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Abstract: In this article, we examine the dynamics of a Chikungunya virus (CHIKV) infection model
with two routes of infection. The model uses four categories, namely, uninfected cells, infected cells,
the CHIKV virus, and antibodies. The equilibrium points of the model, which consist of the free
point for the CHIKV and CHIKV endemic point, are first analytically determined. Next, the local
stability of the equilibrium points is studied, based on the basic reproduction number (R0) obtained
by the next-generation matrix. From the analysis, it is found that the disease-free point is locally
asymptotically stable if R0 ≤ 1, and the CHIKV endemic point is locally asymptotically stable if
R0 > 1. Using the Lyapunov method, the global stability analysis of the steady-states confirms the
local stability results. We then describe our design of an optimal recruitment strategy to minimize the
number of infected cells, as well as a nonlinear optimal control problem. Some numerical simulations
are provided to visualize the analytical results obtained.

Keywords: Chikungunya virus; cellular infection; general incidence rate; LaSalle’s invariance princi-
ple; Lyapunov stability; optimal control

1. Introduction

The Chikungunya virus (CHIKV) belongs to the Togaviridae family of the genus
Alphavirus [1,2]. It takes the form of an enveloped spherical viral particle with a diameter
of 65 nm, containing a single RNA of positive polarity, encoding two polyproteins. The
RNA is directly infectious and, therefore, serves as both a genome and messenger RNA.
The 11,000 to 12,000 bases of its genome ultimately allow the synthesis of nine proteins,
obtained after cleavage of the polyproteins by viral and cellular proteases. At the end of the
viral cycle, which includes protein synthesis, replication, and assembly of viral particles,
the viral proteins bud on the plasma membrane of the infected cell, and then penetrate
the membrane. The virus is transmitted to humans when anticoagulant saliva is injected
into the blood of the person bitten by an infected mosquito [1,2]. We now know that the
virus does not infect circulating blood cells, but rather, macrophages and adherent cells
(endothelial, epithelial, fibroblast).

In [3], Sourisseau et al. first adapted tools (flow cytometry, immunofluorescence,
electron microscopy, etc.) to specify and quantify the CHIKV. Therefore, they proved in
vitro that CHIKV does not replicate in circulating blood cells (lymphocytes, monocytes), but
that it replicates in macrophages (phagocytic cells which are of blood origin but localized in
tissues). These cells itself infect tissues, such as muscles and joints. The CHIKV also infects
the so-called “adherent” cells, such as endothelial cells, epithelial cells, and fibroblasts.
A study conducted by Ozden at al. [4] has shown that, in infected people, certain cells
present in muscle tissue are targets of the CHIKV. Their work was based on the study of
patient biopsies. They found that, in a biopsy taken at an acute stage of the disease from
one patient, and in another taken at a later stage from another patient, the precursor cells
of muscle cells—the satellite cells—were infected with the virus. In addition, these cells
have been found, in cell culture, to be very permissive to the virus. The authors are now
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trying to discover if these cells play the role of a “reservoir” of the virus, which would
explain the recurrence of muscle pain observed in some patients. [5] stated that like any
virus, the CHIKV enters its host’s cells and uses the cellular machinery there to replicate.
In particular, it is shown that this arbovirus replicates in macrophages, cells of the immune
system specializing in phagocytosis and present in several tissues and organs. On the
other hand, it does not reproduce in the T and B lymphocytes which are circulating in
the blood. CHIKV also infects epithelial cells (organ wall), endothelial cells (inner wall of
blood vessels), as well as cells of fibrous tissues (fibroblasts).

The contribution of mathematics is made initially through modelling [6–14]. This stage
of mathematical modelling makes it possible to test, without wasting time or expense, the
control measures that are envisaged: preventive measures, isolation of patients, treatments,
vaccinations, and so forth. The model, nevertheless, does not completely reflect reality
and is not intended to reproduce it in full. It must reproduce the characteristics of the
phenomenon studied according to the objectives set for the framework of the study as well
as possible. Modelling such a phenomenon consists of applying mathematical tools to a
fragment of reality. It is transforming a need into equations, trying as much as possible to
account for the constraints identified. Modelling is the most delicate, the longest, and often
the most perilous step. Indeed, it is necessary to successfully understand the real problem
to try to propose a suitable model. The first proposed attempt only very rarely meets
expectations, and several modifications then follow, until a model is reached that groups
together and reflects the maximum number of constraints that the real phenomenon must
observe. If this step is neglected or omitted, if the constraints are not well-posed, then one
ends up with a mathematical formulation which does not correspond to the problem. The
resolution of the mathematical problem then provides a solution not suited to the concrete
problem. However, if the problem is well-posed, then the next step is to solve the problem,
that is, to analyse the model to understand, predict, and act.

Researchers have proposed several mathematical systems describing the CHIKV
dynamics (see, e.g., [15–21]). Most of the proposed models were designed to describe
the disease transmission from mosquitoes to human populations. In [22], Wang and Liu
proposed a mathematical model which assumed that the contamination of a monocyte (a
type of leukocyte, or white blood cell) occurs when a monocyte comes into contact with
the virus. Several mathematical models have been proposed using both cellular and viral
infections [13,20,23–25]. Elaiw et al. in [17] proposed and studied a mathematical model
with two routes of infection. Later, Elaiw et al. [18,19] studied both routes of infection in a
CHIKV dynamics model with Holling type-II incidence rates. Several forms of incidence
rates have been applied in epidemic models [26].

In the present paper, we reconsider the mathematical system given in [18] by Elaiw
et al. by considering two main changes relevant to an applied perspective:

1. Considering the adherent cells as the main target for CHIKV and not monocytes, as
mentioned in a series of previous papers [15–20].

2. Considering general nonlinear increasing incidence rates with respect to the unin-
fected cells. This choice is motivated by the fact that the number of effective contacts
between infective cells and susceptible cells or between the virus and susceptible cells
may increase at high infective levels due to crowding of susceptible cells.

