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Abstract

Partition of Unity (PU)-based approaches in Nonlinear Fracture Mechanics facilitated and

improved the modelling of the fracture behaviour of quasi-brittle materials, such as mortar,

concrete, masonry and rock. To this end, the discrete crack approach is assumed to localise

the microcracks into the discontinuity surface represented by fictitious crack. The eXtended

Finite Element Method (XFEM), as an advantageous modelling technique in the PU context,

has been introduced and noticed in recent decades; however, its advantages have accompanied

a number of difficulties such as ill-conditioned system, significant growth in the bandwidth

of global matrix and inaccurate local solution around the crack path. Furthermore, the

designation of reliable criterion, providing information about the strain localisation (i.e. crack

initiation) and its orientation, can be considered another difficulty in using the discrete crack

approaches.

Recently, various attempts have been made to overcome the difficulties in PU-based

approaches. Regardless of all efforts, almost related to the improvement of convergence rate,

numerical integration scheme and PU satisfaction, the difficulties of increasing additional

degrees of freedom and inaccurate local solution at a discontinuity tip have gained little

attention, and no efficient treatments have been presented.

In this study, a comparison between conventional cracking criteria and modified ones

is drawn to obtain the appropriate criterion for different fracture modes. In addition, two

innovative formulations are proposed: the XFEM with multi-layered Heaviside enrichment
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and a polygonal enriched Partition of Unity Method. The main advantages are i) the cracking

criterion can be employed in tensile and compressive states without any special consideration,

ii) the bandwidth of global matrix and condition number decrease, and iii) the displacement

jump and stress field are captured accurately.

The capability of the presented formulations is assessed by comparing them with standard

XFEM. It is found that the formulation of XFEM with multi-layered Heaviside enrichment

shows a remarkable agreement with standard XFEM locally and globally. The proposed for-

mulation with polygonal enrichment overcomes the spurious behaviour of PU-based elements

utilised in standard XFEM and opens the possibility of interface problems analysis. Further-

more, several benchmark tests concerning mode-I, mode-II and mixed-mode fracture are

simulated, and the numerical results indicate remarkable similarities with the corresponding

experimental data.

As a final result of this study, a robust and efficient numerical tool has been introduced to

model the crack propagation and interfaces of quasi-brittle materials.
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û regular displacement field vector

τ tangential stress vector

a total displacement vector at the nodes

B strain-nodal displacement matrix

D constitutive matrix

f vector of global nodal forces

L differential operator matrix

L differential operator matrix

N shape function matrix

n unit vector normal to a boundary

P external load

R transformation matrix

s, n unit vectors tangent and orthogonal to the discontinuity composing the local frame

T discontinuity constitutive matrix

t traction vector

w nodal jump vector

x global coordinates of a material point

Dsk shear stiffness for an advanced state of damage

fc compressive strength

ft tensile strength

GF fracture energy

GFc compressive fracture energy

h j distance



LIST OF SYMBOLS xxxi

hs parameter defined by: − ln(Dsκ/Dsκ0)

kn, ks normal and shear penalty parameters

la active length scale parameter

lch Hillerborg’s characteristic length

s j length

uv vertical displacement

b̄ body forces vector

N̄ shape function matrix

t̄ natural forces vector
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Kââ bulk stiffness matrix
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CHAPTER 1

Introduction

The significance of the fracture behaviour of quasi-brittle materials such as concrete, mortar,

rock and masonry lies in their widespread use in engineering. In recent decades, the failure of

those materials has been studied extensively by means of computational mechanics. Fracture

mechanics explains the discrete crack approach by lumping additional deformation into

the displacement field to model the crack propagation. The non-linear behaviour before

failure due to microcracking eventually leads to coalescence into a large fracture zone at

the crack tip which violates the assumptions of traction-free crack borders in Linear Elastic

Fracture Mechanics (Griffith, 1921; Irwin, 1997), and requires Nonlinear Fracture Mechanics

considering a relationship between the traction and crack opening (Barenblatt, 1959; Dugdale,

1960).

The numerical simulations can be broadly grouped into two different approaches in terms of

crack modelling in quasi-brittle materials: the smeared and the discrete approaches, which

are introduced by Rashid (1968) and Ngo and Scordelis (1967), respectively. The smeared

crack model where a cracked solid is assumed to be a continuum (Cervenka, 1985; Dias-

da-Costa et al., 2018; Jendele et al., 2001; Rots et al., 1985), can be categorised into the

rotating and fixed smeared crack models, has been shown to suffer some drawbacks including

1
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the sensitivity of crack propagation to mesh edges directions (Alfaiate et al., 1997; Borst

et al., 2004). Moreover, inappropriate explanation of the kinematics of the discontinuous

displacement field in traditional smeared crack models leads to the spurious stress transferring

across the cracks, resulting in stress locking (Arrea, 1981).

In the discrete approach, also known as the cohesive approach, the discontinuity is considered

as a geometric entity localised in the displacement field and designated by fictitious crack.

This approach simulates the initiation and propagation of dominant cracks based on basic

assumptions, namely that: microcracking develops when the stress at the crack tip exceeds

the tensile strength; microcracking localises in a zero surface of the discontinuity, assigned

the role of strong discontinuity; the discontinuity evolves according to the traction-separation

relationship; the bulk unloads because of the traction continuity condition (Dias-da-Costa

et al., 2009). When a linear elastic relationship is adopted for the bulk, the discrete material

law can be defined independently of the continuum (Alfaiate et al., 2003), which means that

all non-linear behaviour is lumped at the discontinuity. In this case, no information can be

retrieved about the process of strain localisation directly from the constitutive model of the

bulk. In this stage, a crack initiation criterion assumes particular importance given that it

needs to be introduced explicitly and, ideally, should also provide the direction of propagation,

although it may not always be the case.

Mesh dependency is observed in the original form of the discrete approach because discontinu-

ities are forced to propagate along the boundary of the elements. Some approaches proposed

to reduce this dependency are i) remeshing algorithms, improving the results considerably

by enabling the element boundaries to approximate the crack path (Arrea, 1981; Ingraffea
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and Saouma, 1985; Ingraffea et al., 1984), however, other problems such as distorted finite

elements and an increase of stiffness matrix bandwidth are raised; ii) meshless methods, where

the cracks propagate arbitrarily without the need for mesh support (Belytschko et al., 1994,

1995; Lucy, 1977; Nguyen et al., 2008; Rabczuk et al., 2007a,b; Rabczuk and Belytschko,

2004; Wu and Fang, 2009). Nonetheless, the rational shape functions utilised in meshless

methods, leading to costly integration and unsatisfied Kronecker delta property, render the

computational cost of these approaches heavy and restrict their usage (Nguyen et al., 2008).

To embed the discontinuities within finite elements, two formulations have been explored:

i) weak discontinuity, characterised by bounded, but discontinuous strain field with cor-

responding continuous displacement field (Jin et al., 2019; Ortiz et al., 1987; Sluys and

Berends, 1998); and ii) strong discontinuity characterised by an unbounded strain field with

corresponding discontinuous displacement field (Alfaiate et al., 2002; Dias-da-Costa et al.,

2009; Dvorkin et al., 1990; Jirásek and Zimmermann, 2001; Larsson and Runesson, 1996;

Linder and Armero, 2007b; Lotfi and Shing, 1995; Ohlsson and Olofsson, 1997; Oliver et al.,

2004; Oliver, 1996; Oliver et al., 2003, 2012; Wells and Sluys, 2001b,c). Ortiz et al. (1987)

presented a method to improve the performance of general classes of elements in problems

with strain localisation. The information of the process of localisation obtained from the

element level is used to prepare appropriate shape functions utilised in element interpolation,

which reproduces localised deformation modes. Dvorkin et al. (1990) proposed a formulation

covering the progressive localisation zone without remeshing. Wells and Sluys (2001a) intro-

duced a formulation including continuous displacement jump across the element boundaries

unlike the previous studies (Armero and Garikipati, 1996; Dvorkin et al., 1990; Klisinski
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et al., 1991; Simo et al., 1993) and without any restriction on the type of finite element. Oliver

et al. (2014) proposed a strain-injection and crack-path-field techniques to capture the crack

propagation. Raina and Linder (2015) developed a framework for non-woven materials by

homogenising the bulk response and Nikolić et al. (2018) proposed two different models for

crack propagation in dynamic based on embedded strong discontinuities.

The eXtended Finite Element Method (XFEM), also known as the Generalised Finite Element

Method (GFEM), is one of the methods utilised to model strong discontinuities (Jirásek and

Belytschko, 2002). Conceptually, XFEM, as a special case of the Partition of Unity Method

(PUM) (Babuška and Melenk, 1997; Chen et al., 2012; Duarte et al., 2000; Duarte and Oden,

1996a,b; Melenk and Babuška, 1996; Moës et al., 1999; Oden et al., 1998; Wells and Sluys,

2001a), utilises the partition of unity to define enrichment functions to better approximate the

solution of the problems involving discontinuities (Aquino et al., 2009; Duarte and Kim, 2008).

XFEM naturally resolves stress locking issues and non-continuous jumps across element

boundaries. To this end, the total displacement field are decomposed into a regular continuous

field and a discontinuous counterpart associated with the extra degrees of freedom. The

additional degrees of freedom added globally to the system of equations assure a continuous

jump along the discontinuity and the conformity of the solution.

It is noteworthy that the above-mentioned advantages are accompanied by a series of numerical

issues. In the XFEM framework, the incorporation of enrichment functions into finite element

basis renders the stiffness matrix ill-conditioned (Babuška and Banerjee, 2012; Fix et al.,

1973; Menk and Bordas, 2011). However, significant effort has been devoted in the past

decades to overcome the issues of ill-conditioned systems (Agathos et al., 2016; Béchet
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et al., 2005; Loehnert, 2014; Zhang et al., 2020). On the other hand, XFEM cannot explicitly

interpret the physical meaning of the additional degrees of freedom located at the standard

element nodes instead of the crack ends (Dias-da-Costa et al., 2010). As a consequence, a

straight discontinuity could become curved after mapping for integration purposes (Ventura,

2006). Simone (2004) related the spurious traction oscillation to the pathological couplings

between degrees of freedom in widely-used elements in XFEM (Moës et al., 1999; Remmers

et al., 2001; Simone et al., 2003; Wells and Sluys, 2001a), also called PU-based discontinuous

elements, whereas unsatisfied moment equilibrium occurring at the interface of the element

was considered as the main reason behind this phenomenon by Ahmed and Sluys (2013).

Furthermore, the second layer of additional degrees of freedom added to the standard finite

element doubles degrees of freedom of the parent element supporting a discontinuity, which

leads to an increase of the total nodal unknowns during the crack propagation analysis. As

a remedy, a two-scale solution procedure was developed in (Duarte and Kim, 2008; Kim

et al., 2010; Pereira et al., 2012) considering a coarse mesh to discretise the global boundary

value problem and a finer one for the region around the discontinuity (i.e. the local boundary

value problem). The solution of the global problem is used to identify the Dirichlet boundary

condition required for the smaller scale. Subsequently, the fine-scale solution is utilised to

enrich the global space. Although the dimensions of the global problem remain constant in

this approach, the small scale analysis is still subject to the progressive increase in size with

crack propagation.

In the framework of XFEM, the possibility of including multiple cracks in one element was

addressed in (Remmers et al., 2003), which could also be applied to complex phenomenon
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such as crack branching in dynamic fracture (Remmers et al., 2008). Fries (2008) proposed

a corrected XFEM addressing the problems caused by the elements whose nodes partially

enriched. Zhu (2012) improved the enrichment functions used in conventional XFEM.

