ZnO and MgZnO Nanostructures and

Heterostructures

by

Muhammad Zakria

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

in the

School of Mathematical & Physical Sciences Faculty of Science

February 2021

Certificate of Original Authorship

I, Muhammad Zakria declare that this thesis with title "ZnO and MgZnO Nanostructures and Heterostructures" is submitted in the fulfilment of the requirement for the award of Doctor of Philosophy (PhD), in the School of Mathematical and Physical Sciences, Faculty of Science, at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by an Australian Government Research Training Programme.

Production Note:Student Signature:Signature removed prior to publication.

Date: <u>19/02/2021</u>

Acknowledgments

First, I would like to express my sincere thanks to my supervisor, Assoc. Prof. Cuong Ton-That for his support and encouragement during my PhD journey at UTS. His fruitful advice helped me in producing quality research, laboratory work, articles preparation and thesis writing. I would also like to express special gratefulness to my cosupervisor, Prof. Matthew R. Phillips for his valuable guidance and feedback on my work, especially during my presentations.

I would also like to thank Dr. David Rogers from Nanovation, France for his technical discussion, sample preparation and XRD characterisation. Additionally, I acknowledge the technical support of Dr. Bruce Cowie at the Australian Synchrotron, Melbourne for the NEXAFS measurements.

I extend my gratitude to Assoc. Prof. Dr F. C. Chung Ling in the Department of Physics, The University of Hong Kong for the fabrication of MQWs samples and the TEM and EDX analysis.

Here, I must acknowledge and thanks to Dr. Mandeep Singh and Prof. Vipul Bansal from RMIT University Melbourne for ZnO nanosheet preparation, along with XRD, Raman spectroscopy and photoluminescence characterisation.

I would like to thank the staff of Microstructural Analysis Unit (MAU), particularly to the lab manager Katie McBean, Geoff McCredie, Herbert Yuan, Mark Lockrey. I appreciate the technical help of Saskia Fiedler, Md. Azizar Rahman and Olivier Lee for their valuable tips and suggestions on the use of the CL and PL techniques.

I would like to acknowledge and thank the financial support from the UTS for my PhD study in Australia.

Finally, I would like to show my special thanks to my beloved family and parents for their moral support and sustaining inspiration. My dissertation and research work would never be possible without their love and affection.

Publications and Presentation

- M. Zakria, T. T. Huynh, F. C. C. Ling, S. C. Su, M. R. Phillips, C. Ton-That. "Highly Luminescent MgZnO/ZnO Multiple Quantum Wells for Photonics Devices" ACS Applied Nano Materials, (2019), 2, 2574 – 2579.
- M. Zakria, P. Bove, D. J. Rogers, F. H. Teherani, E. V. Sandana, M. R. Phillips, and C. Ton-That. "Chemical Structure and Optical Signatures of Nitrogen Acceptors in MgZnO" J. Mater. Chem. C, (2020),8, 6435-6441.
- M. Zakria, Matthew Phillips, Cuong Ton-That. "Luminescence Enhancement of MgZnO/ZnO Multiple Quantum Wells by Hydrogen Plasma Treatment" ICONN 2020.
- T. T. Huynh, Chikoidze, E., Curtis P. Irvine, Muhammad Zakria, Dumont, Y., Teherani, F.H., Sandana, V.E., Bove, P., Rogers, D.J., MR Phillips, C Ton-That "Red Luminescence in H-doped β-Ga2O3" Phys. Rev. Materials 4, 085201 (2020).

Table of Contents

Certificate of	Original Authorship	ii
Acknowledgn	nents	iii
Publications a	und Presentation	v
Table of Cont	ents	vi
List of Figure	S	ix
List of Tables		x111
List of Abbro	viations	wix,
List of Abbre		
Abstract		XV1
1. Overview	v of the Research Project	
1.1. Back	ground and Motivation	18
1.2. Aims	s of the Project	20
1.3. Thes	is Layout	21
2. ZnO-base	ed Materials and Heterostructures: Current Status and Potential	23
2.1. ZnO	Properties and Applications	24
2.2. Optio	cal Properties of ZnO	27
2.2.1.	Defects in ZnO	28
2.2.2.	Hydrogen in ZnO	33
2.3. Acce	ptors in ZnO and MgZnO	36
2.4. Band	Gap Engineering of ZnO	39
2.4.1.	Mg-doped ZnO Alloy	40
2.5. MgZ	nO/ZnO Heterostructures	42
2.5.1.	Two-Dimensional Electron Gas	43
2.6. Two-	dimensional (2D) Materials	46
2.6.1.	ZnO Nanostructures and 2D Nanosheets	48
3. Experime	ental Techniques	52
3.1. Char	acterisation Techniques	52
3.1.1.	Atomic Force Microscopy	53
3.1.2.	Near-edge X-ray Absorption Fine Structure Spectroscopy	55

