Minh Anh Phan Nguyen

Creation and Manipulation of Quantum

Emitters in Solid-State Materials

Thesis submitted in fulfilment of the requirements for the degree

of Doctor of Philosophy

Faculty of Science School of Mathematical and Physical Sciences Primary Supervisor: Prof. Igor Aharonovich Co-supervisors: Prof. Milos Toth Dr. Sejeong Kim Dr. Carlo Bradac Dr. Mehran Kianinia

April 2021

Certificate of Original Authorship

I, Minh Anh Phan Nguyen, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indiciated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Astralian Government Research Training Program

Signature of Student:

Production Note: Signature removed prior to publication.

Date: 31^{st} of October 2020

Acknowledgements

I would firstly like to thank my primary supervisor Prof. Igor Aharonovich, for his sturdy and unwavering support during the length of my candidature. I've learnt many invaluable skills and experiences through your guidance and advice, and I am very fortunate and happy to call you my supervisor.

Additionally, to my brilliant co-supervisors, Prof. Milos Toth, Dr's Sejeong Kim, Mehran Kianinia, and Carlo Bradac, thank you all for your time and efforts throughout the years. Thanks also to Toan Trong Tran, Zaiquan Xu, and Sumin Choi for helping me find me feet in the group. I would not be the researcher I am today without your influence, and outstanding academic help.

Thank you to all the technical staff, Katie McBean, Geoff McCredie, and Mark Berkahn. The lab would be tatters were it not for your technical support and uncanny ability to just make things work.

To all my fellow colleagues within our lovely research group—Noah Mendelson, Johannes Froch, Blake Regan, Simon White, Chi Li, Connor Stewart, (Dr!) Hanh Ngoc My Duong, Yongliang Chen—I couldn't have asked for another group of people to share the lab space... and barbeque space with! There is never a dull moment hanging out with all of you. My cubicle space, Sharni Collins, Alisha Deo, Johnny Scott, and Matthew Cappadonna—spontaneity and snacks, always made for good times. To all my other fellow friends I've met around UTS—Level 5 and beyond (such as Jacqueline Loyola Echeverria)—thank you for all the pleasant memories. Your friendship made my time at UTS simply unforgettable. A special thanks specifically to Karen Duong, for being a great lunch buddy and routinely eating my watermelon candies. I wish you all the very best on your academic endeavours, we'll all make it eventually!

To my collaborators I've met abroad, Prof. Simeon Bogdanov and

Oksana Makarova, and Dr. Alexander Senichev. I thank you for your exceedingly kind hospitality during my short visit to Indiana! As well as all the collaborators who I've worked with on various publications; Niko Nikolay from Humboldt University of Berlin, and Hiroshi Abe from QST in Japan—thank you kindly for sharing in our awesome work.

I would like to express my gratitude towards UTS, for giving me the opportunity to study all throughout my tertiary education, from Bachelors all the way to Ph.D. My research as well as my conference travels were all supported by UTS. Additionally, this thesis was supported by an Australian Government Research Training Program. Finally, I would wholeheartedly like to thank my Family for their never-ending love and support during all the highs and lows during my candidature. This one is for you.

Contributing publications

Publications that contributed to this work are listed below. Equal-first authors are denoted by $(^{\dagger})$.

"Effects of microstructure and growth conditions on quantum emitters in gallium nitride", **M. Nguyen**, T. Zhu, M. Kianinia, F. Massabuau, I. Aharonovich, M. Toth, R. Oliver, C. Bradac. In: *APL Materials*, Vol. 7, 081106 (2019).

"Resonant excitation of quantum emitters in gallium nitride", M. Kianinia, C. Bradac, M. Nguyen[†], T. Zhu[†], M. Toth, R. Oliver, I. Aharonovich. In: *Optica Memorandum*, Vol. 5, Issue 8 (2018), pp. 932-933.

"Photodynamics and quantum efficiency of germanium vacancy color centres", M. Nguyen[†], N. Nikolay[†], C. Bradac, M. Kianinia,
E. Ekimov, N. Mendelson, O. Benson, I. Aharonovich. In: Advanced Photonics, Vol. 1, Issue 6, 066002 (2019).

"Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride", H.N.M. Duong[†], M. Nguyen[†], M. Kianinia, T. Oshima, H. Abe, K. Watanabe, T. Taniguchi, J. Edgar, I. Aharonovich, M. Toth. In: ACS Applied Materials & Interfaces, Vol. 10, Issue 29 (2018), pp. 24886-24891.

"Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanopsheres", **M**. **Nguyen**[†], S. Kim[†], T.T. Tran, Z.Q. Xu, M. Kianinia, M. Toth, I. Aharonovich. In: Nanoscale, Vol. 10, Issue 5 (2018), pp. 2267-2274. Publications not featured in this work containing research undertaken during the PhD program are listed below, with the contribution towards the work detailed.

"Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy". F. Hayee, L. Yu, J.L. Zhang, C.J. Ciccarino, **M** . Nguyen, A.F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T.F. Heinz, J.A. Dionne. In: *Nature Materials*, Vol. 19, Issue 5, (2020), pp. 534-539.

⇒ Performed fabrication and preparation of hBN material for the extensive characterisation performed with collaborators at Stanford University.

"Single photon emission from plasma treated 2D hexagonal boron nitride". Z.Q. Xu, C. Elbadawi, T.T Tran, M. Kianinia, X. Li, D. Liu, T.B. Hoffman, **M** . **Nguyen**, S. Kim, J.H. Edgar, X. Wu, L. Song, S. Ali, M. Ford, I. Aharonovich. In: *Nanoscale*, Vol. 10, Issue 17 (2018), pp. 7957-7965.

"Facile assembly of hexagonal boron nitride nanoaprticles by cryogenic exfoliation". N.M.H. Duong, E. Glushkov, A. Chernev, V. Navikas, J. Comtet, **M**. Nguyen, M. Toth, A. Radenovic, T.T. Tran, I. Aharonovich. In: *Nanoletters*, Vol. 19, Issue 8, (2019), pp. 5417-5422.

 \Rightarrow Assisted in AFM characterisation of cryogenic exfoliated hBN flakes used in this study.

"Grain dependant growth of bright quantum emitters in hexagonal boron nitride". N. Mendelson, L. Morales, C. Li, R. Ritika, M. **Nguyen**, J. Loyola-Echeverria, S. Kim, S. Götzinger, M. Toth, I. Aharonovich. Just accepted in: *Advanced Optical Materials* (2020).

⇒ Performed wide-field imaging on hBN flakes grown on Ni substrate, with data used in publication.

[➡] Performed material characterisation—specifically AFM—of hBN flakes used in the study.

"Observation of Fourier transform limited lines in hexagonal boron nitride". A. Dietrich, M. Bürk, E.E. Steiger, L. Antonuik, T.T. Tran, **M**. Nguyen, I. Aharonovich, F. Jelezko, A. Kubanek. In: *Physical Review B*, Vol. 98, Issue 8 (2018), pp. 2-6.

 ⇒ Synthesis of hBN material to be sent to collaborators at Ulm University to be used to collect data for this publication.

"All-optical control and super-resolution imaging of quantum emitters in layered materials". M. Kianina, C. Bradac, B. Sontheimer, F. Wang, T.T. Tran, M. Nguyen, S. Kim, Z.Q. Xu, D. Jin, A.W. Schell, C. Lobo, I. Aharonovich, M. Toth. In: *Nature Communications*, Vol. 9, Issue 1 (2018).

 \Rightarrow Provided assistance in construction of optical setup and performed optical measurements.

"Integrated on chip platform with quantum emitters in layered materials". S. Kim, H.N.M. Duong, **M**. Nguyen, T.J. Lu, M. Kianinia, N. Mendelson, A. Solntsev, C. Bradac, D. Englund, I. Aharonovich. In: *Advanced Optical Materials*. Vol. 7, Issue 23 (2019), pp. 1-6.

⇒ Assisted in perfoming optical measurements of hBN emitters on waveguides, along with AFM measurements of topography.

"Atomically thin boron nitride as an ideal spacer for metalenhanced fluorescence". W. Gan, C. Tserkezis, Q. Cai, A. Falin, S. Mateti, **M** . Nguyen, I. Aharonovich, K. Watanabe, T. Tanaguchi, F. Huang, L. Song, L. Kong, Y. Chen, L.H. Li. In: *ACS Nano*, Vol. 13, Issue 10 (2019), pp. 12184-12191.