The basic reproduction number, R0, was determined based on the next-generation
matrix method [27–29]. Local stability analysis was carried out using local linearisation.
Global stability analysis of the steady-states was studied using Lyapunov stability. We
proved that the CHIKV-free equilibrium point, E0, is globally asymptotically stable if
R0 ≤ 1 and the infected equilibrium point, E1, is globally asymptotically stable ifR0 > 1.
Furthermore, we proposed an optimal recruitment strategy to optimize the number of
infected cells. We designed an optimal control problem. The resolution of the state system
was reached by applying an improvement to the Gauss-Seidel-like implicit finite-difference
method. The adjoint system was solved using a first-order backward-difference. Some
numerical simulations confirming the obtained results are given.
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2. Mathematical Model and Results

Consider the following mathematical model describing the CHIKV dynamics with
two routes of infection which is a generalization of the mathematical model given in [18].

ṡ = Γ− δs− η1 p f (s)− η2y f (s),
ẏ = η1 p f (s) + η2y f (s)− εy,
ṗ = πy− cp− rxp,
ẋ = λ + ρxp−mx.

(1)

The variables s, y, p and x describe the number of uninfected and infected cells, the
CHIKV virus, and antibodies, respectively. The model parameters are nonnegative and are
described as follows.

Parameter Description
Γ uninfected cells recruitment rate
δ Uninfected cells mortality rate
ε Infected cells mortality rate
c CHIKV mortality rate
m Antibodies loss rate
π Generation rate of the virus by infected cells
r Rate at which Antibodies attack the virus
λ Antibodies expansion rate
ρ Proliferate rate of antibodies, once antigen is encountered

η1, η2 Incidence rate constants

Note that (η1 p f (s) + η2y f (s)) represents the number of cells disappearing from re-
cruitment in the susceptible compartment and entering into an infected compartment,
where f is a nonlinear increasing function.

Using nonlinear incidence rates of the form η1 f (s)p and η2 f (s)y into this model is
important because the number of effective contacts between infective cells and susceptible
cells may increase at high infective levels due to crowding of susceptible cells. If the
function f (s) is increasing for large values of s, used for interpreting the “psychological”
effects: for high number of susceptible cells, the infection risk increase as the number of
susceptible cells increases, since the total number of cells may tend to increase the number
of contacts.

Let s0 =
Γ
δ

and x0 =
λ

m
. We make the following assumption that will be used in the

rest of the paper.

Assumption 1. f is an increasing, nonnegative C1(R+) function such that f (0) = 0 and
f (s0) <

ε

η2
.

Assumption 1 states that the CHIKV-cell and the infected-cell incidence rates increase
with the number of susceptible cells. Assumption 1 also considers that no CHIKV-cell and
infected-cell infections can take place in the absence of susceptible cells.

The classical Monod functions can be used to express the transmission rate of infections
from infected to susceptible cells as well as from CHIKV to susceptible cells:

f (s) =
µ̄s

k + s
,

where µ̄ represents the transmission rates of the disease and k is the Monod constant
which is proportional both to the number of CHIKV pathogens and infected cells when the
saturated incidence rate is µ̄/2.

The last condition of Assumption 1 is of a mathematical artifice that we used to prove
the existence and uniqueness of the infected equilibrium point.
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2.1. Basic Properties

First note that ṡ ≤ Γ− δs; then, one can easily deduce that

Lemma 1. if s(0) ≤ s0, we have s(t) ≤ s0 +
(
s(0)− s0

)
e−δt ≤ s0, ∀t ≥ 0.

The system (1) admits non-negative bounded solutions. In particular,

Lemma 2. there exist M1, M2, M3 > 0 such that

Ω = {(s, y, p, x) ∈ R4
≥0 : 0 ≤ s, y ≤ M1, 0 ≤ p ≤ M2, 0 ≤ x ≤ M3}

is a positively invariant bounded set for system (1)

.

Proof. Note that

ṡ |s=0 = Γ > 0,

ẏ |y=0 = η1 p f (s) ≥ 0, ∀ s, p ≥ 0,

ṗ |p=0 = πy ≥ 0, ∀ y ≥ 0,

ẋ |x=0 = λ > 0.

Consider S1(t) = s(t) + y(t) and S2(t) = p(t) +
r
ρ

x(t). Then, one has

Ṡ1(t) = Γ− δs(t)− εy(t) ≤ Γ− γ1(s(t) + y(t)) = Γ− γ1S1(t),

where γ1 = min{δ, ε}. Hence S1(t) ≤ M1, if S1(0) ≤ M1, with M1 =
Γ
γ1

. Therefore,

0 ≤ s(t), y(t) ≤ M1 if 0 ≤ s(0) + y(0) ≤ M1. Furthermore, one has

Ṡ2(t) = πy(t)− cp(t) +
r
ρ

λ− mr
ρ

x(t)

≤ πM1 +
r
ρ

λ− γ2

(
p(t) +

r
ρ

x(t)
)

= πM1 +
r
ρ

λ− γ2S2(t),

where, γ2 = min{c, m}. Then S2(t) ≤ M2, if S2(0) ≤ M2, with M2 =

πM1 +
r
ρ

λ

γ2
. As

all variables are nonnegative, therefore, 0 ≤ p(t) ≤ M2 and 0 ≤ x(t) ≤ M3 if 0 ≤
p(0) +

r
ρ

x(0) ≤ M2, with M3 =
ρM2

r
.

2.2. Basic Reproduction Number and Equilibrium Points

The basic reproduction rate is a dimensionless quantity which allows the measurement
of the ability of an infectious cell to spread infection through a given cell’s population im-
mediately after its introduction. From a mathematical point of view, it allows, under certain
conditions, the stability of the points of equilibrium of a dynamic system to be established.

Diekmann et al. [27,28] designed a way to calculate the basic reproduction number
R0, named the next-generation matrix method, and this was adapted by Van den Driessche
and Watmough [29].
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Here, F =

 η2 f (s0) η1 f (s0) 0
0 0 0
0 0 0

 and V =

 ε 0 0
−π rx0 + c 0

0 −ρx0 m

. The deter-

minant of V is given by det(V) = mε(rx0 + c) > 0; thus,

V−1 =
1

mε(rx0 + c)

 m(rx0 + c) 0 0
mπ mε 0

πρx0 ερx0 ε(rx0 + c)

 and the next-generation ma-

trix is given by

FV−1 =
1

mε(rx0 + c)

 m(rx0 + c)η2 f (s0) + mπη1 f (s0) mεη1 f (s0) 0
0 0 0
0 0 0

.

