
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for  

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.” 



Adaption-Based Analytics for Assessment of Human 

Deconditioning during Deep Space Exploration 

Anastasiia Prysyazhnyuk* 
Faculty of Health Sciences 
Ontario Tech University  

anastasiia.prysyazhnyuk@ontariotechu.net 
*Corresponding Author

Carolyn McGregor 
Faculty of Business and IT 

Ontario Tech University, Canada 
University of Technology Sydney, Australia 

c.mcgregor@ieee.org

Abstract— Technological and scientific advancements continue 

to enable safe prolonged human presence in space, while 

extending the boundaries of manned exploration from low-

Earth orbit into deep space. As humankind prepares to embark 

on exploration-class missions, to the Moon and Mars, mission 

objectives, risks and challenges become more complex and 

vastly different from the majority of human manned space 

exploration experience known to-date. The potential health 

risks associated with deep space exploration are expected to 

amplify, the mitigation of which would necessitate complex and 

autonomous in-flight medical capacity, which has not been 

available to-date. The logistics of medical care delivery in-flight 

have been significantly limited by impracticality of existing 

biomedical monitoring modalities and retrospective data 

analytics methods and techniques. Conventionally, 

physiological health monitoring has been discontinuous and 

extremely limited, hindering the usability and practicality of the 

acquired data to support clinical decision-making in-flight. This 

paper presents an integrated big data framework that utilizes 

stream computing to support real-time autonomous clinical-

decision making in-flight. The proposed framework extends 

previous research known as the Artemis and Artemis Cloud 

platforms by integrating multi-source, multi-type data to 

provide in-depth adaption-based assessment and identify the 

activity of the various compensatory reactions of regulatory 

mechanisms, which have been known to impact human health 

in weightlessness. The instantiation of the proposed big data 

integrated framework is demonstrated within the context of a 

ground-based 5-day Dry Immersion study. More specifically, 

the paper demonstrates the potential to support adaption-based 

analytics-as-a-service within the context of space medicine. 

Further to that, adaption-based analytics are enhanced through 

the introduction of multimodal real-time analytics. The 

multimodal adaption-based analytics are based on traditional 

data sampling and a sliding-window approach for analysis of the 

heart rate variability (HRV) and its features. The introduction 

of a sliding-window approach offers numerous benefits, 

including increased sample size, greater stability of numerical 

estimates, de-trending of the HRV to ensure the observed 

patterns are attributed to an actual physiological response 

rather than noise or artefacts. As such, the proposed adaption-

based analytics-as-a-service demonstrate great potential to 

identify unstable physiological states and support proactive 

prognostics, diagnostics and health management during 

spaceflight. Additionally, the proposed approach contributes to 

meaningful use of the acquired physiological data in-flight. 

TABLE OF CONTENTS 

1. INTRODUCTION ....................................................... 1 

2. RELATED  WORK .................................................... 2 
3. INTEGRATED BIG DATA FRAMEWORK .................. 3 
4. FRAMEWORK DEMONSTRATION ............................ 5 
5. CONCLUSIONS ......................................................... 7 
ACKNOWLEDGEMENTS .............................................. 9 
REFERENCES ............................................................... 9 

1. INTRODUCTION

Human presence in space continues to expand beyond the 

margin of the low Earth orbit, as the humankind prepares to 

embark on the journey of deep space exploration. 

Exploration-class missions to destinations such as the Moon 

and Mars are presenting new scientific and technological 

challenges, while amplifying the potential health risks 

associated with long-distance, long duration human presence 

in space.  

Missions to the Moon and Mars will present complex and 

vastly different risks, from the majority of manned space 

exploration experience known to-date, as the human 

exploration expands outside of the Earth’s protective 

magnetic field.  

The threats associated with the deep space exploration can be 

broadly classified into three categories, namely 

environmental, health-related and technological [1]. 