⇒ Assisted in optical measurements and characterisation of the hBN flakes with fluorescent molecules

Conference presentations

Oral Presentations

"Nanophotonic integration of hexagonal boron nitride" Photonics West, 2D Photonic Materials and Devices II, San Francisco, USA (2019)

"Effects of microstructure and growth conditions on quantum emitters in gallium nitride" ICONN, Nanomaterials, Brisbane, Australia (2020)

Poster presentations

"Nanoassembly of hexagonal boron nitride and gold nanospheres"

AIP Perth, Poster session, board 158, Perth, Australia (2018)

Table of contents

ACKNOWLEDGEMENTS	II
CONTRIBUTING PUBLICATIONS	IV
TABLE OF CONTENTS	VIII
LIST OF EQUATIONS	XII
LIST OF FIGURES	XIV
LIST OF TABLES	XVIII
ABBREVIATIONS	XIX
ABSTRACT	XXI

PART I

CHAPTER 1 BACKGROUND AND CONTEXT 2
1.1. Single-photon emitters for quantum applications2
1.2. Aims and Motivations5
CHAPTER 2 SINGLE PHOTONS8
2.1. Introduction to the photon8
2.1.1. Quantisation of the electromagnetic field
2.1.2. Photon number states
2.2. Photon statistics 14 2.2.1. Statistical classification of light 14
2.2.2. Second-order correlation function15
2.3. Quantum emission from single-photon sources17 2.3.1. Photophysics of single-photon sources
2.3.2. Quantum emitters in Gallium Nitride21
2.3.3. Germanium Vacancy Colour Centres in Diamond26
2.3.4. Quantum emitters in hexagonal boron nitride32

CHAPTER 3 MEASURING SINGLE PHOTONS.	39
3.1. Optical Microscopy	39
3.1.1. The microscope objective	39
3.1.2. Confocal Microscopy	42
3.1.3. Fourier plane imaging	43
3.2. Single-photon collection and analysis	47
3.2.1. The Hanbury-Brown and Twiss interferometer	47
3.2.2. Time-correlated single-photon counting	48
3.2.3. Time-tagged single-photon counting	49

PART II

CHAPTER 4 QUANTUM EMITTERS IN GALLIUM
NITRIDE
4.1. Effects of microstructure and growth on quantum
emitters in gallium nitride54 4.1.1. Introduction
4.1.2. Growth of GaN samples55
4.1.3. Optical Characterisation59
4.1.4. Correlation between quantum emitter formation and
material defectivity63
4.1.5. Spatial correlation of emitters and threading
dislocations65
4.1.6. Potential mechanisms behind emitter formation68
4.1.7. Conclusions70
4.2. Resonant excitation of quantum emitters in gallium
nitride71
4.2.1. Introduction71
4.2.2. Cryogenic optical characterisation of the GaN emitter
71
4.2.3. Resonant excitation of GaN emitters72

4.2.4. Conclusions
CHAPTER 5 QUANTUM EMITTERS IN DIAMOND
COLOUR CENTRES
5.1. Photodynamics and quantum efficiency of germanium
vacancy colour centres in diamond
5.1.2. Materials and Methods77
5.1.3. Optical characterisation of GeV colour centres79
5.1.4. Back-focal plane imaging of single GeV centres82
5.1.5. Calculation of quantum efficiency84
5.1.6. Quantum efficiency of GeV colour centres85
5.1.7. Conclusions
CHAPTER 6 QUANTUM EMITTERS IN
HEXAGONAL BORON NITRIDE
6.1. Effects of high-energy electron irradiation on quantum
emitters in hexagonal-boron nitride
6.1.2. Experimental Section
6.1.3. Optical characterisation of hBN emitters
$6.1.4.$ Spatial characterisation of hBN MeV emitters $\ldots97$
6.1.5. Effects of MeV irradiation on varying defect structure
6.1.6. Conclusions104
6.2. Nanoassembly of quantum emitters in hexagonal
boron nitride and gold nanopsheres
6.2.2. Characterisation of hBN quantum emitters106
6.2.3. Integration with plasmonic nanostructures109
6.2.4. Theoretical modelling of plasmonic enhancement111
6.2.5. Nanoassembly with AFM113
6.2.6. Characterisation of Purcell enhancement116
6.2.7. Conclusions

