) aims at deriving the relationship between items in transaction data [1]. ARM has
been successfully applied in different domains, such as, e.g., market analysis, recommender systems, or medicine. For
example, the patterns extracted by ARM can provide insights into which items are frequently purchased together by
customers, which help retailers develop marketing strategies. Classical ARM methods can be divided into two main
categories: Level-wise and pattern-growth. Two examples of Level-wise algorithms that use Breadth-First Search (BFS)
and Depth-First Search (DFS) to calculate the support value of the item set are Eclat [187] and Apriori [2], respectively.
Apriori can generate association rules with high accuracy; however, it needs substantial computation time for large
datasets [9]. The FP-growth algorithm [57], a pattern-growth-based algorithm, uses a "divide and conquer" strategy to
extract association rules without the candidate generation step [170].

It has been proven that extracting frequent patterns from a transaction dataset is an NP-Hard problem. Traditional
ARM methods are dependent on the data preprocessing for discretization, either by means of a user or an automatic
process, before applying the algorithm. ARM may be a lossy information discovery process because of the sharp
boundary between intervals due to predefined parameters and partitions [123]. Fuzzy ARM deals with this problem
by using fuzzy sets to create a smooth transition between a member and a non-member of a set. However, finding a
set of suitable Membership Functions (MFs) in fuzzy ARM is one of the main challenges. Overall, the sharp boundary
between intervals in quantitative values and distinguishing membership degree for intervals in fuzzy sets are among
the main shortcomings of heuristic ARM algorithms.

Mining for frequent patterns with evolutionary means has been introduced to address the drawbacks of conventional
rule discovery methods. Rule mining is performed without discretizing continuous attributes so that intervals are
obtained in the evolutionary phase to mitigate the impact of the sharp boundary in evolutionary ARM [121]. One
application of EC approaches in ARM is rule optimization, in which EC is applied in the postprocessing phase of
a conventional ARM algorithm, so that meaningful rules can be extracted by an ARM algorithm such as Apriori.

Rule 1 (Cluster 1) Rule 2 (Cluster 2)

1 6 2 5

l1 u1 l2 u2

3 8 2 7

l1 u1 l2 u2

Fig. 16. Rule-based encoding

Manuscript submitted to ACM Computing Surveys

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Evolutionary Machine Learning: A Survey 19

The representation of ARM depends on what type of ARM is performed, with Pittsburgh and Michigan approaches
commonly used to encode binary datasets [63]. The Pittsburgh approach encodes different patterns in an individual,
whereas the Michigan approach represents only one pattern within an individual. The Pittsburgh technique is more
useful for class ARM, where identifying a good set of patterns is the objective. The Michigan strategy, in contrast,
works well for mining a set of good patterns and is therefore better at finding high-quality predictions of frequent
patterns or rare events. Compared with the Pittsburgh approach, the Michigan technique is simple, straightforward, and
syntactically short due to the encoding of fixed-length association rules. Another type of encoding is the binary vector
representation, in which each bit represents the presence or absence of an attribute value. Although such a binary string
needs to be converted into “IF-Then” rules, it reduces processing speed [139]. This type of encoding is suitable for MFs
representation. Each solution encodes the center and the span of a membership function based on the range of an item.

Items and their values correspond to functions of judgment nodes when applying genetic network programming for
ARM. The connections of judgment nodes represent the association rules. If a judgment node is satisfied, an attribute is
moved to it; otherwise, the attribute is moved to another processing node. Grammar-Guided Genetic Programming
(G3P) is an improvement over genetic network programming in which a grammar is used to apply constraints on GP
trees [6]. In the case of G3P-based ARM, grammar constraints are created by applying a set of productions rules.

The performance measures for evaluating individuals in evolutionary ARM may conflict with each other and no
single individual simultaneously optimizes all functions. But the quality of the solutions can be estimated by both their
support and their confidence while they are conflicting. A set of non-dominated solutions is used to provide a trade-off
between conflicting objectives [130]. Unlike classification and clustering tasks, in which a single individual is selected
from a set depending on user priorities, all non-dominated solutions are considered in a multi-objective ARM as the
final set.

3.8 Evolutionary Ensemble Learning

Ensemble learning methods are powerful techniques that generate a final prediction by combining the outputs of
multiple models [146]. Ensemble learning has been used successfully to address imbalanced datasets in many different
applications. Resampling ensemble techniques are widely employed in such cases. Ensemble performance can be
improved when applying a set of accurate and diverse ensemble members [55].

An ensemble methodology comprises several classification tasks; each one is composed of a dataset, an inducer,
and a classifier [145]. Three steps are required to construct the ensembles of predictive models: member generation,
member selection, and member combination. The first aims to build diverse base models. The second, member selection,
is an optional step that uses a heuristic method to prune the pool of models. The third step, member combination, is
responsible for generating an ensemble’s final output by combining its predictions. These three steps can be formulated
as an optimization problem and solved by EC mechanisms. Evolutionary member generation aims to form an ensemble
by creating a pool of candidate models. The prediction scores and the complexity values of cadnidates are considered
the most important criteria. In evolutionary member selection, candidate models are pruned by EC to build the best
possible models for an ensemble. Optimal weights of each candidate model for a weighted average ensemble can be
obtained through evolutionary member combination.

Evolutionary ensemble member generation has been used for time series forecasting [25], imbalanced data classifica-
tion, image classification [5], and fault diagnosis [115]. Because EC algorithms use a population of individuals, they
are a natural choice for building potential individual models into an ensemble model. An ensemble learning strategy
should then always provide a trade-off between accurate and diverse models, which is summarized by error-ambiguity

Manuscript submitted to ACM Computing Surveys

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Telikani et al.

Dataset

Training

Predictive
model

Training set

Validation set

Initialization

Evaluation

Genetic
Operations

Stopping
NO

YES

Model-1 Model-2 Model-n

Feature/sample

selection

Hyper-parameter

optimization

Fig. 17. Evolutionary ensemble member generation

decomposition. This implies that the generalization error of an ensemble is generated by a weighted average of all
individual errors and ambiguities. One can then attempt to reduce the overall generalization error by decreasing the
generalization error and increasing the ambiguity of each individual which increases an individual’s prediction error
[151]. Methods for creating diverse ensembles in the member generation step can be categorized into three groups:
using different training data, using different learning algorithms, and using different weights or parameters for learning
models. Bagging [24] and boosting [125] are two techniques used to prepare different training sets; the former uses
random sampling while the latter manipulates the probability of selecting training data from the original training set.
An EC method can employ a binary representation to select a subset of the training data in both techniques. Fig. 17
shows the process of evolutionary ensemble member generation in which the performance of the predictive model
generated by the training dataset is evaluated on a validation dataset. The predictive model is then optimized by an EC
algorithm with regard to the hyper-parameters of the learning algorithm. Alternatively it selects features and instances
from the original dataset.

When encoding ensemble member selection, the decision variable is often a binary vector in which each bit represents
the selection or not of a base model. This technique has been appplied in sentiment analysis [136] and in the prediction
of power transformers’ dissolved gas contents [140]. Fig. 18 shows a general view of the process of evolutionary
ensemble member selection. A pool of base learners predicts the outputs from a validation dataset, and pruning of the
pool optimizes the prediction score generated by the EC algorithm. This is followed by another step that prioritizes the
selection to choose the preferable set of models.

A weighted majority voting scheme is performed using an EC algorithm to weight the base models in the process of
evolutionary ensemble member combination. This approach improves the predictive performance of the entire ensemble
by adjusting the weights of the base models. Fig. 19 presents a general overview of evolutionary ensemble member
combination. EC algorithms are used to prioritize and select a preferable set of models built on the validation dataset.

Using the combination of ensemble techniques and resampling approaches (e.g., undersampling and oversampling) to
address the class imbalance problem has been shown to enhance correct classification of the minority class. Ensembles
based on random sampling would not perform adequately. In fact, potentially useful samples of the majority class can
be denied, which may be important for the learning process. This is more evident when the imbalance ratio increases.
Evolutionary sampling is a strategy in which the diversity between classifiers that favor the most diverse individuals
Manuscript submitted to ACM Computing Surveys

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Evolutionary Machine Learning: A Survey 21

Dataset

Initialization

Evaluation

Genetic
Operations

Stopping
NO

YES

Model-1

Model-2

Model-n

S1

S2

Sn

A
gg

re
ga

ti
o

n

Determine
preferences

Ranking
solutions

S1 S2 Sn. . .

. . .

Fig. 18. Evolutionary ensemble member selection

is emphasized [46]. Evolutionary sampling and ensemble methods allow the fitness function to promote diversity of
oversampled or undersampled datasets, which leads to more accurate results when dealing with highly imbalanced
datasets.