Pourmodheji and Mashayekhi (2012) added continuum damage mechanics to XFEM to

provide a model covering ductile crack growth. Chen et al. (2012) and Surendran et al.

(2017) presented a strain smoothing procedure to obtain the ultra-accurate solution. Lagrange

multiplier space has been adopted on the assembly of subdomains discretised by XFEM

to solve the linear elasticity problems (Csati et al., 2020). Despite the fact that all of the

previous studies improved different aspects of XFEM, two main difficulties have not been

addressed: i) the increasing number of degrees of freedom; ii) the spurious behaviour in

PU-based discontinuous elements (e.g. oscillations in the traction profile and displacement

jump). In the former case, XFEM formulations require an additional computational cost as

a result of increasing system dimension associated with crack propagation. This is solely

related to the number of enhanced degrees of freedom that need to be added to the analysis

with propagation. In the latter case, PU-based discontinuous elements show anomalous

behaviours, leading to inaccurate calculation of displacement jump and consequent nodal

values in interface problems, which deteriorate even further by using higher stiffness for their

interfaces.
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1.1 Objectives

The main focus of this thesis is the development of a robust numerical tool to improve the

XFEM by alleviating three critical difficulties of this approach. To this end, the objectives of

this work can be categorised as below:

• Develop a reliable approach for crack initiation and propagation in:

– a robust strategy to predict crack propagation in quasi-brittle material in tensile and

compressive states;

– crack tracking criterion which is independent to adopted mesh, and parameter

predefined by the user.

• Propose an efficient XFEM for fracture propagation by reducing:

– enhanced degrees of freedom;

– the condition number of the stiffness matrix;

– computational cost in problems involving discontinuities.

• Present a revised XFEM formulation surmounting spurious behaviours of PU-based

discontinuous elements to:

– capture accurate displacement jump and stress field;

– open the opportunity to analyse quasi-brittle interfaces;

– assign the straight physical meaning to the additional degrees of freedom.
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In order to obtain a robust approach for capturing the mixed-mode and compressive fractures

of quasi-brittle materials, advantages and disadvantages of different cracking criteria should be

taken into account. A formulation with multi-layered enrichment can decrease the enhanced

degrees of freedom and consequent computational cost. The straight physical interpretation

of additional degrees of freedom in proposed polygonal enriched Partition of Unity method

develops a remarkable ability to be used for quasi-brittle material interfaces problems.

Validation is obtained from the comparison of numerical results with experimental data,

utilising several benchmark tests in mode-I, mode-II and mixed-mode fracture. In order to

emphasise the robustness of the developed formulation, four cracking criteria are chosen for

comparison. Moreover, the results of the new formulation are compared to results obtained

from standard XFEM, and the differences are explored.

1.2 Outline

This thesis is organised into six chapters. The first chapter presents a brief review of the

research field, the objectives and the outline of the thesis. Chapter 2 presents the general

framework of XFEM, including the kinematics of strong discontinuity, the variational for-

mulation, discretisation and material models implemented in this study. In addition, the

enrichment strategy and the performance of the partition of unity-based discontinuous ele-

ments, which are widely adopted in XFEM, are reviewed. In chapter 3, a thorough assessment

of cracking criteria is conducted by means of several examples to reveal the particularities of

each. Recommendations are made to select the appropriate crack initiation and propagation
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criterion in mode I, mixed-mode and uniaxial compression state. Chapter 4 is devoted to the

development of an efficient XFEM based on a local Heaviside function enrichment. Several

examples, including experimental results, are computed and compared to standard XFEM

to assess the accuracy of the proposed formulation. In chapter 5, the special enrichment

function is introduced to avoid spurious oscillation in the PU-based discontinuous elements.

The formulation and justification for utilising this class of enrichment function are discussed,

and the robustness of the formulation is validated using benchmarks. Finally, in Chapter 6,

the relevant conclusion of each chapter are summarised, and the final conclusions are drawn.

As a result of this thesis, a paper has been submitted in the journal cited in ISI Web Knowledge

as:

Latifaghili, A., Gowripalan, N., Erkmen, E., Dias-da-Costa, D., 2020. A comparative study

on simplified crack propagation criteria for quasi-brittle materials (submitted)
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CHAPTER 2

Literature review

In this chapter, a review of strong discontinuities and corresponding solution approach by

XFEM as a robust framework is presented. First, in section 2.1, the kinematics of the strong

discontinuity, the boundary-value problem in the strong form, and the corresponding weak

form defined by variational formulations are addressed. Next, in section 2.2, a survey on

discrete crack approach is presented. The necessity of crack initiation and propagation

criterion is justified, where the link between bulk and discontinuities is clarified. Also, four

damaged models are introduced. An overview of XFEM utilising the concept of the PU

is given in section 2.3. The variational formulation and the discretisation adopted in the

XFEM are summarised. Both numerical integration issues and nodal enrichment technique

are briefly discussed, which clarifies the main drawbacks of XFEM. In section 2.4, PU-

based discontinuous elements as the widely-used elements in XFEM are introduced. The

computational issue concerning spurious behaviour of corresponding elements is addressed,

and two treatments proposed in the literature are reviewed, and their effectiveness is also

discussed.

11
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2.1 Strong discontinuity approach

To embed a discontinuity within finite elements, two possibilities can be found in the literature:

i) the Weak, and ii) Strong Discontinuity Approach (SDA). Strong discontinuities exhibit

jumps in the displacement field across the discontinuity surface. The corresponding strain

field, involving the gradients of the displacements, is unbounded at the discontinuity surface

but bounded in the body (see – Figure 2.1). The strong discontinuity can be considered as

a limit case of weak discontinuities studied in last four decades intensively (Aragón and

Simone, 2017; Borst et al., 1993; Ortiz and Quigley Iv, 1991; Ortiz et al., 1987; Rots et

al., 1985; Soghrati and Liang, 2016), where a discontinuity is characterised by continuous

displacement field with corresponding bounded strains concentrating at a finite width band

(h) of localisation (see – Figure 2.2). While the band with of localisation tends to zero, the

strain jump value leads to infinity. From this moment on, the concept of strong discontinuity

is found, where a singular strain field along the band is produced.

−Ω
+Ω

n

t

−Γ +Γ

η

dΓ

h η(   )

Figure 2.1: Domain Ω crossed by a strong and a weak discontinuity Γd .

The strong discontinuity concept is identical to ‘removing’ the highly deformed region from

discontinuity propagation model and introducing a discontinuity in the displacement field.
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η

ε

η

u

h

η

η

u

ε

(a) (b)

Figure 2.2: Representation of displacement and strain fields: (a) weak discontinuity
(b) strong discontinuity

Although the concept of the band with finite thickness in a weak discontinuity is useful to

describe some physical aspects, the definition of band thickness is not required in the strong

discontinuity approach.

From the viewpoint of localisation, the weak discontinuity approach manifests initiation of

localisation in the loss of ellipticity of the equilibrium equations, where material stability is

lost. The softening response of the material is represented by negative tangent modulus, and

the bandwidth of strain-softening tends to zero while localisation occurs. Consequently, the

energy dissipation of the localisation band disappears, and the solution loses the physical

meaning. As a remedy, SDA disregards the localisation region and employs cohesive traction

on the two faces of a discontinuity. The dissipation work associated with the cohesive traction

is considered as the plastic dissipative mechanism of the localisation band utilised in the weak

discontinuity.

Since a strong discontinuity is defined as a jump in the displacement field of solids during

deformation process, cracks, fractures and shear bands occurring in quasi-brittle materials
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(e.g. concretes and rocks) can be considered as different types of the strong discontinuities

(Oliver et al., 2004). In the following section, the main elements of the SDA are described.

2.1.1 Kinematics of a strong discontinuity

The kinematics, i.e. the strain-displacement equations of a strong discontinuity (Rabczuk

et al., 2019), are described in this section.

Let us consider an elastic domain, Ω, with a smooth boundary ∂Ω, crossed by a discontinuity

Γd defining two sub-domains, Ω+ and Ω−. Note that the normal vector to the discontinuity

surface points at the sub-domain Ω+, as depicted in Figure 2.3.

n

Ω

t

+n

+t

dΓ
uΓ ∂Ω

+Ω
−Ω

tΓ

Figure 2.3: Domain Ω crossed by a discontinuity surface Γd .

Under these assumptions, the displacement field can be written as the sum of the continuous

regular part on domain Ω, û, and a discontinuous part, ũ, associated to the displacement jump

(or opening), [[u]], localised at the discontinuity Γd as:

u(x) = û(x)+HΓd ũ(x), (2.1)
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where HΓd = HΓdI and HΓd indicates the Heaviside function centred on discontinuity Γd

defined as:

HΓd =


1 i f x ∈Ω+

0 otherwise
, (2.2)

In Equation (2.1), the discontinuous displacement field [[u]] is given by:

ũ|Γd = u+−u− = [[u]] (2.3)

In order to obtain the strain field whose symmetric part considered only, due to the assumption

of infinitely small stains, the symmetric gradient of Equation (2.1) is taken. The corresponding

infinitesimal strain field is written:

∇
su = ε = ∇

sû+HΓd(∇
s [[u]])︸ ︷︷ ︸

bounded

+δΓd([[u]]⊗n)s︸ ︷︷ ︸
unbounded

, (2.4)

where the symmetric part of (.) is indicated by (.)s, δΓd is the gradient of HΓd in the distribu-

tional sense, known as Dirac’s delta function placed at Γd , and ⊗ denotes a dyadic product.

Note that, since the unbounded part of Equation (2.4) vanishes in Ω\Γd = Ω+ ∪Ω−, the

displacement and strain fields are continuous in subdomains Ω+ and Ω−.

2.1.2 Boundary-value problem

As represented in Figure 2.3, a domain Ω ⊂ R2 is split into two sub-domains (i.e. Ω =

Ω+ ∪Ω− ∪Γd). As a result, the displacement and strain fields are discontinuous at the

discontinuity Γd .
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A quasi-static loading is applied to the domain subjected to the body force b : Ω→ R2 dis-

tributed in the domain Ω. The prescribed traction t̄ : Γt →R2 is imposed on the portion of the

boundary Γt ⊂ Γ. The prescribed displacement ū : Γu→R2 is applied on the complementary

boundary Γu ⊂ Γ. It is noteworthy that Γt and Γu are disjointed boundaries (i.e. Γt ∩Γu = Γ

and Γt ∪Γu = /0), such that the Boundary Value Problem (BVP) is well-posed (Cervera and

Wu, 2015). Consequently, the governing equations are written as (Oliver et al., 2003):

∇.σ +b = 0 in Ω\Γd, (2.5)

ε = ∇
su in Ω\Γd, (2.6)

σ = σ(ε) in Ω\Γd, (2.7)

u = ū at Γu, (2.8)

σ .n = t̄ at Γt , (2.9)

σ
+.n+ = t+ at Γd, (2.10)

σ
−.n− = t− at Γd, (2.11)

t+ =−t− at Γd, (2.12)

where the tensor σ : Ω\Γd → R2×2 indicates the stress field in the bulk with σ+ and σ−

denoting the bulk stresses on the two sides of the discontinuity surface, as depicted in Figure

2.3; and the cohesive traction transferred between two faces of the discontinuity is denoted by

vector t. Equation (2.5) represents the internal equilibrium, while the external equilibrium

derived by essential (also called Dirichlet) and natural (also called Neumann) boundary

conditions, represented by Equations (2.8) and (2.9) respectively. Equations (2.6) and (2.7)



2.1 STRONG DISCONTINUITY APPROACH 17

represent kinematic and constitutive compatibility relations respectively, and Equations (2.10),

(2.11) and (2.12) form the traction continuity condition at the discontinuity Γd (Dias-da-Costa

et al., 2009).