3.1	.3.	Scanning Electron Microscopy	57
3.1	.4.	Cathodoluminescence Spectroscopy	58
3	3.1.4.1	Cathodoluminescence Spectrum Correction and Calibration	61
3	3.1.4.2	2. CASINO Simulation of Electron Energy Loss in MgZnO/ZnO MQWs	s 64
3.1	.5.	Photoluminescence Spectroscopy	67
3.1	.6.	Depth-resolved CL	68
3.1	.7.	Temperature-resolved CL and PL	68
3.1	.8.	Power-dependent CL and PL	69
3.2.	Syn	thesis and Fabrication of the Samples in this Thesis	70
4. Hy	droge	enation of MgZnO/ZnO Multiple Quantum Wells	73
4.1.	Intr	oduction	73
4.2.	Mo	rphological Properties	76
4.3.	Catl	hodoluminescence Properties	79
4.3	.1.	Enhancement of MQWs Emission by Hydrogen Incorporation	79
4.3	.2.	Thermal Stability of RRPA MQWs Emission	84
4.3	.3.	Temperature- and Excitation-dependent CL	87
4.3	.4.	Depth-dependent CL Analysis	93
4.4.	Cor	clusions	96
5. Nit	trogen	n Acceptors in MgZnO	97
5.1.	Intr	oduction	97
5.2.	Stru	ctural and Morphological Properties	100
5.3.	Nea	r-edge X-ray Absorption Fine Structure	102
5.4.	Opt	ical Band Gap Analysis	105
5.5.	Pho	toluminescence Spectroscopy	107
5.5	.1.	Donor-acceptor-pair Emission	107
5.5	.2.	Temperature-dependent Photoluminescence	109
5.5	.3.	Excitation Power-dependent Photoluminescence	113
5.6.	Cor	clusions	117
6. Tw	vo-dir	nensional ZnO Nanosheets	118
6.1.	Intr	oduction	118
6.2.	Stru	ctural and Morphological Properties	120
6.2	.1.	Structural Properties	120
6.2	.2.	Morphological Properties	124
6.3.	Opt	ical Properties	129

6.3	3.1.	Photoluminescence Spectroscopy Analysis	132
6.3	3.2.	Cathodoluminescence Analysis of Single ZnO Nanosheet	133
	6.3.2.1	. Temperature-resolved Cathodoluminescence	139
6.4.	Con	clusions	142
7. Co	onclus	ions and Future Work	143
7.1.	Con	clusions	143
7.2.	Futu	ıre Work	145
References147			

List of Figures

Fig. 2.1: Historical view of research and applications for ZnO25
Fig. 2.2: High-resolution PL spectrum of bulk ZnO
Fig. 2.3: Schematic representation of transition energy levels in ZnO
Fig. 2.4: Formation energy of intrinsic defects versus Fermi energy level
Fig. 2.5: Possible bonding configurations of H in a ZnO crystal structure
Fig. 2.6: PL results for as-grown and H-doped ZnO
Fig. 2.7: Schematic view of various acceptor energy levels in ZnO
Fig. 2.8: Bandgap energy versus Mg mole fraction for an MgZnO alloy41
Fig. 2.9: Bandgap energy versus lattice parameter for (Al,In)GaN and (Mg,Cd)ZnO
alloying41
Fig. 2.10: Schematic view of a LED heterostructure made of ZnO and N-doped MgZnO
layer acting as a p-n bipolar junction
Fig. 2.11: MgZnO/ZnO heterostructure band diagram and its heterointerface H-band
radiative recombination44
Fig. 2.12: A historical (2007–16) representation of mobility (μ) versus carrier
concentration (n) for a MgZnO/ZnO 2DEG system46
Fig. 2.13: Highly explored materials of the 2D nanostructures
Fig. 2.14: Electron microscopy images of ZnO nanostructures
Fig. 2.15: AFM image and PL spectra of different ZnO nanosheets

