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Abstract: Terrestrial features extraction, such as roads and buildings from aerial images using an 

automatic system, has many usages in an extensive range of fields, including disaster management, 

change detection, land cover assessment, and urban planning. This task is commonly tough because 

of complex scenes, such as urban scenes, where buildings and road objects are surrounded by shad-

ows, vehicles, trees, etc., which appear in heterogeneous forms with lower inter-class and higher 

intra-class contrasts. Moreover, such extraction is time-consuming and expensive to perform by hu-

man specialists manually. Deep convolutional models have displayed considerable performance for 

feature segmentation from remote sensing data in the recent years. However, for the large and con-

tinuous area of obstructions, most of these techniques still cannot detect road and building well. 

Hence, this work’s principal goal is to introduce two novel deep convolutional models based on 

UNet family for multi-object segmentation, such as roads and buildings from aerial imagery. We 

focused on buildings and road networks because these objects constitute a huge part of the urban 

areas. The presented models are called multi-level context gating UNet (MCG-UNet) and bi-direc-

tional ConvLSTM UNet model (BCL-UNet). The proposed methods have the same advantages as 

the UNet model, the mechanism of densely connected convolutions, bi-directional ConvLSTM, and 

squeeze and excitation module to produce the segmentation maps with a high resolution and main-

tain the boundary information even under complicated backgrounds. Additionally, we imple-

mented a basic efficient loss function called boundary-aware loss (BAL) that allowed a network to 

concentrate on hard semantic segmentation regions, such as overlapping areas, small objects, so-

phisticated objects, and boundaries of objects, and produce high-quality segmentation maps. The 

presented networks were tested on the Massachusetts building and road datasets. The MCG-UNet 

improved the average F1 accuracy by 1.85%, and 1.19% and 6.67% and 5.11% compared with UNet 

and BCL-UNet for road and building extraction, respectively. Additionally, the presented MCG-

UNet and BCL-UNet networks were compared with other state-of-the-art deep learning-based net-

works, and the results proved the superiority of the networks in multi-object segmentation tasks. 

Keywords: building extraction; boundary-aware loss; deep learning; remote sensing;  

road extraction 

 

1. Introduction  

Multiple urban features extraction, such as buildings and road objects from high-

resolution remotely sensed data, is an essential stage that has numerous applications in 

many domains, e.g., infrastructure planning, change detection, disaster management, real 
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estate management, urban planning, and geographical database updating [1]. However, 

this task is very expensive and time-consuming to execute by human experts manually. 

Additionally, labeling pixels of a large remote sensing image manually is a complicated 

and time-consuming task. This is because remote sensing data are typically determined 

in the structure of heterogeneous districts with lower inter-class dissimilarities and often 

higher intra-class discrepancies [2]. Moreover, terrestrial features may be occluded with 

other features, such as shadows, vegetation covers, parking lots, etc. This becomes even 

more eminent with the presence of urban features such as road networks and buildings. 

A larger number of existing techniques that ordinarily rely on a group of predefined prop-

erties have been restrained by such heterogeneity in remote sensing data [3,4]. Conse-

quently, designing a technique that can obtain high precision on feature segmentation 

results, especially from high spatial resolution remote sensing data, is quite challenging. 

Over the last years, convolutional neural network (CNN) frameworks [5–7] have been 

applied for semantic segmentation not only in computer vision applications, such as 

coined CNN with conditional random fields (CRFs) [8], patch network [9], deconvolu-

tional networks [10], deep parsing network [11], SegNet [12], decoupled network [13], and 

fully connected network [14], but also in the remote sensing field [15–17]. Seeing that the 

CNN framework has the capability to utilize input data and efficiently encode spatial and 

spectral features without any pre-processing stage, it is becoming extremely popular in 

the remote sensing field as well [18]. CNN includes several interconnected layers that 

identify features in many representation levels by learning a hierarchical representation 

of features from raw data [19]. In recent years, CNN approaches have been applied in 

remote sensing applications. For example, Ref. [18] combined multi-resolution CNN fea-

tures with simple features, such as the digital surface model (DSM), to identify several 

classes, such as low vegetation, cars, trees, and buildings. For smoothening the pixel-

based classification map, they used CRF method as a post-processing stage. Kampffmeyer 

et al. [20] combined the CNN framework with deconvolutional layers to extract small ob-

jects from orthophoto images. The results showed that the method misclassified small ar-

eas of trees as vegetation and detected many cars (false positive pixels) that are not in the 

imagery. Sherrah [21] applied a similar CNN model to classify aerial imagery into multi-

ple classes. By contrast, they replaced pooling layers with no downsampling and all con-

volutional layers with dense layers in CNNs to maintain output resolution and label aerial 

images semantically. However, by retaining pooling layers with no downsampling, the 

number of parameters in the model severely increased and caused over-fitting. Längkvist 

et al. [22] combined CNN architecture with DSM to classify orthophoto image into multi-

ple classes. They improved the CNN performance by applying the simple linear iterative 

clustering method (SLIC) as a post-processing step; however, the suggested approach mis-

classified some features and could not deal with shadows that are intrinsic in the ortho-

photo imagery.  

Generally, CNN frameworks utilize two principal methods, namely, pixel-to-pixel-

based (end-to-end) and patch-based approaches, for semantic pixel-based classification. 

In the pixel-based techniques, encoder–decoder frameworks or the fully convolutional 

network (FCN) are employed to recognize fine details of the input data [23]. Patch-based 

techniques usually utilize small image patches to train the CNN classifier and then use a 

sliding window method to predict every pixel’s class. Such a method is commonly used 

for detecting large urban objects [18].  