Then, the basic reproduction number of system (1) is calculated as the spectral radius
of the matrix FV−1:

R0 =
m(rx0 + c)η2 f (s0) + mπη1 f (s0)

mε(rx0 + c)
=

η2 f (s0)

ε
+

πη1 f (s0)

ε(rx0 + c)
.

Lemma 3. • IfR0 ≤ 1, then (1) admits only E0 ∈ Ω as an equilibrium point.

• If R0 > 1, then (1) admits two equilibrium points, E0 ∈ Ω and E1 ∈
◦
Ω, and here,

◦
Ω

represents the interior of the set Ω.

Proof. Let E(s, y, p, x) be an equilibrium point satisfying

0 = Γ− δs− η1 p f (s)− η2y f (s), (2)

0 = η1 p f (s) + η2y f (s)− εy, (3)

0 = πy− cp− rxp, (4)

0 = λ + ρxp−mx. (5)

The resolution of Equations (2)–(5) gives us the CHIKV-free equilibrium point
E0 = (s0, 0, 0, x0).

Moreover, we have

x =
λ

m− ρp
,

y =
cp + rxp

π
=

cp
π

+
rλp

π(m− ρp)
,

s =
Γ− εy

δ
= s0 −

cεp
πδ
− rλεp

πδ(m− ρp)
,

η1 p f (s) = (ε− η2 f (s))y.

We define the function

g(p) = η1 f (s) + (η2 f (s)− ε)
y
p

= η1 f
(

s0 −
cεp
πδ
− rλεp

πδ(m− ρp)

)
+
(

η2 f
(

s0 −
cεp
πδ
− rλεp

πδ(m− ρp)

)
− ε
)( c

π
+

rλ

π(m− ρp)

)
.

Then, we obtain

g(0) = η1 f (s0) + (η2 f (s0)− ε)
cm + rλ

πm

= ε
cm + rλ

πm

(η2 f (s0)

ε
+

πmη1 f (s0)

ε(cm + rλ)
− 1
)

= ε
cm + rλ

πm
(R0 − 1) > 0 if R0 > 1.
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Now, we have lim
p→(m/ρ)−

(
s0−

cεp
πδ
− rλεp

πδ(m− ρp)

)
= −∞, and then, lim

p→(m/ρ)−
η1 f
(

s0−

cεp
πδ
− rλεp

πδ(m− ρp)

)
< 0 and lim

p→(m/ρ)−
η2 f
(

s0 −
cεp
πδ
− rλεp

πδ(m− ρp)

)
< 0. One deduces,

therefore, that

lim
p→(m/ρ)−

g(p) < 0.

The derivative of the function g is given by

g′(p) = −η1

( cε

δπ
+

εrλ

δπ

m
(m− ρp)2

)
f ′
(

s0 −
cεp
πδ
− rλεp

πδ(m− ρp)

)
−η2

( c
π

+
rλ

π(m− ρp)

)( cε

δπ
+

εrλ

δπ

m
(m− ρp)2

)
f ′
(

s0 −
cεp
πδ
− rλεp

πδ(m− ρp)

)
+

rλρ

π(m− ρp)2

(
η2 f
(

s0 −
cεp
πδ
− rλεp

πδ(m− ρp)

)
− ε
)

≤ −η1

( cε

δπ
+

εrλ

δπ

m
(m− ρp)2

)
f ′(s)

−η2

( c
π

+
rλ

π(m− ρp)

)( cε

δπ
+

εrλ

δπ

m
(m− ρp)2

)
f ′(s) +

rλρ

π(m− ρp)2

(
η2 f (s0)− ε

)
, and thus, by Assumption 1,

g′(p) ≤ 0 ∀ p ∈ (0,
m
ρ
).

Therefore, the equation g(p) = 0 admits a unique solution p1 ∈ (0,
m
ρ
). Thus,

we obtain

x1 =
λ

m− ρp1
, (6)

y1 =

cp1 +
rp1λ

m− ρp1

π
=

cp1m− ρcp2
1 + rp1λ

π(m− ρp1)
, (7)

s1 = s0 −
ε

δ

cp1m− ρcp2
1 + rp1λ

π(m− ρp1)
≤ s0 (8)

.
Thus, an infected steady-state E1 = (s1, y1, p1, x1) exists ifR0 > 1.

Let’s show that E1 ∈
◦
Ω. From the steady-state conditions of E1, we have Γ = δs1 +

η1 p1 f (s1) + η2y1 f (s1)→ δs1 + εy1 = Γ→ 0 < s1 <
Γ
δ
≤ M1 and 0 < y1 <

Γ
ε
≤ M1.

Using Equations (4) and (5), we obtain

cp1 = πy1 +
r
ρ

λ− mr
ρ

x1 → cp1 +
mr
ρ

x1 = πy1 +
r
ρ

λ < πM1 +
r
ρ

λ

, which means that p1 <

πM1 +
r
ρ

λ

c
≤ M2 and x1 <

ρ

r

πM1 +
r
ρ

λ

m
≤ ρM2

r
= M3.

It follows that E1 ∈
◦
Ω.

2.3. Local Stability

In epidemiology, the basic reproduction number R0 of an infection is the average
number of secondary cases caused by an individual with a communicable disease in a fully
susceptible population.
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More precisely, R0 is the average number of people a contagious person can infect.
This rate is calculated from a population that is fully susceptible to infection and which has
not yet been vaccinated or immunized against an infectious agent.

Theorem 1. IfR0 < 1, then the disease-free steady-state E0 is locally asymptotically stable, and if
R0 > 1, it is unstable.

Proof. The Jacobian matrix at point (s, y, p, x) is given by:

J =


−δ− η1 p f ′(s)− η2y f ′(s) −η2 f (s) −η1 f (s) 0

η1 p f ′(s) + η2y f ′(s) η2 f (s)− ε η1 f (s) 0
0 π −(c + rx) −rp
0 0 ρx ρp−m

.