2.1.3 Variational formulation

In this section, a brief description of the variational formulation of the strong discontinuity

approach is taken into consideration. Regarding this topic, the reader is referred to the

study conducted by Alfaiate et al. (2003), where the variational formulation is investigated

for various discrete approaches. Simo et al. (1993) reported a non-symmetric formulation

resulted from the traction continuity imposed in a strong form of the formulation. On the

other hand, Lotfi and Shing (1995) introduced a consistent symmetric weak formulation with

the traction continuity enforced in the weak sense, which is the formulation utilised in the

XFEM and PUM (Duarte and Oden, 1996a; Melenk and Babuška, 1996; Moës et al., 1999).

The most general assumption is the extension of the three-field Hu-Washizu variational

statements proposed by Washizu (1975), where u, ε , σ , [[u]] may be considered as independent

unknown fields. Later, Lotfi and Shing (1995) explored this possibility and proposed mixed

finite elements, which can be used in order to approximate the independent unknown fields.

In this approach, a consistent symmetric weak form is adopted, where Equation (2.6) is

automatically satisfied according to Equation (2.4), which is usually considered in the XFEM

approach. For example, the discontinuity is considered as an internal boundary in (Simone,

2004) and the principal of virtual work is separately imposed on Ω and Ω+, while Wells and
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Sluys (2001a) inserts the Dirac-delta function into the virtual work equation over the body Ω

to eliminate the unbounded term [[u]] and satisfy the traction continuity.

Here, the variational formulation represented is identical to the discrete-interface approach

(Dias-da-Costa et al., 2009) to clearly identify the terms required in the discrete strong

discontinuity approach, which is the main aim of the chapter 3. The virtual work equation

reads:

−
∫

Ω\Γd

(∇s
δu) : σ dΩ+

∫
Ω\Γd

δu.bdΩ+
∫

Γt

δu.̄tdΓ+
∫

Γd

δ [[u]] .t+ dΓ = 0, (2.13)

where (.) and (:) represent single and double contractions;
∫

Ω\Γd
(∇sδu) : σ dΩ+

∫
Ω\Γd

δu.bdΩ

and
∫

Ω\Γd
δu.bdΩ+

∫
Γt

δu.̄tdΓ denote the strain energy and the external work respectively,

which are the terms used in continuum approach; and
∫

Γd
δ [[u]] .t+ dΓ is added as the work

done in the discontinuity Γd (Malvern, 1969).

According to Equation (2.1), δu = δ û+HΓd δ ũ . Since the variations of δ û and δ ũ are

nonzero, δ ũ|Γd
= δ [[u]], and the field stress in the continuum depends upon regular strain ε̂ ,

the two variational statements are written as:

−
∫

Ω\Γd

(∇s
δ û) : σ (ε̂) dΩ+

∫
Ω\Γd

δ û .b dΩ+
∫

Γt

δ û .̄tdΓ = 0, (2.14)

−
∫

Ω

HΓd(∇
s
δ [[u]]) : σ(ε̂)dΩ+

∫
Ω

HΓd δ [[u]] .bdΩ+
∫

Γt

HΓd δ [[u]] . t̄dΓ+
∫

Γd

δ [[u]] .t+ dΓ= 0.

(2.15)

It is worth mentioning that Equation (2.14) results from Virtual Work Principle applied for a

bulk, which is the same as one utilised in the PUM (Simone et al., 2003; Wells and Sluys,
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2001a). Accordingly, Equation (2.15) may be interpreted as the Virtual Work Principle applied

to subdomain Ω+.

2.2 Discrete constitutive models

The fracture behaviour of quasi-brittle materials is simulated by numerical models based on

the finite element method (FEM), traditionally classified into two main groups: smeared and

discrete crack approaches (Gálvez et al., 2002).

The smeared crack approach states that many microcracks with infinitely small opening are

distributed (smeared) within the finite element region. The propagation of these cracks is

simulated by stiffness reduction or strength degradation of the material. The fixed (Rashid,

1968) and rotating crack (Gupta and Akbar, 1984) models are the first models proposed in

this approach (De Borst and Nauta, 1985; Rots, 1988).

The discrete crack approach is preferred when a finite number of cracks dominate the fracture

behaviour in a structure. The cohesive model, also known as fictitious crack model, developed

by Hillerborg et al. (1976), has had considerable success in fracture of quasi-brittle materials.

The softening function, (σ = f ([[u]])), defined as a main ingredient of this approach, relates

the stress σ transferring between the two face of the crack to the corresponding crack opening

[[u]] (see – Figure 2.4).

The main parameters of softening functions measured experimentally are the tensile strength

ft and fracture energy, which is the energy required for breaking a unit surface area and equals
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Figure 2.4: Discrete material models- (a) cohesive crack for a specimen under tension
(b) material model for continuum and cohesive crack with different softening laws.

the area under the softening curve. As represented in Figure 2.4, many softening functions

are available to model quasi-brittle material fracture, namely linear, bilinear and exponential

laws (Bazant and Planas, 1997; Cornelissen et al., 1986; Gopalaratnam and Shah, 1985).

The crack closure as a realistic feature of a discontinuity should be considered in the softening

function. To this end, a penalty function is utilised not to allow the two faces of a discontinuity
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to overlap while the normal displacement jump tends to zero as bellow:

t = Tel [[u]] , (2.16)

Tel =

 kn 0

0 ks

 , (2.17)

Where t shows the traction vectors, [[u]] is jump vectors, and kn and ks denote the normal and

the shear penalties respectively.

There are two main stages to simulate the concrete fracture, including crack initiation and

propagation. In the former, a criterion is required to incorporate the cohesive crack into the

parent element. The latter introduces the crack path needed for the crack incorporation. In

contrast with the fracture mode-I, where the stress, σ , transferred between two faces of the

crack is normal to the crack faces, the interaction between normal stress, σ , and tangential

stress, τ , should be considered in mixed-mode fracture.

The cracking evolution may be modelled according to fracture mode-I with zero shear stress

at the discontinuity, or mixed-mode fracture, where shear stress can develop between two

faces of the discontinuity. Some damage models proposed in the literature are discussed in

section 2.2.2 to take into account different types of the fracture (e.g. mode-I, mode-II and

mixed-mode).

In discrete crack approach, some assumptions are considered: i) a crack initiation occurs

when the combination of normal and tangential stress reaches a cracking pocket F(σ ,τ) = 0;

ii) the microcracks are localised in the zero bandwidth and form strong discontinuity as
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discussed in section 2.1; iii) the discontinuity evolves according to the softening function

expressed by fictitious crack model; iv) simultaneously the bulk around the discontinuity

begins unloading to satisfy the traction continuity condition.

As discussed in section 2.1.1, the displacement in the domain of the body consists of con-

tinuous and discontinuous parts, the latter associated with the displacement jump at the

discontinuity (see – Equation (2.1)). In discrete crack approach, assumptions i and iv provide

a crucial link between the bulk and discontinuity for modelling; otherwise bulk is uninformed

about strain localisation.

2.2.1 Initiation criterion

The numerical simulation of strong discontinuities can be classified into two main groups:

continuum and discrete approaches. In the former, since the strain concept is similarly defined

for bulk and interface, which means that standard stress-strain constitutive equations are

applicable for the complete body. Two basic ingredients of this approach are: i) regularisation

of the discontinuous displacement field approximated by high displacement gradients, i.e.

strain localisation, in a bandwidth known as characteristic length; ii) definition of constitutive

equations allow the strain localisation to appear in a problem (Oliver, 1996).

Conversely, discrete approaches (Dvorkin et al., 1990; Lofti and Shing, 1994) define the

relation between traction and jump at the discontinuity (traction-separation law) to characterise

the factious crack (cohesive zone) behaviour at the discontinuity surface, while the regular

stress-strain constitutive law is considered for the continuous counterpart of the body. As a
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consequence, an appropriate criterion is required to determine the discontinuity initiation and

propagation.

To sum up, the onset of strain localisation determined by the acoustic tensor is employed

as the initiation criterion in continuum-based theories. Since a strong discontinuity may

be obtained as a limit case of a weak discontinuity (see – section 2.1), the discrete (stress

versus displacement jump) constitutive equations at the discontinuity can be considered as

the projection of the standard continuum constitutive law. Despite the consistency of this

formulation, some difficulties can arise due to the dependence of material laws given for

bulk and discontinuity (Oliver, 1996). Alfaiate et al. (2003) and Bolzon (2001) suggested an

alternative, where the bulk uses an elastic relationship, leading to an independent discrete

material law. Since the strain localisation cannot be monitored by the bulk material model in

this approach, an initiation criterion needs to be introduced instead. Further details regarding

the initiation criterion are given in the chapter 3.

2.2.2 Damage models

Four damage models used in this study are described briefly in the following sections.

Damage model by Mariani and Perego (2003)

The current section provides a short description of the discrete cohesive law modified by

Mariani and Perego (2003) based on effective displacement, which is appropriate for quasi-

brittle materials under mixed-mode.
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The crack displacement can be decomposed into two components: the crack opening normal

to the crack path, and crack sliding tangential to the crack path. Consider ts and tn the normal

and tangential components of the traction between two sides of the crack. The effective

opening displacement based on the embedded crack model (Jirásek and Zimmermann, 2001)

is defined as:

[[u]]eq =

√
[[u]]2n +β 2 [[u]]2s (2.18)

where[[u]]n and [[u]]s denote the normal and tangential components of displacement jump,

respectively. The total incremental work equivalence may derive the equivalent traction in

terms of perpendicular traction components ts and tn :

teq[[u̇]]eq = tn[[u̇]]n + ts[[u̇]]s (2.19)

[[u̇]]eq =
[[u̇]]n
[[u̇]]eq

[[u̇]]n +β
2 [[u̇]]s
[[u̇]]eq

[[u̇]]s (2.20)

Therefore, satisfying the work equivalence results in traction vector components as below:

tn =
teq

[[u]]eq
[[u]]n , ts = β

2 teq

[[u]]eq
[[u]]s (2.21)

According to Camacho and Ortiz (1996), the different weights related to opening and sliding

components of the two crack faces are considered as a coefficient β , which basically controls

the shear strength and shear stiffness in mode-II. The damage criterion is adopted to define

the crack opening under mixed-mode fracture, derived by history variable α and equivalent

crack opening [[u]]eq as:

f ([[u]] ,α) = [[u]]eq−α ≤ 0. (2.22)
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On the other hand, the relation between equivalent traction and crack opening is written as:

teq = T[[u]]eq = (Te−Td)[[u]]eq, (2.23)

Te is the initial isotropic stiffness matrix and Td denotes the damage tensor controlling the

degradation of equivalent interface stiffness T. The function of α is adopted for damage

stiffness Td as:

Td = Te
[

1− α0

α
exp
(
− ft

GF
(α−α0)

)]
(2.24)

where ft and GF are the tensile strength and fracture energy, and α0 shows the initial value of

α:

α0 =
ft

Te . (2.25)

From the Kuhn–Tucker and consistency conditions with damage criterion Equation (2.22)

follows:

α = [[u]]eq , α̇ = [[u̇]]eq (2.26)

From the derivation of Equation (2.23), and considering Equation (2.19) and Equation (2.21),

the tangent stiffness matrix is written as:

∆t =−β 2 ft Tse

[[u]]eq


[[u]]2n

β 2GF
− [[u]]2s

ft [[u]]eq
[[u]]s[[u]]n

GF+ ft [[u]]eq
GF ft [[u]]eq

[[u]]s[[u]]n
GF+ ft [[u]]eq
GF ft [[u]]eq

β 2[[u]]s
GF
− [[u]]2n

ft [[u]]eq

∆ [[u]] , (2.27)

where Tse is:

Tse = (Te−Td) = Te α0

α
exp
(
− ft

GF
(α−α0)

)
. (2.28)
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If unloading occurs, the tangential relation reduces to:

∆t = Tse

 1 0

0 β 2

∆ [[u]] . (2.29)

Damage model by Alfaiate et al. (2002)

In this section, the isotropic damage law proposed by Alfaiate et al. (2002) is reviewed.