Numerous prior studies have tried to extract urban features such as buildings and 

roads from remote sensing imagery with high spatial resolution. Some prior studies that 

utilized remote sensing data and deep-based learning framework for automatic road de-

tection are deliberated below. For instance, Zhou, et al. [24] performed D-LinkNet model 

to extract roads from DeepGlobe road dataset. They used dilated convolution in their 

model to change and extend the feature points’ receptive fields and improve the perfor-

mance; however, the method showed some road connectivity problems. Buslaev et al. [25] 

detected road parts from DigitalGlobe’s satellite data with 50 cm spatial resolution based 



Remote Sens. 2021, 13, 3710 3 of 22 
 

 

on the UNet model. In their model, encoder and decoder paths were designed similar to 

the RezNet-34 and vanilla UNet networks. The proposed technique did not obtain high 

road detection accuracy for the Intersection Over Union (IOU). Constantin et al. [26] ex-

tracted roads from Massachusetts road dataset on the basis of the modified UNet network. 

For decreasing the number of false positive pixels (FPs) and increasing the precision, they 

utilized Jaccard distance and binary cross-entropy loss function for training the network; 

however, the model could not achieve high quantitative values for the F1 score. Xu et al. 

[27] used World-View2 satellite imagery and the M-Res-UNet deep learning model to ex-

tract road networks. For a pre-processing step, they applied a Gaussian filter to remove 

noise from images. The proposed method could not efficiently extract roads from areas 

with high complexity. In [28], a new deep learning based model based on an FCN family 

named U-shaped FCN (UFCN) was performed for road extraction from UAV imagery. 

The suggested network outperformed other deep learning-based networks, such as one- 

and two-dimensional CNN networks, in terms of accuracy only for the small area of ob-

stacles. In [29], a generative adversarial network (GAN) was implemented for road extrac-

tion from UAV imagery. For the generator part, the FCN network was used to make the 

fake segmentation map. The proposed technique could achieve high road extraction ac-

curacy; however, the network misclassified non-road classes as road classes in compli-

cated scenes. In [30], a new network called VNet with a hybrid loss function named cross-

entropy-dice-loss (CEDL), which was a combination of dice loss (DL) and cross-entropy 

(CE), was introduced to segment road parts from Ottawa and Massachusetts road da-

tasets. The quantitative results confirmed that the suggested network could achieve better 

results than other comparative deep learning-based models for road extraction. In another 

work [19], a patch-based CNN method was applied to extract building and road objects. 

For the post-processing step, the SLIC method was utilized to integrate low-level features 

with CNN feature and improve the performance. They figured out that their model re-

quires more processing for accurate detection of building and road boundaries. Wan et al. 

[31] implemented a dual-attention road extraction network (DA-RoadNet) model to ex-

tract roads from Massachusetts and DeepGlobe road datasets. To tackle class imbalance, 

they developed a hybrid loss function based on a combination of binary cross entropy loss 

(BCEL) and DL, which allows the network model to train steadily and avoid local opti-

mums. In another work, Wang et al. [32] extracted roads from the Massachusetts road 

dataset based on inner convolution integrated encoder-decoder model. Additionally, they 

used directional CRFs to increase the quality of the extracted road by including road di-

rection in the conditional random fields’ energy function. In the following, prior works 

related to building extraction from remote sensing data are discussed. 

Xu et al. [33] extracted building objects from the Vaihingen and Potsdam datasets 

based on the Res-Unet method. For removing salt-and-pepper noise and improving the 

performance, they applied guided filter as a post-processing stage. The outcomes illus-

trated that the suggested technique obtained high accuracy in building extraction; how-

ever, the model classified some irregular and blurry boundaries for some buildings that 

are surrounded by trees. Shrestha and Vanneschi [34] utilized the FCN network to extract 

buildings from the Massachusetts building dataset. They performed CRFs to sharpen the 

buildings edges; however, their results showed that one of the leading causes of the loss 

in accuracy was utilizing the constant receptive field in the network. Bittner et al. [35] 

mixed DSM and FCN for building extraction from World_View2 imagery with 0.5 m spa-

tial resolution. They used VGG-16 network to fine-tune and construct the proposed FCN 

network. They also implemented CRF approach to produce a building binary mask. The 

results demonstrated that the proposed approach could not detect buildings that are sur-

rounded by trees and show noisy representations. In [36], a deconvolutional CNN model 

(DeCNN) was applied for building object extraction from the Massachusetts dataset. De-

convolutional layers were added to the model to increase accuracy, but the memory re-

quirement was extremely enlarged. For the dense pixelwise remote sensing imagery clas-

sification, an end-to-end CNN network was proposed by [37], which directly trained CNN 
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on the input image to generate a classification map. The introduced network was tested 

on the Massachusetts building dataset, and the outcomes showed that the suggested net-

work could produce a fine-grained classification map. In another work [38], an ImageNet 

model was performed to extract building objects. They also performed Markov random 

field (MRF) to obtain ideal labels regarding building scene detection. For training and 

testing procedures, they utilized patch-based sliding window, which was time-consum-

ing. Additionally, the last dense layer discarded the spatial information at a more satis-

factory resolution than is essential for dense prediction. Chen et al. [39] proposed an ob-

ject-based multi-modal CNN (OMM-CNN) model to extract building features from mul-

tispectral and panchromatic Gaofen-2 (GF-2) imagery with 0.8 per pixel spatial resolution. 

