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Topological Optimization of Auxetic
Coronary Stents Considering
HemodynamicsQ22

Q1

Huipeng Xue1, Suvash Saha1, Susann Beier2, Nigel Jepson3 and Zhen Luo1* Q2
Q3

1School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW, Australia, 2School of
Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, NSW, Australia, 3Department
Cardiology, Prince of Wales Hospital, Randwick, NSW, Australia Q4

This paper is to design a new type of auxetic metamaterial-inspired structural architectures
to innovate coronary stents under hemodynamics via a topological optimization method.
The new architectures will low the occurrence of stent thrombosis (ST) and in-stent
restenosis (ISR) associated with the mechanical factors and the adverse hemodynamics. A
multiscale level-set approach with the numerical homogenization method and
computational fluid dynamics is applied to implement auxetic microarchitectures and
stenting structure. A homogenized effective modify fluid permeability (MFP) is proposed to
efficiently connect design variables with motions of blood flow around the stent, and a
Darcy-Stokes system is used to describe the coupling behavior of the stent structure and
fluid. The optimization is formulated to include three objectives from different scales: MFP
and auxetic property in the microscale and stenting stiffness in the macroscale. The design
is numerically validated in the commercial softwareMATLAB and ANSYS, respectively. The
simulation results show that the new design can not only supply desired auxetic behavior
to benefit the deliverability and reduce incidence of the mechanical failure but also improve
wall shear stress distribution to low the induced adverse hemodynamic changes. Hence,
the proposed stenting architectures can help improve safety in stent implantation, to
facilitate design of new generation of stents.

Keywords: Q6coronary stents, topology optimization, auxetic metamaterials, hemodynamics, computational fluid
dynamics

INTRODUCTION Q7

Percutaneous coronary intervention (PCI) has been popular as a common treatment for coronary
artery disease, but the risks of stent thrombosis (ST) and in-stent restenosis (ISR) still threaten the
safety of stent implantation and represent a serious clinical shortfall. Although various reasons
accounting for these adverse biological responses that have not been fully understood, the stent
essentially serves as a mechanical structure and is believed to have a major effect on the ST and ISR
complications. In our previous work (Xue et al., 2020), the self-expanding (SE) auxetic stent has been
demonstrated to have capability in supplying adaptive deformation to help overcome the mechanical
failures and low the incidence of the ST and ISR complications. In this research, the stent-induced
hemodynamic changes will also be combined into stents to further improve stenting performance
from both mechanical and hemodynamic aspects, because the stenting structures are primally
influenced not only by mechanical failure including inadequate expansion, fracture, malapposition,
foreshortening and dogbone, but also by the hemodynamic changes induced in stent implantation.
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The adverse hemodynamic changes caused by implanting
stents are also related to high risks of ISR and ST
(Tomaszewski et al., 2020; Gharleghi et al., 2021). In 1995,
Rogers and Edelman (1995) noted that the stenting structures
might affect restenosis and thrombosis in the arteries through
actions other than the mechanical injures. Then, neointimal
hyperplasia independent of arterial injury was first investigated
in stented rabbit iliac arteries (Garasic et al., 2000). The results
indicated that stenting structures might adversely affect fluid
motions in the arterial lumen and induce intimal thicken. Nearly
in the same period, Berry et al. (2000) shown that enlarging strut
spacings can facilitate blood flow and reduce the cumulation of
neointima in a stented coronary artery. Then, the inverse
proportion relationship between neointimal hyperplasia and
the change of wall shear stress (WSS) after stent implantation
was found by Wentzel et al. (2001) and further studied by LaDisa
et al. (2005).

In hemodynamics, the WSS on the endothelial cells of
coronary arteries has been demonstrated as a significant factor
connected with atherosclerotic disease development (Ku, 1997).
The protrusions of stent struts inside the arterial lumen disturb
blood flow, so as to change the local flow environment, and
further affect the distributions of wall stress in the stented
segment. The shear stress is generated when blood flows
through the endothelium, which is proportional to the blood
viscosity and the velocity gradient. The WSS is related to the
vascular hemodynamics and correlated with radial responses,
intimal thickening, and platelet thrombosis (Gijsen et al., 2019).
The WSS under a steady laminar flow can promote endothelial
cells to release factors to inhibit coagulation, migration of
leukocytes, and smooth muscle proliferation, to benefit the
healing of narrowed vessels (Traub and Berk, 1998). However,
unusual WSS can cause neointimal hyperplasia and
atherosclerotic plaque formation. Many studies have shown
that the areas with WSS lower than 0.5 Pa are prone to
intimal thickening and atherosclerosis, while the WSS higher
than 2.5 Pa may increase the risk of plaque rupture and
thrombosis (Beier et al., 2016; Gharleghi et al., 2021). The
distributions of WSS will change after implanting stents due to
the altered velocity profile of the blood flow in the stented
segment (Gijsen et al., 2019). Therefore, WSS has been widely
adopted as a metric to evaluate the impact of stent implantation
on hemodynamic changes. Sometimes, for nonuniform flow and
pulsatile flow, wall shear stress gradient (WSSG) and time-
averaged wall shear stress (TAWSS) are also used to evaluate
the stent, respectively (Gharleghi et al., 2019). Although the stent
induced hemodynamic changes can be quantified via the WSS
distribution, how the stenting structures affect the WSS in the
stented segment is still unclear.

We can find that the stent protrusion is related to theWSS and
affects the adverse hemodynamic. The influence of the stent
protrusion can be reduced but it is inevitable in stent
implantation. For instance, the flow disturbance can be
eliminated by fully embedding stent architectures into artery
walls (Gharleghi et al., 2019). However, by doing this, the
over-sized stent can lead to high tension stress on the vessel
wall and may cause serious injury (Nolan and Lally, 2018). As a

result, the influences of strut geometric characteristics on flow
patterns have been widely investigated (Putra et al., 2019; Wei
et al., 2019; Gharleghi et al., 2021) to minimize the adverse
hemodynamic effect on stents via designs. Among stenting
geometric characteristics, strut thickness contributes the most
concern because it directly determines the degree of stent
protrusion and is strongly connected to hemodynamic
changes. Thicker struts were found to significantly promote
intimal thickening (Stiehm et al., 2019). Strut spacing is
another factor, as a large spacing can restore disturbed flow
(Bekal et al., 2018). Since the adverse hemodynamic changes
are usually presented as flow disturbance, streamlined stent strut
cross-section profiles were suggested to facilitate blood flow
(Melzer et al., 2019). Also, varying strut angles (Beier et al.,
2016) were also found to benefit hemodynamic designs, such as
aligning the orientations of struts and connectors with the flow
direction (Bekal et al., 2018).