Its value at E0 is given by:

J0 =


−δ −η2 f (s0) −η1 f (s0) 0
0 η2 f (s0)− ε η1 f (s0) 0
0 π −(c + rx0) 0
0 0 ρx0 −m

.

J0 admits four eigenvalues; λ1 = −δ < 0 and λ2 = −m < 0. λ3 and λ4 are eigenvalues
of the sub-matrix

Sj0 :=
(

η2 f (s0)− ε η1 f (s0)
π −(c + rx0)

)
.

The trace of Sj0 is given by

Tr(Sj0) = η2 f (s0)− ε− (c + rx0)

= −(c + rx0)− ε
(

1− η2 f (s0)

ε

)
≤ −(c + rx0)− ε

(
1− η2 f (s0)

ε
− πη1 f (s0)

ε(c + rx0)

)
≤ −(c + rx0)− ε

(
1−R0

)
and the determinant of Sj0 is given by

Det(Sj0) = −(c + rx0)
(

η2 f (s0)− ε
)
− πη1 f (s0)

= −ε(c + rx0)
(η2 f (s0)

ε
− 1 +

πη1 f (s0)

ε(c + rx0)

)
= −ε(c + rx0)

(
R0 − 1

)
= ε(c + rx0)

(
1−R0

)
.

Then, the steady-state E0 is locally asymptotically stable ifR0 < 1, and it is unstable
ifR0 > 1.

Theorem 2. IfR0 > 1, then the infected steady-state E1 is locally asymptotically stable.

Proof. The Jacobian matrix at a point E1 = (s1, y1, p1, x1) is given by:

J1 =


−δ− η1 p1 f ′(s1)− η2y1 f ′(s1) −η2 f (s1) −η1 f (s1) 0

η1 p1 f ′(s1) + η2y1 f ′(s1) η2 f (s1)− ε η1 f (s1) 0
0 π −(c + rx1) −rp1
0 0 ρx1 ρp1 −m

.
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The characteristic polynomial is then given by:

P(X) =

∣∣∣∣∣∣∣∣
−X− δ− η1 p1 f ′(s1)− η2y1 f ′(s1) −η2 f (s1) −η1 f (s1) 0

η1 p1 f ′(s1) + η2y1 f ′(s1) −X + η2 f (s1)− ε η1 f (s1) 0
0 π −X− (c + rx1) −rp1
0 0 ρx1 −X + ρp1 −m

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−(X + δ) −(X + ε) 0 0

η1 p1 f ′(s1) + η2y1 f ′(s1) −X + η2 f (s1)− ε η1 f (s1) 0
0 π −X− (c + rx1) −rp1
0 0 ρx1 −X + ρp1 −m

∣∣∣∣∣∣∣∣
= −(X + δ)

∣∣∣∣∣∣
−X + η2 f (s1)− ε η1 f (s1) 0

π −X− (c + rx1) −rp1
0 ρx1 −X + ρp1 −m

∣∣∣∣∣∣
+(X + ε)

∣∣∣∣∣∣
η1 p1 f ′(s1) + η2y1 f ′(s1) η1 f (s1) 0

0 −X− (c + rx1) −rp1
0 ρx1 −X + ρp1 −m

∣∣∣∣∣∣
= (X + δ)

[
(X + ε− η2 f (s1))

(
(X + c + rx1)(X + m− ρp1) + rρp1x1

)
−πη1 f (s1)(X + m− ρp1)

]
+ (η1 p1 f ′(s1) + η2y1 f ′(s1))(X + ε)(

(X + c + rx1)(X + m− ρp1) + rρp1x1

)
.

The characteristic polynomial P(X) = 0 if, and only if[
(X + δ)(X + ε− η2 f (s1)) + (η1 p1 f ′(s1) + η2y1 f ′(s1))(X + ε)

]
(
(X + c + rx1)(X + m− ρp1) + rρp1x1

)
= πη1 f (s1)(X + δ)(X + m− ρp1)

or also, [
(X + δ)(X + ε− η2 f (s1)) + (η1 p1 f ′(s1) + η2y1 f ′(s1))(X + ε)

]
=

πη1 f (s1)(X + δ)(X + m− ρp1)(
(X + c + rx1)(X + m− ρp1) + rρp1x1

) .

Suppose that X is an eigenvalue with Re(X) ≥ 0; then, since (ε − η2 f (s1)) =
η1 p1 f (s1)

y1
and

p1

y1
=

π

(c + rx1)
, the left-hand side satisfies

∣∣∣(X + δ)(X + ε− η2 f (s1)) + (η1 p1 f ′(s1) + η2y1 f ′(s1))(X + ε)
∣∣∣ > (ε− η2 f (s1))|X + δ|

=
η1 p1 f (s1)

y1
|X + δ|

=
πη1 f (s1)

c + rx1
|X + δ|

, and the right-hand side satisfies
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∣∣∣ πη1 f (s1)(X + δ)(X + m− ρp1)

(X + c + rx1)(X + m− ρp1) + rρp1x1

∣∣∣ <
∣∣∣πη1 f (s1)(X + δ)(X + m− ρp1)

(X + c + rx1)(X + m− ρp1)

∣∣∣
= πη1 f (s1)

∣∣∣ (X + δ)

(X + c + rx1)

∣∣∣
≤ πη1 f (s1)

c + rx1
|X + δ|.

Hence, the contradiction occurs; thus, Re(X) < 0 for all eigenvalues X, and therefore,
E1 is locally asymptotically stable.

3. Global Stability

Consider the function G(z) = z− 1− ln z that will be used in this section.

Theorem 3. IfR0 ≤ 1, then the CHIKV-free equilibrium point E0 is globally asymptotically stable.

Proof. Assume thatR0 ≤ 1 and define the following Lyapunov function U0(s, y, p, x):

U0(s, y, p, x) = s− s0 −
∫ s

s0

f (s0)

f (v)
dv + y +

η1 f (s0)

c + rx0

(
p +

rx0

ρ
G
(

x
x0

))
.