Environmental threats are characterized by increased 

exposure to galactic cosmic rays (GCR), extreme temperature 

variations, remoteness from Earth, isolation, and lack of 

gravitational force [1].  Environmental factors contribute to 

health-related contingencies, impacting physical, mental and 

social well-being of the crew. All of which have important 

implications on occupational performance, execution of 

mission objectives and safe return to Earth.  

Adaptation mechanisms of the human body will continuously 

be challenged, in an attempt to withstand exposure to 

environmental, physiological and psychological stressors, so 

as to preserve health and optimal occupational performance. 

The implications of which will further be amplified by 

technological constrains and anticipated communication 

delays. Moreover, the operational logistics of deconditioned 
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crew member retrieval from exploration-class missions is 

anticipated to be extremely complex and time-consuming, if 

at all possible [1]. As such, mitigation of known and 

unknown health-related risks during deep-space exploration 

necessitates the development of a comprehensive, 

autonomous in-flight medical capacity so as to support 

prognosis, diagnosis and treatment of medical contingencies 

that have the potential to arise in-flight. To-date, no such 

medical system has been available, while the prognostics, 

diagnostics and health management in space continue to be 

fragmented and extremely limited. The impracticality of 

existing biomedical monitoring modalities and retrospective 

data analytics methods and techniques further hinder the 

meaningful use of the acquired health-related data to support 

informed clinical decision-making in-flight. 

This paper presents an integrated big data framework that 

utilizes stream computing to support real-time autonomous 

clinical-decision making in-flight. The proposed framework 

extends previous research known as the Artemis and Artemis 

Cloud platforms [2] by integrating multi-source, multi-type 

data to provide in-depth adaption-based assessment and 

identify the activity of the various compensatory reactions of 

regulatory mechanisms, which have been known to impact 

human health in weightlessness. The clinical significance of 

the proposed framework is demonstrated within the context 

of a ground-based analog study, namely the 5-day Dry 

Immersion [3]. More specifically it demonstrates the 

capability of the proposed platform to support adaption-based 

analytics-as-a-service on the basis of the multi-modal 

analysis of the heart rate variability and its features. It 

demonstrates a promising potential to identify unstable 

physiological states and support proactive prognostic, 

diagnostic and health management during spaceflight. In 

turn, contributing to an efficient and meaningful use of the 

acquired physiological data to inform clinical decision-

making in-flight.  

2. RELATED WORK

Logistics of medical care delivery in space 

The International Space Station (ISS) is a permanently 

inhabited human laboratory in the low Earth Orbit. The ISS 

consists of multiple flight systems that provide the necessary 

living conditions to enable safe prolonged human presence in 

space.  

The flight system of particular interest, within the context of 

this publication, is the existing Crew Health Care System 

(CHeCS) [4]. The CHeCS consists of three sub-systems, 

namely the countermeasure system, environmental system 

and health maintenance system, which collectively provide 

medical and environmental capabilities to ensure health and 

safety of the crew [4]. The existing CHeCS is fragmented, 

while the individual sub-systems offer independent 

functionality. The prognostic and diagnostic capacity of the 

system is further limited by the scheduled and discontinuous 

data acquisition, and retrospective data processing 

techniques, most of which occur terrestrially, upon mission 

completion. As a result, provision of health management is 

limited to reactive, rather than a proactive approach, 

imposing significant limitations on the ability to support 

health, wellness and adaption-based analytics in-flight. 

However, with increasing distance and duration of 

exploration-class missions and anticipated communication 

delays, there is an urgent need for a health management 

paradigm change, so as to support proactive and efficient 

prognostics, diagnostics and medical care in-flight.  

Adaption-based analytics 

Scientific evidence suggests that the overall performance of 

the human body can be assessed on the basis of the heart rate 

variability analysis [5-7]. It has been demonstrated that 

patterns and behaviors of the various heart rate variability 

indices have been closely linked with the onset of transitional 

health states, maladaptive responses and deconditioning of 

body systems experienced during spaceflight.  