CHAPTER 7 CONTRIBUTED WORKS 121
7.1. Contributed works on the creation of
hBN emitters121
7.1.1. Revealing multiple classes of stable quantum emitters
in hexagonal boron nitride with correlated optical and
electron microscopy121
7.1.2. Single photon emission from plasma treated hexagonal
boron nitride124
7.1.3. Facile assembly of hexagonal boron nitride
nanoparticles by cryogenic exfoliation126
7.1.4. Grain dependant growth of bright quantum emitters in
hexagonal boron nitride129
7.2. Contributed works on the manipulation of hBN
emitters131
7.2.1. Observation of Fourier transform limited lines in
hexagonal boron nitride131
7.2.2. All-optical control and super-resolution imaging of
quantum emitters in layered materials135
7.2.3. Integrated on chip platform with quantum emitters in
layered materials138
CHAPTER 8 CONCLUSIONS AND OUTLOOK 140
8.1. Summary of thesis140
8.2. Outlook and future directions142
APPENDIX145
BIBLIOGRAPHY147

List of equations

Eq 2.1. Planck's equation	8
Eq 2.2. Maxwell's equation: Ampere's law	9
Eq 2.3. Maxwell's equation: Eletromagnetic induction	9
Eq 2.4. Maxwell's equation: Gauss' law of magnetostatics	9
Eq 2.5. Maxwell's equation: Gauss' law of electrostatics	9
Eq 2.6. Single-mode electric field	9
Eq 2.7. Single-mode magnetic field	10
Eq 2.8. Single-mode field Hamiltonian	10
Eq 2.9. Single-mode field Hamiltonian as harmonic oscillator	10
Eq 2.10. Commutation relation	10
Eq 2.11. Electric field with commutator	11
Eq 2.12. Magnetic field with commutator	11
Eq 2.13. Hamiltonian with commutator	11
Eq 2.14. Annhibition operator	11
Eq 2.15. Creation operator	11
Eq 2.16. Electric field operator	11
Eq 2.17. Magnetic field operator	11
Eq 2.18. Quantum Hamiltonian of single-mode field	12
Eq 2.19. Creation number state operator	12
Eq 2.20. Annhibition number state operator	12
Eq 2.21. Ground state representation	13
Eq 2.22. Photon number state	13
Eq 2.23. Number state representation	13
Eq 2.24. Bose-Einstein distribution	14
Eq 2.25. Poissonian distribution	15
Eq 2.26. Sub-Poissonian distribution	15
Eq 2.27. $g^{(2)}(\tau)$ of electric field intensity	16
Eq 2.28. $g^{(2)}(\tau)$ in number state representation	16
Eq 2.29. $g^{(2)}(\tau)$ for arbitrary inputs	16

Eq 3.1. Numerical Aperture40
Eq 3.2. Magnification41
Eq 3.3. Resolution
Eq 3.4. Pinhole diameter
Eq 3.5. Fourier transform of real-space coordinates
Eq 3.6. Evolution of population dynamics
Eq 3.7. Autocorrelation function $g^{(2)}(\tau)$ for three-level systems51
Eq 3.8. Decay time coefficient, $\tau_{2,3}$
Eq 3.9. Decay time coefficient, c_2
Eq 3.10. Decay time coefficient, c_3
Eq 3.11. Decay time coefficient, A
Eq 3.12. Decay time coefficient, B
Eq 3.13. Steady-state population of excited state
Eq 5.1. Total radiated power component, perpendicular
Eq 5.2. Total radiated power component, parallel
Eq 5.3. Total radiated power
Eq 5.4. Total radiated flux
Eq 5.5. Quantum efficiency
Eq 6.1. Excited-state saturation intensity
Eq 6.2. PL enhancement under saturation119
Eq 6.3. PL enhancement above saturation

List of figures

Figure 1.1. Fundamental operating principle of a qubit visualised
through a combination of the Bloch and Poincaré spheres
Figure 2.1. Franck-Condon diagram showing the transition process
between ground and excited states19
Figure 2.2 Introduction to GaN22
Figure 2.3. Various growth of GaN showing the forms possible23
Figure 2.4. Optical characteristics of GaN revealing quantum
behaivour25
Figure 2.5. Stalking faults and dislocations in GaN26
Figure 2.6. Group IV colour centres in diamond27
Figure 2.7. Various syntheses of GeV centres in diamond29
Figure 2.8. Structural and photophysical characteristics of the GeV
defect
Figure 2.9. Optical characteristics of GeV single emitters31
Figure 2.10. Summary of activation methods of quantum emitters in
hBN
Figure 2.11. ZPL energies of characteristic hBN emitters
Figure 2.12. DFT calculations of potential defects responsible for the
quantum emission measured in hBN35
Figure 2.13. Optical properties of quantum emitters from hBN36
Figure 2.14. Linear polarisation of hBN emitters
Figure 3.1. Simplified schematic diagram showing how light travels
through an objective to produce a magnified image, with the
assistance of a sasquatch40
Figure 3.2. Schematic illustration of a objective showing the focal
length f , and the solid-angle, ϑ 41
Figure 3.3. Schematic diagram of a typical confocal microscope with
the key components labelled43