Most current stent designs usually utilize empirical or surrogate
model-based methods to study the influence of variables, such as
struts thickness, width, angle, and spacings on WSS. The earlier
works were mainly focused on a single objective, such as
minimizing low WSS areas (Gundert et al., 2012). However, the
stent usually works in a complex environment associated with
structural mechanics and fluid dynamics (Bressloff et al., 2016).
Thus, several studies have tried to perform design by accounting for
both aspects, simultaneously. For example in the work (Putra et al.,
2019) the design objectives were defined based on both mechanical
and hemodynamic metrics, including recoil, flexibility, and WSS.
Objectives related to drug release were also taken into account in
stent design (Vijayaratnam et al., 2019). However, these
optimization formulations mostly adopt a single objective to
consider hemodynamic and a small number of structural design
variables related to sizes, which in practice are hard to capture the
impacts of stenting structures on the blood flow alterations in the
arteries. Hence, two objectives, such as mean squareWSS andmean
swirl value (Doutel et al., 2018), or recirculation zone length and
struts reattachment distance (Gharleghi et al., 2019) have been
defined to implement the design, although the improvements were
limited. After that, researchers attempted to include more
parameters with strut geometric characteristics into the
optimization (Gharleghi et al., 2021), while too many variables
and multiple design objectives lead to very complex optimization
formulations.

The above designs narrow the freedom to generate new stents
by only allowing the change of stent geometrical parameters.
Particularly, the conventional designs are not able to change
structural topologies and shapes for uncovering novel
architectures to improve stenting performance. Hence, new
design methodologies are in demand. Recently, topology
optimization is experiencing popularity as an efficient tool for
systematic design of new structures. Since stents subject to
hemodynamic changes are sensitive to both the shape and
topology of stenting structures, this paper employs a
parametric level set method (PLSM) (Luo et al., 2007; Luo
et al., 2009) to implement topological design of stents. PLSM
can generate structures with clear and smooth boundaries, more
suitable for hemodynamic stent designs. PLSM has been
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successfully applied designs of mechanical metamaterials and
auxetic structures (Wang et al., 2014; Wu et al., 2017; Li et al.,
2018). It is noted that a stent usually consists of a number of
uniform and repetitive structural architectures. In this paper the
numerical homogenization method is used to evaluate effective
properties (e.g., the elasticity tensor) of underline
microstructures. This paper integrates the numerical
homogenization method and Computational fluid dynamics
(Gundert et al., 2012) with the PLSM approach (Luo et al.,
2007) to fulfill topological design of stents using auxetic
metamaterials. Auxetics are engineered mechanical
metamaterials consisting of periodic microstructures with
effective negative Poisson’s ratio (NPR) (Lakes, 1993),
exhibiting counterintuitive property in deforming structures:
contract or expand in a transverse direction when compressed
or stretched in an axial direction. Such behaviour in elastic
deformation will considerably benefit stents, e.g., energy
absorption, adaptive stiffness, indentation resistance, and
enhanced fracture toughness, which gives the stenting
structures enhanced flexibility and adaptability to
automatically match the artery shape during the deformation.

A modified fluid permeability (MFPQ8 ) is proposed to quantify
obstructions to fluid at different directions in stenting
microstructures, to include the hemodynamic changes into
stent design to describe the stent-induced fluid changes. A
fluid permeability is often used to quantify the ability of a
porous medium to allow fluids passing through it. It is mainly
determined by the porosity, shapes of pores, and their
distributions. The porous medium with higher permeability
can enable the fluid to easily move through it. Implanting
stent changes flow environments due to the obstructions from
stent struts (Putra et al., 2019). The obstructions can cause flow
disturbances, flow separation, recirculation zones, resulting in
adverse clinical outcomes (Bukač et al., 2019). Then, reducing the
adverse hemodynamic changes around stents can be obtained by
minimizing the MFP in directions of blood flow.

ASSUMPTIONS IN STENT DESIGNS

To perform a hemodynamic topology optimization for the stent,
the simulation of blood flow in the stented artery is necessary. The
complex endovascular flow environment and the interactions
between blood, stent, and endothelial cells are challenging in
practice. Although CFD provides an efficient way to describe fluid
motion by solving Naiver-Stokes (NS) equations, a complex
blood flow model still leads to a high computational cost in
solving the full NS equations. Some assumptions necessary to
simply the fluid computation and facilitate the design
optimization are given as follows.

Blood Flow
Blood is an incompressible fluid, so the NS equations with
incompressible conditions are utilized to describe the motion
of blood flow. Equation 1 is the momentum equation, Eq. 2 is the
incompressibility condition, and Eq. 3 is the no-slip condition on
the boundary.Q9

ρ
zu
zt

+ ρ(u · ∇)u − μΔu � −∇p + ρg inΩf (1)

∇ · u � 0 inΩf (2)

u � 0 on Γf (3)

where Ωf is a fluid domain with boundary Γf. ρ and μ denote fluid
density and viscosity, respectively. u is the flow velocity, t is time, p is
the pressure, and g is body accelerations acting on the fluid, such as
gravity and inertial. ρg denotes the external body force vector
including inertia forces. ∇, Δ and ∇· are the gradient, Laplacian,
and divergence operators, respectively. The assumptions are:

1) Geometric assumptions: the stent is assumed as a straight,
rigid body with constant thickness and uniformed horizontal
cross-section profile, and no stent deformations are generated
under the blood flow. These assumptions will reasonably
simplify the CFD model (Balossino et al., 2008).

2) Blood flow is assumed as an incompressible Newtonian fluid
with a steady flow state, so the unsteady item in Eq. 1 is
neglected. Based on the study of (Johnston et al., 2006), only
about 30% cardiac cycle was obviously affected by the non-
Newtonian model. Blood flows in all arteries present pulsatile
motions due to the cyclic behaviors of systole and diastole (Ku,
1997). Hence, the blood flow with a steady-state (Mattace-
Raso et al., 2006) is usually adopted, and the inlet velocity is
defined as a time-averaged value over a cardiac cycle.