3.9 Evolutionary Model Optimization

EC mechanisms can be used in the post-processing phase of ML when models built by the traditional ML algorithms are
optimized. In DT classification, EC algorithms can be recruited as an evolutionary component for pruning the resulting
trees to remove all parts potentially affected by noisy or imprecise data, which will prevent both over-fitting by the DT
model and reduce the complexity of the final DT. However, it is not easy to find the right trade-off between pruning
level and prediction accuracy. Over-pruning can significantly distort the DT, so that only a small portion of training data
is represented. In contrast, under-pruning might cause the DT to over-fit the training data. The two major strategies for
tree optimization are pre-pruning and post-pruning. Implementing a threshold for each sample is a common solution
in the pre-pruning strategy that restricts each expansion if model performance is below a predetermined threshold.
Unlike pre-pruning, post-pruning needs to grow a full tree. A full DT is first built by overfitting the training set. The
tree is then pruned to both improve its performance and to minimize its size. In practice, post-pruning performs better
than pre-pruning [117]. Again, binary encoding is a well-known technique for representation: The length of a solution
is equal to the number of branch nodes in the DT. A value of "1" indicates that the branch node was selected for the
resulting tree; otherwise, it will not be selected.

Dataset

Initialization

Evaluation

Genetic
Operations

Stopping
NO

YES

Model-1

Model-2

Model-n

S1

S2

Sn

A
gg

re
ga

ti
o

n

Determine
preferences

Ranking
solutions

. . .W1 W2 Wn

. . .

W1

W2

Wn

. . .

Fig. 19. Evolutionary ensemble member combination

Manuscript submitted to ACM Computing Surveys

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Telikani et al.

Table 1. A summary of evolutionary machine learning in real-world applications

Category Applications
Computer networks Network security [40, 106, 110, 116, 150, 179], Email spam detection [153],

Wireless sensor networks[142], Web mining [59], Phishing detection [167]

Business Marketing [44], Market basket analysis [62], Recommendation systems [190],
E-commerce [20], Workflow analysis [104], Collaborative filtering [176]

Robotics Autonomous vehicle navigation [154], Robotics [192]

Medicine Disease diagnose [37], Medicine [90, 171], Cancer classification [29],
Gene expression data analysis [114], Cardiovascular disease detection [181], Healthcare [88],
Thoracic surgery [118], Gastrointestinal infection prediction [152]

Computer vision Face recognition [178], Handwriting recognition [135], Speaker recognition [188],
Personnel identification [30], Character recognition [60],
Pedestrian detection [159], Handwritten digit classification [76], Image segmentation [184],
Image clustering [39], Document clustering [87]

Industry Finance [86, 132], Software engineering [78], Construction industry [31],
Garment industry [92], Product design [45, 66], Product service system [191]

Environment Analyzing ozone content [121], Traffic congestion prediction [180],
Road traffic prediction [101], Atmospheric pollution [122], Forecasting ozone [120]

Others Astronomy [28], Education system [113, 147], Car park occupancy prediction [26],
Energy price [141], Energy consumption prediction [8], Smart cities [85]

4 APPLICATIONS OF EVOLUTIONARY ML

AI and ML have the potential to usher in another “industrial revolution” able to build intelligent systems automatically.
This will not only support many industrial and professional processes but also has the potential to improve everyday
living. Different circumstances reduce ML performance of traditional ML in real-life applications. The lack of expert
knowledge for running traditional ML effectively is a major challenge for industry and businesses because the quality of
ML results critically depends on expert experience to determine hyper-parameters and other adjustments regarding the
model design. An EML approach can be a useful substitution if domain knowledge is not readily available. For example,
two main problems in traditional neural networks are the definition of the network topology and the adjustment of
hyper-parameters; these both require substantial background knowledge of the use case. For instance, high accuracy
is necessary for patient diagnoses when applying neural networks to areas such as cancer detection. Inappropriate
choices will affect the performance detection system and potentially imperil patient outcomes.

In practice, optimization is critical for minimizing or maximizing objectives due to limitations of resources, like time
or budgets, which is relevant in all industries and other business activities. Almost all ML problems can be cast as explicit
optimization problems. Training ML models with evolutionary optimization approaches should improve objectives
associated with an application. Evolutionary algorithms can update the parameters of ML models in cooperation with a
loss function. Table 1 shows some of the applications of EML to solve different real-world problems. These applications
cover different fields, such as computer networks, business, computer vision, and robotics.
Manuscript submitted to ACM Computing Surveys

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Evolutionary Machine Learning: A Survey 23

Computer Networks: EML can be used in computer networks to improve the performance of MLmodels in different
areas, such as network security, sensor networks, or web mining. According to the literature, securing the networks is
the primary focus of applying EML approaches to computer networks due to malicious activities that could threaten
privacy, integrity, and network resource availability. Evolutionary approaches aim at improving the performance of
ML algorithms, such as ARM, clustering and classification (e.g., deep learning classifiers), mainly to secure computer
networks against attacks such as intrusion, email spam, and phishing.

Business: Business was the initial target of EML methods such as ARM and prediction. Market basket analysis
finds relationships between purchased items that support decision making about store layouts and marketing policy.
E-commerce websites (e.g., Amazon and eBay) analyze customer activity to extract personalized preferences and
interests as well as to recognize user trends. Recommender systems in businesses, which can be constructed based on
knowledge generated by EML techniques use information discovery techniques to offer items to potential customers.
The evolutionary ARM is one of the techniques used in collaborative filtering in which user preferences for items of
interest are expressed as ratings.

Computer vision: Computer vision is one of the most challenging applications of ML techniques. A large search
space in multimedia tasks makes traditional ML methods difficult (such as getting stuck in local optima and/or high
computational costs), so evolutionary feature selection/construction/extraction approaches have been a mainstay in
this area. Evolutionary applications in deep learning have been successfully employed in computer vision and speech
recognition. The application of EML to computer vision can be grouped into two classes: application domain, such as
medical or robotics, and target task, such as face recognition or image segmentation. For instance, the definition and
measurement of threshold values are two challenging tasks in image segmentation that can be addressed by evolutionary
algorithms.

Robotics: RL for robotics can help to autonomously discover optimal behavior through trial-and-error interactions
with the environment. When applying RL for robotics in environments with very high dimensions and sparse reward,
however, traditional RL techniques cannot improve behavioral learning. The application of evolutionary RL in robotics
allows autonomous robots (e.g., vehicles or production lines) to learn behavioral skills with minimum human interaction.
Indeed, the integration of ML and evolutionary optimization dramatically increases the decision-making quality and
learning ability of decision systems. The full potential of evolutionary optimization has not been reached in Robotics yet,
as traditional ML approaches have shown the ability to compete provided that reliable dataset is available. But complex
environments and inefficient heuristic optimization functions provide an opening for EML techniques in Robotics.

Recent progress in hardware, such as cloud computing and GPU devices, have allowed previously impossible EML
tasks to become addressable. Large corporations such as Google, Microsoft, Uber, or IBM have invested in EML methods
and actively pursue solutions for real-life situations.

5 DISCUSSION AND CHALLENGES

5.1 Discussion

EC algorithms have been applied to ML techniques to mitigate problems associated with conventional and heuristic ML
techniques. Fig. 20 shows a classification of EML tasks and the challenges associated with the task that EC approaches try
to address. The tasks associated with feature selection/construction and resampling methods are the main contributions
of EC algorithms to the preprocessing phase. The former contribution is focused on generating a new feature space,

Manuscript submitted to ACM Computing Surveys

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Telikani et al.

Evolutionary Learning

DT

SVM
Parameter Tuning

Model Selection

Attribute selection

Node discretization

K-NN
Prototype selection

Prototype generation

Weight optimization

Preprocessing

Re-sampling

Feature Selection/
construction

Over-sampling

Under-sampling

Subset selection

Feature construction

Ensemble
Member generation

Member selection

Member combination

Post-processing

Model
Optimization

 ML Phase ML Task Contribution

Association/class rule pruning

Decision tree pruning

SVM Pruning

Defining the number of clusters

Modeling

Membership functions

Rare rule mining

Multi-level patterns

Determination optimal parameters

Definition of network structure

Sparse reward

Brittle convergence

Less effective exploration

Clustering

ARM

Neural Networks

Reinforcement
learning

Fig. 20. Classification of evolutionary machine learning

either by selecting a subset feature or by constructing a new set of features from the original features. The latter
contribution is achieved by evolutionary undersampling and oversampling techniques.

But the main focus of EC algorithms is to enhance the performance of the learning algorithms. EML algorithms
can be categorized into three main classes: supervised evolutionary learning, unsupervised evolutionary learning, and
reinforcement evolutionary learning. Evolutionary classification/prediction and evolutionary ensembles are the main
contributions of supervised learning. In the realm of unsupervised learning, EC can be used to do feature selection,
clustering, dimensionality reduction, anomaly detection among other tasks. Different challenges of RL, such as a long
time horizons, the sparse reward, the need for complementary correction mechanisms, and high dimensional action and
state spaces can be addressed by integrating EC approaches into reinforcement learning. In particular, EC techniques
are often employed as policy search mechanism in RL.