Damage models defined in the thermodynamic framework are based on Helmholtz free energy

density. The interpretation of the formulations used in standard thermodynamic results in the

constitutive relation:

t = (1−d)Tel [[u]] , (2.30)

where 0 < d < 1 denotes the damage parameter (where d = 0 and 1, respectively for undam-

aged and fully damaged states, respectively), and Tel shows the elastic constitutive tensor

(see – Equation (2.16)). The damage evolution is written as:

d(κ) = 1− κ0

κ
exp
(
− ft

GF
(κ−κ0)

)
, (2.31)

where κ0 represents the beginning of softening (κ = κ0 before damage occurs in the model).

κ denotes a scalar, taking into account both maximum positive normal and shear jump

components [[u]]n and [[u]]s respectively:

κ = max〈[[u]]n〉
++β max |[[u]]s| . (2.32)
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The scalar variable κ may be considered as an equivalent jump (κ = [[u]]), which is a func-

tion of the displacement jump (κ = k([[u]])). Consequently, the load function in terms of

displacement jump components is defined:

f = 〈[[u]]n〉
++β |[[u]]s|−κ ≤ 0 (2.33)

In which the factor β governs the ratio between the shear jump component and the equivalent

jump parameter. It is noteworthy that β = 0 when the shear jump component is not considered,

whereas β ≈ ft/c0 (c0 is the cohesion) according to Alfaiate et al. (2002).

The elastic tensor Tel is defined by an initial value k0 for internal scalar variable such that

k0 < k and close to zero :

Tel =
ft
k0

I (2.34)

where I denotes the Kronecker tensor.

Inserting Equation (2.34) and Equation (2.31) into Equation (2.30) leads to the constitutive

relation in the matrix form:
tn

ts

=
κ0

κ
exp
[
− ft

GF
(κ−κ0)

]  1 0

0 1




[[u]]n

[[u]]s

 . (2.35)

According to Equation (2.35), the initial equivalent jump κ0 does not influence results

considerably because it is removed from the product
(

κ0
κ

)
.
(

ft
κ0

)
. As a result, κ0 only has an

effect on the exponential law at the beginning of the softening.
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The rate form of constitutive relation is obtained by differentiating Equation (2.30) as below:

ṫ = (1−d)Tel [[u̇]]− ḋ Tel [[u]] = (1−d)Tel [[u̇]]− ḋ tel (2.36)

where tel denotes the elastic traction vector and ḋ is given:

ḋ =
∂d
∂κ

∂κ

∂ [[u]]
(2.37)

From Equation (2.37) and Equation (2.36):

ṫ =

[
(1−d)Tel−

∂d
∂κ

tel⊗
∂κ

∂ [[u]]

]
[[u̇]] . (2.38)

If unloading occurs the rate of damage variable is zero (ḋ = 0). Therefore, both Equation (2.36)

and Equation (2.38) reduce to:

ṫ = (1−d)Tel [[u̇]] . (2.39)

Note that while crack closure takes place, the initial elastic constitutive relation needs to

be recovered. Since the penalty function is adopted, [[u]]n ≈ 0. In compressive tractions

state, no limitation on the value of shear traction inforced causes the isotropic damage model,

introduced here, to be inappropriate to describe the friction occurring between two crack faces

under the compressive stress.
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Damage model by Wells and Sluys (2001a)

In this following, the damage model proposed by Wells and Sluys (2001a) in 2D is reviewed.

Further information regarding the 3D version of the model is given in (Wells and Sluys,

2001c).

Consider a loading function as below:

f ([[u]]n,κ) = [[u]]n−κ, (2.40)

where κ denotes the internal variable, which is the maximum value of 〈[[u]]n〉
+ during the

loading history. The loading is determined if f ≥ 0, whereas unloading is considered by

f < 0. An exponential function decaying is considered as the constitutive relation between

the normal traction tn and the normal jump [[u]]n considered in internal variable κ:

tn = ft exp
(
− ft

GF
κ

)
, (2.41)

where ft and GF are the tensile strength and fracture energy of the material respectively.

An exponential function similar to tn is adopted to relate the shear traction ts to sliding

displacement along the discontinuity (shear jump) [[u]]s as follows:

ts = Dsκ0 exp(hsκ)[[u]]s, (2.42)
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where Dsκ0 denotes shear stiffness at the crack initiation (κ = 0) and hs is defined:

hs =− ln
(

Dsκ

Dsκ0

)
(2.43)

where Dsκ is the shear stiffness adopted for κ � 0.

Differentiating Equation (2.41) and Equation (2.42) and writing the rate form of the con-

stitutive relation matrix is given:


ṫn

ṫs

=

 − f 2
t

GF
exp
(
− ft

GF
κ

)
0

hsDsκ0 exp(hsκ)[[u]]s Dsκ0 exp(hsκ)




[[u̇]]n

[[u̇]]s

 (2.44)

The softening behaviour described by this model is dominated by the normal jump only, and

the shear stiffness tends to zero when cracking mode-I is considered. On the other hand,

since shear stiffness is dependent on the normal jump, the tangential relation between traction

vectors and displacement jumps is non-symmetric. One of the simplifications adopted is to

consider the constant shear stiffness at the discontinuity, leading to symmetric global stiffness

matrix. However, very small constant shear stiffness causes brittle global response at the

post-peak loading, whereas very high value leads to stress locking (Rots, 1988).

If unloading occurs, the secant stiffness matrix is given by:

D =

 ft
κ

exp
(
− ft

GF
κ

)
0

0 Dsκ0 exp(hsκ)

 . (2.45)
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The full crack closure is treated by elastic stiffness recovery as previously described in

Equation (2.16).

Uncoupled damage model

Another approach simplifying the cracking model mode-I is derived based on the assumption

that the shear stiffness suddenly reduces to zero while the crack begins opening. Accordingly,

since the shear traction of the discontinuity remains unchanged, an uncoupled relation between

shear and normal components is obtained.

If the loading function in Equation (2.40) and softening law presented in Equation (2.41) are

considered, the rate form of constitutive relation in the matrix form can be given by:


ṫn

ṫs

=−

 − f 2
t

GF
exp
(
− ft

GF
κ

)
0

0 0




ẇn

ẇs

 . (2.46)

The sudden unrealistic loss of shear stiffness can cause numerical difficulties. As a remedy, a

gradual reduction in shear stiffness, which is proportional to the secant stiffness mode-I can

be adopted as:


ṫn

ṫs

=−

 − f 2
t

GF
exp
(
− ft

GF
κ

)
0

0
c0ks exp

(
− ft

GF
κ

)
knκ




ẇn

ẇs

 . (2.47)

Note that, the crack closure is treated according to Equation (2.16) as described earlier.
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2.3 eXtended Finite Element Method (XFEM)

The simulation of crack propagation in the context of standard finite element methods can be

very complex. This difficulty results both from topology aspects and from the insufficiency

of the piecewise differentiable functions adopted for the field approximations, which are

unable to represent the singularity at the crack tip accurately (Pin and Pian, 1973). As a

result, substantial mesh refinement may be needed for the analysis of discontinuities and

singularities, which has a considerable numerical cost. To tackle the weakness in standard

finite element, XFEM is developed by Belytschko and Black (1999) and Moës et al. (1999) to

treat weak and strong discontinuities. The key advantage of XFEM is related to its conformity,

allowing mesh edges not to locate along the discontinuity path. As the main focus of this

study is on strong discontinuities, the modelling of strong discontinuity by means of XFEM

framework is described in the following section. For more detailed overview and usage of

XFEM, the readers are referred to (Belytschko et al., 2013; Fries and Belytschko, 2010;

Rabczuk et al., 2019; Yazid et al., 2009).

2.3.1 XFEM for strong discontinuities

Extrinsic enrichments are adopted in many enriched methods such as the XFEM, GFEM and

the PUM, based on the PU concept introduced by Melenk and Babuška (1996). The main

feature that separates XFEM from methods mentioned above is the local enrichment achieved

by employing nodal enrichment technique, described in section 2.3.3.
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Partition of Unity (PU)

The finite element approximation needs to satisfy the Partition of Unity requirements for

convergence. The polynomial shape functions widely used to approximate the fields in finite

element have this property, given by:

ni

∑
i=1

ϕi(x) = 1 (2.48)

where ϕi is the sum of the functions belonging to a node x located on domain Ω (see –

section 2.1.1), and ni represents the number of nodal points.

Since a field may be interpolated by discrete nodal values utilising PU (Duarte and Oden,

1996b), any function Ψ(x) reproduced by functions satisfying PU can be employed in XFEM.

This is also called the reproducing condition (Liu et al., 1995). Accordingly, the standard

finite element method approximation can be rewritten as:

u(x) =
ni

∑
i=1

Ni(x)Ψ(x)â, (2.49)

where Ni denotes standard shape functions of FEM, and â are corresponding regular nodal

degrees of freedom.

Note that, Ψ(x) = 1 in the standard FEM approximation. Conceptually, XFEM exploits

the flexibility of Ψ(x) in various forms, including a discontinuous function. Since this

substitution is only required locally like in discontinuity surfaces, the rest of the domain can
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be approximated by standard FEM, leading to the enhanced form:

u(x) =
ni

∑
i=1

Ni(x)1(x)â︸ ︷︷ ︸
standard

+
ni

∑
j=1

ϕi(x)Ψ(x)ã︸ ︷︷ ︸
enhanced

(2.50)

where the displacement field u(x) is interpolated based on the standard and additional degrees

of freedom â and ã respectively. Even though there is no requirement, generally the standard

finite element shape functions are also used in XFEM framework. Therefore, ϕi(x) = Ni(x)

(Belytschko et al., 2013; Wells and Sluys, 2001a).

Strong discontinuity approximation in enhanced form

Function Ψ(x) is used as means to incorporate the strong discontinuity. This can be done

with the Heaviside function, as defined in Equation (2.2).

A signed distance function, also known as level set, is utilised to describe the discontinuity as:

ϕ(x) = x−xdis, (2.51)

where xdis denotes the location of the discontinuity.

Inserting Equation (2.51) in Equation (2.2) and considering the standard finite element shape

function in lieu of ϕi(x) combined with Equation (2.50) leads to the displacement of an

element cut by the discontinuity as:

u(x) =
ni

∑
i=1

Ni(x)â+
ni

∑
j=1

Ni(x)H(ϕ(x))ã. (2.52)
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To avoid incompatibility at the nodes shared by the elements with unenriched displacement

field, the shifting approximation is used as a remedy (Fries and Belytschko, 2010). Accord-

ingly, the effect of ã on the nodes is omitted by shifting (e.g. Ψ j(x) = H(ϕ(x))−H(ϕ(x j)))

and the approximation of standard XFEM is derived as:

u(x) =
ni

∑
i=1

Ni(x)â+
n j

∑
j=1

N j(x)
[
H(ϕ(x)−H(ϕ(x j))

]
ã (2.53)

where n j denotes the number of additional degrees of freedom.