3) The optimization intends to improve the blood flow in this
worst region near the artery walls. Since the blood flow is
relatively slow near the artery walls, the convective and inertia
items can be ignored. Hence, the blood flow is consequently
simplified to a Stokes flow in the computational domain,
where the momentum equations are given in Eq. (4).

−μΔu � −∇p + ρg inΩf

∇ · u � 0 inΩf

u � 0 on Γf
(4)

Design Domain
In the stented segment of the artery, blood flows through the
inner lumen and fills the gaps between stent struts. The fluid is
separated by the stent and divided into different regions. A 3D
computational domain based on one stenting microstructure is
established for the CFDmodel, as shown in Figure 1. The domain
has four regions: three blood regions with red colour and one
stent region with blue colour. In the middle of the computational
domain, two thin layers with the same thicknesses are defined as
the stenting microstructures, with one microstructure defined in
the stent region at the bottom layer. Blood flows through the
whole top layer and fills the gaps between stent struts in the
bottom layer. Hence, the stent region consists of one stent
microstructure filled with the blood in gaps. Two blood
regions with the same sizes are defined in the two ends of the
microstructure to avoid the impacts of the flow boundaries. Since
the fluid convection is ignored, various lengths of inlet and outlet
will affect the fluid. The CFD simulation is then performed under
the following conditions:
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1) A constant inlet velocity of blood flow specified on the left side
of the computational domain.

2) The outlet boundary with nearly zero pressure located on the
right side.

3) No-slip conditions applied on the outside surfaces of the
simulation region.

4) No additional conditions to the solid-fluid interfaces due to
the restriction to the flow in solid areas.

As the assumption of constant thickness, a 2D horizontal
cross-section profile is extracted from a stent microstructure
and defined as the design domain. The outer contours of the
design domain are presented with white lines, and the bottom
of the stent region is defined as the artery wall, as given in
Figure 2. The velocities at the design domain are extracted to
evaluate the index MFP. After that, the design variables are
updated by the optimization method. Then, the material
layout in the stent region can be correspondingly updated
by the new microstructural profile. In this way, the

associations between the computation and design domains
are established.

PARAMETRIC LEVEL SET METHOD

LSM implicitly defines the structural boundary as the zero-level
set of a higher-dimensional scalar function Φ (x). For example, a
two-dimensional (2D) design, given in Figure 3, is defined by

⎧⎪⎨⎪⎩
Φ(x)> 0 x ∈ Ω\zΩ (Solid)
Φ(x) � 0 x ∈ zΩ   (Boundary)
Φ(x)< 0 x ∈ D\(Ω∪zΩ)      (Void)

(5)

where x is a point in spaceD.Ω and zΩ are the design domain and
its boundary, respectively. The dynamic motion of the level set
function then drives the topological shape changes of the
structure. Differentiating zero level set function with respect to
a pseudo time t leads to motion of interface as
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FIGURE 1 | The 3D computational domain.Q17

FIGURE 2 | The 2D design domain.

FIGURE 3 | (A) 3D level set surface; 2D level set boundary.
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zΦ(x, t)
zt

− vn|∇Φ(x, t)| � 0 (6)

Thus, the level set function can be solved by finding a velocity
field vn to maintain the first-order Hamilton-Jacobi partial
differential equation (H-J PDE) in Eq. 6. In the PLSM (Luo
et al., 2007), the level set function is interpolated via centrally
positioned CSRBFs at a set of given fixed knots N over the whole
design domain by

Φ(x, t) � φ(x)Tα(t) � ∑N
i�1

φ(x)αi(t) (7)

The vector with the CSRBFs functions is defined as:

φ(x) � [ϕ1(x), ϕ2(x), ... , ϕN(x)]T (8)

The expansion coefficient vector is given by:

α(t) � [α1(t), α2(t), ... , αN(t)]T (9)

In this paper, the CSRBFs with C2 continuity is used (Luo
et al., 2007; Luo et al., 2009). Because of CSRBF knots fixed in
space, the shape functions φ (x) are spatial only and the expansion
coefficients α (t) are time-dependent only, leading to a separation
of the time and space in the level set function. Thus, the H-J PDE
is transformed as the following ordinary differential equation
system:

φ(X)T _α(t) − vn
∣∣∣∣∣(∇φ)Tα(t)∣∣∣∣∣ � 0 (10)

In this way, the normal velocity field is only determined by the
parameters α (t):

vn � φ(X)T∣∣∣∣∣(∇φ)Tα(t)∣∣∣∣∣ _α(t), where _α(t) � dα(t)
dt

(11)

DARCY-STOKES COUPLING

The application of the Darcy-Stokes coupling approach in
saturated porous mediums (Guest and Prévost, 2006) provides
an efficient way to deal with the moving-boundary no-slip
conditions for solid-fluid interfaces. In the system, the solid
region is treated as a porous medium with flow governed by
Darcy’s law, and the fluid area is treated as Stokes flow. A unified
analysis model that combines the Darcy and Stokes equations can
then be established. In the model, a penalization to flow in the
solid region is taken by assigning a low permeability to drive the
velocity to close zero. Thus, the no-slip conditions along the solid-
fluid interface are maintained (Guest and Prévost, 2006; Wang
et al., 2016). By using the Darcy-Stokes coupling method, no
additional boundary conditions are needed for solid-fluid
interfaces, which saves the computational time and benefits
the convergence of the optimization.

Stokes flow is usually used to describe a steady viscous fluid
with slow velocity by ignoring convective and inertia items in the
momentum equations. A typical Stokes flow is formulated in Eq.

4. Darcy flow, derived from the NS equations, usually describes a
fluid through a porous medium by the homogenization method
(Whitaker, 1986). In this work, the solid regions in the design
domain can be treated as porous mediums govern by Darcy flow,
where the nodal velocities are close to zero. The typical equations
of Darcy flow are given as:

u � −k
μ
(∇p − f) inΩf

∇ · u � 0 inΩf

u � 0 on Γf

(12)

where k is the fluid permeability, and f is the vector of external
force. When using the Darcy-Stokes method, the velocity and
pressure are dependent variables but with different orders in both
flows. The incompressible condition has a stability requirement
for the combination of the interpolation functions. Here, the
stabilized mixed finite element methods (Hughes et al., 1986) is
used for Stokes flow, and the method proposed by Masud and
Hughes (2002) is applied for Darcy flow. Both stabilized mixed
methods can avoid restrictions of the Babuška-Brezzi conditions
(Babuška, 1971).