Baevsky et al., have previously proposed the functional 

health state algorithm, as means to assess the level of health 

and wellness of the Russian cosmonauts [6]. The functional 

health state algorithm is based on the principles of stepwise 

discriminative heart rate variability analysis, used to compute 

two canonical variables, namely the L1 and L2. The 

generalized equations of the variables are presented below, 

where HR is the heart rate, SI is the stress index, pNN50 is 

the number of RR intervals differing by more than 50ms and 

the HF is the high-frequency spectral power. 

L1 = 0.112HR + 1.006SI + 0.047pNN50 + 0.086HF 

L2 = 0.140HR + 0.165SI + 1.293pNN50 + 0.623HF 

The L1 and L2 are representative of the systems tension and 

the amount of functional reserves, used to determine the state 

of adaptation and activity of regulatory mechanisms. The two 

canonical variables are then used to establish a phase plane 

of functional states, schematically represented in Figure 1 and 

described in detail in [5-7]. 

Despite the capability of the functional health state 

assessment to support proactive prognostics, diagnostics and 

inform health management, its application has been hindered 

by the limitations of the existing biomedical monitoring 

modalities. More specifically, retrospective in-batch data 

processing was made possible only upon mission completion 

and return of the crew to Earth. As such, this approach has 

been rendered invaluable during the mission and necessitated 

exploration of novel methods and techniques to support real-

time or near real-time adaption-based analytics, so as to 

improve the usability of the acquired data and inform clinical 

decision-making in-flight. 
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Figure 1. The phase plane of functional states [7]. 

ARTEMIS 

Artemis platform was named after the Greek Goddess 

associated with protecting child-bearing women and young 

children, as the primary application of the platform was 

within the neonatal intensive care unit. In prior research, the 

Artemis, big data analytics platform, has been proposed to 

support real-time online health analytics during spaceflight 

[2]. Artemis platform is schematically represented in Figure 

2 and described in detail in [2, 8]. The main components of 

the platform include data collection, data buffering and 

transmission, online analytics, data persistency, knowledge 

extraction, (re)deployment and results presentation.  

The Artemis platform adapted a novel big data approach, 

which recognized the complexity, variety and volume of the 

data that was generated by biomedical monitoring modalities 

and remained unleveraged by existing information 

technology systems. It has been specifically designed to 

support acquisition and processing of physiological data 

streams. A data stream is an unbounded data set that has the 

capability to be processed as the data is being generated, 

rather than waiting for the data collection instance to 

complete, in order to initiate data processing. The platform 

utilizes stream-computing paradigm in order to enable real-

time online analytics with the capability to concurrently 

analyze multiple physiological data streams to screen for 

multiple clinical conditions. However, the inability of the 

platform to support acquisition of file-based data packets, 

generated by existing biomedical monitoring modalities used 

in-flight, has necessitated development of extensions to the 

platform, presented in section to follow. Further changes to 

the platform have been motivated by conceptual architecture 

of autonomous clinical decision support system presented in 

[9]. The ultimate goal was to design an integrated big data 

framework within which physiological, environmental, 

activity and psychological data can be merged to support 

wholistic health-related assessments of the crew [10]. 

3. INTEGRATED BIG DATA FRAMEWORK

Emerging technological and scientific advancements 

continue to pave the way for practical continuous health 

monitoring, while present new opportunities to support 

clinical discovery and early detection monitoring. There is a 

promising potential to support timely data acquisition and 

real-time or near real-time data analytics, so as to leverage 

the invaluable potential of the acquired physiological data to 

inform prognostic, diagnostic and health management 

capacity in-flight. As such, there is a need for data platforms 

to be able to effectively respond to technological innovations, 

while still maintain compatibility with existing health-related 

monitoring modalities. 