2.3.2 Variational formulation

There are different valid variational formulation for XFEM in the literature. Moës et al.

(1999) and Pommier et al. (2011) use the approach proposed by Belytschko and Black (1999)

to satisfy the strong form of equations with traction-free condition on discontinuity. Wells

and Sluys (2001a) employs the Dirac’s delta function to calculate the energy dissipated by

discontinuity. Here, the formulation presented by Malvern (1969) is reviewed.

∫
Ω\Γd

(∇s
δu) : σ(ε)dΩ+

∫
Γd

δ [[u]] . t+dΓ =
∫

Ω\Γd

δu . b̄dΩ+
∫

Γt

δu . t̄dΓ (2.54)

where δu and δ [[u]] are the admissible variations of displacement and jump respectively; t+

denotes traction vector at the discontinuity.
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According to Equation (2.1), the virtual total displacement δu is the combination of regular

δ û and enhanced δ ũ displacements as:

δu = δ û+HΓd δ ũ (2.55)

Inserting Equation (2.55) into Equation (2.54), and differentiating δ û = 0 and then δ ũ = 0,

while δ ũ|Γd
= δ [[u]] results in:

∫
Ω\Γd

(∇s
δ û) : σ(ε)dΩ =

∫
Ω\Γd

δ û . b̄dΩ+
∫

Γt

δ û . t̄dΓ, (2.56a)∫
Ω+

(∇s
δ ũ) : σ(ε)dΩ +

∫
Γd

δ [[u]]. t+dΓ =
∫

Ω+
δ ũ . b̄dΩ+

∫
Γt+

δ ũ . t̄dΓ. (2.56b)

Equation (2.56a) and Equation (2.56b) satisfy the consistency of the weak formulation adopted

in XFEM.

2.3.3 Nodal enrichment technique

As earlier discussed in section 2.3.1, the main significance of XFEM compared to the other

enriched models lies on the framework enriching the nodes locally. According to (Wells and

Sluys, 2001a), two main conditions should be taken into account as follows:

i) As seen in Equation (2.50), the function Ψ(x) multiplies a set of specific nodes. Thus only

the support of those nodes is affected by the function. Consequently, the shifted function only

needs to be considered for nodes whose support is cut by the discontinuity.
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ii) The displacement jump at the discontinuity tip should equal zero. To this end, the nodes

located on the boundary of the element touched by the discontinuity tip require to be enriched

when the crack passes the element and propagates into the neighbour element.

Discrete equations

The XFEM discretisation is obtained by inserting Equation (2.53) into the virtual work

principle, which is comprehensively detailed in (Simone et al., 2003; Wells and Sluys, 2001a).

The discrete equations are reviewed in this section.

As described in section 2.3.1, the total displacement field in XFEM is decomposed into two

continuous displacement fields, û and ũ, which are associated with two layers of degrees of

freedom (Dias-da-Costa et al., 2010) as:

u = û+Ψ(x)ũ, (2.57)

where Ψ(x) is shifted function, and the corresponding finite element approximations are:

û = N(x)â, (2.58a)

ũ = N(x)Ψ(x)ã. (2.58b)

Accordingly, the strain field is written:

ε = LN(x)a = B(x)(â+Ψ(x) ã) in Ω\Γd (2.59)
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Where B = LN and differential operators are defined in the matrix L:

L =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂ z

∂/∂y ∂/∂x 0

0 ∂/∂ z ∂/∂y

∂/∂ z 0 ∂/∂x



(2.60)

The incremental stress field in terms of nodal displacements is:

dσ = DB(dâ+Ψ(x)dã) in Ω\Γd (2.61)

where D denotes the constitutive matrix relating incremental stress to incremental strain.

Similarly, the incremental traction vectors at the discontinuity is given by:

dt = Td [[u]] = TNdã. (2.62)

The discrete form of Equations (2.56a) and Equations (2.56b) reads:

Kââ dâ+Kâã dã = d f̂ (2.63a)

Kãâ dâ+(Kãã +Kd)dã = d f̃ (2.63b)
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where the the arrays of stiffness matrices can be given by:

Kââ =
∫

Ω\Γd

BT DBdΩ, (2.64)

Kâã =
∫

Ω

BT DBdΩ, (2.65)

Kãã = Kãâ = Kâã
T , (2.66)

Kd = 4
∫

Γd

NT TNdΓ, (2.67)

the internal force vectors are derived as:

d f̂ =
∫

Ω\Γd

NT db̄dΩ+
∫

Γt

NT dt̄dΓ, (2.68a)

d f̃ =
∫

Ω

Ψ
T NT db̄dΩ+

∫
Γt

Ψ
T NT dt̄dΓ. (2.68b)

It is noteworthy f̂ is the internal force usually used in standard finite element, whereas f̃

enforcing the traction continuity in a weak sense equals zero (Wells and Sluys, 2001a).

2.3.4 Numerical integration

In standard FEM with the polynomial shape functions, Gauss integration scheme in a weak

form is efficiently utilised to calculate the stiffness matrix. In the presence of a jump in XFEM

framework, the standard Gauss quadrature cannot be sufficient and more considerations over

the quadrature of the weak form are required, which are described herein.



40 2 LITERATURE REVIEW

Bulk

For XFEM, the integral in Equations (2.65) and (2.66) are extended over the whole element

domain Ω. As a result, when an element cut by an interface, the integral over Ω should be

split into two subregions Ω+ and Ω− as:

Kâã =
∫

Ω
BT DB dΩ

=
∫

Ω+ BT DB dΩ+
∫

Ω−BT DB dΩ

(2.69)

For integration purpose, dividing two subregions into triangular and quadrilateral subgrids

that align with a discontinuity is common in XFEM (Belytschko et al., 2001; Moës et al.,

1999), the reader my find more information in (Fries and Belytschko, 2010; Khoei, 2014). In

triangular method utilised in this thesis, two different approaches can be considered: i) the

two subregions Ω+ and Ω− are divided into triangular domains and the integrals over Ω are

decomposed into two sub-integrals (see – Figure 2.5a); ii) only the subregion Ω+ is divided,

while the integrals over Ω should be calculated by Gaussian quadrature (see – Figure 2.5b).

As an alternative, there are special integration formula for polygons with n edges (Mousavi

et al., 2010; Natarajan et al., 2009), which are discussed in details in section 5.3.2.

Discontinuity

In the XFEM, the interface is described implicitly, and the discontinuity is usually simulated

by the same shape function as the element shape function according to Equation (2.58b).

This simplification leads isoparametric mapping to turn the straight discontinuity on physical

element into curved one on the parent element and vice versa (Ventura, 2006), as depicted
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−Ω

+Ω

dΓ

(a)

−Ω

+Ω

dΓ

(b)

Figure 2.5: Bulk integration scheme for mid-point rule with three point (a) two sub-
integrals on Ω+ and Ω−, and (b) one sub-integral on Ω+ and one integral on Ω ( the
dots and crosses represent the additional and the regular Gaussian integration point
respectively).

in Figure 2.6. As a consequence, a straight discontinuity adopted in parent element diverges

from the corresponding linear path when it is mapped into the physical element. Moreover,

special consideration must be taken in the integration scheme adopted, which may result in

oscillatory solutions if high values of the discontinuity stiffness are employed. This issue is

thoroughly explored in section 2.4.1.

Interface 1

Interface 2

Parent element Physical element

Figure 2.6: Representation of misalignment of the crack path in the parent element
and the physical element.

As discussed in section 2.4.1, to avoid spurious oscillation observed in Gaussian rules, a

Newton–Cotes/Lobatto scheme is employed (Coutinho et al., 2003; Schellekens and De

Borst, 1993; Simone, 2004) to compute the discontinuity stiffness given in Equation (2.67).
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Consequently, the integration points adopted are coincident with the additional nodes along

the discontinuity to capture the jump.

2.3.5 Difficulties in the XFEM

Each robust method comes with some advantages and disadvantages. Since this thesis aims

to revise and modify the XFEM as the product of PUM, the special attention needs to be

devoted to the major drawbacks with the XFEM framework despite intensive studies carried

out to overcome them in last decades (Babuška and Banerjee, 2012; Fries, 2008; Fries and

Belytschko, 2006; Mergheim, 2009). As mentioned earlier, XFEM allows the standard FEM

approximation functions to incorporate the arbitrary functions satisfied reproducing condition

to make the partition of unity more flexible to model the problems including interface and

moving boundary problems. Some difficulties caused by this flexibility can be reviewed in

this section.

a) Integrating over discontinuities: conventionally, standard FEM needs smoothness of the

integrands while utilising Gauss quadrature in weak form (Fries and Belytschko, 2010). In the

presence of a jump in the element local enrichment function, the accuracy of Gauss quadrature

further deteriorates. Therefore, as discussed in section 2.3.4, some special consideration

should be taken to integrate over the discontinuities.

b) Ill conditioning: incorporating additional function into standard FEM approximation

function leads to ill-conditioned stiffness matrix. Various studies have addressed this issue

in the literature and proposed different approaches to tackle this shortcoming (Babuška



2.3 EXTENDED FINITE ELEMENT METHOD (XFEM) 43

and Banerjee, 2012; Fix et al., 1973; Menk and Bordas, 2011; Mergheim, 2009). Other

methods based on Cholesky decomposition are proposed by Béchet et al. (2005), Fix et al.

(1973) and Strang and Fix (1973) to apply on the stiffness matrix, and form the submatrices

related to the additional degrees of freedom. This preconditioning induces the numerical

instability to be isolated in smaller matrices. In the context of XFEM, Béchet et al. (2005)

proposed a preconditioner matrix to solve the linear equation systems easier by focusing

on preconditioning the submatrices associated with enriched degrees of freedom. However,

this preconditioner matrices are not appropriate for general purposes. Therefore, more

investigation is required in this regard. To this end, a new formulation is developed in

chapter 4 to decrease the condition number of the stiffness matrix.

c) Increasing degrees of freedom: during the crack propagation process, the enrichment

used in XFEM results in the rapid increase of the additional degrees of freedom, which

leads to increase the computational cost significantly. Intrinsic XFEM proposed by Fries and

Belytschko (2006), using Moving Least-Squares (MLF) method to construct the particular

function, where the shape functions of the two subdomains of the cracking domain are coupled

by a ramp function. Despite the appealing approach, utilisation of the MLS method is proved

exceedingly expensive computationally. As an alternative, an effective strategy in this regard

is proposed in chapter 4.

d) Oscillating solutions: the coupling of the degrees of freedom associated with the nodes

that are not connected by the element edges, called pathological coupling, causes oscillating

solutions in XFEM. Various studies have addressed this phenomenon in the elements utilised

in XFEM, also known as PU-based discontinuous elements (Ahmed and Sluys, 2013; Rots,
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1988; Schellekens and De Borst, 1993; Simone, 2004), which is detailed in section 2.4. These

studies have proposed some approaches to alleviate this difficulty, which are explored in

section 2.4.2. However, non of these approaches can be considered as a general treatment, and

only can be used in special conditions. An innovative formulation is developed in chapter 5 to

surmount the spurious behaviour in XFEM framework.