The stabilized matrix form for Darcy-Stokes coupling is
given by

[Kds −Gds

Gds Mds
][ u

p
] � [Fds

Hds
] (13)

Combined within the PLSM, the matrices in the Darcy-Stokes
system are defined as:

Kds(x) � A{H(Φ(x))Kd + [1 − H(Φ(x))]Ks}
Gds(x) � A{H(Φ(x))Gd + [1 −H(Φ(x))]Gs}
GT

ds(x) � A{H(Φ(x))GT
d + [1 − H(Φ(x))](Ls + GT

s )}
Mds(x) � A{H(Φ(x))Md + [1 −H(Φ(x))]Ms}

(14)

where A is the standard finite element routine. The subscript “ds”
denotes the matrices defined in the Darcy-Stokes system. The
subscripts “d” and “s” emphasize Darcy and Stokes flow,
respectively. u is the velocity vector, and p is the pressure
vector. K is the viscosity stiffness matrix, G is the gradient
matrix, GT is the divergence matrix, L is the consistency
matrix, and M is the stabilization matrix. F and H are the
nodal forces. H [Φ(x)] is the Heaviside function (Luo et al.,
2007) of Φ(x) at point x. The interpretations indicate solid
elements have Darcy stiffness, and void elements have Stokes
stiffness.

HOMOGENIZATION OF THE STENT
PROPERTIES

The stenting structure consists of periodic array of identical
microstructures. A near wall horizontal cross-section profile of
the microstructure is specified as the 2D design domain. The
numerical homogenization method is adopted to compute the
effective elasticity tensor and the MFP tensor.
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Homogenization of Elasticity
The effective elasticity tensor DH

ijkl of the microstructure is
assessed by the homogenization method as:

DH
ijkl �

1

|Y |∫Y
(ε0(ij)pq − ε

p(ij)
pq )Dpqrs(ε0(kl)pq − εp(kl)pq )dY (15)

where Y is the micro design domain and denotes one unit cell of
the stent, and |Y| is the area of the unit cell. i, j, k, l � 1, 2. Dpqrs is
the elasticity tensor of the solid material in the design domain.
ε0(ij)pq is the test unit strain field, where (1,0,0)T, (0,1,0)T and
(0,0,1)T are used in 2D models. ε*(ij)pq is the locally varying strain
fields and defined by:

ε
p(ij)
pq � 1

2
⎛⎝zuij

p

zyq
+ zuij

q

zyp
⎞⎠ (16)

The displacement field u(ij) is calculated by applying the
periodical boundary conditions as

∫
Y
(ε0(ij)pq − ε

p(ij)
pq (u(ij)))Dpqrsε

p(kl)
rs (v(kl))dY

� 0, ∀ v(kl) ∈ Up(Y) (17)

where ](kl) is a virtual displacement field in Up(Y). Note that U is
the kinematically admissible displacement space comprised of
periodic Y.

The effective stiffness matrix of the material that has four
independent components is defined by

DH � ⎡⎢⎢⎢⎢⎢⎢⎣D
H
11 DH

12 0
DH

12 DH
22 0

0 0 DH
33

⎤⎥⎥⎥⎥⎥⎥⎦ (18)

The auxetic properties can be obtained through the design
having effective negative Poisson’s ratios (NPR). Here, two
Poisson’s ratios Mu1 and Mu2 in two directions are used to
define the related design objectives, and the calculations of the
two Poisson’s ratios are given by:

{Mu1 � DH
12/D

H
11

Mu2 � DH
12/D

H
22

(19)

Homogenization of Modify Fluid
Permeability
A permeability in fluid mechanics is usually used to quantify the
ability of a porous material for fluids to go through it. The
permeability can also be applied to measure the obstructions
caused by stents. Considering the minimization of the stenting
hemodynamic alterations, the optimization aims to reduce the
obstruction effect of the stent on the blood flow. Since the blood
flow is above the stent layer, rather than across through the stent
region, the MFP is different from the typical fluid permeability.
By applying the homogenization method in Stokes equations,
Darcy’s law can be obtained:

U � −1
μ
KH(∇p − f) (20)

whereU is the vector of average velocities. μ and f are the viscosity
and the external body force, respectively. ∇p is the pressure
gradient. KH is the homogenized effective fluid permeability
tensor. The calculation of a typical permeability can be
formulated as:

KH � [KH
ij ] � 1

|Y |(w(i))TKdsw(j) (21)

where the effective fluid permeability tensor KH is assembled by
the components KH

ij in the principal direction. w is the velocity
vector solved from the above Darcy-Stokes coupling system via
Eq. 13. Kds is the Darcy-Stokes viscosity matrix defined in Eq. 14.
After that, the MFP tensor is proposed for the 2D design domain.
The formulation of the MFP derived from Eq. 21 can be
defined as:

KH
2D � [KH

2D(ij)] � 1

|Y2D|(w(i)
2D)TK2D

ds w
(j)
2D (22)

where the subscript “2D” denotes the extracted 2D design
domain. KH

2D is the MFP tensor. w2D is the velocity vector in
the 2D design domain, which is calculated in the 3D
computational domain. K2D

ds is the Darcy-Stokes viscosity
matrix defined for the 2D design domain and derived from
the mixed viscosity matrix Kds. The velocity vector w2D

contains two directional components: one is in the blood flow
direction, and another one is normal to the blood flow. Thus, the
purpose of reducing the stenting obstructions can be obtained by
minimizing the vertical component of the MFP.

OPTIMIZATION FORMULATION AND
SENSITIVITY ANALYSIS

This section will formulate the multiscale multi-objective
topology optimization problem, and the sensitivity analyse of
the optimization objectives will also be derived. Since different
objectives will be associated with different design variables. The
mechanical objectives are auxetic properties and stent stiffness,
while the MFP is related to CFD simulation. After that, the
connection between the MFP and design variables can be built,
and the sensitivity analysis can be performed.