Clearly, U0(s, y, p, x) > 0 for all s, y, p, x > 0 and U0(s0, 0, 0, x0) = 0. The derivative of
U0 with respect to time along the system (1) is given by:

U̇0 =
(
1− f (s0)

f (s)
)(

Γ− δs− η1 p f (s)− η2y f (s)
)
+ η1 p f (s) + η2y f (s)− εy

+
η1 f (s0)

c + rx0

(
πy− cp− rxp +

r
ρ
(1− x0

x
)(λ + ρxp−mx)

)
=

(
1− f (s0)

f (s)
)
(Γ− δs) + η1 p f (s0) + η2y f (s0)− εy

+
η1 f (s0)

c + rx0

(
πy +

r
ρ
(1− x0

x
)(λ−mx)− cp− rxp + r(1− x0

x
)xp
)

≤ δ
(
1− f (s0)

f (s)
)
(s0 − s) + η1 p f (s0) + η2y f (s0)− εy

+
η1 f (s0)

c + rx0

(
πy +

r
ρ
(1− x0

x
)(λ−mx)− p(c + rx0)

)
≤ δ

(
1− f (s0)

f (s)
)
(s0 − s) + η2y f (s0)− εy +

η1 f (s0)

c + rx0

(
πy +

r
ρ
(1− x0

x
)(λ−mx)

)
≤ −δ

( f (s)− f (s0))

f (s)
(s− s0) + ε

(η2 f (s0)

ε
+

πη1 f (s0)

ε(c + rx0)
− 1
)

y

− rmη1 f (s0)

ρ(c + rx0)

(x− x0)
2

x

≤ −δ
( f (s)− f (s0))

f (s)
(s− s0)−

rmη1 f (s0)

ρ(c + rx0)

(x− x0)
2

x
+ ε(R0 − 1)y.

If R0 ≤ 1, then U̇0 ≤ 0 for all s, y, p, x > 0. Let W0 = {(s, y, p, x) : U̇0 = 0}.
It can be easily shown that W0 = {E0}. Applying LaSalle’s invariance principle [30]
(see [20,21,31,32] for other applications), we deduce that E0 is GAS whenR0 ≤ 1.

Theorem 4. For system (1), ifR0 > 1, then E1 is GAS in
◦
Ω.
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Proof. Let a function U1(s, y, p, x) be defined as:

U1(s, y, p, x) = s− s1 −
∫ s

s1

f (s1)

f (v)
dv + y1G

( y
y1

)
+

η1 p1 f (s1)

πy1
p1G

( p
p1

)
+

rp1η1 f (s1)

ρπy1
x1G

( x
x1

)
.

Clearly, U1(s, y, p, x) > 0 for all nonnegative variables s, y, p, x > 0 and U1(s1, y1, p1, x1)
= 0. Calculating U̇1 along the solutions of the model (1), we obtain

U̇1 =
(
1− f (s1)

f (s)
)(

Γ− δs− η1 p f (s)− η2y f (s)
)
+
(
1− y1

y
)(

η1 p f (s) + η2y f (s)− εy
)

+
η1 p1 f (s1)

πy1

(
1− p1

p
)(

πy− cp− rxp
)
+

rη1 p1 f (s1)

ρπy1

(
1− x1

x
)(

λ + ρxp−mx
)

=
(
1− f (s1)

f (s)
)
(Γ− δs)− η1 p f (s)− η2y f (s) + η1 p f (s1) + η2y f (s1) + η1 p f (s)

+η2y f (s)− εy− η1 p f (s)
y1

y
− η2y1 f (s) + εy1 + η1 p1 f (s1)

y
y1
− η1 p1 f (s1)

p1y
py1

−η1 p1 f (s1)
cp

πy1
+ η1 p1 f (s1)

cp1

πy1
− η1 p1 f (s1)

rxp
πy1

+ η1 p1 f (s1)
rxp1

πy1

+η1 p1 f (s1)
rxp
πy1
− η1 p1 f (s1)

rx1 p
πy1

+
rη1 p1 f (s1)

ρπy1

(
1− x1

x
)(

λ−mx
)

=
(
1− f (s1)

f (s)
)
(Γ− δs) + η1 p f (s1) + η2y f (s1)− εy− η1 p f (s)

y1

y
− η2y1 f (s) + εy1

+η1 p1 f (s1)
y
y1
− η1 p1 f (s1)

p1y
py1
− η1 p1 f (s1)

cp
πy1

+ η1 p1 f (s1)
cp1

πy1

+η1 p1 f (s1)
rxp1

πy1
− η1 p1 f (s1)

rx1 p
πy1

+
rη1 p1 f (s1)

ρπy1

(
1− x1

x
)(

λ−mx
)

.

Applying the steady-state conditions for E1: Γ = δs1 + η1 p1 f (s1) + η2y1 f (s1),
εy1 = η1 p1 f (s1) + η2y1 f (s1), cp1 + rx1 p1 = πy1, λ + ρx1 p1 = mx1, we get

U̇1 = −δ
(s− s1)( f (s)− f (s1))

f (s)
+
(

1− f (s1)

f (s)

)(
η1 p1 f (s1) + η2y1 f (s1)

)
+ η1 p f (s1)

+η2y f (s1)− η1 p1 f (s1)
y
y1
− η2y f (s1)− η1 p f (s)

y1

y
− η2y1 f (s) + η1 p1 f (s1)

+η2y1 f (s1) + η1 p1 f (s1)
y
y1
− η1 p1 f (s1)

p1y
py1
− η1 p1 f (s1)

p(πy1 − rx1 p1)

πp1y1

+η1 p1 f (s1)
(πy1 − rx1 p1)

πy1
+ η1 p1 f (s1)

rxp1

πy1
− η1 p1 f (s1)

rx1 p
πy1

+
rη1 p1 f (s1)

ρπy1

(
1− x1

x
)(

mx1 − ρx1 p1 −mx
)

= −δ
(s− s1)( f (s)− f (s1))

f (s)
+
(

1− f (s1)

f (s)

)(
η1 p1 f (s1) + η2y1 f (s1)

)
+ η1 p f (s1)