An integrated big data framework, which originates from 

prior Artemis and Artemis Cloud research, has been designed 

to address the limitations of existing information technology 

systems, while support integration of the various data 

formats. The framework is schematically represented in 

Figure 3 and described in detail in [10]. More specifically, it 

is a platform that supports the entire data life cycle and as 

such overcomes the issue of data smoothing and data loss. It 

provides the infrastructure to support the continuity of data 

flow, beginning with the data collection, all the way through 

to data reporting and storage. Moreover, it offers insights into 

real-time functionality of the human body through the real-

time and near real-time online analytics capability.  

The architectural components adopted from prior Artemis 

research include Data Persistency, Knowledge Discovery, 

(re)Deployment, Online Analytics and the streaming 

adaptive application programming interface of the Data 

Integration component. The novel extensions of the platform 

include Data Collection, Middleware Data Capture, message 

sub-flow and linkage of data within the Data Integration 

component, and Results Presentation.  In addition, the Online 

Figure 2. Artemis architecture for online health analytics during spaceflight [8]. 
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Figure 3. The proposed framework of health analytics as a service aboard the ISS [10]. 
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Analytics component, adaption-based analytics in particular, 

have been extended through an introduction of multi-modal 

adaption assessments. More specifically, the adaption-based 

analytics are performed utilizing traditional and a sliding-

window data sampling approach, documented in [8]. 

Meanwhile, the traditional functional health state algorithm 

is redeployed as a MATLAB instance within the integrated 

framework. 

It is important to note, that the Middleware Data Capture 

component was introduced to serve as a data intermediary 

between data producer (data collection component) and data 

consumer (data integration component). Essentially, it 

enables data routing through a predefined series of protocols, 

so as to generate two main types of queues, namely the data 

stream queue and the file-based data queue, in preparation for 

consumption by the data integration component. In addition, 

the Middleware Data Capture component is tightly-coupled 

with a buffering mechanism, in order to ensure all incoming 

data is persistently stored, should there be an outage of any 

of the downstream components.  

4. FRAMEWORK DEMONSTRATION

The instantiation of the integrated big data framework has 

been demonstrated within the context of terrestrial analog 

study, namely the Dry Immersion. The Dry Immersion study 

was performed at the Institute of Biomedical Problems of the 

Russian Academy of Sciences, described in detail in [3]. The 

overarching objective of the study was to acquire new 

scientific evidence and test novel technologies and methods 

developed for space application. The ethics approval for the 

research study was granted by IBMP Research Ethics Board, 

and the Ontario Tech University Research Ethics Board 

under REB# 15-047 Integration of Russian Cosmonaut 

Monitoring with Artemis and Artemis Cloud.  

The study duration was five (5) days and consisted of a cohort 

of twelve (12) male participants, between the ages of 29+2 

years old, with an average height of 177+1cm and weight of 

70.2+2.6kg. The study cohort was further subdivided into a 

control and an experimental group. The experimental group 

wore a penguin suit on a daily basis for the total daily duration 

of four hours. The penguin suit, is also known as the suit of 

axial loading, which through an activity of tensioning devices 

stimulates the musculoskeletal system, so as to counter some 

of the deleterious effects induced by simulated 

weightlessness.  

Within the study, two single-person dry immersion baths, 

thermoregulated at 330C, were utilized. A thin elastic fabric 

barrier was used to prevent direct skin to water contact and 

enable safe prolong exposure to the conditions of simulated 

weightlessness. The head-out depth supine immersion of the 

study subjects was selected for the purpose of the study. The 

study participants remained relatively motionless with 

limited ability to exit the baths for a daily average of 10-15 

minutes to perform personal hygiene.  

The data collection, electrocardiogram acquisition in 

particular, was performed exclusively at night time with the 

collect and store Holter-style monitor, known as the 

Cosmocard. The Cosmocard was a device of choice, given its 

current use aboard the Russian segment of the ISS. Following 

each instance of data collection, the device was docked for 

data acquisition and transmission to occur. The specifics of 

data collection modality presented fundamental limitations to 

the approbation of the proposed framework, as such the data 

was later replayed to simulate real-time data acquisition. The 

heart rate variability indices were sampled utilizing a 

traditional data sampling approach, and each data tuple was 

representative of a five-minute time window, on which 

further analysis were performed. 