Optimization Model
The numerical optimization starts from an initial guess in the 2D
design domain, where the expansion coefficients of the CS-RBF
interpolation in the PLSM are defined as design variables. Then,
the three objectives are computed simultaneously.With respect to
the mechanical objectives, the compliance of the macroscopic
stenting structure can be computed by the obtained effective
elasticity tensor. Regarding the fluidic objective, the 3D
computational domain is first established based on the initial
2D design domain. The material distribution of the 3D
microstructure is determined by the 2D profile in the design
domain. The surrounding blood regions are specified the same as
the initial definition in Figure 1. The coupled Darcy-Stokes
system can be solved, and the velocity vector of the 3D fluid
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model is then achieved. After that, the velocity vector of the 2D
design domain is extracted from the 3D fluid model to calculate
the MFP. Thus, all three objectives and related sensitivities are
obtained. They are then normalized and weighted as an
equivalent objective function. Based on the sensitivity
information, the PLSM is utilized to update the structural
topological shapes.

The proposed multiscale topology optimization model is
formulated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F i n d αMI
2D,n(n � 1, 2, ... , N)

M i n J(αMI
2D ) � W1J1(αMI

2D ) +W2J2(αMI
2D ) +W3J3(αMI

2D )� W1J
MI
A (αMI

2D ) +W2J
MI
P (αMI

2D ) +W3J
MA(αMI

2D )
S. t. V(αMI

2D ) � ∫
ΩMI

H(ΦMI(αMI
2D ))dΩMI

2D − Vmax
2D ≤ 0

FMI
2D (uMI

2D ,w
MI
2D , α

MI
2D ) � LMI

2D(wMI
2D , αMI

2D ), ∀ wMI
2D ∈ U(ΩMI

2D )
FMI
3D (uMI

3D , p
MI
3D , v

MI
3D , q

MI
3D , α

MI
2D ) � LMI

3D(vMI
3D , q

MI
3D ), ∀ vMI

3D , q
MI
3D ∈ U(ΩMI

3D )
FMA
2D (uMA

2D ,wMA
2D ,DH

ijkl) � LMA
2D (wMA

2D ), ∀ wMA
2D ∈ U(ΩMA

2D )
αMI
2D,min ≤ α

MI
2D,n ≤ αMI

2D,max

(23)

where JMI
A � (Mu1(αMI

2D ) + 1)2 + (Mu2(αMI
2D ) + 1)2, JMI

P �
KH(2,2)
2D (αMI

2D ) and JMA � 1
2∫ΩMA

2D
εTij (u

MA
2D )DH

ijkl(α
MI
2D )εkl(u

MA
2D )dΩMA

2D .

J is the objective function, consisting of the auxetic property
JMI
A , the fluid objective JMI

p , andmacro compliance JMA, whereW1,
W2, W3 are corresponding weight factors. The superscript “MA”
and “MI” denote parameters in macroscale and microscale,
respectively; the subscript “2D” refers to parameters in the 2D
design domain, and “3D” means parameters in 3D domain. N is
the total number of fixed knots in the 2D design domain. The
coefficients of the interpolation αMI

2D,n are the design variables,
ranging from αMI

2D,min to α
MI
2D,max. The subscript “A” and “P” denote

auxetic and permeability, respectively. KH
2D is the MFP, and

KH(2,2)
2D is the vertical component. V is the volume constraint

with the upper limit VMax
2D , applied to the 2D microstructure but

can also restrict the 3D microstructure.
The MFP related to the design variables can be calculated by:

KH
2D(αMI

2D) � [KH
2D(ij)(αMI

2D)]
� 1∣∣∣∣ΩMI

2D

∣∣∣∣(w(i)
2D)TK2D

ds (Hf (ΦMI
2D(αMI

2D)))w(j)2D (24)

where the velocity vector w2D is extracted from the velocity vector
uMI
3D(uMI

3D), which is calculated by the following momentum
equation performed in the 3D computational domain.

FMI
3D (uMI

3D , p
MI
3D , v

MI
3D , q

MI
3D , α

MI
2D) � LMI

3D(vMI
3D , q

MI
3D) (25)

where vMI
3D and PMI

3D are the boundary conditions defined in the
CFD model, given by

[Kds(Hf ) −Gds(Hf )
GT

ds(Hf ) Mds(Hf ) ][ u(uMI
3D)

p(pMI
3D) ] � [ Fds(wMI

3D)
Hds(qMI

3D) ] (26)

where Hf denotes the Heaviside function H applied to the Darcy-
Stokes coupling in the CFD model. Θ in Hf is equal to zero to
identify fluid material in the design domain. TheDH

ijkl used for the
evaluation of the mechanical properties in the optimization
model can be calculated by:

DH
ijkl(αMI

2D) � 1∣∣∣∣ΩMI
2D

∣∣∣∣ ∫ΩMI
2D

(ε0(ij)pq − εppq(u(ij)2D ))Dpqrs(ε0(kl)rs − εprs(u(kl)2D )
× )H(ΦMI

2D(αMI
2D))dΩMI

2D

(27)

where Dpqrs is the elasticity tensor of the solid. ε0pq is the test unit
strain field, where (1,0,0)T, (0,1,0)T and (0,0,1)T are used. ε*pq is the
strain field related to the displacement u2D that can be
calculated by

∫
ΩMI
2D

(ε0(ij)pq − εppq(uMI(ij)
2D ))Dpqrsε

p
rs(wMI(kl)

2D )H(ΦMI
2D)dΩMI

2D

� 0, ∀ w ∈ U(ΩMI
2D) (28)

where w is the virtual displacement field.
The bilinear energy and the linear load forms in the 2D

microscale domain are given by

FMI
2D (uMI

2D ,w
MI
2D , α

MI
2D) � ∫

ΩMI
2D

εpij(u2D)Dpqrsε
p
kl(wMI

2D)H(ΦMI
2D(αMI

2D)
× )dΩMI

2D

(29)

LMI
2D(wMI

2D , αMI
2D) � ∫

ΩMI
2D

ε
0(ij)
ij (u2D)Dpqrsε

p
kl(wMI

2D)H(ΦMI
2D(αMI

2D)
× )dΩMI

2D

(30)

The bilinear energy and the linear load forms in the 2D
macroscale domain can be computed by:

FMA
2D (uMA

2D ,wMA
2D ,DH

ijkl) � ∫
ΩMA
2D

εij(uMA
2D )DH

ijklεkl(wMA
2D )dΩMA

2D (31)

LMA
2D (wMA

2D ) � ∫
ΩMA
2D

pwMA
2D dΩMA

2D + ∫
ΩMA
2D

τwMA
2D dΓMA

2D (32)

where p is the body force, and τ is the traction of the boundary
ΓMA
2D in the 2D macroscale.