−η1 p1 f (s1)
y
y1
− η1 p f (s)

y1

y
− η2y1 f (s) + η1 p1 f (s1) + η2y1 f (s1) + η1 p1 f (s1)

y
y1

−η1 p1 f (s1)
p1y
py1
− η1 p f (s1) + η1 p1 f (s1)

rpx1

πy1
+ η1 p1 f (s1)− η1 p1 f (s1)

rx1 p1

πy1

+η1 p1 f (s1)
rxp1

πy1
− η1 p1 f (s1)

rx1 p
πy1

−m
rη1 p1 f (s1)

ρπy1

(x− x1)
2

x
− η1 p1 f (s1)

rx1 p1

πy1

+η1 p1 f (s1)
rx2

1 p1

πxy1

= −δ
(s− s1)( f (s)− f (s1))

f (s)
+
(

1− f (s1)

f (s)

)(
η1 p1 f (s1) + η2y1 f (s1)

)
− η1 p f (s)

y1

y
−η2y1 f (s) + η1 p1 f (s1) + η2y1 f (s1)− η1 p1 f (s1)

p1y
py1

+ η1 p1 f (s1)

−η1 p1 f (s1)
rx1 p1

πy1
+ η1 p1 f (s1)

rxp1

πy1
−m

rη1 p1 f (s1)

ρπy1

(x− x1)
2

x

−η1 p1 f (s1)
rx1 p1

πy1
+ η1 p1 f (s1)

rx2
1 p1

πxy1
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= −δ
(s− s1)( f (s)− f (s1))

f (s)
+ η1 p1 f (s1)

(
3− f (s1)

f (s)
− py1 f (s)

p1y f (s1)
− p1y

py1

)
+η2y1 f (s1)

(
2− f (s1)

f (s)
− f (s)

f (s1)

)
− η1 p1 f (s1)

rx1 p1

πy1

(
2− x

x1
− x1

x

)
−m

rη1 p1 f (s1)

ρπy1

(x− x1)
2

x

= −δ
(s− s1)( f (s)− f (s1))

f (s)
− η1 f (s1)p1

πy1

rλ

ρx1

(x− x1)
2

x

+η2y1 f (s1)
(

2− f (s1)

f (s)
− f (s)

f (s1)

)
+ η1 p1 f (s1)

(
3− f (s1)

f (s)
− py1 f (s)

p1y f (s1)
− p1y

py1

)
.

Using the rule
1
n

n

∑
i=1

ai ≥ n

√
n

∏
i=1

ai, (9)

we get
1
2

( f (s1)

f (s)
+

f (s)
f (s1)

)
≥ 1 and

1
3

( f (s1)

f (s)
+

py1 f (s)
p1y f (s1)

+
p1y
py1

)
≥ 1. Therefore,

U̇1 ≤ 0 for all s, y, p, x > 0 and U̇1 = 0 if, and only if s = s1, y = y1, p = p1 and x = x1.
Therefore, we deduce that E1 is globally stable by LaSalle’s invariance principle [30] (see
[20,21,31,32] for other applications).

4. Optimal Susceptible Recruitment Rate

Consider a time-varying rate of recruitment of uninfected cells, Γ(t) as a control
function. Assume further that f is globally Lipschitz with an upper bound f̄ = sup

s>0
f (s)

and a Lipschitz constant L. The control set Pad is

Pad = {Γ(t) : 0 ≤ Γmin ≤ Γ(t) ≤ Γmax, 0 ≤ t ≤ T, Γ(t) is Lebesgue measurable}.

The aim is to find the optimal values of Γ(t), s(t), y(t), p(t), and x(t) that minimize
the criterion function:

J(Γ) =
∫ T

0

(
− α1s(t) + α2y(t) +

α3

2
Γ2(t)

)
dt.

For appropriate positive constants α1, α2, and α3, the aim is to minimize the infected
cells and maximize the susceptible ones, while minimizing the control cost.

Since the optimal control problem is linear with respect to the control with bounded
states, it is easy to prove the existence of the optimal solution using classical standard
results [33].

Existence and Uniqueness of the Solution

Define the variable ϕ = (s, y, p, x)t; then, the model (1) takes the simple form

ϕ̇ = G(ϕ) = Aϕ + F(ϕ) (10)

, where A =


−δ 0 0 0
0 −ε 0 0
0 π −c 0
0 0 0 −m

 and F(ϕ) =


Γ− p f (s)− y f (s)

p f (s) + y f (s)
−rxp

λ + ρxp

.

Proposition 1. The function G is continuous and uniformly Lipschitz.
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Proof. The function F is continuous and uniformly Lipschitz, since

∥∥F(ϕ1)− F(ϕ2)
∥∥

1 =
∣∣∣− p1 f (s1)− y1 f (s1) + p2 f (s2) + y2 f (s2)

∣∣∣
+
∣∣∣p1 f (s1) + y1 f (s1)− p2 f (s2)− y2 f (s2)

∣∣∣+ r
∣∣∣− x1 p1 + x2 p2

∣∣∣+ ρ
∣∣∣x1 p1 − x2 p2

∣∣∣
≤ 2

∣∣∣p1 f (s1) + y1 f (s1)− p2 f (s2)− y2 f (s2)
∣∣∣+ 2 max(r, ρ)

∣∣∣x1 p1 − x2 p2

∣∣∣
≤ 2

∣∣∣(p1 + y1) f (s1)− (p2 + y2) f (s2)
∣∣∣+ 2 max(r, ρ)

∣∣∣x1(p1 − p2) + p2(x1 − x2)
∣∣∣

≤ 2
∣∣∣(p1 + y1) f (s1)− (p1 + y1) f (s2) + (p1 + y1) f (s2)− (p2 + y2) f (s2)

∣∣∣
+2 max(r, ρ)M3

∣∣∣p1 − p2

∣∣∣+ 2 max(r, ρ)M2

∣∣∣x1 − x2

∣∣∣
≤ 2|p1 + y1| | f (s1)− f (s2)|+ 2| f (s2)| |(p1 + y1)− (p2 + y2)|

+2 max(r, ρ)M3

∣∣∣p1 − p2

∣∣∣+ 2 max(r, ρ)M2

∣∣∣x1 − x2

∣∣∣
≤ 2(M1 + M2) L|s1 − s2|+ 2 f̄ (|p1 − p2|+ |y1 − y2|)