They also applied the SLIC approach to improving the building extraction efficiency. The 

outcomes depicted that the suggested model could not segment irregular and small build-

ings well. To generate building footprints masks from only RGB satellite images, Jiwani 

et al. [40] proposed a DeeplabV3+ module with a Dilated ResNet backbone. In addition, 

they used an F-Beta measure to assist the method in accounting for skewed class distribu-

tions. Protopapadakis et al. [41] extracted buildings from satellite images with near infra-

red band, based on a deep learning model called Stacked Autoencoders Driven (SAD) and 

Semi-Supervised Learning (SSL). To train the deep model, they used only a very small 

amount of labeled data. In contrast, they utilized the SSL method to estimate soft labels 

(targets) for the large amount of unlabeled data that already exists, and then they utilized 

these soft estimates to enhance model training. Deng et al. [42] applied a deep learning 

model called Attention-Gate-Based Encoder–Decoder model to automatically detect 

buildings from Aerial and UAV images. To collect and retrieve features sequentially and 

efficiently, they used the atrous spatial pyramid pooling (ASPP) and grid-based attention 

gate (GAG) modules. A hybrid method based on the edge detection technique and CNN 

model was implemented by [43] for building extraction from GF-2 satellite imagery. For 

pixel-level classification, the CNN model was firstly applied. An edge detection method 

called Sobel was then utilized for building edge segmentation, but the proposed technique 

could not generate non-noisy building segmentation maps with high spatial vicinity. Alt-

hough the aforementioned algorithms have gained achievements in road and building 

extraction, they still have some short comings. For instance, most of these techniques do 

not perform well in road and building segmentation applications in the heterogeneous 

sectors [44], where there are barriers such as vegetation covers, parking lots, and shadows. 

Thus, two novel deep learning-based techniques called MCG-UNet and BCL-UNet are 

employed in the current study for road and building detection to address those issues. A 

constant result for road and building can be achieved by the presented methods even un-

der the heterogeneous sectors or barriers of trees, shadows, and so on.  

The main contribution of this study is listed as follows: (1) we implemented two end-

to-end frameworks, the MCG-UNet and BCL-UNet models, which are an extension of the 

UNet model, and which have all the advantages of UNet, dense convolution (DC) mech-

anism, bi-directional ConvLSTM (BConvLSTM), and squeeze and excitation (SE) to iden-

tify road and building objects from aerial imagery. The BCL-UNet model only takes the 

advantages of BConvLSTM, whereas the MCG-UNet model also takes the benefit of SE 

function and DC. (2) We concentrated on buildings and road networks because these ob-

jects constitute a huge part of the urban areas. (3) The densely connected convolutions 

(DC) are used to increase feature reuse, enhance feature propagation, and assist the model 

to learn more various features. (4) The BConvLSTM module is applied in the skip connec-

tions to learn more discriminative information by combining features from encoding and 

decoding paths. (5) The SE function is employed in the expanding path to consider the 

interdependencies between feature channels and extract more valuable information. (6) A 

BAL loss function is also used to focus on hard semantic segmentation regions, such as 

overlapped areas of objects and complex regions, to magnify the loss at the edges and 

improve the model’s performance. We used this strategy to improve the border of seman-
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tic features and make them more appropriate for actual building and road forms. By add-

ing these modules to the models and using BAL loss, the model’s performance for build-

ing and road segmentation is improved. As far as we are aware, the presented techniques 

are implemented for multi-object segmentation tasks in this work for the first time and 

have not been applied before in the literature. The rest of this manuscript is organized into 

four subsections. Section 2 highlights an overview of the proposed BCL-UNet and MCG-

UNet approaches. The experiential outcomes and detailed comparison are depicted in 

Sections 3 and 4, respectively. Lastly, the most significant finding is described in Section 

5. 

2. Methodology  

In this work, we applied BCL-UNet and MCG-UNet models on the aerial imagery to 

automatically extract building and road features. The overall methodology of the pre-

sented techniques is depicted in Figure 1. The proposed framework includes three main 

steps. (i) Dataset preparation step was firstly applied to produce test imagery and training 

and validation imagery for building and road objects. (ii) The presented networks were 

then trained on the basis of training imagery and validated based on validation imagery. 

After that, the trained frameworks were applied on the test images to generate the build-

ing and road segmentation maps. (iii) Common measurements factors were finally used 

to assess the model’s performance.  

 

Figure 1. Overall flow of the offered BCL-UNet and MCG-UNet frameworks for multi-object segmentation. 

2.1. BCL-UNet and MCG-UNet Architectures  

The proposed BCL-UNet and MCG-UNet models are inspired by dense convolutions 

[45], SE [46], BConvLSTM [47], and UNet [48]. The architectures of the UNet and the pro-

posed BCL-UNet and MCG-UNet are shown in Figures 2–4, respectively. The widely used 

UNet model comprises the encoding and decoding paths. In the contracting path, hierar-

chically semantic features are extracted from the input data to take context information. 

A huge dataset is required for training a complicated network with a massive number of 

parameters [48]. However, deep learning-based techniques are mainly localized on a par-

ticular task, and collecting a massive volume of labeled data is very challenging [49]. 

Therefore, we used the concept of transfer learning [49] by employing a pretrained con-

volutional network of VGG family as the encoder to deal with the isolated learning para-

digm, leverage knowledge from pre-trained networks, and improve the performance of 

the UNet. To make utilizing pre-trained networks feasible, the encoding path of the pro-

posed model was designed similar to the first four VGG-16 layers. In the first two layers, 
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we used two 3 3  convolutional layers chased by a 2 2  max pooling layer and ReLU 

function. In the third layer, we used three convolutional layers with a similar kernel size 

chased by a similar ReLU function and max pooling layer. At every stage, the quantity of 

feature maps was doubled. In the final step of the contracting path, the main UNet model 

included a series of convolutional layers. This allowed the networks to learn various sorts 

of features. However, in the successive convolutions, the model might learn excess fea-

tures. To moderate this issue, we used the idea of “collective knowledge” by exploiting 

densely connected convolutions [45] to reutilize the feature maps through the model and 

improve the model performance. Inspired by this idea, we concatenated feature maps 

learned from the current layer with feature maps learned from all prior convolutional lay-

ers and then forwarded to utilize as the next convolutional layer input.  