Figure 3.4. Schematic illustration of a Fourier transform using a lens
system
Figure 3.5. Examples of various setups used for back-focal plane
imaging45
Figure 3.6. Simulated images of a single-defect in BFP, showing the
effects of changing conditions46
Figure 3.7. BFP from a single dipole46
Figure 3.8. Basic schematic and working principle of a HBT
interferometer47
Figure 3.9. $g^{(2)}(\tau)$ measurements on NV ⁻ colour centres
Figure 4.1. Schematic illustration of the MOVPE process used to
synthesise GaN56
Figure 4.2. Schematic and topographical characterisation of all GaN
samples investigated
Figure 4.3. PL analysis of the emitters
found in the GaN samples60
Figure 4.4. Optical analysis of emitters in GaN
Figure 4.5. Confocal PL maps showing the difference in emitter
density between (a) HDD and (b) LDD GaN64
Figure 4.6. AFM, panchromatic CL, and PL measurements of LDD
Sample B correlating the position of threading dislocations with the
optical properties of GaN emitters
Figure 4.7. TEM analysis67
Figure 4.8. PL of emitters under non-resonant excitation72
Figure 4.9. PL under coherent excitation73
Figure 5.1. Characterisation of nanodiamonds containing single GeV
defects
Figure 5.2. Summary of the optical properties of characteristic NDs
containing GeV centres
Figure 5.3. Schematic diagrams for BFP imaging
Figure 5.4. BFP analysis of three individual GeV single-photon
emitters

Figure 5.5. Schematic illustration of the sample and setup
arrangement for the measurement of QE
Figure 5.6. Measured QE of GeV ensembles
Figure 6.1. Schematic diagram of the Cockcroft-Walton electron
accelerator used for the MeV irradiation95
Figure 6.2. Effects of electron irradiation and on high-purity, single
crystal, multilayer flakes of hBN96
Figure 6.3. Spatial characterisation of emitters in electron-irradiated,
high-purity multilayer flakes of single-crystal hBN98
Figure 6.4. Optical characterisation of emitters in electron-irradiated
$^{10}\mathrm{B}$ and C-doped hBN samples100
Figure 6.5. Low-temperature measurements of emitters found in
electron-irradiated, high-purity,
single-crystal multilayer flakes101
Figure 6.6. Effects of electron irradiation on hBN monolayers102
Figure 6.7. Optical characteristics of the
luminescent hBN defect107
Figure 6.8. AFM characterisation of the hBN flake hosting the emitter
and the gold nanosphere, it was to be coupled to108
Figure 6.9. Examples of plasmonic enhancement in various
configurations110
Figure 6.10. 2 FDTD simulations of the hybrid gold particle-hBN
emitter system111
Figure 6.11. Absorption spectrum of 50 nm Au nanospheres112
Figure 6.12. Schematic of the working principle of AFM114
Figure 6.13. Nanomanipulation of gold spheres for plasmonic coupling
using an AFM tip115
Figure 6.14. Characterisation of the optical response from plasmonic
coupling117
Figure 7.1. Summary of results from PL-CL analysis
Figure 7.2. Characterisation of plasma-activated hBN single emitters125
Figure 7.3. hBN nanoparticles127

Figure 7.4. Optical characterisation of the hBN emitters128
Figure 7.5. Characterisation of hBN thin films grown on Ni substrate
Figure 7.6. Methods and characterisation of hBN single defects
linewidths132
Figure 7.7. Characterisation of FT limited lines with an example
emitter
Figure 7.8. Optical characterisation of a hBN emitter
Figure 7.9. Photophysics of the single emitter introduced in Fig. 7.7.
along with its super-resolution imaging136
Figure 7.10. Coupling of hBN emitters to AlN waveguides

List of tables

Table 2.1. Second-order correlation derivations for the three differen	ıt
classes of light1	.7
Table 2.2. Brief summary of emitter systems	20
Table 6.1. Overall emitter statistics across all four samples)4
Table 7.1. Summary of results from PL-CL study	22