+2 max(r, ρ)M3

∣∣∣p1 − p2

∣∣∣+ 2 max(r, ρ)M2

∣∣∣x1 − x2

∣∣∣
≤ M

∥∥ϕ1 − ϕ2
∥∥

1

, where M = 2 max((M1 + M2) L, f̄ , f̄ + M3 max(r, ρ), M2 max(r, ρ)). Since∥∥Aϕ1 − Aϕ2
∥∥

1 ≤
∥∥A
∥∥

1

∥∥ϕ1 − ϕ2
∥∥

1 (11)

, where
∥∥A
∥∥

1 := supX 6=0

∥∥AX
∥∥

1∥∥X
∥∥

1

is the matrix norm of A subordinate to the vector norm∥∥ · ∥∥1. Therefore, ∥∥G(ϕ1)− G(ϕ2)
∥∥

1 ≤ K
∥∥ϕ1 − ϕ2

∥∥
1 (12)

, where K = max(M,
∥∥A
∥∥), and then the function G is uniformly Lipschitz and continuous.

Since the function G is uniformly Lipschitz and continuous, then the solution of
system (10) exists and is unique.

Let us apply the maximum principle of Pontryagin [33–35] to derive the necessary con-
ditions for the considered optimal control and the corresponding states. The Hamiltonian is

H = −α1s + α2y +
α3

2
Γ2 + λ1 ṡ + λ2ẏ + λ3 ṗ + λ4 ẋ

= −α1s + α2y +
α3

2
Γ2 + λ1(Γ− δs− p f (s)− y f (s)) + λ2(p f (s) + y f (s)− εy)

+ λ3(πy− cp− rxp) + λ4(λ + ρxp−mx).

(13)

For a given optimal control, Γ∗, there exist adjoint functions λ1, λ2, λ3 and λ4 associ-
ated to the states s, y, p and x such that:

λ̇1 = −∂H
∂s

= α1 + λ1(δ + η1 p f ′(s) + η2y f ′(s))− λ2(η1 p f ′(s) + η2y f ′(s)),

λ̇2 = −∂H
∂y

= −α2 + λ1η2 f (s) + λ2(ε− η2 f (s))− λ3π,

λ̇3 = −∂H
∂p

= λ1η1 f (s)− λ2η1 f (s) + λ3(c + rx)− λ4ρx,

λ̇4 = −∂H
∂x

= λ3rp + λ4(m− ρp)

(14)

where λi(T) = 0, for i = 1, 2, 3, 4, are the transversality conditions.
We minimise the Hamiltonian with respect to the control variable at Γ∗. By using the

linearity of the Hamiltonian with respect to the control, we check if the optimal control is
bang-bang, singular, or a combination. On the interior of the control set, we have

∂H
∂Γ

= α3Γ + λ1. (15)
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To investigate the singular case, suppose that
∂H
∂Γ

= 0, then the singular value is
given by

ΓRmsingular(t) = −
λ1

α3

if
α3 6= 0 and Γmin ≤ −

λ1

α3
≤ Γmax.

By using the bounds for the control Γ(t), we get:

if
∂H
∂Γ

< 0 at t, then Γ∗(t) = Γmax,

if
∂H
∂Γ

> 0 at t, then Γ∗(t) = Γmin,

if
∂H
∂Γ

= 0, then ΓRmsingular(t) = −
λ1

α3
.

Hence, the control is optimal at t, provided α3 6= 0 and Γmin ≤ −
λ1

α3
≤ Γmax.

5. Numerical Results and Conclusions

We used saturated incidence rates of the form η1 f (s)p and η2 f (s)y into this model,
where f is a nonlinear increasing function. Thus, the incidence rate considered for numeri-

cal simulations is nonlinear and of Monod’s type, given by f (s) =
s

k + s
, which is globally

Lipschitz with Lipschitz constant
1
k

where k is a constant.

5.1. Numerical Results for the Direct Problem

We consider the parameters k = 1, Γ = 2, λ = 0.1, π = 1, δ = 1, c = 1.2, r = 1, ρ = 0.02
and m = 0.6. For ε = 0.8, η1 = 1.4 and η2 = 2 then R0 = 4.35 > 1, the solution of (
1) converges to E1 (Figure 1). This validates the global stability of E1 = (s1, y1, p1, x1)
when R0 > 1. For ε = 1.2, η1 = 0.2 and η2 = 0.5 then R0 = 0.53 < 1, the solution of (1)
converges to E0 = (s0, 0, 0, x0) = (2, 0, 0, 0.167) (Figure 2).

5.2. Numerical Simulations for the Control Problem

For the numerical resolution of the optimal control problem, we applied an ap-
propriated scheme based on a modified Gauss-Seidel-like finite-difference scheme (see
Appendix A). The parameter values were the same as in Figure 1 (where the equilib-
rium E1 is globally asymptotically stable) but with a variable, Γ. Those values were:
λ = 0.1, π = 1, δ = 1, c = 1.2, ε = 0.8, r = 1, ρ = 0.02, m = 0.6, η1 = 1.4, η2 = 2 and k = 1.
Here, Γ is a variable such that Γ(0) = 0.1, Γmin = 0 and Γmax = 10.

In Figures 3–5, the behaviours of Γ (left), s(t), y(t), p(t) and x(t) (right) were plotted
for several values of α1, α2, and α3. As expected, the number of uninfected cells increased
and converged to 0; however, the number of infected cells decreased. Figures 3–5 (right)
can be compared to Figure 3 in [5], giving the CHIKV pathogenesis.
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Figure 1. Behaviours for ε = 0.8, η1 = 1.4 and η2 = 2, thenR0 = 4.35 > 1.

Figure 2. Behaviours for ε = 1.2, η1 = 0.2 and η2 = 0.5, thenR0 = 0.53 < 1.

Figure 3. α1 = 1, α2 = 1, α3 = 10.
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Figure 4. α1 = 1, α2 = 1, α3 = 1.