 
Figure 2. UNet model without any dense connections and with BConvLSTM in the skip connections. 

 

Figure 3. BCL-UNet model without any dense connections and with BConvLSTM in the skip connections. 
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Figure 4. MCG-UNet model with dense connections, with the SE function in the expansive part and BConvLSTM in the 

skip connections. 

Using densely connected convolution (DCC) instead of the usual one [45] has some 

benefits. First, it prompts the model to avoid the risk of vanishing or exploding gradients 

by getting advantages from all the generated features before it. Furthermore, this idea 

allows information to flow through the model, in which the representational power of the 

networks can then be improved. Moreover, DCC assists the models to learn various col-

lections of feature maps rather than excessive ones. Therefore, we employed DCC in the 

suggested approaches. One block was introduced as two successive convolutions. There 

is a sequence of N  blocks in the final convolutional layer of the contracting path that are 

densely connected. The feature map concatenation of all previous convolutional blocks, 

e.g., 
( 1)1 2 1[ , ,..., ] ll li F Hi

e e
W

ex x x R      was considered as an input of the 
thi  

 1,..., )(i N  convolutional block and l llF Hi
e

Wx R    was considered as its output, 

where the number and size of feature maps at layer l  are defined as l lW H  and lF , 

respectively. A sequence of N  blocks that are densely connected in the final convolu-

tional layer is presented in Figure 5.  

In the expansive path, every phase starts with an upsampling layer over the prior 

layer output. We used two significant modules, namely, BConvLSTM and SE, for the 

MCG-UNet and BConvLSTM module for BCL-UNet to augment the decoding part of the 

original UNet and improve the representation power of the models. In the expanding part 

of the main UNet model, the corresponding feature maps were concatenated with the up-

sampling function output. For combining these two types of feature maps, we employed 

BConvLSTM in the proposed frameworks. The BConLSTM output was then fed to a set 

of functions containing two convolutional modules, one SE function, and another convo-

lutional layer. SE module takes the output of the upsampling layer, which is a collection 

of feature maps. On the basis of interdependencies between all channels, this block uses a 

weight for every channel to promote the feature maps to be more instructive. SE also al-

lows the framework to utilize global information to suppress useless features and selec-

tively emphasize informative ones. The SE output was then fed to an upsampling func-

tion. Figure 6a,b illustrate the structure BConvLSTM in BCL-UNet framework and BCon-

vLSTM with SE modules in MCG-UNet framework, respectively. Presume that 
1 1 1l l lF W H

dX R      defines a set of exploited feature maps from the prior layer in the 
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expansive part. We have 
1

1

2
llH H   , 

1

1

2
l lW W    and 

1 2l lF F   , which we assume 

as 
2

2 2

W H
F

dX R
 

  for simplicity. As illustrated in Figures 4 and 5, the set of feature 

maps first goes through an upsampling function chased by convolutional layer with size 

2 2 , in which these functions halve the channel number and double the size of every fea-

ture map to produce 
up F W H
dX R   . In the decoding part, the size of the feature maps 

is increased layer-by-layer to achieve the primary size of input data. These feature maps 

are then converted into  prediction maps of the foreground and background parts in the 

last layer based on the sigmoid function. The detailed configurations of all approaches, 

the number of parameters and layers, batch size, and input shape are shown in Table 1. In 

the following, the batch normalization (BN), BConvLSTM, and SE modules are described. 

Table 1. Detailed configurations of all approaches. 

Approaches 
Number of 

Parameters 
Number of Layers Batch Size Input Shape 

Computer 

Configuration 

UNet 9,090,499 30 2 768 × 768 × 3 A GPU: Nvidia 

Quadro RTX 6000 24 

GB and a computation 

capacity of 7.5 

Python: 3.6.10 

TensorFlow: 1.14.0 

BCL-UNet 13,580,995 42 2 768 × 768 × 3 

MCG-UNet 27,891,901 74 2 768 × 768 × 3 

 

Figure 5. Densely connected convolutional layers of MCG-UNet. 

 
Figure 6. (a) Structure of BConvLSTM in the expansive part of the BCL-UNet model, and (b) BConvLSTM with the SE 

module in the expansive part of the MCG-UNet model (b). 

2.2. SE Function  

The SE function [46] is suggested to gain a clear relationship between the convolu-

tional layers channels and improve the representation power of the model by a context 

gating mechanism. By allocating a weight for every channel in the feature map, this func-

tion encodes feature maps. The SE module comprises two main sections named squeeze 

and excitation. Squeeze is the first operation. We accumulated the input feature maps to 
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SE block to generate channel descriptor by applying global average pooling (GAP) of the 

entire context of channels. We have 1 2[ , ,..., ]up up up up
d FX X X X , in which the input data 

to SE function is 
up W H
fX R  , and spatial squeeze (GAP) is calculated as: 

1
( ) ( , )

H W
up up

f sq f f
i j

z F X X i j
H W

 

  (1)

where the size of the 
thf  channel, the channel spatial location, and the spatial squeeze 

function are expressed as ( , )up
fX i j , H W , and sqF , respectively. In other words, fz  

can be produced by compressing every two-dimensional feature map using a GAP. The 

initial stage (Squeeze) introduces the global information, which is then fed to the next 

stage (Excitation). The excitation stage comprises two dense (FC) layers as shown in Fig-

ure 3. To shape 1 1
F

r
   and 1 1 F  , the pooled vector is initially encoded and decoded, 

respectively. Next, the excitation vector is generated as 
12( ; ) ( ( ))exs WW W zF z    , 

where r  is the reduction ratio,   denotes the sigmoid function, is Relu, and 1

F
F

rW R


  

denotes the initial fc layer 
F

F
rR


 parameters. The SE block output is produced as

~

( , )
up

up up
f scale f c c fX F X z s X  , where cs  is the scale factor, scaleF  is the input feature 

map, and 
~ ~ ~ ~

1 2[ , ,..., ]
up up up up

d FX X X X  is defined as a multiplication between the channel’s 

attention on a channel-by-channel basis. In [46], a dimensionality-reduction and a dimen-

sionality-increasing layer with ratio r were utilized, respectively, in the initial FC layer 

and the second one to aid generalization and limit model complexity.  