Abbreviations

2D	Two-Dimensional
AFM	Atomic Force Microscope
APD	Avalanche Photodiode
BFP	Back-Focal Plane
CL	Cathodoluminescence
CVD	Chemical Vapour Deposition
CW	Continuous Wave
DFT	Density Function Theory
DW	Debye-Waller
ELOG	Epitaxially-Laterally Overgrown
EMCCD	Electron-Multiplied Charged Coupled Device
eV	Electron Volts
FDTD	Finite-Difference Time-Domain
FWHM	Full-Width Half-Maximum
FT	Fourier-Transform
${ m GeV}$	Germanium Vacancy
GSD	Ground-State Depletion
HAADF	High-Angle Annular Dark-Field
hBN	Hexagonal Boron Nitride
HDD	High Density of Dislocations
HPHT	High-Pressure High-Temperature
HVPE	Hydride Vapour Phase Epitaxy
IPA	Isopropyl Alcohol
IRF	Instrument Response Function
LDD	Low Density of Dislocations
LDOS	Local Density of States

LSP	Localised Surface Plasmon
MBE	Molecular Beam Epitaxy
MOCVD	Metal-Organic Chemical Vapour Deposition
MOVPE	Metal-Organic Vapour Phase Epitaxy
NA	Numerical Aperture
ND	Nanodiamond
NV	Nitrogen Vacancy
N_VB_N	Anti-site Nitrogen Vacancy in hBN
PAMBE	Plasma-Assisted Molecular Beam Epitaxy
PSB	Phonon-Sideband
QE	Quantum Efficiency
SiC	Silicon Carbide
SMLM	Single-Molecule Localisation Microscopy
SNR	Signal-to-noise
SPE	Single-Photon Emitter
SPP	Surface Plasmon Polariton
SPS	Single-Photon Source
TCSPC	Time-Correlated Single Photon Counting
TD	Threading Dislocation
TEM	Transmission Electron Microscope
Ti:SAP	Titanium Sapphire
TMDC	Transition-Metal Dichalcogenides
UV	Ultra-violet
VLS	Vapour-Liquid-Solid
ZPL	Zero-Phonon Line

Abstract

Single-photon emitters are considered as a fundamental building block upon which many quantum-based applications are established. Of the many solid-state quantum emitters discovered, there exists three which garnered an increasing interest over the past few years; gallium nitride (GaN), germanium vacancy (GeV) colour centres in diamond, and quantum emitters in hexagonal boron nitride (hBN). Each of these solid-state emitter systems have unique advantages, making them intriguing candidates for quantum applications. However, there is still much to be understood regarding their optical properties and origin. Thus, the focus of this thesis is then established—to understand the origins of these solid-state sources through systematic studies of their growth and fabrication, followed by how they interact with the surrounding environment, and finally the modification of these interactions upon the addition of nanophotonic architectures.

Two separate studies were done on quantum emitters in GaN. First, the effects of microstructure and growth mechanics on the formation of emitters in GaN were investigated through multi-spectroscopic analysis in a systematic study of various material properties. No observable correlation was recorded, suggesting the origin of emitters was of an extrinsic nature, rather than intrinsic. The second study detailed the characterisation of the optical properties of GaN SPEs through resonant excitation, approaching Fourier-transform-limited linewidths of ~250 MHz—the narrowest reported for these emitters.

Next, a determination of the quantum efficiency (QE) of GeV colour centres in nanodiamond was performed by measuring and comparing radiative emission rates in a changing dielectric environment. Combined with Fourier-plane imaging of the resulting emission patterns, a quantum efficiency of 22% was calculated from ensembles, several times higher than the SiV colour centre.

Finally, two separate studies on hBN SPEs were performed—the first study demonstrating the creation of emitters with high-energy electron irradiation. In this study, different hBN multilayer and monolayer flakes were irradiated with electrons in the megaelectronvolt regime, resulting in emitter creation within the flat regions of the hBN flakes, areas not seen in prior methods. The second study details the hybridisation of hBN emitters with plasmonic nanospheres, assembled via an atomic force microscope. An enhancement resulted in a maximum count rate of approximately 5.8 M counts/second, with the linear transition dipole exploited to maximise coupling to the nanospheres.

All of these studies serve to highlight the unique properties of their respective material systems, and further their development towards reliable integration with fundamental nanophotonic devices for applications in quantum information science.