Fig. 3.1: Diagrammatical view of AFM system
Fig. 3.2: Park XE7 AFM system at UTS55
Fig. 3.3: Diagram for the basic principles of NEXAFS
Fig. 3.4: A schematic representation of the NEXAFS system using a soft X-ray source
at the Australian Synchrotron, Melbourne57
Fig. 3.5: Schematic representation of incident electron beam with sample
Fig. 3.6: Schematic representation of different transition pathways
Fig. 3.7: CL spectroscopic system in a schematic form
Fig. 3.8: Method for conversion of pixel positions to wavelength scale
Fig. 3.9: CASINO simulation of electron beam interaction in MgZnO/ZnO MQWs
structure
Fig. 4.1: TEM cross-sectional image of a MgZnO/ZnO MQWs77
Fig. 4.2: Energy-dispersive X-ray mapping of Mg, Al and Zn elements in a pristine
MgZnO/ZnO MQWs77
Fig. 4.3: AFM images pristine MQWs and H-doped MQWs78
Fig. 4.4: Fitted CL spectra of pristine and H-doped MQWs81
Fig. 4.5: CL spectra of pristine and RRPA treated MgZnO/ZnO MQWs along with their
enhancement factor
Fig. 4.6: Thermal stability of RRPA-treated MQWs CL emission
Fig. 4.7: Power-resolved CL for pristine and RRPA MQWs
Fig. 4.8: Log-log plots based on the power-law model

Fig. 4.9: Temperature-resolved CL spectra along with Arrhenius plots
Fig. 4.10: FWHM of the MQW emission as a function of temperature for pristine and
RRPA-treated MQWs92
Fig. 4.11: CASINO-simulated electron energy loss profiles for the MQWs94
Fig. 4.12: Depth-resolved CL spectra of pristine MQWs and the enhancement factor as
a function of acceleration voltage95
Fig. 5.1: AFM and SEM images of PLD based MgZnO:N, MgZnO:O and MgZnO:vac
epilayers101
Fig. 5.2: NEXAFS spectra for MgZnO:N and MgZnO:O epilayers
Fig. 5.3: Optical transmission spectra for three different MgZnO epilayers107
Fig. 5.4: PL spectra of the MgZnO/ZnO bilayers and the ZnO underlayer109
Fig. 5.5: Temperature-resolved PL spectra for the MgZnO:N sample111
Fig. 5.6: Peak and activation energies for the ZnO FX and MgZnO N-related DAP
emissions in MgZnO:N epilayer112
Fig. 5.7: Power-resolved PL spectra of the MgZnO:N epilayer115
Fig. 5.8: DAP peak position versus excitation poser and log-log plot of the ZnO FX and
MgZnO:N DAP emission116
Fig. 6.1: Schematic representation of atomic arrangements of Zn and O in a single
monolayer ZnO121
Fig. 6.2: XRD spectra and Raman spectra of ZnO nanosheets and microparticles123
Fig. 6.3: SEM and TEM image of the parent faceted ZnO microparticles and ZnO 2D
nanosheets125

Fig.	6.4: EDX spectrum and elemental maps of a ZnO nanosheet
Fig.	6.5: TEM and AFM micro-images of a ZnO single nanosheet prepared from three
	different suspensions at centrifugation speeds of 500, 5,000 and 18,000 g
Fig.	6.6: AFM images, extinction, absorption, scattering coefficient, and PL results for
	ZnO nanosheets at three different centrifugation (g)131
Fig.	6.7: AFM images of a single thin nanosheet along with their thickness profile134
Fig.	6.8: CL spectra acquired from individual exfoliated nanosheet and parent ZnO
	microparticle
Fig.	6.9: Fitted spectra of experimental CL data points with a Gaussian function for
	three nanosheets
Fig.	6.10: FX photon energy and Huang–Rhys phonon coupling factor S as a function
	of nanosheet thickness
Fig.	6.11: Temperature-resolved CL of ZnO exfoliated 2D nanosheets and their
	activation energy analysis
Fig.	7.1: CL spectral results of three different bilayer homoepitaxial samples (MgZnO
	/ZnO /(A, B, and C) -plane ZnO substrate146