Weighting in ML is a common technique used to emphasize certain characteristics of the data that improves the
resulting models. A weighting system can be used, for example, to outline the importance of certain particular instances
or features or to rank a set of techniques in the context of ensembles [124]. Neural networks, SVM, and k-NN are the
most common techniques that benefit from weights. The main goal of a weighting system is to optimize a set of the
model weights in the training phase. Weighting can also be applied to the voting system of the k-NN and EC approaches
can be utilized as a weight optimizer in ML.
Manuscript submitted to ACM Computing Surveys

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Evolutionary Machine Learning: A Survey 25

Overfitting cannot be neglected in classifiers in which the performance of a model on a training dataset is high but
is low on unseen data, which results in poor generalization. The large complexity resulting from high depth of deep
learning models with their network topology and neural architecture, and from imbalanced or high-dimensional datasets
are some of the reasons behind the overfitting issue. While evolutionary algorithms can contribute to addressing each
of these factors, their two main contributions are to provide appropriately balanced and feature-reduced input sets
for classifiers. Also, learning mechanisms of neural networks often converge to local minima since the loss functions
are almost always non-convex [38]. Evolutionarily coded cost-sensitivity is a strategy that improves loss functions to
add robustness to classifiers against imbalanced datasets. The use of multi-objective approaches in the optimization
of neural networks and deep learning can further balance accuracy with generalization. The penalty parameter C in
an SVM provides a trade-off between the generalization and training error [108]. One of the main objectives of the
evolutionary approaches in SVM is to optimize parameter C to improve generalization. The optimization and pruning
techniques used in decision trees and SVM models lead to be more generalized models [117].

In fuzzy ML, membership functions are used to transform numeric values into linguistic terms. The choice of
membership function affects the discovery of patterns in fuzzy ML; thus, learning or tuning membership functions is
beneficial. In the traditional fuzzy ML, it was assumed that membership functions were known in advance. However,
having prior information of the most effective fuzzy sets covering all domains of numerical variables is not possible.
Extracting membership functions using an EC algorithms is a main trend in EML, as regards evolutionary ARM tasks.

Pruning strategies for model optimization have been successfully applied to DT, SVM, and ARM. Here, a model
is built using a traditional ML algorithm and EC is then used for model optimization. Most of the traditional ARM
algorithms can extract an overwhelming number of rules that often contain redundant and irrelevant information. For
example, tree pruning is an ML technique that is used to minimize a DT’s size to reduce the complexity of the classifier
and improves its predictive accuracy. Some of the DT’s subtrees are replaced with leaves in the tree pruning process.
SVM algorithms often generate enormous support vectors, which cause a reduction in the speed of decision function
convergence. Besides, due to the overfitting effect, the resulting SVM model may adapt itself to noise in the training set
rather than to the true underlying data distribution, failing to correctly classify unseen examples. Pruning support
vectors in trained SVMs can obtain faster and more accurate SVMs. EC algorithms are the most important techniques
for pruning models and patterns extracted by ML algorithms.

EC approaches enable us to develop ARM algorithms for the extraction of association rules without the frequent
item-set mining step, which leads to a reduction in computational complexity. However, the main focus of evolutionary
ARM algorithms is to deal with quantitative data, in which either discretization of values into appropriate intervals or
derivation of membership functions by EC approaches for fuzzifying the quantitative transactions are considered.

The combination of the EC approaches with the hierarchical clustering algorithms still remains untouched in the
literature. This is probably due to the fact that defining a fitness function that is capable of guiding evolution is not
straightforward. Only a few studies have addressed this topic to the best of our knowledge [68, 109].

5.2 Challenges and Future Insights

Over the past several decades, a variety of EC algorithms have been applied to ML tasks, yet some serious issues remain
still insufficiently researched. Some of these major research gaps are described next.

Lack of experimental results:Various surveys have attempted to provide a classification of papers, which published
on EML methods, using a research methodology. Since the mathematical analysis of run-time, convergence guarantee,
and parameter configurations are an essential need, it makes the selection of a proper EML algorithm for real-world

Manuscript submitted to ACM Computing Surveys

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Telikani et al.

applications a challenging undertaking by organizations and practitioners. EC algorithms can be successfully used
for parameter tuning of neural networks and SVM; however, for a novice user, it is difficult to judge which algorithm
to use for a particular task. Most proposals have focused on comparing an EML algorithm with non-evolutionary
or traditional techniques. However, none of these studies systematically compared the performance of different EC
algorithms in multiple ML tasks. We were unable to find a comparative study that identifies which EC technique achieves
better performance in terms of parameter settings, structure design, computational complexity, and other aspects. The
unavailability of such surveys may be due to a variety of reasons, including the lack of publicly available source code for
evolutionary ML approaches, variation of encoding techniques, different objective functions and evolutionary operators.
But presenting such a systematic comparison should help new ML users to select a suitable method for a particular
application.

Lack of surveys on evolutionarymachine learning: A variety of survey papers have been published on different
aspects of evolutionary ML, such as clustering, DTs, neural networks, and deep learning. However, there is a lack of
comprehensive studies regarding the application of EC algorithms in other fields such as RL, resampling, classification,
SVM, and ensembles. For example, different review papers on RL have been published focusing on different aspects,
such as RL in robotics [81], deep RL [13], and safe RL [48]. However, evolutionary RL has not been reviewed to date.
This area of research should be considered and further studied.

Modular EML: Most EML models are especially developed to address particular problems and cannot be applied to
different domains. Modular learning is a possibility for applying ML models to different problems, in which various
versatile models are built and learning can be carried out by small autonomous modules. Each independently-trained
model would aim at solving a particular subtask that is common among a large number of ML problems. A large problem
can be addressed when there is a cooperation between different models. Training models autonomously means that
they can be reused in other fields. Different issues should be taken into account in modular learning, such as identifying
subtasks and defining their specific modules, determining candidates from a set of previously learned modules, and
creating a coherent and effective model by connecting the modules. Multi-task learning is one way to approach this
problem [71].

Transfer learning: The main idea of transfer learning is to reuse previously learned models for a new problem. This
is a relatively new research area in ML community. The idea has recently become more important with the continuous
growth of problems. For example, handwritten character recognition models can be used to recognize characters from
digitized books. In summary, different ML problems have certain common aspects that require the ability to transform
some of the expertise obtained for one problem to others.

Evolutionary CNNs: CNNs contribute to large applications and have been successfully used in numerous fields.
However, evolutionary CNNs have remained an unexplored field, which only recently has received attention. This is a
promising research line that provides various opportunities for researchers. The automatic evolutionary design of a
CNN topology is a very promising area in need of further study.

Multi/many-objective EML: Standard EML algorithms typically optimize only one objective in the model develop-
ment process, while most of ML problems have different objectives to be optimized. For instance, an ARM problem has
objectives such as support, confidence, and comprehensibility that all must be optimized simultaneously. The choice
of an objective functions is an important issue in multi-objective EML. Most algorithms optimize two objectives, and
only few algorithms can optimize more than three objective functions simultaneously. Multi-objective algorithms such
as NSGA-II, PESA-II, and SPEA2 face difficulties when solving problems with more than four objectives. Currently,
the use of such approaches in ML has attracted little attention in the literature. Further, evolutionary algorithms use
Manuscript submitted to ACM Computing Surveys

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Evolutionary Machine Learning: A Survey 27

operators such as selection, crossover, and mutation. The selection operator is mainly influenced by the multi-objective
evolutionary algorithm that is used as an optimizer for ML. Crossover and mutation operators, in contrast, are often
determined by the encoding strategy. The method of selecting a final solution is one of the most important tasks in
multi-objective ML. Multi-objective evolutionary algorithms provide a set of non-dominated solutions in the final
generation, and it is important to select one solution from this set. Objective-based, knee-based, and ensemble-based
methods are three primary selection techniques. Pareto dominance is used to find the relationship and compare so-
lutions in multi-objective problems [162–164]. However, as the number of objectives increases beyond three, Pareto
dominance alone is no longer satisfactory [93]. Such problems that necessitate increased algorithmic complexity are
called “many-objective optimization problems” [36]. They appear in different real-world areas such as air traffic control
or nurse rostering. Integrating multi/many-objective evolutionary approaches into ML models can solve a diverse set of
application problems.