The adaption-based analytics were performed utilizing a re-

engineered functional health state algorithm as an instance 

within MATLAB environment, so as to enable near real-time 

and real-time functionality. The efficacy of the re-engineered 

functional health state algorithm has been tested by cross-

referencing the hourly L1 and L2 values for Subject 1 for the 

entire duration of the study. The hourly summaries of means 

and standard deviations of the canonical variables computed 

with two algorithm instantiations, the conventional and re-

engineered, are schematically represented in Figure 4. In 

Figure 4, the respective days of the study are abbreviated as 

D1 for Day 1, D2 for Day 2, D3 for Day 3 and so on. As 

becomes apparent from the figure, the efficacy of the re-

engineered algorithm is supported by a low standard 

deviation. The minor variances that are observed are mainly 

attributed to the differences in the QRS complex and R-peak 

detection algorithms.  

Figure 4. Cross-referenced values of canonical variables with 

two algorithm instantiations, presented as hourly means and 

standard deviations for Subject 1 during the entire duration of 

the study. 

The individual results of adaption-based analytics observed 

during the Dry Immersion study are summarized as hourly 

averages of canonical variables in Figures 5-6. The data is 

presented in a traditional format, as the phase plane of 

functional states for the entire duration of the study. It should 

be noted that even subject numbers represent the control  
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the data collection equipment. As a result, the quality of the 

Figure 5. Activity of adaptation mechanisms represented as the phase plane of functional states for Subjects 1-8 

for the entire duration of the Dry Immersion Study. 
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group, while odd correspond to the experimental group. As 

becomes apparent, there is a lot of inter- and intra-individual 

differences that can be observed, signifying a dynamic 

activity of the regulatory mechanisms throughout the entire 

duration of the study. In addition, most of the study 

participants remained within the state of physiological norm, 

or just on the verge of Prenosological State. This further 

signifies that as the study duration progressed, the study 

participants experienced elevated levels of systems tension, 

which triggered activation of functional reserves, so as to 

maintain an optimal level of health and well-being.  

Moreover, prior research has documented that significant 

stress index variations, characterized by elevated systems 

tension, are indicative of increased sympathetic activity of 

regulatory mechanisms [3, 8, 11]. In addition, stress index 

variations have been linked to onset of painful stimuli 

attributed to the environmental conditions of simulated 

weightlessness, within immersion baths [11]. 

 

Throughout the duration of the study, it was recognized that 

increased level of humidity had affected the functionality of 

acquired signal, QRS complex and R-peak detection, and 

subsequent analytics have been impacted. As such, 

necessitating an in-depth analysis of the raw ECG signal and 

whenever necessary, manual removal of the artefacts. This 

further led to an important realization of the constrains 

surrounding the limited dataset sizes that are available within 

the context of spaceflight environment. 

To further validate the numerical estimates that have been 

obtained, and ensure that the observed response has been 

attributed to physiological activity of regulatory mechanisms 

rather than noise or artefacts, a sliding-window data sampling 

approach has been used.  Contrary to the traditional data 

processing approach, when the five-minute data tuples are 

generated at time 0:00-4:59, 5:00-9:59, 10:00-14:59, the data 

tuples have been generated at a frequency of a 1-minute 

sliding window, more specifically at the time 0:00-4:59, 

01:00-5:59, 02:00-6:59 and so on. As such, a much larger 

array of data has been generated within the same data set, 

contributing to improved quality and greater stability of 

numeral estimates.   

      

The preliminary prototype of a sliding-window approach for 

adaption-based analytics is demonstrated on Subject 1 

throughout the entire duration of the Dry Immersion study. 