Sensitivity Analysis
Based on the topology optimization formulation, the sensitivities
can be obtained via the first-order derivatives of the objective
functions with respect to the design variables αMI

2D .
The sensitivity of the macroscopic compliance is computed by:

zJMA

zαMI
2D

� 1
2
∫

ΩMA
2D

εTij(uMA
2D ) zDH

ijkl(αMI
2D)

zαM I
ξ

εkl(uMA
2D )dΩMA

2D (33)

where the first-order derivatives of the effective elasticity tensor
DH
ijkl with respect to t is:

zDH
ijkl

zt
� 1∣∣∣∣ΩMI

2D

∣∣∣∣ ∫ΩMI
2D

βMI
2Dv

n
∣∣∣∣∣(∇ΦMI

2D)T ∣∣∣∣∣δ(ΦMI
2D)dΩMI

2D (34)

βMI
2D � (ε0(ij)pq − εppq(uMI(ij)

2D ))Dpqrs(ε0(kl)rs − εprs(uMI(kl)
2D )) (35)

where vn is determined in Eq. 11 and is then substituted into
Eq. 34:
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zDH
ijkl

zt
� ( 1∣∣∣∣ΩMI

2D

∣∣∣∣ ∫ΩMI
2D

βMI
2Dφ

MI
2D(x)Tδ(ΦMI

2D)dΩMI
2D) _αMI

2D,n(t) (36)

In terms of the chain rule, the first-order derivatives of DH ijkl
with respect to t can also be given as:

zDH
ijkl

zt
� zDH

ijkl

zαMI
2D

_αMI
2D,n(t) (37)

Comparing Eq. 36 and Eq. 37, the first-order derivatives of
DH
ijkl with respect to the expansion coefficients αMI

2D can then be
obtained as:

zDH
ijkl

zαMI
2D

� 1∣∣∣∣ΩMI
2D

∣∣∣∣ ∫ΩMI
2D

βMI
2Dφ

MI
2D(x)Tδ(ΦMI

2D)dΩMI
2D (38)

Therefore, the sensitivity of the objective JMA can be calculated
by substituting Eq. 38 into Eq. 33.

Since the sensitivity of the objective JMI A is also based on Eq.
38, it can be calculated by:

zJMI
A

zαMI
2D

� z(Mu1 + 1)2
zαMI

2D

+ z(Mu2 + 1)2
zαMI

2D

� z(DH
12/D

H
11 + 1)2

zαMI
2D

+ z(DH
12/D

H
22 + 1)2

zαMI
2D

(39)

The sensitivity of the MFP can be derived from the Darcy-
Stokes coupling system, so the first-order derivatives of JMI

P with
respect to the expansion coefficients αMI

2D can be given by:

zJMI
P

zαMI
2D

� zKH(2,2)
2D (αMI

2D)
zαMI

2D

(40)

where the sensitivity ofK can be further obtained according to the
first order of the Heaviside function Hf (Dirac function) (Luo,
et al., 2007) in the fluid-solid coupling system by

zKH
2D(αMI

2D)
zαMI

2D

� 1∣∣∣∣ΩMI
2D

∣∣∣∣ ∫ΩMI
2D

(w(i)
2D)TφMI

2D(x)Tδf (ΦMI
2D)(K2D

d

− K2D
s )w(j)2D dΩMI

2D (41)

As discussed previously, the volume constraint is only defined
in the 2D design domain but can control the volume of the 3D
model. Thus, the sensitivity of the volume constraint can be
calculated by:

zV
zαMI

2D

� ∫
ΩM I
ξ

φMI
2D(x)Tδ(ΦMI

2D(αMI
2D))dΩMI

2D (42)

After that, the non-dimensional sensitivities for the three
objective functions can be given by Eq. 43, which benefits the
multi-objective optimization (Marler and Arora, 2004).

zJNoni

zα
� zJi/zα∣∣∣∣zJmax

i /zα
∣∣∣∣ i ∈ (1, 2, 3) (43)

where i denotes the three individual objective functions.

NUMERICAL RESULTS

The numerical optimization is implemented via MATLAB
2018b to obtain the stenting microstructures. The multi-
domain involved in the optimization model is displayed in
Figure 4. From the figure, we can see three domains are
defined in the model. The stent is deployed as a 2D structure,
and it is the macro design domain that consists of 20 × 20
uniform microstructures. The macroscopic boundary and
loads conditions: the vertical degree of freedoms of the top
and bottom edges are fixed, and horizontal unit
displacements are applied on the left and right edges. The
stenting microstructures is then defined as the micro design
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FIGURE 4 | Multi-domain of the numerical model.
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TABLE 1 | The results of various volume fractions.

Volume(V) Microstructure Microstructure
(3 × 3)

Streamline

60% (case 1)

55% (case 2)

50% (case 3)

45% (case 4)

40% (case 5)

35% (case 6)

30% (case 7)

(Continued on following page)
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domain. The 2D micro design domain can be treated as the
constant horizontal cross-section profile of a 3D
microstructure, which is utilized to establish a 3D micro
computational domain for the related CFD analysis. In the

3D field, a scaled velocity of blood flow is specified as the inlet
condition, while the zero-pressure boundary is defined as the
outlet condition. By considering the computational efficiency,
a square element with four nodes is used for the 2D micro and
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FIGURE 5 | The results of case 7: (A) Initial design; (B–E) Four intermediate results; (F) Final design.

TABLE 1 | (Continued) The results of various volume fractions.

Volume(V) Microstructure Microstructure
(3 × 3)

Streamline

25% (case 8)
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macro design domains; an 8-node brick element is used in the
3D domain.

The multi-objective optimization is formulated by weighting
three single objective functions. Different combinations of weight
factors can lead to different results. All the three optimization
objectives are critical to the design. Compared with the
macroscopic compliance, the other two objectives determine
the material layout to have auxetic and MFP properties, so
larger weighting factors are specified for these two objective
functions. Thus, three weight factors, 0.35, 0.35 and 0.30,
are used.

The volume fraction of the microstructure in the
optimization is another factor in determining the
optimization results. It should not be too big to block
blood flow, or too small to support the artery. Thus, the
volume fractions from 25 to 60% are used to investigate the
optimization results. The optimized results are summarized
in Table 1, which includes the microstructure of each case,
the related 3 × 3 microstructural array, and the blood flow
streamlines in the design domain. In the table, the black
colour denotes stenting microstructures, and the red colour
shows blood.