Figure 5. α1 = 1, α2 = 1, α3 = 0.1.

6. Conclusions

In the present work, we considered and analyzed a mathematical system of differential
equations modelling the Chikungunya virus (CHIKV) dynamics by two ways of infection
and general incidence rates. The steady-states, which are the CHIKV-free equilibrium
point and CHIKV endemic point, were determined and their local and global stability were
studied, based on the basic reproduction number (R0) obtained by the next-generation
matrix. From the analysis, it was found that the disease-free point is locally asymptotically
stable ifR0 ≤ 1, and the CHIKV endemic point is locally asymptotically stable ifR0 > 1.
The global stability of the equilibrium points were carried out using Lyapunov stability, and
we confirmed the local stability results. These results are consistent with those obtained
when using particular incidence rates as in [18]. We improved and developed the main
mathematical techniques used in the previous studies [15–21]. Furthermore, we obtained
the same sharp threshold criteria for the local and global stability of both disease-free and
endemic steady-states. Later, we applied an optimal recruitment strategy to minimize the
number of infected cells. We thus designed a nonlinear optimal control problem. Some
numerical simulations were conducted to visualize the analytical results obtained.

There is still a series of questions of great interest. Current scientific research about
the dynamics of a virus infection is mainly focused on solving three major issues: the role
of time-delay, the space-time spread of a virus outbreak that occurs in a specific region of
the territory, and the role of intrinsic fluctuations.

In this context, we can seek to develop a mathematical model which improves the
model presented here by considering three types of infected cells, namely, latently infected
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cells, short-lived productively infected cells, and long-lived productively infected cells.
Such a model can be applied to human immunodeficiency virus (HIV) dynamics.
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Appendix A. Applied Numerical Scheme

Let subdivide the time interval as the following: [0, T] =
⋃N−1

n=0 [tn, tn+1], tn =
n dt, dt = T/N. Let sn, yn, pn, xn, λn

1 , λn
2 , λn

3 , λn
4 and Γn are the approximation of the variables

s(t), y(t), p(t), x(t), λ1(t), λ2(t), λ3(t), λ4(t) and the control Γ(t) at time tn. s0, y0, p0, x0,
λ0

1, λ0
2, λ0

3, λ0
4 and Γ0 are the values of the variables s(t), y(t), p(t), x(t), λ1(t), λ2(t), λ3(t), λ4(t)

and the control Γ(t) at time t0 = 0. sN , yN , pN , xN, λn
1 , λn

2 , λn
3 , λn

4 and Γn are the values of the
variables s(t), y(t), p(t), x(t), λ1(t), λ2(t), λ3(t), λ4(t) and the control Γ(t) at time tN = T.
The state system was resolved using Gauss-Seidel-like implicit finite-difference method.
The adjoint system was resolved using a backward-difference scheme as the following:

sn+1 − sn

dt
= Γn − δsn+1 − pn η1sn+1

k + sn − yn η2sn+1

k + sn ,

yn+1 − yn

dt
= pn η1sn+1

k + sn+1 + yn+1 η2sn+1

k + sn+1 − εyn+1,

pn+1 − pn

dt
= πyn+1 − cpn+1 − rxn pn+1,

xn+1 − xn

dt
= λ + ρxn+1 pn+1 −mxn+1,

λN−n
1 − λN−n−1

1
dt

= α1 + λN−n−1
1

(
δ +

η1kpn+1

(k + sn+1)2 +
η2kyn+1

(k + sn+1)2

)
− λN−n

2

( η1kpn+1

(k + sn+1)2 +
η2kyn+1

(k + sn+1)2

)
,

λN−n
2 − λN−n−1

2
dt

= −α2 + λN−n−1
1

η2sn+1

k + sn+1 + λN−n−1
2

(
ε− η2sn+1

k + sn+1

)
− λN−n

3 π,

λN−n
3 − λN−n−1

3
dt

= λN−n−1
1

η1sn+1

k + sn+1 − λN−n−1
2

η1sn+1

k + sn+1 + λN−n−1
3 (c + rxn+1)− λN−n

4 ρxn+1,

λN−n
4 − λN−n−1

4
dt

= λN−n−1
3 rpn+1 + λN−n−1

4 (m− ρpn+1).

Hence we applied the algorithm hereafter
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Algorithm A1:

1: s0 ← s(0), y0 ← y(0), p0 ← p(0), x0 ← x(0), λN
1 ← 0, λN

2 ← 0, λN
3 ← 0, λN

4 ← 0,
Γ0 ← Γ(0),

2: for n = 0 to N − 1 do

sn+1 ← sn + dtΓn

1 + dt
(

δ +
η1 pn

k + sn +
η2yn

k + sn

) ,

yn+1 ←
yn + dtpn η1sn+1

k + sn+1

1 + dt
(

ε− η2sn+1

k + sn+1

) ,

pn+1 ← pn + dtπyn+1

1 + dt(c + rxn)
,

xn+1 ← xn + dtλ
1 + dt(m− ρpn+1)

,

λN−n−1
1 ←

λN−n
1 + dt

(
−α1 + λN−n

2

( η1kpn+1

(k + sn+1)2 +
η2kyn+1

(k + sn+1)2

))
1 + dt

(
δ +

η1kpn+1

(k + sn+1)2 +
η2kyn+1

(k + sn+1)2

) ,

λN−n−1
2 ←

λN−n
2 + dt

(
α2 − λN−n−1

1
η2sn+1

k + sn+1 + λN−n
3 π

)
1 + dt

(
ε− η2sn+1

k + sn+1

) ,

λN−n−1
3 ←

λN−n
3 + dt

(
−λN−n−1

1
η1sn+1

k + sn+1 + λN−n−1
2

η1sn+1

k + sn+1 + λN−n
4 ρxn+1

)
1 + dt(c + rxn+1)

,

λN−n−1
4 ←

λN−n
4 − dtλN−n−1

3 rpn+1

1 + dt(m− ρpn+1)
,

Γn+1 ← max

(
min

(
−

λN−n−1
1

α3
, Γmax

)
, Γmin

)
.

end
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