The data is presented as 5-minute aggregates of the 

corresponding canonical variable values, schematically 

represented in Figure 7. Figure 7 further reveals the dynamic 

activity of regulatory mechanisms between each of the 

calculated data tuples, demonstrating a promising potential of 

the proposed approach to support early detection of unstable 

states and discovery of new clinically significant 

physiological patterns, retrospectively and in real-time.  

Overall, the instantiation of multi-modal adaption-based 

analytics-as-a-service within the integrated big data 

Figure 6. Activity of adaptation mechanisms represented as the phase plane of functional states for Subjects 9-12 

for the entire duration of the Dry Immersion Study. 
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framework has demonstrated great potential to support 

proactive prognostics, diagnostics and health management of 

weightlessness-induced deconditioning. It has demonstrated 

the potential to address the dataset size limitations by 

enabling the generation of larger arrays of data within the 

same datasets. Further contributing to a greater stability and 

accuracy of the performed computations, all while de-

trending the HRV signal to ensure authenticity of the 

observed response, and removal of noise or artefacts.  

5. CONCLUSION 

This paper presented an integrated big data framework that 

recognized the breadth and depth of the various data types 

and sources that are of relevance for assessment of human 

health and performance during spaceflight. The proposed 

framework demonstrated an innovative approach in enabling 

Figure 7. The instantiation of the sliding-window analysis prototype within the context of the Dry Immersion 

study. 
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the synthesis of the various data formats, to support 

comprehensive analytics and meaningful and efficient use of 

the acquired data. The clinical significance of the proposed 

framework was demonstrated with multi-modal adaption-

based analytics-as-a-service, within the context of a ground-

based Dry Immersion study. The traditional adaption-based 

analytics were enhanced through the introduction of a 

sliding-window data sampling approach for analysis of the 

relevant heart rate variability indices. It has further 

demonstrated that the dynamics of regulatory mechanisms, 

signifying adaptive capacity of the human body, change 

throughout the duration of the experiment in response to task-

specific activities or the respective periods of the circadian 

rhythm, associated with specific activity of organ systems. 

The instantiation of the proposed framework further revealed 

the importance of assessment of each 5-minute interval, while 

the introduction of the sliding-window approach 

demonstrated great potential to support de-trending of the 

HRV to establish causal relationships between a particular 

stressor and the produced physiological response. As such, 

the application and instantiation of the proposed framework 

and multi-modal adaption-based analytics demonstrate great 

potential to enhance early detection monitoring and inform 

clinical decision making in-flight. Thereby, contributing to 

practical and meaningful use of physiological data during 

deep space exploration. 

ACKNOWLEDGEMENTS 

This research has been supported by the Canada Research 

Chairs program (#950-203427 and #950-225945) and the 

Canadian Foundation for Innovation (#203427).   

REFERENCES 

[1] Bizzari, M., Masiello, M.G., Guzzi, R., and Cucina, A., 2017. 

Journey to Mars: A Biomedical Challenge. Perspective on future 

human space flight.  Organisms: Journal of Biological Sciences, 

1(2): pp.15-26. 

[2] McGregor C., (2013). A platform for real-time online health 

analytics during spaceflight. IEEE Aerospace Conference 

Proceedings. doi:10.1109/aero.2013.6497382. 

 

[3] Prysyazhnyuk, A., McGregor, C., Bersenev, E.I., & Slonov, A.V. 

(2018). Investigation of Adaptation Mechanisms During Five-

Day Dry Immersion Utilizing Big-Data Analytics. 2018 IEEE 

Life Sciences Conference (LSC), 247-250. 

[4] Garcia, M. (2019). International Space Station Facts and Figures. 