EML on big data: Big data offers new opportunities for ML, but it also brings challenges such as computational
costs, huge high-dimensional sample sizes, storage impasse, and error extent [161]. Most studies of evolutionary ML
have only focused on the quality of ML models, whereas computational efficiency, a critical issue in seriously large-scale
ML problems, has attracted less attention. The costs of searching mechanisms and fitness value computations are
major challenges in large-scale EML processes because a population of individuals is evaluated in each generation in
EML approaches. An EML algorithm should show good scalability when a dataset increases in size. These types of
datasets require large memory and long computation times. The scalability issue may limit the applicability of EML
algorithms on large-scale problems. Parallel/distributed evolutionary ML using big data processing technologies, such
as master/slave, MapReduce, and CPU/GPU architectures, are one of the major solutions to deal with large-scale EML
[165].

Evolutionary cost-sensitive learning: The cost difference between mis-classification errors can be quite high
in some classification problems. For instance, in a cancer diagnostic system in which each class represents whether
a person has cancer or not, wrongly classifying a patient as healthy will result in a much greater cost compared to
classifying a healthy person as a patient. Therefore, a wrong diagnosis may cause a treatment delay or the patient’s
death [166]. Cost-sensitive learning is a strategy for minimizing the overall cost of learning that creates learning
models in such a way that the training process is more sensitive to the classes with higher costs. In addition to the
mis-classification cost, test cost is another important type of cost in real-world applications, including money, time,
or other resources. Some methods have been recently proposed in the cost-sensitive learning field that attempt to
integrate class-specific costs into ML algorithms such as deep learning [49, 77] and DTs [83, 102]. However, to date the
integration of tEC algorithms and cost-sensitive learning in ML classifiers has received little attention. Due to lack of
prior knowledge, misclassification costs are usually unknown and hard to choose in practice. Recently, an evolutionary
cost-sensitive DBN has been developed in which an adaptive DE is employed to optimize the mis-classification costs
used in the cost function [189].

6 CONCLUSIONS

Evolutionary computation algorithms have focused on addressing particular challenges of traditional ML tasks. In this
paper, we surveyed the importance of EC algorithms in ML tasks regarding with respect to various key aspects of their
design, such as problem encoding, search mechanism, fitness function, and the different challenges that EC algorithms
have tried to address. We studied nine different tasks in which EC algorithms made significant contributions. An ML
problem in EML can be formulated in terms of three major representations: graph (which are suitable for ACO), tree

Manuscript submitted to ACM Computing Surveys

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Telikani et al.

(which are suitable for canonical genetic programming), and vector (which are used by most EC algorithms such as
GA, PSO, and ABC). Search mechanisms can be used to find optimal solutions, either based on single solutions or on
populations of solutions. Each task has specific evaluation measures that are formulated in the form of a fitness function.
For example, accuracy, recall, sensitivity, specificity, and precision are main objectives in classification applications.
Evaluation measures can be considered single-objective or multi-objective.

We described various fields in which existing evolutionary ML algorithms have been applied, including medicine
(thoracic surgery and disease diagnosis), computer networks (intrusion detection, traffic classification, and email spam
detection), image and video processing (face recognition and handwritten recognition), and the environment (e.g.,
atmospheric pollution, analyzing ozone content, and forecasting ozone). It appears that EML techniques can play a
significant role in AI and ML in the future and are expected to broaden their application reach further.

EML still suffers from some problems that have not yet been addressed. It appears that major research efforts are
necessary for evolutionary cost-sensitive ML, modular EML, transfer learning, EML on big data, and multi-objective
EML. It is expected that, in the next few years, the integration of EC algorithms with deep learning will speed up
training processes while balancing accuracy.

Also still lacking are comparative studies that would be helpful for assessing the effectiveness of EC approaches in
different applications and ML tasks. There are often concerns about the utility of a specific EC algorithm for solving a
wide variety of ML problems. Different statistical tests should be conducted. Additionally, some surveys would appear to
be useful in the EML field, such as evolutionary RL, evolutionary resampling, evolutionary classification, evolutionary
SVM, and evolutionary ensembles.

Given the wide applicability of ML algorithms in real-life applications, the challenges of traditional ML must be
consistently and aggressively addressed by the academic research community, industry, and manufacturers. Until
now, the optimization of ML using evolutionary algorithms has mostly been investigated in academic publications.
In the future, EML will likely be present across many industries in a number of software packages and will further
be integrated into our daily lives. The importance of ML in various applications is constantly growing; thus, we are
likely to see cutting-edge cloud-based technologies such as Machine Learning-as-a-Service (MLaaS) where evolutionary
optimization can also play a significant role.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases. In ACM SIGMOD

Record, Vol. 22. ACM, 207–216.
[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proc. 20th Intl. Conf. on Very Large Data Bases,

VLDB, Vol. 1215. 487–499.
[3] Harith Al-Sahaf, Ying Bi, Qi Chen, Andrew Lensen, Yi Mei, Yanan Sun, Binh Tran, Bing Xue, and Mengjie Zhang. 2019. A survey on evolutionary

machine learning. Journal of the Royal Society of New Zealand 49, 2 (2019), 205–228.
[4] Shafiq Alam, Gillian Dobbie, Yun Sing Koh, Patricia Riddle, and Saeed Ur Rehman. 2014. Research on particle swarm optimization based clustering:

a systematic review of literature and techniques. Swarm and Evolutionary Computation 17 (2014), 1–13.
[5] Wissam A Albukhanajer, Yaochu Jin, and Johann A Briffa. 2017. Classifier ensembles for image identification using multi-objective Pareto features.

Neurocomputing 238 (2017), 316–327.
[6] Hamid Ali, Waseem Shahzad, and Farrukh Aslam Khan. 2012. Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle

swarm optimization. Applied Soft Computing 12, 7 (2012), 1913–1928.
[7] Ibrahim Aljarah, Majdi Mafarja, Ali Asghar Heidari, Hossam Faris, and Seyedali Mirjalili. 2019. Clustering analysis using a novel locality-informed

grey wolf-inspired clustering approach. Knowledge and Information Systems (2019), 1–33.
[8] Abdulaziz Almalaq and Jun Jason Zhang. 2018. Evolutionary deep learning-based energy consumption prediction for buildings. IEEE Access 7

(2018), 1520–1531.

Manuscript submitted to ACM Computing Surveys

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Evolutionary Machine Learning: A Survey 29

[9] Mehrdad Almasi and Mohammad Saniee Abadeh. 2015. Rare-PEARs: A new multi objective evolutionary algorithm to mine rare and non-redundant
quantitative association rules. Knowledge-Based Systems 89 (2015), 366–384.

[10] Akram AlSukker, Rami Khushaba, and Ahmed Al-Ani. 2010. Optimizing the k-nn metric weights using differential evolution. In 2010 International
Conference on Multimedia Computing and Information Technology (MCIT). IEEE, 89–92.

[11] Amazon. 2017. Amazon EC2 P3 Instances. https://aws.amazon.com/es/ec2/instance-types/p3. Last queried on 14 Nov 2017.
[12] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. A brief survey of deep reinforcement learning. arXiv

preprint arXiv:1708.05866 (2017).
[13] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE

Signal Processing Magazine 34, 6 (2017), 26–38.
[14] Ilhan Aydin, Mehmet Karakose, and Erhan Akin. 2011. A multi-objective artificial immune algorithm for parameter optimization in support vector

machine. Applied Soft Computing 11, 1 (2011), 120–129.
[15] Bodrunnessa Badhon, Mir Md Jahangir Kabir, Shuxiang Xu, and Monika Kabir. 2019. A survey on association rule mining based on evolutionary

algorithms. International Journal of Computers and Applications (2019), 1–11.
[16] Alejandro Baldominos, Yago Saez, and Pedro Isasi. 2020. On the automated, evolutionary design of neural networks: past, present, and future.

Neural Computing and Applications (2020), 1–27.
[17] Rodrigo Coelho Barros, Márcio Porto Basgalupp, Andre CPLF De Carvalho, and Alex A Freitas. 2011. A survey of evolutionary algorithms for

decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 3 (2011), 291–312.
[18] James C Bezdek, Srinivas Boggavarapu, Lawrence O Hall, and Amine Bensaid. 1994. Genetic algorithm guided clustering. In Proceedings of the First

IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. IEEE, 34–39.
[19] Urvesh Bhowan, Mark Johnston, and Mengjie Zhang. 2011. Developing new fitness functions in genetic programming for classification with

unbalanced data. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42, 2 (2011), 406–421.
[20] Cosimo Birtolo, Diego De Chiara, Simona Losito, Pierluigi Ritrovato, and Mario Veniero. 2013. Searching optimal product bundles by means of

GA-based Engine and Market Basket Analysis. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). IEEE, 448–453.
[21] Christopher M Bishop. 2006. Pattern recognition and machine learning. Springer.
[22] Nimagna Biswas, Saurajit Chakraborty, Sankha Subhra Mullick, and Swagatam Das. 2018. A parameter independent fuzzy weighted k-nearest

neighbor classifier. Pattern Recognition Letters 101 (2018), 80–87.
[23] Veronica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso-Betanzos. 2011. Feature selection and classification in multiple class datasets:

An application to KDD Cup 99 dataset. Expert Systems with Applications 38, 5 (2011), 5947–5957.
[24] Leo Breiman. 1996. Bagging predictors. Machine Learning 24, 2 (1996), 123–140.
[25] Lam Thu Bui, Thi Thu Huong Dinh, et al. 2018. A novel evolutionary multi-objective ensemble learning approach for forecasting currency exchange

rates. Data & Knowledge Engineering 114 (2018), 40–66.
[26] Andrés Camero, Jamal Toutouh, Daniel H Stolfi, and Enrique Alba. 2018. Evolutionary deep learning for car park occupancy prediction in smart

cities. In International Conference on Learning and Intelligent Optimization. Springer, 386–401.
[27] José Ramón Cano, Francisco Herrera, and Manuel Lozano. 2005. Stratification for scaling up evolutionary prototype selection. Pattern Recognition

Letters 26, 7 (2005), 953–963.
[28] Erick Cantú-Paz and Chandrika Kamath. 2000. Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies.

In Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation III, Vol. 4120. International Society for Optics and
Photonics, 63–71.

[29] PA Castillo, Maribel García Arenas, Juan J Merelo, VM Rivas, and Gustavo Romero. 2006. Multiobjective optimization of ensembles of multilayer
perceptrons for pattern classification. In Parallel Problem Solving from Nature-PPSN IX. Springer, 453–462.

[30] Kingshuk Chakravarty, Diptesh Das, Aniruddha Sinha, and Amit Konar. 2013. Feature selection by differential evolution algorithm-a case study in
personnel identification. In 2013 IEEE Congress on Evolutionary Computation. IEEE, 892–899.

[31] Yusi Cheng, Qiming Li, et al. 2015. GA-based multi-level association rule mining approach for defect analysis in the construction industry.
Automation in Construction 51 (2015), 78–91.

[32] Brian Cheung and Carl Sable. 2011. Hybrid evolution of convolutional networks. In 2011 10th International Conference on Machine Learning and
Applications and Workshops, Vol. 1. IEEE, 293–297.

[33] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 1 (1967), 21–27.
[34] Giuseppe Cuccu, Matthew Luciw, Jürgen Schmidhuber, and Faustino Gomez. 2011. Intrinsically motivated neuroevolution for vision-based

reinforcement learning. In 2011 IEEE International Conference on Development and Learning (ICDL), Vol. 2. IEEE, 1–7.
[35] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015. Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.
[36] David M Curry and Cihan H Dagli. 2014. Computational complexity measures for many-objective optimization problems. Procedia Computer

Science 36 (2014), 185–191.
[37] SéRgio Francisco Da Silva, Marcela Xavier Ribeiro, João do ES Batista Neto, Caetano Traina-Jr, and Agma JM Traina. 2011. Improving the ranking

quality of medical image retrieval using a genetic feature selection method. Decision Support Systems 51, 4 (2011), 810–820.
[38] Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. 2020. A survey of swarm and evolutionary computing approaches for deep learning.

Artificial Intelligence Review 53, 3 (2020), 1767–1812.

Manuscript submitted to ACM Computing Surveys

https://aws.amazon.com/es/ec2/instance-types/p3

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Telikani et al.

[39] Swagatam Das and Amit Konar. 2009. Automatic image pixel clustering with an improved differential evolution. Applied Soft Computing 9, 1 (2009),
226–236.

[40] Emiro De la Hoz, Eduardo De La Hoz, Andrés Ortiz, Julio Ortega, and Antonio Martínez-Álvarez. 2014. Feature selection by multi-objective
optimisation: Application to network anomaly detection by hierarchical self-organising maps. Knowledge-Based Systems 71 (2014), 322–338.

[41] Jeff Dean and U Hölzle. 2017. Build and train machine learning models on our new Google Cloud TPUs. https://www.blog.google/topics/google-
cloud/google-cloud-offer-tpus-machine-learning

[42] Hongbin Dong, Yuxin Dong, Cheng Zhou, Guisheng Yin, and Wei Hou. 2009. A fuzzy clustering algorithm based on evolutionary programming.
Expert Systems with Applications 36, 9 (2009), 11792–11800.

[43] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. J. Mach. Learn. Res. 20, 55 (2019), 1–21.
[44] Zhiwei Fu, Bruce L Golden, Shreevardhan Lele, S Raghavan, and Edward A Wasil. 2003. A genetic algorithm-based approach for building accurate

decision trees. INFORMS Journal on Computing 15, 1 (2003), 3–22.
[45] KY Fung, CK Kwong, Kin Wai Michael Siu, and KM Yu. 2012. A multi-objective genetic algorithm approach to rule mining for affective product

design. Expert Systems with Applications 39, 8 (2012), 7411–7419.
[46] Mikel Galar, Alberto Fernández, Edurne Barrenechea, and Francisco Herrera. 2013. EUSBoost: Enhancing ensembles for highly imbalanced data-sets

by evolutionary undersampling. Pattern Recognition 46, 12 (2013), 3460–3471.
[47] Salvador Garcı, Isaac Triguero, Cristobal J Carmona, Francisco Herrera, et al. 2012. Evolutionary-based selection of generalized instances for

imbalanced classification. Knowledge-Based Systems 25, 1 (2012), 3–12.
[48] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe reinforcement learning. Journal of Machine Learning Research 16, 1

(2015), 1437–1480.
[49] Salvador García, Alberto Fernández, and Francisco Herrera. 2009. Enhancing the effectiveness and interpretability of decision tree and rule

induction classifiers with evolutionary training set selection over imbalanced problems. Applied Soft Computing 9, 4 (2009), 1304–1314.
[50] Salvador García and Francisco Herrera. 2009. Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy.

Evolutionary Computation 17, 3 (2009), 275–306.
[51] Fred Glover. 1986. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research 13, 5 (1986), 533–549.
[52] Taciana AF Gomes, Ricardo BC Prudêncio, Carlos Soares, André LD Rossi, and André Carvalho. 2012. Combining meta-learning and search

techniques to select parameters for support vector machines. Neurocomputing 75, 1 (2012), 3–13.
[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.
[54] Frédéric Gruau. 1994. Automatic definition of modular neural networks. Adaptive Behavior 3, 2 (1994), 151–183.
[55] Shenkai Gu and Yaochu Jin. 2014. Generating diverse and accurate classifier ensembles using multi-objective optimization. In 2014 IEEE Symposium

on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE, 9–15.
[56] XC Guo, JH Yang, CG Wu, CY Wang, and YC Liang. 2008. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization.

Neurocomputing 71, 16-18 (2008), 3211–3215.
[57] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. In ACM sigmod record, Vol. 29. ACM, 1–12.
[58] Emrah Hancer, Bing Xue, Dervis Karaboga, and Mengjie Zhang. 2015. A binary ABC algorithm based on advanced similarity scheme for feature

selection. Applied Soft Computing 36 (2015), 334–348.
[59] Julia Handl and Bernd Meyer. 2002. Improved ant-based clustering and sorting in a document retrieval interface. In International Conference on

Parallel Problem Solving from Nature. Springer, 913–923.
[60] Shigeru Haruyama and Qiangfu Zhao. 2002. Designing smaller decision trees using multiple objective optimization based gps. In IEEE International

Conference on Systems, Man and Cybernetics, Vol. 6. IEEE, 5–pp.
[61] Mohamed Jafar Abul Hasan and Sivakumar Ramakrishnan. 2011. A survey: hybrid evolutionary algorithms for cluster analysis. Artificial Intelligence

Review 36, 3 (2011), 179–204.
[62] Majeed Heydari and Amir Yousefli. 2017. A new optimization model for market basket analysis with allocation considerations: A genetic algorithm

solution approach. Management & Marketing. Challenges for the Knowledge Society 12, 1 (2017), 1–11.
[63] John H. Holland. 1992. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial

intelligence. MIT Press.
[64] Eduardo Raul Hruschka, Ricardo JGB Campello, Alex A Freitas, et al. 2009. A survey of evolutionary algorithms for clustering. IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 39, 2 (2009), 133–155.
[65] Jian Huang, Xiaoguang Hu, and Fan Yang. 2011. Support vector machine with genetic algorithm for machinery fault diagnosis of high voltage

circuit breaker. Measurement 44, 6 (2011), 1018–1027.
[66] Huimin Jiang, CK Kwong, WY Park, and KM Yu. 2018. A multi-objective PSO approach of mining association rules for affective design based on

online customer reviews. Journal of Engineering Design 29, 7 (2018), 381–403.
[67] Hua Jiang, Shenghe Yi, Jing Li, Fengqin Yang, and Xin Hu. 2010. Ant clustering algorithm with K-harmonic means clustering. Expert Systems with

Applications 37, 12 (2010), 8679–8684.
[68] Raja Jothi, Elena Zotenko, Asba Tasneem, and Teresa M Przytycka. 2006. COCO-CL: hierarchical clustering of homology relations based on

evolutionary correlations. Bioinformatics 22, 7 (2006), 779–788.