2.4 Partition of unity-based discontinuous elements

To treat problems involving discontinuities, interface elements or embedded discontinuity

elements are utilised to incorporate the displacement jumps into standard finite elements

(Alfano and Crisfield, 2001; Goodman et al., 1968; Saouma et al., 1990) conventionally.

Generally, the relative displacements of the nodes located at two sides of the discontinuity

determine the displacement jump when using the interface elements approach (Bittencourt

et al., 1996), whereas an incompatible strain mode plays the role of displacement jump

incorporating into an element in embedded discontinuity approach (Simo et al., 1993).

The family of enrichment methods using the PU (including XFEM) can be considered

as another alternative, introducing a category of elements, called PU-based discontinuous

elements (Simone, 2004), kinematically similar to interface elements. As a consequence,

the stiffness matrix of these widely-used elements (Moës et al., 1999; Remmers et al., 2003;

Simone et al., 2003; Wells and Sluys, 2001a) can be examined according to the interface

elements concept (Schellekens and De Borst, 1993) to clarify the weakness and improve their

application.
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2.4.1 Computational issue

In this section, the stiffness matrix of the conventional interface elements is considered to

clarify the weakness of PU-based discontinuous elements. Since this type of elements is

not the main focus of this thesis, a brief summary of the stiffness matrix of the conventional

interface element is presented herein. The reader may find further information in (Goodman

et al., 1968; Kaliakin and Li, 1995; Schellekens and De Borst, 1993).

Interface element behaviour

The stiffness matrix of interface element with n-node (see – Figure 2.7) is given by:

∙ ∙ ∙
∙ ∙∙1 3 2

4 6 5

n

s

x

y

ξ

Figure 2.7: Conventional interface element.

Kd = b
∫

ξ=+1

ξ=−1
BT DB

∂x
∂ξ

dξ (2.70)

where b denotes interface width and B is 2×2n matrix as:

B =

 −N N 0 0

0 0 −N N

 (2.71)
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where N is isoparametric shape function as:

N̄ =

[
N1 N2 N3 N4

]
(2.72)

and constitutive matrix in local coordinate s,n is written:

D = RTRT (2.73)

where R denotes the rotation matrix and T is the traction-separation relation as:

T =

 ds 0

0 dn

 (2.74)

where ds and dn are constant. For the element represented in Figure 2.7, since global and

local coordinates are coincident, D = T.

Expanding BDBT for linear/quadratic interface element leads to:

BDBT =

 Kn 0

0 Ks

 (2.75)

where Ki is written as:

Ki = di

 k̄ −k̄

−k̄ k̄

 , i = s,n (2.76)
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The matrix k̄ for linear interface element is given by:

k̄ =

 N2
1 N1N2

N1N2 N2
2

 (2.77)

In linear interface element, the results obtained from the Gaussian quadrature is coincident

with the analytical integration and both of which lead to the full matrix. In contrast, nodal

integration (i.e. the Newton-Cotes rule) removes the coupling terms NiN j while i 6= j, also

called pathological coupling. It is noteworthy that the same behaviour is observed in quadratic

interface elements.

This coupling is considered as the reason behind the traction oscillation by Kaliakin and Li

(1995), Rots (1988), Schellekens and De Borst (1993) and Simone (2004). These studies

reveal that smoothing the response is usually observed employing the Newton-Cotes rule.

Although the overintegration with the Newton-Cotes rule leads to pathological coupling, the

element is less vulnerable to spurious oscillation in this case (Schellekens and De Borst,

1993). For the Gaussian integration, Coutinho et al. (2003) points out the spurious kinematical

inconsistency in the conventional interface element proposed by Goodman et al. (1968). The

oscillation in the displacement field causes the oscillation in the stress field, which increases

when the higher penalty parameter used for the interface.

Some authors (Day and Potts, 1994; Schellekens and De Borst, 1993) relate the high gradient

of stress occurring in the neighbourhood of interfaces to the oscillating behaviour. Therefore,

mesh refinement can mitigate the spurious oscillation in stress profile (Kaliakin and Li,

1995). In fact, in two dimensions, if the sufficiently refined mesh is provided, trapezoidal and
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Simpson rules lead to accurate linear and quadratic solutions, respectively (Kikuchi and Oden,

1988).

Structural behaviour

According to Simone (2004), the PU-based discontinuous elements are examined based on the

linear elastic test for interface elements proposed by Rots (1988). As described in section 2.2,

the traction vector of the discontinuity has a relation with displacement jumps, shear and

normal penalties, denoted by ks and kn respectively. As represented in Figure 2.8a, a single

notched beam with the activated horizontal jump is considered. A traction-free discontinuity

(kn = ks = 0) is assumed as the notch, whereas a high value indicating perfect contact between

two faces of the discontinuity is considered for the stiffness of the interface.

P
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310nk =
410nk =
510nk =

Figure 2.8: Traction-free notched beam test: (a) Schematic geometry (b) Traction
profile oscillations (kn measured in MPa

mm ).

As depicted in Figure 2.8b, the results obtained by Simone (2004) indicate that the normal

component of the traction profile at the discontinuity is dependent on the interface stiffness

and the numerical integration approach, which has a complete agreement with the results

reported by Remmers et al. (2001) and Rots (1988) regarding conventional interface element.
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Particularly, the results of using the high-value penalty as normal stiffness for perfect bounded

interface reveal that: i) Gauss integration scheme leads to remarkable oscillations in the

normal tractions profile, regardless of the adopted mesh type (e.g. structured or unstructured

mesh) ii) nodal integration scheme (e.g. trapezoidal rule) leads to improvement of traction

profile compared to the Gauss quadrature counterpart (Remmers et al., 2001; Rots, 1988;

Schellekens and De Borst, 1993; Simone, 2004).

On the other hand, Ahmed and Sluys (2013) investigated the effect of the quadrilateral finite

elements on displacement jump approximation. Since the quadrilateral finite element can

be categorised as the family of the PU-based discontinuous elements, the results reported

regarding the spurious oscillation occurring in traction profile along with the discontinuity

show agreement with previous studies (Schellekens and De Borst, 1993; Simone, 2004).

Besides, Ahmed and Sluys (2013) indicates that the bilinear approximation function has a

severe effect on displacement jump calculated at the discontinuity, leading to unrealistic strain

field and consequent inaccurate nodal displacements in a simple example of one-element

structure.

Since one of the main ingredients of the cohesive zone models utilised in the strong dis-

continuity approaches can be characterised by traction profile, the unrealistic oscillations

occurring in traction forces are required to be explored. In a similar context, the spurious

displacement jump of the quadrilateral finite element is investigated in the following section.
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2.4.2 Alleviation of spurious behaviour

Since the spurious behaviours of the PU-based discontinuous elements has remained a

dilemma in the scope of enrichment methods, the two approaches can be utilised to alleviate

these phenomena are reviewed in this section.

Treatment by Simone (2004)

According to Equation (2.67), the stiffness of the discontinuity in partition of unity based

discontinuous element with 4 nodes can be given by:

Kd =
∫

Γd

NT RTRT NdΓ = b
∫

ξ=+1

ξ=−1
NT TN

∂x
∂ξ

dξ (2.78)

where the transformation matrix R = I for the discontinuity located at a element horizontally

as represented in Figure 2.9, b denotes the interface width, and N is 2 by 2 matrix:

N =

 N̄ 0

0 N̄

 (2.79)

where the arrays of matrix diagonal contains elements isoparametric shape function as

represented in Equation (2.72).

Expanding the integrand of Equation (2.78) leads to:

NT T N =

 K̄n 0

0 K̄s

 (2.80)
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where K̄n = knK̄, K̄s = ksK̄ according to Equation (2.17), and K̄ reads:

K̄ =



N2
1 N1N2 N1N3 N1N4

N2N1 N2
2 N2N3 N2N4

N3N1 N3N2 N2
3 N3N4

N4N1 N4N2 N4N3 N2
4


(2.81)

As depicted in Figure 2.9a and according to Equation (2.81), the trapezoidal rule integration

∙ ∙

∙
∙
1

2

34

(a)

∙ ∙

∙∙1 2

34

(b)

Figure 2.9: Different possibilities of horizontal discontinuity placement in quadrilat-
eral element

scheme activates the natural coupling occurring between two sets of neighboring nodes

1-4 and 2-3, whereas the pathological couplings (e.g. N1N2, N1N3 etc) are removed. For

Figure 2.9b, Gauss quadrature actives all coupling between node 2 and the rest of the nodes,

where the activated pathological coupling leads to the unrealistic oscillation at traction profile.

The trapezoidal rule can cancel some pathological coupling in Figure 2.9b, which results in

the traction oscillation less pronounced. However, since some pathological couplings remain

unchanged, the trapezoidal rule cannot be effective in all conditions. As a consequence, a

more reliable approach is required to treat the difficulties caused by pathological coupling

while utilising this class of elements. To this end, the following section is devoted to another

treatment proposed in this regard.
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Treatment by Ahmed and Sluys (2013)

As discussed in section 2.3, XFEM and FEM share the concept of transferring the forces

and surface tractions to the nodes and utilise element shape functions to approximate the

displacement. Since the displacement jump can be obtained along the discontinuity using

the additional degrees of freedom in XFEM, the traction forces between two faces of the

discontinuity should be transferred to the nodes by Equation (2.67). In elements with bilinear

shape functions, the contribution of the forces at a node is considered based on the same

approximation functions. As a result, constant traction at the discontinuity can lead to unequal

nodal forces, satisfying the force equilibrium, not the moment equilibrium. Consequently,

the spurious moment couple causes the interface to rotate unrealistically. The single element

test (see – Figure 2.10) done by Ahmed and Sluys (2013) reveals that some results in

(Simone, 2004) cannot remain valid if the interface direction changes. The main results can

be concluded as below:

tu

Discontinuity

bu

Figure 2.10: Single element test.

i) According to Equation (2.63b), Kd can be directly affected by displacement jump trans-

ferred to the element nodes. Consequently, the interpolation function adopted for the discon-

tinuity jump contaminates global stiffness matrix, leading to inaccurate nodal values. Since
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internal force f̃ is affected accordingly, using the higher penalty stiffness increases the solution

error as reported in (Dias-da-Costa et al., 2010; Simone, 2004).

ii) Using the nodal integration scheme (e.g. trapezoidal rule) cannot construct a constant

strain field For ub = ut . Since displacement field is approximated by the bilinear functions,

the unrealistic linear strain field is observed over the element.

iii) Gauss integration scheme leads to reliable results for uniform crack opening. For nonuni-

form crack opening ([[u]]n 6= 0, [[u]]s 6= 0), bilinear approximation causes spurious opening

when the tangential and normal components to the discontinuity surface are not along with

local axes of the element. The observation reveals that the Newton-Cotes/Lobatto integration

scheme deteriorates the results in the latter case because of underintegration compared to

Gauss integration scheme.

According to the results concluded, mesh refinement around the discontinuity can be con-

sidered as the only remedy proposed by Ahmed and Sluys (2013) for spurious displacement

jump and interface rotation of bilinear quadrilateral elements. In fact, mesh refinement causes

the unbalanced moment occurring at the interface to decrease. The reduction of the moment

magnitude results in smaller spurious displacement, leading to more accurate approximation

and consequent the solution.

To sum up, all treatments proposed in the literature for the spurious behaviour occurring in

the PU-based elements seem occasional. In fact, since the crack path is unknown a priori

in crack propagation analysis, the mesh refinement cannot be utilised around the interface

region. Furthermore, the mesh refinement has a high cost numerically. On the other hand,
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using the nodal integration are limited to the special conditions reviewed in this section. As a

consequence, this class of elements need to be treated by a holistic approach. In chapter 5, a

new approach is introduced to surmount all these difficulties.