All results in Table 1 show auxetic characteristics: re-
entrant connections between struts. The solid material in all
designs concentrate more along the direction of the blood

flow, which is beneficial for reducing the stenting
obstructions. To distinguish different struts in the
stenting microstructures, the struts along the blood flow
are named horizontal struts, while the others are called
vertical struts. When the designs have relatively large
volume fractions, such as the cases 1–4, more solid
material will be assigned to the horizontal struts to
facilitate the blood flow, leading to less or thin vertical
struts. When volume fractions are reduced, such as the
cases 5–7, the material distributions become more
uniform. In these cases, the two horizontal struts are
connected by only one vertical strut location on the right
edge, exhibiting an opening at the upstream side. This can
lead to a long space for blood through and facilitate
recovering the disturbed flow. Besides that, the other two
vertical struts are also near the right edge to facilitate blood
flow. As the volume fraction was further reduced in case 8, the
two vertical struts near the horizontal struts become thinner.
They are used to connect the stenting unit cells in the same
circumference, and two weak connections may lead to
stenting fractures. Within the results, case 7 with a 30%
volume fraction has more material distribution and few
obstructions on the blood flow.

The homogenized effective elasticity tensor and the MFP are
given by
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FIGURE 6 | The convergent history of case 7: (A) Poisson’s ratios; (B) Modified permeabilities; (C) Objective and volume fraction.

FIGURE 7 | The geometry of the optimized stent.
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FIGURE 8 | The deformation results of the compression test: (A) Axonometric view of the radial compression test result; (B) Side view of the radial compression test
result; (C) Axonometric view of the axial compression test result; (D) Side view of the axial compression test result.Q19
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FIGURE 10 | The streamlines of blood around the stent F-7.

FIGURE 9 | The CFD model.Q20
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DH � ⎡⎢⎢⎢⎢⎢⎣ 0.1082 −0.0339 0
−0.0339 0.0324 0
0 0 0.0022

⎤⎥⎥⎥⎥⎥⎦ where, {Mu1 � −0.3133
Mu2 � −1.0463

(44)

and

KH
2D � [ 1.0593 × 10−3 0

0 2.5233 × 10−4
] (45)

It can be found that the values of NPRs are −0.3133 along the
flow direction and −1.0463 in the vertical direction, which
indicates the microstructure has a relatively smaller vertical
stiffness. It means the stenting radial stiffness is smaller than
the axial stiffness by adopting the optimized microstructure. The
less radial stiffness of the stent can enhance the adaptive
deformation and lead to better flexibility. On the other hand,
both directions present the auxetic properties that can obtain a
smaller volume after compression, so as to facilitate deliverability.
The effective MFP can be found in Eq. 45. With respect to the
MFP, the design reduces the vertical blood flow which can also

leads to directional differences. Hence, the directional differences
in both NPR and MFP improve the stenting performances.

To further investigate numerical case 7, the dynamic
evolutions of the microstructure are presented in Figure 5.
We can see the solid material is gradually assigned to the
horizontal struts in the optimization process, leading to fewer
obstructions to the blood flow. Re-entrant characteristics
exhibiting auxetic behaviour can also be created,
simultaneously. As shown in Figure 5F, the blood flow is
mainly disturbed by the vertical struts, but the normal flow
patterns can be recovered behind the struts due to large fluid
spaces. Thus, local recirculation regions may occur around the
vertical struts but will be small. The convergences of the related
objective functions in the optimization are shown in Figure 6. All
effective properties, objective functions, and volume constraints
are gradually converged to their solutions. We can see that the
twoMFPs increase from zero to the highest value at the beginning
of the optimization, because the solid material fills the design
domain at the initial stage. In a word, the optimization process of
the case 7 also shows the effectiveness of the optimization.

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

FIGURE 12 | The WSS distributions of the stent: (A) Covered by the stent; (B) Without the stent.Q21
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NUMERICAL VALIDATIONS

This section is to numerically validate the performances of the
optimized stent. For instance, the minimization of the stent
induced adverse hemodynamic can be obtained by reducing
the obstructions of the stent to the blood flow. WSS and
related derivatives are usually used as the widely accepted
metric to measure the stented hemodynamics. Thus, the
optimized microstructure is simulated in ANSYS 2019R3 to
validate the macroscopic performances. For the optimized
stent, the auxetic properties, disturbances to the blood flow,
and WSS distributions are numerical validated, respectively.

Auxetics
The auxetic property is one of the design objectives for the stent in
the proposed design. Due to the directional differences of the
stenting properties, two compression tests are performed: one is
under a radial compression load, and the other is under an axial
compression load. To create the stenting geometry for the tests,
the optimized microstructures are first obtained from MATALB
via the STL format, and then ANSYS SpaceClaim module is
utilized to finish the creation of the geometry (Figure 7). The
stent thickness is 0.1 mm, and the length and the diameter are 12
and 4 mm. In the model, 20 cells are configured along the
peripheral direction and 20 cells are arranged along the axial
direction.

The deformation of the radial compression test is shown in
Figures 8A,B, where both axonometric and side views are utilized
to show its deformation behaviours. A pressure load is applied on
the stenting surface to compress the diameter about 50% in the
test. From the figure, we can see the stent contracts slightly in the
axial direction due to larger axial stiffness. When the stent is
compressed in the radial direction to adapt to the various artery
shapes, the stenting axial length is relatively stable. It can keep
enough length of the stent to cover the lesion even though the
stenting radial dimension is changed. The axial compression test
result is presented in Figures 8C,D. The test result shows that the
stent contracts significantly in the radial direction when applying
compression loads in the axial direction from the right side,
indicating the NPR behaviour that can improve deliverability.

Fluid Validations
The disturbance of stents on blood flow is another essential issue
in the design. Thus, the simulation for blood flow in the stented
segment is performed via the software CFX in ANSYS v2019R3.
This research intends to reduce the adverse hemodynamic
changes by minimizing the stenting obstructions on the blood
flow. In the validations, the streamlines generated by the blood
flow are used to investigate the stenting obstructions. WSS
distribution is also computed in the simulation.