Retrieved 20 October 2019, from 

https://www.nasa.gov/feature/facts-and-figures 

 

[5] Orlov, O., McGregor, C., Baevsky, R., Chernikova, A., 

Prysyazhnyuk, A. and Rusanov, V. (2017). “Perspective Use of 

the Technologies for Big Data Analysis in Manned Space Flights 

on the International Space Station.” In: 68th International 

Astronautical Congress Proceedings. pp.1-10. 

[6] Baevsky R. M., A. G. Chernikova, I. I. Funtova, and J. Tank, 

“Assessment of individual adaptation to microgravity during long 

term space flight based on stepwise discriminant analysis of heart 

rate variability parameters,” Acta Astronaut., vol. 69, no. 11, pp. 

1148– 1152, 2011. 

[7] Prysyazhnyuk, A., Baevsky, R., Berseneva, A., Chernikova, A., 

Luchitskaya, E., Rusanov, V. and McGregor, C. (2017). “Big data 

analytics for enhanced clinical decision support systems during 

spaceflight”, In: 2017 IEEE Life Sciences Conference (LSC) 

Proceedings. pp.1-4 

[8] Prysyazhnyuk, A., McGregor, C., Chernikova, A., & Rusanov, V. 

(2019). A sliding window real-time processing approach for 

analysis of heart rate variability during spaceflight. In 70th 

International Astronautical Congress. Washington, DC, USA. 

[9] RFI regarding the Advanced Crew Medical System (ACMS) 

Space Medicine Decision Support System (SMDSS). (2016). 

Retrieved 12 March 2020, from 

https://buyandsell.gc.ca/cds/public/2016/07/21/ce21b3d9c1ab2b

55122a526b38eea330/ABES.PROD.PW_MTB.B545.E13964.E

BSU000.PDF 

[10] Prysyazhnyuk, A., and McGregor C., 2020. A wholistic approach 

to assessment of adaptation and resilience during spaceflight, 71st 

International Astronautical Congress, CyberSpace Edition.  

[11] Slonov, A., Baevsky, R., Rukavishnikov, I., Amirova, L., 

McGregor, C., Zhmurchak, A. and E. Bersenev, "Analysis of 

body posture changing, painfulness, regulation of the heart and 

breath during night sleep in experiment with a 5-day dry 

immersion.", in The 9th International Symposium on 

Neurocardiology | The 8th International Symposium on 

Noninvasive Electrocardiology, 2018, p. 82. 

 

 

BIOGRAPHY 

Anastasiia Prysyazhnyuk received a 

MHSc Health Informatics degree from 

Ontario Tech University. In her 

Master’s research, Anastasiia created 

new clinical algorithms that assess the 

body's reaction to adaption to space, 

and developed a real‐time environment 

prototype for adaption assessment, on 

the basis of big data analytics platform known as Artemis.  

 

 

 

https://www.nasa.gov/feature/facts-and-figures
https://buyandsell.gc.ca/cds/public/2016/07/21/ce21b3d9c1ab2b55122a526b38eea330/ABES.PROD.PW_MTB.B545.E13964.EBSU000.PDF
https://buyandsell.gc.ca/cds/public/2016/07/21/ce21b3d9c1ab2b55122a526b38eea330/ABES.PROD.PW_MTB.B545.E13964.EBSU000.PDF
https://buyandsell.gc.ca/cds/public/2016/07/21/ce21b3d9c1ab2b55122a526b38eea330/ABES.PROD.PW_MTB.B545.E13964.EBSU000.PDF


10 

Professor Carolyn McGregor AM, 

SMIEEE, MACM is the Research Chair 

in Artificial Intelligence for Health and 

Wellness and a two-time Canada 

Research Chair in Health Informatics 

at Ontario Tech University. She is the 

Director of the Joint Research Centre 

in Artificial Intelligence for Health and 

Wellness between Ontario Tech 

University and University of Technology, Sydney and is a 

Professor in the Faculty of Engineering and IT at UTS also. 

She has led pioneering research in Big Data analytics, 

artificial intelligence, deep learning, internet of things, 

temporal data mining and cloud computing. 