List of Tables

Table 2.1: Comparative properties of ZnO and GaN
Table 2.2: ZnO free and bound exciton recombination lines
Table 2.3: Deep-level defects and their corresponding features 33
Table 3.1 : NIST atomic spectra database used for pixel conversion
Table 3.2: Summary of samples information
Table 4.1: Summary of post-treated MQWs samples. 76
Table 4.2: All values of integral, peak intensity of pristine and RRPA-treated samples
and their corresponding enhancement factor
Table 5.1: Values for three MgZnO film thicknesses with their corresponding ambient
conditions on ZnO buffer layer100
Table 5.2: Lattice parameter, FWHM, RMS surface roughness and electrical resistivity
(ρ) for the ZnO underlayer and MgZnO/ZnO bilayers102
Table 5.3: Peak position and their corresponding chemical signature, and relative
intensity in percentage for each peak in the NEXAFS measurements
Table 6.1: ZnO 2D exfoliated nanosheets with corresponding thickness ranges

List of Abbreviations

AEs	Auger electrons
AFM	Atomic force microscopy
A°X	Neutral acceptor bound exciton
BSE	Back scattered electrons
BSF	Basal stacking fault
CCD	Charge-coupled device
CL	Cathodoluminescence
DAP	Donor-acceptor pair
D°X	Neutral donor-bound exciton
DX	Donor-bound exciton
EDX	Energy-dispersive X-ray
FX	Free exciton
FWHM	Full width at half maximum
GL	Green luminescence
h-BN	Hexagonal boron nitride
HEMT	High electron mobility transistor
LED	Light-emitting diode
LO	Longitudinal optical
MBE	Molecular beam epitaxy
MQW	Multiple quantum well
NBE	Near band edge
NEXAFS	Near-edge X-ray absorption fine structure
NIST	National Institute of Standard and Technology
PL	Photoluminescence
PLD	Pulsed laser deposition
RRPA	Rapid remote plasma annealing
RMS	Root mean square

RRS	Resonant Raman scattering
SE	Secondary electron
SEM	Scanning electron microscope
ТЕМ	Transmission electron microscope
TEY	Total electron yield
TFY	Total fluorescence yield
TMD	Transition metal dichalcogenide
UV	Ultraviolet
VBM	Valence band maximum
XRD	X-ray diffraction

Abstract

ZnO-based heterostructures and nanostructures have attracted significant interest owing to their wide range of technological applications. The recent achievement of high electron mobility at the MgZnO/ZnO heterointerface has sparked great interest in a multitude of research fields. In order to exploit the extraordinary electron states at the MgZnO/ZnO interface, high quality films with bespoke optical and electronic properties must be achieved. Although the ZnO-based heterostructures have been widely explored for various applications, where the performance is often hindered by intrinsic and extrinsic defects. This work aims to elucidate the physics of defects and the properties of ZnO-based thin films, interfaces and 2D nanosheets.

Oxide-based multiple quantum wells (MQWs) were investigated using cathodoluminescence (CL) and high-resolution electron microscopy techniques. A rapid remote plasma annealing (RRPA) method was used to treat MgZnO/ZnO MQWs in order to modify their defect structure. Following the RRPA in hydrogen, the MQW optical emission increased by more than 10 times after a 40 seconds treatment, while the basal stacking faults (BSFs) and point defects emissions were completely quenched. Furthermore, the RRPA-treated MQWs were found to be highly stable up to a temperature of 400°C.

A major challenge in the development of ZnO-based devices is the lack of reliable p-type material. In this work, chemical and optical signatures of nitrogen in N-doped MgZnO were investigated using near-edge X-ray absorption fine structure (NEXAFS) and photoluminescence (PL). The MgZnO epilayer, grown under nitrogen ambient, exhibits higher resistivity compared with epilayers grown under oxygen or vacuum atmospheres, and displays a dominant donor-acceptor-pair (DAP) peak located at 160 meV below its exciton emission. NEXAFS reveals that nitrogen in the N-doped MgZnO exists in multiple chemical states with molecular N₂ and substitutional N on O sites (No) being the dominant species. The PL emission peak at 3.45 eV in the N-doped MgZnO is attributed to a shallow donor to a deep acceptor recombination, where the compensating acceptor is most likely molecular N₂.

The last part of this thesis reports the luminescence and morphological properties of ZnO 2D nanosheets, fabricated by chemical exfoliation of ZnO microparticles. Highspatial-resolution CL was employed to acquire the optical properties of individual nanosheets. Combined CL and PL analysis shows strong thickness-dependent quantum confinement of excitons in few-atomic-layer thin nanosheets, which leads to substantial variations in the excitonic and phonon coupling properties. The superior excitonic properties of ZnO nanosheets could potentially lead to the development of efficient nanooptoelectronic devices.