Manuscript submitted to ACM Computing Surveys

https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning
https://www.blog.google/topics/google-cloud/google-cloud-offer-tpus-machine-learning

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Evolutionary Machine Learning: A Survey 31

[69] Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski. 2017. Evolutionary induction of a decision tree for large-scale data: a GPU-based
approach. Soft Computing 21, 24 (2017), 7363–7379.

[70] Dervis Karaboga, Bahriye Akay, and Celal Ozturk. 2007. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural
networks. In International Conference on Modeling Decisions for Artificial Intelligence. Springer, 318–329.

[71] Stephen Kelly, Wolfgang Banzhaf, and Cedric Gondro. 2021. Evolving Hierarchical Memory-Prediction Machines in Multi-Task Reinforcement
Learning. Genetic Programming and Evolvable Machines (2021).

[72] Stephen Kelly and Malcolm I Heywood. 2017. Emergent tangled graph representations for Atari game playing agents. In European Conference on
Genetic Programming. Springer, 64–79.

[73] Stephen Kelly and Malcolm I Heywood. 2018. Emergent solutions to high-dimensional multitask reinforcement learning. Evolutionary Computation
26, 3 (2018), 347–380.

[74] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In Proceedings of ICNN’95-International Conference on Neural Networks,
Vol. 4. IEEE, 1942–1948.

[75] Shauharda Khadka and Kagan Tumer. 2018. Evolution-guided policy gradient in reinforcement learning. In Advances in Neural Information
Processing Systems. 1188–1200.

[76] Mujahid H Khalifa, Marwa Ammar, Wael Ouarda, and Adel M Alimi. 2017. Particle swarm optimization for deep learning of convolution neural
network. In 2017 Sudan Conference on Computer Science and Information Technology (SCCSIT). IEEE, 1–5.

[77] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and Roberto Togneri. 2017. Cost-sensitive learning of deep feature
representations from imbalanced data. IEEE Transactions on Neural Networks and Learning Systems 29, 8 (2017), 3573–3587.

[78] Taghi M Khoshgoftaar and Yi Liu. 2007. A multi-objective software quality classification model using genetic programming. IEEE Transactions on
Reliability 56, 2 (2007), 237–245.

[79] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983), 671–680.
[80] Hiroaki Kitano. 1990. Empirical Studies on the Speed of Convergence of Neural Network Training Using Genetic Algorithms.. In AAAI. 789–795.
[81] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32,

11 (2013), 1238–1274.
[82] Jan Koutník, Jürgen Schmidhuber, and Faustino Gomez. 2014. Evolving deep unsupervised convolutional networks for vision-based reinforcement

learning. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. 541–548.
[83] Bartosz Krawczyk, Michał Woźniak, and Gerald Schaefer. 2014. Cost-sensitive decision tree ensembles for effective imbalanced classification.

Applied Soft Computing 14 (2014), 554–562.
[84] D Praveen Kumar, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. 2019. Machine learning algorithms for wireless sensor networks: A

survey. Information Fusion 49 (2019), 1–25.
[85] Pardeep Kumar and Amit Kumar Singh. 2019. Efficient generation of association rules from numeric data using genetic algorithm for smart cities.

In Security in Smart Cities: Models, Applications, and Challenges. Springer, 323–343.
[86] Chan-Sheng Kuo, Tzung-Pei Hong, and Chuen-Lung Chen. 2007. Applying genetic programming technique in classification trees. Soft Computing

11, 12 (2007), 1165–1172.
[87] RJ Kuo and LM Lin. 2010. Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering. Decision

Support Systems 49, 4 (2010), 451–462.
[88] RJ Kuo, SY Lin, and CW Shih. 2007. Mining association rules through integration of clustering analysis and ant colony system for health insurance

database in Taiwan. Expert Systems with Applications 33, 3 (2007), 794–808.
[89] RJ Kuo, YJ Syu, Zhen-Yao Chen, and Fang-Chih Tien. 2012. Integration of particle swarm optimization and genetic algorithm for dynamic clustering.

Information Sciences 195 (2012), 124–140.
[90] Halina Kwaśnicka and Kajetan Świtalski. 2006. Discovery of association rules from medical data-classical and evolutionary approaches. Annales

Universitatis Mariae Curie-Sklodowska, Sectio AI–Informatica 4, 1 (2006), 204–217.
[91] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. 2012. Efficient backprop. In Neural networks: Tricks of the trade. Springer,

9–48.
[92] CKH Lee, King Lun Choy, George TS Ho, and Cathy HY Lam. 2016. A slippery genetic algorithm-based process mining system for achieving better

quality assurance in the garment industry. Expert Systems with Applications 46 (2016), 236–248.
[93] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. 2015. Many-objective evolutionary algorithms: A survey. ACM Computing Surveys (CSUR) 48, 1

(2015), 1–35.
[94] Juan Li, Yuan-xiang Li, Sha-sha Tian, and Jie-lin Xia. 2019. An improved cuckoo search algorithm with self-adaptive knowledge learning. Neural

Computing and Applications (2019), 1–31.
[95] Juan Li, Yuan-xiang Li, Sha-sha Tian, and Jie Zou. 2019. Dynamic cuckoo search algorithm based on Taguchi opposition-based search. International

Journal of Bio-Inspired Computation 13, 1 (2019), 59–69.
[96] Juan Li, Dan-dan Xiao, Hong Lei, Ting Zhang, and Tian Tian. 2020. Using cuckoo search algorithm with q-learning and genetic operation to solve

the problem of logistics distribution center location. Mathematics 8, 2 (2020), 149.
[97] Juan Li, Dan-dan Xiao, Ting Zhang, Chun Liu, Yuan-xiang Li, and Gai-ge Wang. 2021. Multi-swarm cuckoo search algorithm with q-learning

model. Comput. J. 64, 1 (2021), 108–131.

Manuscript submitted to ACM Computing Surveys

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Telikani et al.

[98] Juan Li, Yuan-Hua Yang, Hong Lei, and Gai-Ge Wang. 2020. Solving Logistics Distribution Center Location with Improved Cuckoo Search
Algorithm. International Journal of Computational Intelligence Systems 14, 1 (2020), 676–692.

[99] Wei Li and Gai-Ge Wang. 2021. Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning
for numerical optimization. Engineering with Computers (2021), 1–29.

[100] Wei Li, Gai-Ge Wang, and Amir H Alavi. 2020. Learning-based elephant herding optimization algorithm for solving numerical optimization
problems. Knowledge-Based Systems 195 (2020), 105675.

[101] Xianneng Li, Shingo Mabu, Huiyu Zhou, Kaoru Shimada, and Kotaro Hirasawa. 2010. Genetic network programming with estimation of distribution
algorithms for class association rule mining in traffic prediction. In IEEE Congress on Evolutionary Computation. IEEE, 1–8.

[102] Xiangju Li, Hong Zhao, and William Zhu. 2015. A cost sensitive decision tree algorithm with two adaptive mechanisms. Knowledge-Based Systems
88 (2015), 24–33.

[103] Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto Miikkulainen. 2019. Evolutionary neural automl for deep learning. In
Proceedings of the Genetic and Evolutionary Computation Conference. 401–409.

[104] Amy HL Lim, Chien-Sing Lee, and Murali Raman. 2012. Hybrid genetic algorithm and association rules for mining workflow best practices. Expert
Systems with Applications 39, 12 (2012), 10544–10551.

[105] Pin Lim, Chi Keong Goh, and Kay Chen Tan. 2016. Evolutionary cluster-based synthetic oversampling ensemble (eco-ensemble) for imbalance
learning. IEEE Transactions on Cybernetics 47, 9 (2016), 2850–2861.

[106] Yongguo Liu, Kefei Chen, Xiaofeng Liao, and Wei Zhang. 2004. A genetic clustering method for intrusion detection. Pattern Recognition 37, 5
(2004), 927–942.