2.5 Conclusions

In this chapter, a general framework for strong discontinuities in the scope of discrete crack

approach is given. The link required between the continuous and discontinuous parts of the

domain (e.g. discontinuity and bulk respectively) is justified, and the significance of the

criterion used to initiate and propagate the discontinuity is clarified. Accordingly, chapter 3 is

devoted to this matter.

Moreover, the particulars of XFEM as the product of PUM is discussed, which reveals that

XFEM, as a robust framework to solve the problems involving discontinuities, suffers from

some serious shortcomings, two of which are:

– increase of stiffness matrix bandwidth during the analysis, caused by the degrees of

freedom progressively added to the system of equations due to the crack propagation.

– spurious behaviour obtained by utilising PU-based discontinuous elements, resulting

from the unsatisfied moment equilibrium because of pathological coupling between

degrees of freedom of corresponding elements.

In chapters 4 and 5, two new formulations are introduced in which these two drawbacks are

overcome.



CHAPTER 3

A comparative study on crack propagation criteria

Cracking initiation and crack propagation play a central role in embedded discontinuity

approaches. The cracking simulation has a significant impact on the energy balance in the

cohesive zone utilised to solve the non-linear equations. Also, as a crack is represented by a

discontinuous displacement in fracture mechanics, the prediction of crack trajectories determ-

ines the accuracy of the nodal displacements obtained by numerical analysis. Consequently,

the criteria used to trace the crack path may dominate the numerical results. Therefore, this

chapter 3 focuses on crack propagation criteria used in the discrete crack approach as a

well-suited approach to analyse problems with structures showing a single dominant crack

(e.g. pull-out test). To this end, in this chapter, three different cracking surfaces and an

averaged stress-based criterion available in the literature are thoroughly analysed and assessed.

A contribution of selecting the most suitable approach is given, depending on the dominant

fracture mode in the problem at hand.

Three cracking criteria based on failure surfaces adopted as a crack initiation criterion required

to link the bulk to a discontinuity (see – section 2.2.1) are reviewed in section 3.1 and further

information regarding crack propagation obtained from these criteria is given. In section 3.2,

an approach is almost used in continuum-based models is introduced. In section 3.3, a

55
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comparison between different failure surfaces in terms of crack initiation performance is

drawn, and some critical considerations regarding crack propagation in discrete crack approach

are taken into account in section 3.4. The several benchmark tests on mode I, mixed-mode

and pure compressive fracture are chosen in section 3.5 to reveal the abilities of each cracking

criteria.

3.1 Cracking criteria based on failure surfaces

This section aims to briefly review the crack initiation and propagation criteria, which can be

utilised in the discrete crack approach.

3.1.1 Principal stress

The principal stress criterion, also known as the Rankine criterion, is based on the maximum

stress and its direction. This criterion assumes that a crack in a uniaxial stress state would

initiate when the maximum principal stress reaches the tensile strength of the material. This

crack propagates orthogonally to the uniaxial tensile stress (Wang and Shrive, 1995), which is

perpendicular to minimum principal stress. The stress field at the tip of the crack may not

have enough resolution in the discrete crack approach, which is why the local stress may

not provide a reliable criterion to obtain the direction of the propagating crack. In addition,

Jirásek and Zimmermann (2001) shows that a non-local measurement can be more reliable

prediction to trace the crack path. Therefore, the axis of the maximum principal of average
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stress tensor is considered as the normal vector to the crack. To this end, a Gaussian weight

function (Wells and Sluys, 2001a) smoothing the crack tip stresses is defined as follows:

ω =
1

(2π)3/2l3
exp
(
− r2

2l2

)
, (3.1)

where ω represents the integration weight, r is the distance of respective integration point

from the tip of the discontinuity, and l determines the specific distance around the tip. Previous

studies propose different values for l. Dias-da-Costa et al. (2009) suggests the length scale

parameter, which is about 1% of the Hillerborg’s characteristic length lch, defined by :

lch =
GFE

ft2 , (3.2)

where GF is Griffith’s energy, E is Young’s modulus, and ft represents the tensile strength.

Other authors suggest a value of the of four times the length scale for a gradient-enhanced

damage model (Simone et al., 2003), whereas Wells et al. (2002) proposes 2−3 times greater

than the characteristic element size h, which is considered in this chapter.

Note that, in spite of the fact that principal stress criterion is acceptable for fracture mode I,

it has been used in previous studies for various fracture modes (Dias-da-Costa et al., 2009;

Meschke and Dumstorff, 2007). However, results show that this criterion may fail to provide

reasonable results for mixed-mode failure. In this case, more suitable failure surface may be

required to capture the combined effect of compression and tension states leading to more
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accurate prediction of propagation. To this end, some modified failure pockets are introduced

in the following sections.

3.1.2 Mohr-Coulomb’s failure surface

Generally, the failure surface models assume that a crack initiates when the stresses in the

traction space tn− ts reach a specific value, satisfying f (tn, ts) = 0.

Recently, Saloustros et al. (2015) suggested a crack-tracking technique previously used in

the smeared crack approach. This technique is the combination of three failure surfaces,

Mohr-Coulomb, Tresca and Rankine, where some considerations are employed to define the

crack propagation path. The discontinuity is assumed to initiate when an integration point

satisfies any of the criteria adopted (i.e. Mohr–Coulomb, Tresca and Rankine). To this end,

the following representation using principal stresses can be utilised as:

f (σ1,σ2) =
σ1

ft
− σ2

fc
−1 = 0, σ1 ≥ σ2, (3.3)

where, σ1, σ2 and σ3 denote principal stresses; ft and fc represent tensile and compressive

strength respectively.

Several conditions may occur on the plane stress, which may lead to the different need to

consider uniaxial tensile or compression states, the biaxial compression state, and combin-

ation of tensile and compression states (intermediate state). To clarify these states, some

different conditions are presented in Figure 3.1. In point A, mode-I fracture occurs, and the

discontinuity propagates along the normal vector to maximum principal stress (σI), whereas
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if the crack initiates when Mohr–Coulomb’s failure criterion is satisfied, the crack initiation

occurs for values probably much greater than ft , which is not reasonable.

For higher values of the compressive stress, this value may vary to B (see – Figure 3.1), which

is quite different from what occurs in mode-I fracture and Rankine criterion cannot handle that

situation. The Mohr-coulomb failure pocket cannot be applied as a single cracking surface

due to the lack of a tensile cap. As a result, this failure envelop has to be used by Rankine as a

tensile cap otherwise the Mohr-coulomb cannot predict the crack trajectories in either fracture

mode I or mixed-mode fracture appropriately. The interested reader may refer to (Saloustros

et al., 2015) studying the Mohr-Coulomb criterion in detail.

The modified failure envelops, suggested in the current work to trace the crack path are

mature enough to determine the crack initiation and propagation independently, without other

considerations. From the crack propagation point of view, Mohr–Coulomb’s law assumes

a linear relation between compressive tractions and shear, which cannot capture a smooth

transition between compressive and tensile tractions (Alfaiate and De, 2004). Naturally, a

more realistic failure surface is required to overcome or at least alleviate the shortage. To this

end, two more complex failure surfaces are investigated in the following sections.
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Figure 3.1: Failure surfaces.

3.1.3 Normal/shear cracking model (Carol’s failure surface)

The shape of cracking surface proposed by Carol et al. (1997) is indicated in Figure 3.1,

represented by a hyperbola as:

f = t2
s − (c− tn tanφ)2 +(c− ft tanφ)2, (3.4)

where c, ft and φ denote the cohesion strength, the tensile strength and the internal friction

angle respectively.

The proposed hyperbolic surface is limited by two cases of crack initiation: mode-I, obtained

when the surface is parallel to the horizontal axis, and cracking under shear and high value

of compression, which tends towards the Mohr-Coulomb’s failure surface. In contrast to

the Mohr-Coulomb’s failure surface, nonlinear tensile and shear strength are introduced by

Carol’s failure surface. The hyperbola can provide a smooth transition in intermediate states

(mixed-mode fracture), overcoming the difficulty in Mohr-Coulomb’s friction law. To predict

the crack propagation orientation, the normal to the discontinuity is determined by angle θ
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relative to maximum principal stress axis, which is given by:

θ =
1
2
(π/2−φ

′), (3.5)

where φ ′ reads as:

tanφ
′ =

∣∣∣∣∂ ts
∂ tn

∣∣∣∣ . (3.6)

Since this hyperbola tends towards Mohr-Coulomb’s failure surface for a high value of the

normal compressive traction, the lack of appropriate cap for this state remains unchanged.

To overcome this shortcoming, another modified failure surface proposed for quasi-brittle

materials is presented next.

3.1.4 Alfaiate’s cracking surface

All failure surfaces mentioned earlier face some difficulties to describe initiation and/or

propagation of strong discontinuities. The Rankine criterion is not capable of capturing

mixed-mode cracking, whereas the Mohr-coulomb criterion provides inaccurate predictions

for high compression stress and cannot be used as a single surface properly. In addition, the

linear nature of the surface causes non-smooth transition between tensile and compressive

tractions, whereas Carol’s failure hyperbolic surface introducing the smooth transition for

tensile and compressive tractions requires a more reliable cap for high compression state.

Alfaiate et al. (2002) proposed a failure surface to tackle all these shortages. To this end, a

surface in the stress vector space of the discontinuity tn− ts has been introduced such that

Rankine and modified Mohr-coulomb’s friction law are considered as the two caps (see –
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Figure 3.1). The failure surface adopted is given by:

f = t2
s −

f 2
t +2c tanφ ft− c2

f 2
t

t2
n − c2(1+ tan2

φ)+(tn + c tanφ)2 = 0, (3.7)

where φ , c and ft are the internal friction angle, the cohesion and the tensile strength. Alfai-

ate’s failure surface can be considered as a modified Mohr-Coulomb’s failure surface, whose

derivatives are continuous in the traction space, allowing for the smooth transition between

mode-I and mode II fracture. Experimental observations reveal that mixed-mode cracking

usually leads to mode-I crack initiation unless normal traction with high compression values

is considered. Note that, Equation (3.6) is utilised, similar to Carol’s failure surface, to obtain

the crack direction in the normal traction with high compression.

3.2 Criterion based on the averaged effective stress tensor

The previous studies showed that stress-based criteria used to predict the crack direction in the

discrete cracking approach may face two shortages. First, (Jirásek and Zimmermann, 2001)

showed that local measures may not provide a reliable prediction of crack paths. Second,

the observation on both mode I and mode II failures reveal that the effective stress is an

appropriate predictor of the strain localisation (Wells et al., 2002). To this end, Wells et al.

(2002) and Wells and Sluys (2001a) introduce Equation (3.1) to alleviate the effect of local

measurement, and an averaged stress-based model, which is given by:

dΓd = ∑
i∈S

σiViωi
di

‖di‖
(3.8)
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where S denotes the set of integration points i located in circular sector represented in

Figure 3.2 with the averaged effective stress σi, the volume Vi, the weight ωi calculated

by Equation (3.1), and the vector in direction of these points denoted by di. Note that the

maximum accumulation of the averaged effective stress direction in a circular sector of 90◦

(Simone et al., 2003) or 180◦ (Wells et al., 2002) at the front of discontinuity tip region is

considered to calculate the trajectory of discontinuity propagation.

∙

discontinuity tip

di

ir

Figure 3.2: Determination of the propagation direction.