2.3. BN Function  

The dispensation of the activations alters in the intermediate layers in the training 

stage and this issue slows down the training process. This is because every layer in each 

training stage must learn to adjust themselves to a novel distribution. Therefore, the BN 

function [50] is used to enhance the consistency of the networks. The batch mean is sub-

tracted and then divided by the batch standard deviation using the BN function to stand-

ardize the inputs to a layer in the models. The BN function improves the performance of 

the networks in some cases and efficiently hastens the speed of training process. BN uses 
up

dX


 as an input after upsampling to generate 
up

dX


. Additional details are available in [50].  

2.4. BConvLSTM Function  

The standard long short-term memory (LSTM) networks utilize full relationships be-

tween transmissions of input-to-state and state-to-state and do not take the spatial corre-

lation into account, which is the major disadvantage of these networks [51]. Therefore, 

ConvLSTM was suggested by [52] to exploit convolution operations into transmissions of 

input-to-state and state-to-state and tackle this issue. ConvLSTM includes a memory cell, 

a forged gate, an output gate, and an input gate, which work as controlling gates for ac-

cessing, updating, and clearing the memory cell. The ConvLSTM function can be calcu-

lated as: 

1 1

1 1

1 1

1

( )

( )

tanh( )

( )

tanh( ),

t xi t hi t ci t i

t xf t hf t cf t f

t t t t xc t hc t c

t x t h t c t c

t t t

i W X W H W C b

f W X W H W C b

C f C i W X W H b

W X W H W C b

H C

  







  

 

 

 

 



      
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where cb , 
b , fb , and ib  are bias terms, tH  is the hidden state, tX  is the input 

state,   is the Hadamard and   denotes the convolution functions, tC  is the memory 

cell, and *XW  and *hW
 are Conv2D kernels corresponding to the input and hidden state, 

respectively. To encode eX  and 
up

dX


, we applied BConvLSTM [47] in the proposed 

BCD-UNet and MCG-UNet models that derive the output of BN step. The BConvLSTM 

function decides for the current input based on processing the data dependencies in both 

forward and backward directions. In contrast, a standard ConvLSTM only processes the 

dependencies of the forward way. In other words, the BConvLSTM processes the input 

data into two paths (forward and backward) utilizing two ConvLSTM. The output of 

BConvLSTM can be formulated as: 

tanh( )H H
t y t y tY W H W H b

  

      (3)

where t t tF W H
tY R    denotes the last output with bidirectional spatio-temporal infor-

mation, 
tH



 and 
tH



 are the backward and forward hidden tensors, respectively, b  is 

the bias term, and tanh is a non-linear hyperbolic tangent used to mix the output of both 

states. Analyzing the forward and backward data dependencies will boost the predictive 

performance. 

2.5. Boundary-Aware Loss  

In this work, we suggested a boundary-aware loss function (BAL), which is a simple 

yet efficient loss function. We first extracted boundaries iE  by filter 2 2Ef    from 

semantic segmentation labels il  for every class i (Equation (4). Then, at the boundary 

image, we adopted Gaussian blurring using a Gaussian filter Gf , summed all of the chan-

nels results GE , and added bias   (Equation (5). We calculated the BAL by multiplying 

the original binary cross-entropy loss L to the Gaussian edge GE  (Equation (6)) be-

tween ground truth and prediction to suppress the inner regions of every class and am-

plify loss around boundaries. The Gaussian edge efficiently concentrates on not only small 

objects, occluded areas between objects, and complex parts of objects, but also boundaries 

and corners of objects [53].  

( , )

( , )
( , )

0 | ( ) | 0

1 | ( ) | 0
i E x y

i x y
i E x y

l f
E

l f

 
 

 
 (4)

where 
1 0.5

0.5 0
Ef

 
   

 

( )G i G
i

E E f     (5)

( , )

1
( , ) ( , )G

x y

BAL E x y L x y
n

   (6)
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where the number of pixels in the label l is denoted as n. 

3. Experimental Results 

In this part, the road and building dataset preparation, performance measurement 

factors, and quantitative and qualitative results obtained by the suggested networks for 

building and road object extraction are presented.  

3.1. Road Dataset  

We used the Massachusetts road dataset [54] to test the proposed networks for road 

extraction. This dataset comprises 1171 aerial imagery with a dimension of 1500 × 1500 

pixels and a spatial resolution of 0.5 m. We selected some good-quality imagery with com-

plete information of road pixels and then split them into the size of 768 × 768. The last 

dataset that we utilized comprised 1068 images. We divided the dataset into 64 test images 

and 1004 validation and training images. Furthermore, we applied vertical and horizontal 

flipping and rotation as data augmentation approaches to extend our dataset. Deeper con-

volution layers were given a 0.5 dropout to overcome over-fitting concern [55]. Figure 7a 

portrays instances of road dataset within the complex urban areas. 

 

Figure 7. Samples from the Massachusetts road (a) and building (b) datasets. The RGB imagery and 

reference maps are displayed in the first and second columns, respectively. 

3.2. Building Dataset  

For the building dataset, we also used the Massachusetts building dataset [54] to test 

our models. This dataset contains 151 aerial imageries with a pixel dimension of 1500 × 

1500. Similar to road dataset, we split the original building images into 768 × 768 pixel 

dimensions. Our building dataset contains 472 images that we split it into 460 training 

and validation images and 12 test images. Horizontal and vertical flipping and rotation 

were implemented to increase the dataset size. Figure 7b portrays instances of the building 

dataset.  