[107] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2 (1982), 129–137.
[108] Ana Carolina Lorena and Andre CPLF De Carvalho. 2008. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing

71, 16-18 (2008), 3326–3334.
[109] José Antonio Lozano and Pedro Larranaga. 1999. Applying genetic algorithms to search for the best hierarchical clustering of a dataset. Pattern

Recognition Letters 20, 9 (1999), 911–918.
[110] Nannan Lu, Shingo Mabu, Tuo Wang, and Kotaro Hirasawa. 2013. An efficient class association rule-pruning method for unified intrusion detection

system using genetic algorithm. IEEJ Transactions on Electrical and Electronic Engineering 8, 2 (2013), 164–172.
[111] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. 2020. Nsganetv2: Evolutionary multi-objective

surrogate-assisted neural architecture search. In European Conference on Computer Vision. Springer, 35–51.
[112] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf. 2019. NSGA-Net: Neural

architecture search using multi-objective genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference. 419–427.
[113] José María Luna, Cristóbal Romero, José Raúl Romero, and Sebastián Ventura. 2015. An evolutionary algorithm for the discovery of rare class

association rules in learning management systems. Applied Intelligence 42, 3 (2015), 501–513.
[114] Patrick CH Ma, Keith CC Chan, Xin Yao, and David KY Chiu. 2006. An evolutionary clustering algorithm for gene expression microarray data

analysis. IEEE Transactions on Evolutionary Computation 10, 3 (2006), 296–314.
[115] Sai Ma and Fulei Chu. 2019. Ensemble deep learning-based fault diagnosis of rotor bearing systems. Computers in Industry 105 (2019), 143–152.
[116] Shingo Mabu, Ci Chen, Nannan Lu, Kaoru Shimada, and Kotaro Hirasawa. 2010. An intrusion-detection model based on fuzzy class-association-rule

mining using genetic network programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41, 1 (2010),
130–139.

[117] Arif Jamal Malik and Farrukh Aslam Khan. 2018. A hybrid technique using binary particle swarm optimization and decision tree pruning for
network intrusion detection. Cluster Computing 21, 1 (2018), 667–680.

[118] Veenu Mangat and Renu Vig. 2014. Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic
surgery. Expert Systems with Applications 41, 18 (2014), 8234–8244.

[119] Vittorio Maniezzo, Luca Maria Gambardella, and Fabio De Luigi. 2004. Ant colony optimization. In New Optimization Techniques in Engineering.
Springer, 101–121.

[120] María Martínez-Ballesteros, Francisco Martínez-Álvarez, A Troncoso, and José C Riquelme. 2009. Quantitative association rules applied to
climatological time series forecasting. In International Conference on Intelligent Data Engineering and Automated Learning. Springer, 284–291.

[121] María Martínez-Ballesteros, Francisco Martínez-Álvarez, Alicia Troncoso, and José C Riquelme. 2011. An evolutionary algorithm to discover
quantitative association rules in multidimensional time series. Soft Computing 15, 10 (2011), 2065.

[122] María Martínez-Ballesteros, A Troncoso, Francisco Martínez-Álvarez, and José C Riquelme. 2010. Mining quantitative association rules based on
evolutionary computation and its application to atmospheric pollution. Integrated Computer-Aided Engineering 17, 3 (2010), 227–242.

[123] Jacinto Mata, José-Luis Alvarez, and José-Cristobal Riquelme. 2002. Discovering numeric association rules via evolutionary algorithm. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, 40–51.

[124] Daniel Mateos-García, Jorge García-Gutiérrez, and José C Riquelme-Santos. 2016. An evolutionary voting for k-nearest neighbours. Expert Systems
with Applications 43 (2016), 9–14.

[125] Ron Meir and Gunnar Rätsch. 2003. An introduction to boosting and leveraging. In Advanced Lectures on Machine Learning. Springer, 118–183.
[126] Jan Hendrik Metzen, Mark Edgington, Yohannes Kassahun, and Frank Kirchner. 2008. Analysis of an evolutionary reinforcement learning method

in a multiagent domain. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 1. Citeseer,

Manuscript submitted to ACM Computing Surveys

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Evolutionary Machine Learning: A Survey 33

291–298.
[127] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan,

Nigel Duffy, et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier,
293–312.

[128] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015), 529.

[129] Anirban Mukhopadhyay, Ujjwal Maulik, and Sanghamitra Bandyopadhyay. 2015. A survey of multiobjective evolutionary clustering. ACM
Computing Surveys (CSUR) 47, 4 (2015), 1–46.

[130] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Carlos Artemio Coello Coello. 2013. A survey of multiobjective
evolutionary algorithms for data mining: Part I. IEEE Transactions on Evolutionary Computation 18, 1 (2013), 4–19.

[131] Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Carlos A Coello Coello. 2013. Survey of multiobjective evolutionary
algorithms for data mining: Part II. IEEE Transactions on Evolutionary Computation 18, 1 (2013), 20–35.

[132] SR Nanda, Biswajit Mahanty, and MK Tiwari. 2010. Clustering Indian stock market data for portfolio management. Expert Systems with Applications
37, 12 (2010), 8793–8798.

[133] Satyasai Jagannath Nanda and Ganapati Panda. 2014. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and
Evolutionary Computation 16 (2014), 1–18.

[134] NVIDIA. 2017. The world’s most efficient supercomputer for AI and deep learning. http://images.nvidia.com/content/pdf/infographic/dgx-saturnv-
infographic.pdf. Last visited on 15 July 2017.

[135] Luiz S Oliveira, Robert Sabourin, Flávio Bortolozzi, and Ching Y Suen. 2002. Feature selection using multi-objective genetic algorithms for
handwritten digit recognition. In Object recognition supported by user interaction for service robots, Vol. 1. IEEE, 568–571.

[136] Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut. 2017. A hybrid ensemble pruning approach based on consensus clustering and multi-objective
evolutionary algorithm for sentiment classification. Information Processing & Management 53, 4 (2017), 814–833.

[137] Fernando EB Otero, Alex A Freitas, and Colin G Johnson. 2012. Inducing decision trees with an ant colony optimization algorithm. Applied Soft
Computing 12, 11 (2012), 3615–3626.

[138] Rafael S Parpinelli and Heitor S Lopes. 2011. New inspirations in swarm intelligence: a survey. International Journal of Bio-Inspired Computation 3,
1 (2011), 1–16.

[139] Russel Pears and Yun Sing Koh. 2011. Weighted association rule mining using particle swarm optimization. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 327–338.

[140] Abdolrahman Peimankar, Stephen John Weddell, Thahirah Jalal, and Andrew Craig Lapthorn. 2018. Multi-objective ensemble forecasting with an
application to power transformers. Applied Soft Computing 68 (2018), 233–248.

[141] Lu Peng, Shan Liu, Rui Liu, and Lin Wang. 2018. Effective long short-term memory with differential evolution algorithm for electricity price
prediction. Energy 162 (2018), 1301–1314.

[142] Pyari Mohan Pradhan and Ganapati Panda. 2012. Connectivity constrained wireless sensor deployment using multiobjective evolutionary
algorithms and fuzzy decision making. Ad Hoc Networks 10, 6 (2012), 1134–1145.

[143] Esmat Rashedi, Elaheh Rashedi, and Hossein Nezamabadi-pour. 2018. A comprehensive survey on gravitational search algorithm. Swarm and
Evolutionary Computation 41 (2018), 141–158.

[144] Esteban Real, Chen Liang, David So, and Quoc Le. 2020. AutoML-zero: evolving machine learning algorithms from scratch. In International
Conference on Machine Learning. PMLR, 8007–8019.

[145] Victor Henrique Alves Ribeiro and Gilberto Reynoso-Meza. 2019. A holistic multi-objective optimization design procedure for ensemble member
generation and selection. Applied Soft Computing 83 (2019), 105664.

[146] Victor Henrique Alves Ribeiro and Gilberto Reynoso-Meza. 2020. Ensemble learning by means of a multi-objective optimization design approach
for dealing with imbalanced data sets. Expert Systems with Applications 147 (2020), 113232.

[147] Cristóbal Romero, Amelia Zafra, Jose María Luna, and Sebastián Ventura. 2013. Association rule mining using genetic programming to provide
feedback to instructors from multiple-choice quiz data. Expert Systems 30, 2 (2013), 162–172.

[148] Hussein Samma, Chee Peng Lim, and Junita Mohamad Saleh. 2016. A new reinforcement learning-based memetic particle swarm optimizer. Applied
Soft Computing 43 (2016), 276–297.

[149] Manish Sarkar, B Yegnanarayana, and Deepak Khemani. 1997. A clustering algorithm using an evolutionary programming-based approach. Pattern
Recognition Letters 18, 10 (1997), 975–986.

[150] Mansour Sheikhan and Maryam Sharifi Rad. 2013. Using particle swarm optimization in fuzzy association rules-based feature selection and fuzzy
ARTMAP-based attack recognition. Security and Communication Networks 6, 7 (2013), 797–811.

[151] Christopher Smith and Yaochu Jin. 2014. Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction.
Neurocomputing 143 (2014), 302–311.

[152] Qin Song, Yu-Jun Zheng, Yu Xue, Wei-Guo Sheng, and Mei-Rong Zhao. 2017. An evolutionary deep neural network for predicting morbidity of
gastrointestinal infections by food contamination. Neurocomputing 226 (2017), 16–22.

[153] Pedro Sousa, Paulo Cortez, Rui Vaz, Miguel Rocha, and Miguel Rio. 2013. Email spam detection: A symbiotic feature selection approach fostered by
evolutionary computation. International Journal of Information Technology & Decision Making 12, 04 (2013), 863–884.