To save computational cost, the CFD model is established
based on 1 cell along the peripheral direction while 20 cells in the
axial direction, as shown in Figure 9, where the black one is the
stent, and the red is blood. The stent thickness is 0.1 mm, and the
length and the diameter are 12 and 4 mm, respectively. By
considering the impact of the boundary conditions on flow,
the distance between the inlet and the stent struts is specified

as 3 mm and another 3 mm between the outlet and the stent. The
blood in the model is defined as an incompressible Newtonian
viscous fluid. The density is 1,050 kg/m3, and the dynamic
viscosity is 3.5 mPa·s. The flow is assumed to be steady state
with 0.35 m/s inflow velocity and 0 Pa outlet boundary condition.
No-slip conditions are applied on the fluid-solid interfaces and
the fluid walls. The cylindrical symmetric condition is defined in
the peripheral direction.

The results of blood flow streamlines are shown in Figure 10,
where the lower velocities are denoted with darker colours. In the
figure, the maximum velocity of the flow is greater than the inflow
condition, because the flow can be accelerated around the stent
struts. Due to the applied no-slid boundary conditions, the
minimum velocity is zero. The result shows that the velocities
of the streamlines are affected by the stenting struts. Since
relatively narrow spaces are formed between the horizontal
struts in each unit cell, the blood flows are obstructed around
these spaces and exhibits lower velocities. And the blood flows
between each unit cell can maintain higher speeds due to fewer
obstructions and larger fluid areas. Overall, blood flow can keep a
high velocity, which can be demonstrated that many streamlines
present light colours through the whole fluid region.

The overall influences of stenting obstructions can be evaluated by
blood flow changes in the upstream side and downstream side of the
stent. The streamlines in the proximal and distal struts are presented
in Figure 11. In the figure, the fluid region around the stent can be
divided into two different parts: one is the inner space of each
individual cell, and the other is the connecting space between cells.
When blood through these spaces, the flow can be accelerated around
the struts and may lead to recirculation zones. In the connecting
spaces of the proximal struts, the disturbances of the flow focus on the
four corners and cause small recirculation zones. Also, a few vertical
flows occur along the left struts in the connecting spacings. However,
small recirculation zones are formed around the vertical struts in the
inner spaces of proximal struts due to the narrow fluid spaces.
Compared with the proximal struts, similar blood flow behaviours
can be found around the distal struts but exhibit relatively smaller
flow disturbances and recirculation zones. Although the recirculation
zones may induce adverse effects, they only cover very few regions
around the struts. Hence, the result shows that the optimization for
the MFP can effectively reduce the vertical flow and the stenting
obstructions to benefit blood flow.

TheWSS is an important metric to quantify the hemodynamic
impacts in stent implantation. The unusual WSS is often
associated with adverse effects including ST (extremely high
WSS) and ISR (extremely low WSS). When the magnitude of
WSS is higher than 2.5 Pa increases the risk of ST, while lower
than 0.5 Pa increases ISR incidence. Based on the flow direction,
the WSS is mainly determined by the axial component, so the
axial WSS is utilized to evaluate the stent. The axial WSS of the
stent is illustrated in Figure 12. It can be found that the regions
covered by the stent have higher WSS. In the results, the
maximum axial WSS is 2.195 Pa, which is less than the high
adverse stress 2.5 Pa and indicates a lower ST incidence. However,
the regions surrounded by the stent struts exhibit lower and even
negative axial WSS, which are recirculation zones. The same
recirculation zones are also found in the streamline results.
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Among them, the connecting spaces between unit cells have
higher WSS compared with their inner spaces due to larger
fluid regions. The average WSS in most regions of the stent is
around 0.9 Pa and greater than the lower bound of the threshold
0.5 Pa, but the areas close to the vertical struts exhibit smaller,
even negative WSS. It is because the struts protrude into the
artery lumen and separate the laminar flow, resulting in lower
shear stress around the struts. This kind of effect is determined by
the shape and size of the strut profiles and cannot be eliminated
unless the stent is fully embedded into the artery walls. The
regions with lower WSS cannot be completely avoided, but the
impacted areas are small. Moreover, the WSS distribution of the
stent is relatively uniform, which can avoid structural fatigue
breakage to extend stent lifetime in use and is able to low
occurrence of ST and ISR.

Hence, from the above numerical examples and discussions we
only found limited disturbance in blood flow around the area of
the stent, which indicates less obstructions of the newly designed
stent to the blood flow. This shows the efficiency of the optimally
designed structural architectures in stents.

CONCLUSION

This paper has developed a family of auxetic architectures for
stenting structures using a topological optimization approach and
its associated numerical methods, which is especially beneficial to
self-expanding stents. The new design combines the
hemodynamic effect with auxetic structures to improve the
stent performances particularly from both mechanical and
hemodynamic aspects. Several numerical examples and their
simulation results have shown the efficiency of the
topologically optimized stenting architectures. The
homogenized MFP can quantify the disturbances of the
stenting microstructures to the blood flow, through which the
reduction of the adverse blood flows can be transformed to the
reduction of the obstructions of the stent to the blood flow. The
obstructions have been found to associate with the material
layouts of the microstructures. The fluent simulation results
present fewer obstructions of the optimized stent to the blood
flow and fewer adverse WSS distributions associated with ST and
ISR risk factors. Hence, the newly developed auxetic architectures
can benefit stenting performance by reducing occurrence of
mechanical failures as well as the influence of adverse

hemodynamics, which will help low the incidence of ST and
ISR complications due to mechanical structural issues in stent
implantation and treat heart disease in clinic practice.

In this study, it is noted that the pulsatile blood flow state is not
considered in the design. Furthermore, this paper is focused on
generic design of a new type of stenting architectures sharing
common geometric profiles, not patient-specific and customised
designs, through a topological optimisation method using
idealized models. The success rate of PCI therapy has been
significantly improved over the past, but the ST and ISR
problems have not been completely resolved. Various factors
may account for the incidence of ST and ISR in stent
implantation. However, this work emphases the importance of
mechanical structural failures and hemodynamics, rather than
biomaterial, patient, clinical and operational aspects. Moreover,
technical details for developing end-user products such as
compressing stents into sheaths, injection and release of stents
in implantation are outside of the scope of this paper.
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FIGURE 8 | The deformation results of the compression test: (A) Axonometric view of the radial compression test result;
(B) Side view of the radial compression test result; (C) Axonometric view of the axial compression test result;
(D) Side view of the axial compression test result.
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FIGURE 9 | The CFD model.
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FIGURE 12 | The WSS distributions of the stent: (A) Covered by the stent; (B) Without the stent.
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