3.3. Performance Measurement Factors  

For assessing the performance of the introduced techniques for road and building 

object segmentation, we utilized four principal metrics, namely, IOU, F1, precision, Mat-

thew correlation coefficient (MCC), and recall [34]. The IOU factor is expressed as the 

number of shared pixels between the identified and true masks divided by the total num-

ber of existent pixels across both masks (5). The proportion of pixels that specified exactly 

amid the predicted pixels is denoted as precision (6). The amount of accurately predicted 

pixels of pixels that are predicted accurately amid the entire actual pixels is represented 

as recall (7). MCC (9) stands for the correlation coefficient between the detected and rec-

ognized binary classification, and it has a value between 1 and 1. Finally, a trade-off factor, 
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which is a combination of precision and recall, is signified as F1 (8) [56,57]. The true nega-

tive (TN), false negative (FN), true positive (TP), and false positive (FP) pixels can be used 

to calculate these metrics as:  

TP
IOU

TP FP FN


 
 (7)

Pr
TP

ecision
TP FP




 (8)

Re
TP

call
TP FN




 (9)

2 Pr Re
1

Pr Re

ecision call
F

ecision call

 



 (10)

. .

( )( )( )( )

TPTN FP FN
MCC

TP FP TP FN TN FP TN FN




   
 (11)

3.4. Quantitative Results 

The results of the UNet, BCL-UNet, and MCG-UNet models for road and building 

extraction are discussed in this section. BCL-UNet model is inspired by UNet and BCon-

vLSTM, whereas dense convolutions and the SE function are also added in the MCG-UNet 

model. The BCL-UNet model has one convolutional layer without a dense connection in 

that layer. An optimization method is necessary to reduce the energy function and update 

the model parameters while training the network. Thus, we utilized the adaptive moment 

estimation (Adam) optimization algorithm in our framework with a learning rate of 

0.0001  to diminish the losses and update weights and biases. The entire process of the 

presented approaches for building and road extraction in this study was implemented 

using Keras with a TensorFlow backend and a GPU Nvidia Quadro RTX 6000 with a 7.5 

computation capacity and memory of 24 GB. 

To show the ability of the presented models for building and road object extraction, 

we measured the accuracy assessment factors. Tables 2 and 3 depict the accuracy of every 

specified measurement factor for road and building extraction, respectively. The average 

F1 accuracy achieved by the UNet, BCL-UNet, and MCG-UNet is 86.89%, 87.55%, and 

88.74%, respectively, for road extraction and 88.23%, 89.79%, and 94.90%, respectively, for 

building extraction. Clearly, the MCG-UNet model worked better than the other ap-

proaches in road extraction and could improve the F1 percentage to 1.19% and 1.85% com-

pared with the BCL-UNet and UNet models, respectively, for road segmentation results 

and 5.11% and 6.67%, respectively, for building segmentation results. 

Table 2. Comparison of the MCG-UNet, BCL-UNet, and UNet networks for road segmentation. 

 Metrics UNet BCL-UNet MCG-UNet 

Im
a
g

e1
 

Recall 0.8592 0.8604 0.8643 

Precision 0.8757 0.8801 0.9051 

F1 0.8674 0.8701 0.8842 

MCC 0.8431 0.8465 0.8637 

IOU 0.7657 0.7701 0.7924 

Im
a

g
e2

 Recall 0.8277 0.8374 0.8984 

Precision 0.884 0.887 0.8984 

F1 0.8549 0.8615 0.8984 

MCC 0.8283 0.8358 0.8797 
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IOU 0.7466 0.7567 0.8156 

Im
ag

e3
 

Recall 0.857 0.8589 0.8672 

Precision 0.9043 0.9165 0.9191 

F1 0.88 0.8868 0.8924 

MCC 0.8546 0.8632 0.8699 

IOU 0.7857 0.7965 0.8057 

Im
ag

e4
 

Recall 0.7787 0.7831 0.7658 

Precision 0.8874 0.8924 0.905 

F1 0.8295 0.8342 0.8296 

MCC 0.7943 0.80 0.7969 

IOU 0.7086 0.7154 0.7088 

Im
ag

e5
 

Recall 0.9026 0.9097 0.9340 

Precision 0.9233 0.9410 0.9312 

F1 0.9128 0.9251 0.9326 

MCC 0.9034 0.9171 0.9251 

IOU 0.8396 0.8606 0.8736 

A
v

er
a

g
e 

Recall 0.8450 0.8499 0.8659 

Precision 0.8949 0.9034 0.9118 

F1 0.8689 0.8755 0.8874 

MCC 0.8447 0.8525 0.8670 

IOU 0.7692 0.7799 0.7992 

Table 3. Comparison of the MCG-UNet, BCL-UNet, and UNet networks for building segmenta-

tion. 

 Metrics UNet BCL-UNet MCG-UNet 

Im
ag

e1
 

Recall 0.8802 0.8969 0.9441 

Precision 0.9076 0.9214 0.9612 

F1 0.8937 0.909 0.9526 

MCC 0.8649 0.8843 0.9398 

IOU 0.8078 0.8331 0.9094 

Im
a

g
e2

 

Recall 0.8732 0.8921 0.9399 

Precision 0.8834 0.8984 0.9554 

F1 0.8783 0.8952 0.9476 

MCC 0.8506 0.8714 0.9357 

IOU 0.7829 0.8103 0.9003 

Im
ag

e3
 

Recall 0.8937 0.9122 0.938 

Precision 0.8621 0.875 0.9558 

F1 0.8776 0.8932 0.9468 

MCC 0.8596 0.8775 0.9392 

IOU 0.7819 0.807 0.8989 

Im
ag

e4
 

Recall 0.9190 0.9400 0.9494 

Precision 0.8616 0.8758 0.9520 

F1 0.8894 0.9067 0.9507 

MCC 0.8739 0.8939 0.9438 

IOU 0.8007 0.8294 0.9060 

Im
ag

e5
 Recall 0.8418 0.8511 0.9261 

Precision 0.9058 0.9223 0.9692 

F1 0.8726 0.8853 0.9472 

MCC 0.8355 0.8496 0.9302 
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IOU 0.7650 0.7942 0.8996 