Manuscript submitted to ACM Computing Surveys

http://images.nvidia.com/content/pdf/infographic/dgx-saturnv-infographic.pdf
http://images.nvidia.com/content/pdf/infographic/dgx-saturnv-infographic.pdf

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Telikani et al.

[154] Andreas Stafylopatis and Konstantinos Blekas. 1998. Autonomous vehicle navigation using evolutionary reinforcement learning. European Journal
of Operational Research 108, 2 (1998), 306–318.

[155] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. Designing neural networks through neuroevolution. Nature Machine
Intelligence 1, 1 (2019), 24–35.

[156] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. 2009. A hypercube-based encoding for evolving large-scale neural networks. Artificial
Life 15, 2 (2009), 185–212.

[157] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks through augmenting topologies. Evolutionary computation 10, 2 (2002),
99–127.

[158] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic
algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017).

[159] Thorsten Suttorp and Christian Igel. 2006. Multi-objective optimization of support vector machines. In Multi-objective machine learning. Springer,
199–220.

[160] Amirhessam Tahmassebi and Amir H Gandomi. 2018. Building energy consumption forecast using multi-objective genetic programming.
Measurement 118 (2018), 164–171.

[161] Amirhessam Tahmassebi and Amir H Gandomi. 2018. Genetic programming based on error decomposition: A big data approach. In Genetic
Programming Theory and Practice XV. Springer, 135–147.

[162] Amirhessam Tahmassebi, Amir H Gandomi, and Anke Meyer-Baese. 2018. An evolutionary online framework for mooc performance using eeg
data. In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.

[163] Amirhessam Tahmassebi, Amir H Gandomi, and Anke Meyer-Baese. 2018. A Pareto front based evolutionary model for airfoil self-noise prediction.
In 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.

[164] Amirhessam Tahmassebi, Behshad Mohebali, Anke Meyer-Baese, and Amir H Gandomi. 2020. Multiobjective genetic programming for reinforced
concrete beam modeling. Applied AI Letters 1, 1 (2020), e9.

[165] Amirhessam Tahmassebi and Trace Smith. 2021. SlickML: Slick Machine Learning in Python. https://github.com/slickml/slick-ml
[166] Pınar Tapkan, Lale Özbakır, Sinem Kulluk, and Adil Baykasoğlu. 2016. A cost-sensitive classification algorithm: BEE-Miner. Knowledge-Based

Systems 95 (2016), 99–113.
[167] Kshitij Tayal and Vadlamani Ravi. 2016. Particle swarm optimization trained class association rule mining: Application to phishing detection. In

Proceedings of the International Conference on Informatics and Analytics. 1–8.
[168] Akbar Telikani and Amir H Gandomi. 2019. Cost-sensitive stacked auto-encoders for intrusion detection in the Internet of Things. Internet of

Things (2019), 100122.
[169] Akbar Telikani, Amir H Gandomi, and Asadollah Shahbahrami. 2020. A survey of evolutionary computation for association rule mining. Information

Sciences (2020).
[170] Akbar Telikani and Asadollah Shahbahrami. 2018. Data sanitization in association rule mining: An analytical review. Expert Systems with

Applications 96 (2018), 406–426.
[171] Cuong To and Tuan D Pham. 2009. Analysis of cardiac imaging data using decision tree based parallel genetic programming. In 2009 Proceedings of

6th International Symposium on Image and Signal Processing and Analysis. IEEE, 317–320.
[172] Binh Tran, Bing Xue, and Mengjie Zhang. 2016. Genetic programming for feature construction and selection in classification on high-dimensional

data. Memetic Computing 8, 1 (2016), 3–15.
[173] Isaac Triguero, Mikel Galar, Humberto Bustince, and Francisco Herrera. 2017. A first attempt on global evolutionary undersampling for imbalanced

big data. In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2054–2061.
[174] Isaac Triguero, Salvador García, and Francisco Herrera. 2011. Differential evolution for optimizing the positioning of prototypes in nearest neighbor

classification. Pattern Recognition 44, 4 (2011), 901–916.
[175] Alan M Turing. 1950. Computing machinery and intelligence. Mind 59, 236 (1950), 433–460.
[176] Shweta Tyagi and Kamal K Bharadwaj. 2013. Enhancing collaborative filtering recommendations by utilizing multi-objective particle swarm

optimization embedded association rule mining. Swarm and Evolutionary Computation 13 (2013), 1–12.
[177] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. 2020. A Survey on Distributed

Machine Learning. ACM Computing Surveys (CSUR) 53, 2 (2020), 1–33.
[178] Leandro D Vignolo, Diego H Milone, and Jacob Scharcanski. 2013. Feature selection for face recognition based on multi-objective evolutionary

wrappers. Expert Systems with Applications 40, 13 (2013), 5077–5084.
[179] Wengdong Wang and Susan M Bridges. 2000. Genetic algorithm optimization of membership functions for mining fuzzy association rules.

Department of Computer Science Mississippi State University 2 (2000).
[180] Feng Wen, Guo Zhang, Lingfeng Sun, Xingqiao Wang, and Xiaowei Xu. 2019. A hybrid temporal association rules mining method for traffic

congestion prediction. Computers & Industrial Engineering 130 (2019), 779–787.
[181] Chun-Hui Wu, Ta-Cheng Chen, Yi-Chih Hsieh, and Huei-Ling Tsao. 2019. A hybrid rule mining approach for cardiovascular disease detection in

traditional Chinese medicine. Journal of Intelligent & Fuzzy Systems 36, 2 (2019), 861–870.
[182] Bing Xue, Mengjie Zhang, and Will N Browne. 2014. Particle swarm optimisation for feature selection in classification: Novel initialisation and

updating mechanisms. Applied Soft Computing 18 (2014), 261–276.

Manuscript submitted to ACM Computing Surveys

https://github.com/slickml/slick-ml

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Evolutionary Machine Learning: A Survey 35

[183] Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao. 2015. A survey on evolutionary computation approaches to feature selection. IEEE
Transactions on Evolutionary Computation 20, 4 (2015), 606–626.

[184] Dongdong Yang, Licheng Jiao, Maoguo Gong, and Fang Liu. 2011. Artificial immune multi-objective SAR image segmentation with fused
complementary features. Information Sciences 181, 13 (2011), 2797–2812.

[185] Xin Yao. 1993. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems 8, 4 (1993), 539–567.
[186] Jianbo Yu, Lifeng Xi, and Shijin Wang. 2007. An improved particle swarm optimization for evolving feedforward artificial neural networks. Neural

Processing Letters 26, 3 (2007), 217–231.
[187] Mohammed Javeed Zaki. 2000. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering 12, 3 (2000),

372–390.
[188] Maider Zamalloa, Germán Bordel, Luis Javier Rodríguez, and Mikel Peñagarikano. 2006. Feature selection based on genetic algorithms for speaker

recognition. In 2006 IEEE Odyssey-The Speaker and Language Recognition Workshop. IEEE, 1–8.
[189] Chong Zhang, Kay Chen Tan, Haizhou Li, and Geok Soon Hong. 2018. A cost-sensitive deep belief network for imbalanced classification. IEEE

Transactions on Neural Networks and Learning Systems 30, 1 (2018), 109–122.
[190] Lei Zhang, Guanglong Fu, Fan Cheng, Jianfeng Qiu, and Yansen Su. 2018. A multi-objective evolutionary approach for mining frequent and high

utility itemsets. Applied Soft Computing 62 (2018), 974–986.
[191] Zaifang Zhang, Nana Chai, Egon Ostrosi, and Yuliang Shang. 2019. Extraction of association rules in the schematic design of product service

system based on Pareto-MODGDFA. Computers & Industrial Engineering 129 (2019), 392–403.
[192] Changjiu Zhou. 2002. Robot learning with GA-based fuzzy reinforcement learning agents. Information Sciences 145, 1-2 (2002), 45–68.

Manuscript submitted to ACM Computing Surveys

	Abstract
	1 Introduction
	2 Fundamental concepts
	2.1 Machine Learning
	2.2 Evolutionary Computation

	3 Evolutionary Machine Learning
	3.1 Evolutionary Feature Selection/Construction
	3.2 Evolutionary Resampling
	3.3 Evolutionary Classifiers
	3.4 Evolutionary Neural Networks and Deep Learning
	3.5 Evolutionary Reinforcement Learning
	3.6 Evolutionary Clustering
	3.7 Evolutionary Association Rule Mining
	3.8 Evolutionary Ensemble Learning
	3.9 Evolutionary Model Optimization

	4 Applications of Evolutionary ML
	5 Discussion and Challenges
	5.1 Discussion
	5.2 Challenges and Future Insights

	6 Conclusions
	References

