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Abstract

Single-photon emitters are considered as a fundamental building block
upon which many quantum-based applications are established. Of the
many solid-state quantum emitters discovered, there exists three which
garnered an increasing interest over the past few years; gallium nitride
(GaN), germanium vacancy (GeV) colour centres in diamond, and
quantum emitters in hexagonal boron nitride (hBN). Each of these
solid-state emitter systems have unique advantages, making them
intriguing candidates for quantum applications. However, there is still
much to be understood regarding their optical properties and origin.
Thus, the focus of this thesis is then established—to understand the
origins of these solid-state sources through systematic studies of their
growth and fabrication, followed by how they interact with the
surrounding environment, and finally the modification of these

interactions upon the addition of nanophotonic architectures.

Two separate studies were done on quantum emitters in GaN. First,
the effects of microstructure and growth mechanics on the formation
of emitters in GaN were investigated through multi-spectroscopic
analysis in a systematic study of various material properties. No
observable correlation was recorded, suggesting the origin of emitters
was of an extrinsic nature, rather than intrinsic. The second study
detailed the characterisation of the optical properties of GaN SPEs
through resonant excitation, approaching Fourier-transform-limited

linewidths of ~250 MHz—the narrowest reported for these emitters.

Next, a determination of the quantum efficiency (QE) of GeV colour
centres in nanodiamond was performed by measuring and comparing
radiative emission rates in a changing dielectric environment.

Combined with Fourier-plane imaging of the resulting emission
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patterns, a quantum efficiency of 22% was calculated from ensembles,

several times higher than the SiV colour centre.

Finally, two separate studies on hBN SPEs were performed—the first
study demonstrating the creation of emitters with high-energy electron
irradiation. In this study, different hBN multilayer and monolayer
flakes were irradiated with electrons in the megaelectronvolt regime,
resulting in emitter creation within the flat regions of the hBN flakes,
areas not seen in prior methods. The second study details the
hybridisation of hBN emitters with plasmonic nanospheres, assembled
via an atomic force microscope. An enhancement resulted in a
maximum count rate of approximately 5.8 M counts/second, with the
linear transition dipole exploited to maximise coupling to the

nanospheres.

All of these studies serve to highlight the unique properties of their
respective material systems, and further their development towards
reliable integration with fundamental nanophotonic devices for

applications in quantum information science.
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