A
v

er
a

g
e 

Recall 0.8816 0.8985 0.9395 

Precision 0.8841 0.8986 0.9587 

F1 0.8823 0.8979 0.9490 

MCC 0.8569 0.8753 0.9377 

IOU 0.7877 0.8148 0.9028 

3.5. Qualitative Results  

For qualitative results, we showed examples of road and building segmentation 

maps achieved by the networks in Figures 8 and 9, respectively. The figures are presented 

in three rows and five columns. The first and second columns of the figures depict the 

RGB and reference images, respectively. The results acquired by UNet, BCL-UNet, and 

MCG-UNet are depicted in third, fourth, and fifth columns, respectively. All the networks 

can normally obtain an accurate road and building segmentation maps. However, the 

road and building segmentation maps produced by the MCG-UNet is more accurate than 

those by other methods. In other words, the presented MCG-UNet network can obtain a 

high-quality segmentation map, preserve the higher accuracy of object boundaries’ infor-

mation on the edge segmentation, and predict fewer FPs (depicted in yellow color) and 

more FNs (depicted in blue color), which achieved an average F1 accuracy of 88.74% for 

road and 94.90% for building compared with other deep learning-based models. This is 

due to the addition of the BConvLSTM, DC, and SE modules to the network. BConvLSTM 

mixes the encoded and decoded features that include more local information and more 

semantic information. Additionally, the DC assist the model to learn more varying fea-

tures and the SE module can capture the spatial relations between features. Therefore, 

these modules, which were embedded into the models, could improve the performance 

in building and road object segmentation.  

 
Figure 8. Obtained products with the presented UNet, BCL-UNet, and MCG-UNet networks from the Massachusetts road 

dataset. The yellow, blue, and white colors present the FNs, FPs, and TPs, respectively. 
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Figure 9. Obtained products with the presented UNet, BCL-UNet, and MCG-UNet networks from the Massachusetts 

building dataset. The blue, white, and yellow colors display the FNs, TPs, and FPs, respectively. 

4. Discussion 

To further investigate the advantage of the presented techniques in this study for 

building and road object extraction from aerial imagery, we compared the F1 accuracy 

measurement metric attained by the networks with other comparative deep learning-

based networks applied for building and road segmentation. Note that the findings for 

other networks are taken from the key published manuscripts, whereas the presented net-

works were performed on experiential datasets. Specially, the proposed models in the 

current work were compared with convolutional networks, such as DeeplabV3 [58], BT-

RoadNet [59], DLinkNet-34 [24], RoadNet [60], and GL-DenseUNet [61] for road extrac-

tion, and building residual refine network (BRRNet) [62], FCN-CRF [34], a modification 

of UNet model pretrained by ImageNet called TernausNetV2 [63], Res-U-Net [64], and 

JointNet [65] for building extraction.  

Tables 4 and 5 provide the average F1 accuracy for the proposed frameworks and 

other comparative techniques for road and building extraction, respectively. As indicated 

in Tables 4 and 5, both the models applied in the current study, such as BCL-UNet and 

MCG-UNet, worked better than other comparative models for building and road extrac-

tion, except FCN-CRF [34], which is applied for building segmentation. The BCL-UNet 

and MCG-UNet models achieved F1 accuracy of 87.55% and 88.74% for road extraction, 

respectively, which is higher than other comparative road segmentation methods. This is 

because the proposed BCL-UNet and MCG-UNet networks use dense connections and 

BConvLSTM in the skip connections and SE in the expansive part. These functions help 

the networks learn more various features, learn more discriminative information, extract 

more valuable information, and improve accuracy. For building extraction, the proposed 

MCG-UNet model even obtained better F1 accuracy than the FCN-CRF [34], which is the 

second best model with an F1 accuracy of 93.93%, and achieved higher accuracy than BCL-

UNet, which had an F1 accuracy of 89.79%. The higher F1 accuracy and high-quality seg-

mentation map for buildings by the proposed MCG-UNet networks is because of the ad-

dition of BConvLSTM, which takes forward and backward dependencies into account and 
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considers all the information in a sequence and SE module that uses a context gating 

mechanism to gain the distinct relationship between channels of convolutional layers.  

Table 4. Quantitative results generated by the BCL-UNet and MCG-UNet and other deep learning-

based techniques for road extraction. 

Methods Precision Recall IOU F1 

DeeplabV3 74.16 71.82 57.60 72.97 

BT-RoadNet 87.98 78.16 74.00 82.77 

DLinkNet-34 76.11 70.29 57.77 73.08 

RoadNet 64.53 82.73 56.86 72.50 

GL-DenseUNet 78.48 70.09 72.73 74.04 

BCL-UNet 0.9034 0.8499 0.7799 87.55 

MCG-UNet 0.9118 0.8659 0.7992 88.74 

Table 5. Quantitative results generated by the BCL-UNet and MCG-UNet and other deep learning-

based techniques for building extraction. 

Methods Precision Recall IOU F1 

BRRNet - - 0.7446 84.56 

FCN-CRF 95.07 93.40 89.08 93.93 

TernausNetV2 0.8596 0.8199 0.7234 83.92 

Res-U-Net 0.8621 0.8026 0.7114 83.12 

JointNet 0.8572 0.8120 0.7161 83.39 

BCL-UNet 0.8986 0.8985 0.8148 89.79 

MCG-UNet 0.9587 0.9395 0.9028 94.90 

Additionally, we portrayed the visual road and building products achieved by other 

techniques and the proposed BCL-UNet and MCG-UNet frameworks in Figures 10 and 

11, respectively, to evaluate the efficiency of the suggested approaches in multi-object seg-

mentation. The proposed BCL-UNet and MCG-UNet methods could maintain the bound-

ary information of roads and buildings and produce a high-resolution segmentation map 

for building and road objects compared with other comparative frameworks. By contrast, 

DeeplabV3 [58], BT-RoadNet [59], DLinkNet-34 [24], and RoadNet [60], which were per-

formed for road segmentation, and BRRNet [62], TernausNetV2, [63], and JointNet [65], 

which were performed for building segmentation, achieved lower quantitative values for 

F1 accuracy, could not preserve the boundaries of objects, and identified more FNs and 

FPs, especially where these objects were surrounded by obstructions and located in the 

dense and complex areas. As a result, they produced low-resolution segmentation maps 

for roads and buildings.  
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Figure 10. Road map comparisons generated by the presented BCL-UNet and MCG-UNet techniques against other deep 

learning-based networks. The yellow boxes show the predicted FPs and FNs. 

 
Figure 11. Building map comparisons produced by the presented BCL-UNet and MCG-UNet techniques against other 

deep learning-based networks. The yellow boxes present the predicted FPs and FNs. 

Other Datasets 

Moreover, we implemented our proposed models on other datasets called the 

DeepGlobe road dataset [67] and AIRS building dataset [68] to prove the effectiveness of 

the models on the road and building segmentation from various types of remote sensing 

images. DeepGlobe dataset includes 7469 training and validation images and 1101 testing 

images with a spatial resolution of 50 cm and a pixel size of 1024 1024 . Additionally, 

AIRS includes 965 training and validation images and 50 testing images with a spatial 

resolution of 7.5 cm and a pixels size of 1024 1024 . We compared the results of our meth-

ods for both roads and buildings with other comparative methods, such as Res-U-Net [64], 
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JointNet [65], DeeplabV3 [58], and LinkNet [68]. Table 6 presents the quantitative results, 

while Figures 12 and 13 present the visualization outcomes obtained by the proposed 

models and other methods for road and building extraction from both datasets, respec-

tively. The proposed BCL-UNet and MCG-UNet models could improve the F1 accuracy 

compared to the comparative techniques and achieved an accuracy of 93.53% and 94.34% 

for building extraction, respectively, and an accuracy of 87.03% and 88.09% for road ex-

traction, respectively. Additionally, according to the qualitative outcomes (Figures 12 and 

13), the proposed models could extract roads and buildings from the DeepGlobe and AIRS 

datasets accurately and achieve high-quality segmentation maps compared to the other 

approaches, which confirms the efficiency of the models for road and building extraction 

from other remote sensing datasets.  

Table 6. Quantitative results generated by BCL-UNet and MCG-UNet for road and building extraction from other da-

tasets. 

 Methods Recall Precision F1 MCC IOU 

ISPRS Building Dataset 

Res-U-Net 0.9197 0.9399 0.9296 0.8999 0.8688 

JointNet 0.8982 0.9726 0.9338 0.9084 0.8760 

BCL-UNet 0.9318 0.9391 0.9353 0.9118 0.8862 

MCG-UNet 0.9017 0.9891 0.9434 0.9224 0.8928 

DeepGlobe Road 

Dataset 

DeeplabV3 0.8115 0.8750 0.8411 0.8139 0.7258 

LinkNet 0.8852 0.8238 0.8486 0.8199 0.7369 

BCL-UNet 0.8408 0.9047 0.8703 0.8482 0.7705 

MCG-UNet 0.8597 0.9044 0.8809 0.8595 0.7870 

 

Figure 12. Building and road maps produced by the presented BCL-UNet and MCG-UNet techniques from the AIRS and 

DeepGlobe datasets. (i) Original imagery, (ii) ground truth imagery, (iii) results of BCL-UNet, and (iv) results of MCG-

UNet. The yellow boxes present the predicted FPs and FNs. 
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Figure 13. Building and road maps produced by the comparative techniques from the AIRS and DeepGlobe datasets. (i) 

Original imagery, (ii) ground truth imagery, (iii) results of DeeplabV3 for roads and Res-U-Net for buildings, and (iv) 

results of LinkNet for roads and JointNet for buildings. The yellow boxes present the predicted FPs and FNs. 

5. Conclusions 

We used two new deep learning-based networks in this research, namely, BCL-UNet 

and MCG-UNet, which were inspired by UNet, dense connections, SE, and BConvLSTM, 

for the segmentation of multi-objects from aerial imagery, such as buildings and roads. 

The presented networks were tested on the Massachusetts road and building datasets. 

The results achieved by the presented BCL-UNet framework and MCG-UNet models 

were firstly compared. The qualitative and quantitative products proved that both frame-

works worked better than others and generated an accurate segmentation map for road 

and building objects. To show the efficiency of the introduced models in multi-object seg-

mentation, we also compared the BCL-UNet and MCG-UNet quantitative and visualiza-

tion findings to those of other state-of-the-art comparative models used for road and 

building segmentation. The empirical consequences affirmed the advantage of the offered 

techniques for the extraction of building and road objects from aerial imagery. In sum-

mary, the proposed techniques could detect roads and buildings well even in incessant 

and prominent regions of closures, and could also generate high-resolution and non-noisy 

road and building segmentation maps from separate datasets. In future research, the pro-

posed methods should be applied to multi-object segmentation from remote sensing data 

simultaneously. For this, there is a need to prepare a dataset including ground truth im-

ages with three classes, i.e., background, buildings, and roads, to extract these objects at 

the same time. 
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