3.3 Crack initiation

In this section, four failure surfaces are compared from the initiation point of view. Note that,

the averaged stress-based criterion cannot provide any failure surface and one of the failure

surfaces mentioned in section 3.1 is required to allow this model to be adopted.

Four main conclusions can be drawn:
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1. For a low compressive normal traction, all failure surfaces, except Rankine, lead to almost

the same traction components. As mentioned earlier, the Mohr-Coulomb surface should be

considered as an auxiliary surface to Rankine for mixed-mode fracture analysis.

2. For a low compressive normal traction, Carol’s failure surface can provide a conservative

estimate compared to Mohr-coulomb’s surface. In addition, Carol’s pocket can provide a

smooth transition between mode-I and modeII fracture because of the continuous derivatives

in the traction space. For high compressive normal traction state, Carol’s failure surface tends

to Mohr- coulomb failure envelop, which is inappropriate to obtain accurate failure surface.

As a remedy, a modified failure surface introduced by Alfaiate and De (2004) can be adopted.

3. In both high and low compressive normal traction, Alfaiate’s provides the most suitable

cracking surface.

4. An increase of cohesion strength leads to narrow the difference between cracking surfaces

on low compressive normal traction state (Saloustros et al., 2015). Hence, the Mohr-coulomb

criterion is more efficient for brittle materials with high cohesion strength in low compressive

normal traction state.

3.4 Crack propagation

To propagate the discontinuity in the strong discontinuity approaches, including XFEM, some

considerations should be taken into account as briefly discussed herein.
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As a discontinuity crosses through an element straight, the crack tip always lies on the element

edge. The crack initiation criteria discussed in section 3.1 are required to evaluate the onset

of the localisation at the crack tip and the corresponding discontinuity path. To this end, some

criteria may be followed as below:

i) The stress state considered for crack evolution is defined by the mean values of the stress

components at the nearest integration points of the crack tip (Alfaiate et al., 2003).

ii) As discussed earlier, a non-local stress state should be utilised to define the averaged field

beyond the element size (Wells and Sluys, 2001a). To this end, a Gaussian weight function in

Equation (3.1) smoothing the crack tip stresses should be adopted.

iii) The studies conducted in LEFM and cohesive cracks models (Areias et al., 2009; Ma

et al., 1999) indicate that the crack path can be obtained from the relation between normal

and shear opening jump components.

iv) The direction of the propagation is determined at the initiation time, using the initiation

criteria described in section 3.1. The failure surface is not reached in the bulk and at the crack

tip simultaneously because the traction continuity is enforced in a weak manner. Therefore, a

discontinuity is introduced in the earlier stage in order to prevent traction field and bulk lying

outside the cracking surface (Dias-da-Costa et al., 2009).

In the following section, four structural examples are presented to clarify the effect of proposed

cracking criteria on crack initiation and propagation.
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3.5 Numerical examples

In this section, the differences between the approaches described in section 3.1 and section 3.2

are studied using four different benchmark tests. The first test is adopted to investigate

the performance of the different criteria in the pure tensile state in fracture mode I. The L-

shaped panel test, proposed by Winkler (2001) representing the curved crack path in fracture

mode-I is studied to clarify i) the differences between conventional cracking surface and

modified ones ii) the averaged stress-based criterion sensitivity to the parameters used in the

averaging techniques introduced by Wells et al. (2002). The third test is the mixed-mode

three-point bending benchmark test studied by John and Shah (1990), which reveals that the

robustness of modified cracking surfaces in mixed-mode fracture compared to principal tensile

stress criterion often used in fracture mechanics. The uniaxial compression test introduced

by Van Geel (1998) shows that modified cracking surfaces are capable of being used in

the compressive state, representing the robustness of modified failure surfaces and their

superiority over conventional ones. For all analysis, the problems are discretised by four-node

elements with bilinear interpolation functions and the traction-separation law by Mariani and

Perego, 2003, described in section 2.2 is employed.

3.5.1 Three point bending beam test

The first example is the three point bending beam tested by Bazant, Pfeiffer et al. (1987), with

a span and thickness equal 762 mm and 38 mm respectively. A notch (25.4 ×50.8 mm) is

considered at the bottom of the midspan, as represented in Figure 3.3.
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The material properties of the specimen are taken as: Young’s modulus E= 27413 MPa,

Poisson ratio ν = 0.18, tensile strength ft =2.886 MPa, compressive strength fc=34 MPa, and

fracture energy GF = 0.04029 N/mm. The finite element model is discretised by 370 bilinear

finite elements, and a total load of 10 kN is exerted at the middle of the upper part of the

beam, as seen in Figure 3.3.

P

368.3mm 368.3mm25.4mm

24.58mm 24.58mm

50
.8
m
m

30
4.
8m
m

Figure 3.3: Three point bending beam.

In Figure 3.4, the displacement-load curves obtained from four approaches studied show the

similarity as expected. Figure 3.5 represents two snapshots of the stress field σxx for three

point bending test beam while the vertical displacement of the loaded node is uy=0.08 mm and

uy = 0.1 mm. Since all of the criteria represent the similar deformation and consequent similar

stress field and crack direction, the stress map of averaged stress criterion is represented, and

the rest of the criteria results are omitted. As described in section 3.1.1, the length parameter

l used in the averaging stress criterion should be 2-3 times greater than the characteristic

element size h. Note that, the length parameter determines how fast the weight function decays

from the discontinuity tip, which can have a significant effect on the crack path predicted by

this approach. Accordingly, the sensitivity to the length parameter is investigated here. As

represented in Figure 3.6, the sensitivity of the averaged stress criterion in terms of length
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Figure 3.4: Three point bending beam: load–displacement curves for the loaded node,
obtained from studied criteria including averaged effective stress, Alfaiate’s, Carol’s
and Rankine.
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Figure 3.5: Stress field σxx in MPa for averaged effective stress criterion when the
vertical displacement of the loaded node is (a) uy=0.08 mm; (b) uy= 0.1 mm.

parameter, taken 2.2, 2.6 and 3 times greater than the characteristic element size are studied.

The results indicate that the averaged effective stress approach is not sensitive to the different

length parameters given within the range recommended for this example.
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The important conclusion is that there is a substantial similarity between all approaches in the

pure tension example. Even in the averaged stress criterion with different length parameters,

the crack propagation results are similar, and the structure load-displacement responses are

practically coincident.

l=2.2h
l=2.6h
l=3h

Figure 3.6: Sensitivity to the length parameter for three point bending beam test.

3.5.2 L-shaped panel test

In this section, the L-shaped panel experimentally tested by Winkler (2001) is simulated as

a problem with the curved crack path. The geometry of the panel is depicted in Figure 3.7,

where the bottom of the panel is fully fixed and a vertical force P=10 kN is applied at

the distance of 225 mm from the middle surface of the specimen. The following material

parameters are taken: Young’s modulus E=25.85 GPa, Poisson ratio ν = 0.18, tensile strength

ft =2.70 MPa, and fracture energy GF= 0.095 N/mm (Winkler, 2001). The adopted mesh

represented in Figure 3.7 consists of 300 bilinear finite elements, and plan stress state is

assumed. In Figure 3.8, the crack paths predicted by different criteria are represented. As

observed, the Rankine criterion cannot trace the crack path at the first steps, which renders

this benchmark test challenging for many studies in fracture mechanics based on the direction

of maximum principal stress (Rankin failure surface) as the normal vector to crack direction.
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Figure 3.7: L-shape panel: geometry, boundary conditions and finite element mesh.

The modified cracking surfaces, Alfaiate’s and Carol’s, are able to predict the crack direction

in a more realistic way until the last steps of the analysis. Although these modifications cannot

exert a significant influence on the displacement-load curve of the structure (see – Figure 3.9),

they allow the structure to experience the softening state properly. The criteria fail to trace the

crack path when the crack approaches left vertical surface of the panel. Figure 3.10 reveals

the similarity between Alfaiate’s and Carol’s cracking surfaces in σxx stress field and their

difference with Rankine cracking surface in the last stages of analysis.

Alfaiate

Carol

Rankine
Exp.

Averaged effective stress

Figure 3.8: L-shape panel: Comparison of crack path traced by different approaches.
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Figure 3.9: L-shaped panel: load–vertical displacement curves at the loaded node for
Averaged effective stress criterion, Alfaiate’s, Carol’s and Rankine cracking surfaces.
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Figure 3.10: Stress along x-axis for L-shaped panel: for (a) Averaged effective stress
(b) Alfaiate (c) Carol (d) Rankine in uy=0.35 mm.
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The averaged stress criterion shows a good agreement with experimental results and provides

the most approximated crack path in Figure 3.8. As represented in Figure 3.9, the load-

displacement curve of averaged effective stress criterion also confirms the performance of this

approach. The structural deformation during the softening, while force drops to 30kN from

the peak reveals the difference between averaged effective stress criterion results compared

with the other approaches.

To assess the sensitivity of averaged effective stress criterion to the length parameter, values of

2.2, 2.6 and 3 times greater than the characteristic element size are investigated. As represented

in Figure 3.11, the averaged effective stress criterion is quite sensitive to this parameter

length. Note that, this sensitivity is even more noticeable for an unstructured mesh where

the characteristic element size adopted to calculate the length parameter changes repeatedly

locally while the active crack propagates through the different elements. Accordingly, the

sensitivity to the length parameter also leads to mesh sensitivity, which is why this criterion

may not be reliable enough to trace the crack direction despite the good results in some cases.

This is why the averaged stress criterion is not applied in the next examples.

2.2l= h
2.6l= h
3l= h

Figure 3.11: The sensitivity of averaged effective stress criterion to the length para-
meter characterised by the characteristic element size h for L-shape panel.
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3.5.3 Mixed-mode three-point bending test

The mixed-mode three point bending beam tested by John and Shah (1990) is one of the

benchmark tests available for crack tracking criteria in mixed-mode fracture. This benchmark

has a single edge notched located on the bottom of the beam, and the distance from the

midspan is determined by the offset ratio λ̄ , which is defined by the distance of the notch

from midspan over half of the span length. As depicted in Figure 3.12, the beam measures

230 × 75 × 25.4 mm3 and a 19×5×25.4 mm3 notch is located at bottom of the beam. The

following material properties are used: Young’s modulus E =31.37 GPa, Poisson ratio ν = 0.2,

tensile strength ft =4.4 MPa, and fracture energy GF= 0.17 N/mm (Belytschko et al., 2000).

19
 m

m

230 mm

75 m
m

P

12.5mm5 mm λ

Figure 3.12: Mixed-mode three point bending beam test: geometry and mesh.

The cases of λ̄ ≤ 0.5 are investigated here since these lead to failure with a single dominant

crack (John and Shah, 1990). β = 1 is adopted for both of models studied here, which controls

the shear strength and stiffness in mode-II for the traction-separation law as described in

section 2.2.

The first simulated example is related to the specimen with λ̄ = 0.5. As depicted in Figure 3.13,

Alfaiate’s and Carol’s failure surfaces predict the crack path appropriately and have a good
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agreement with experimental results. Conversely, the Rankine criterion provides a crack path

that deviates from the experimental result.
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Figure 3.13: the comparison between the crack paths predicted by different cracking
surface with experimental results for λ̄ = 0.5.

Note that load-displacement curves were not provided on the experimental study (John and

Shah, 1990). In addition, the material parameters used in the simulations are taken by the

values proposed in (Belytschko et al., 2000) for the same test. These can be a source of

difference between the peak load obtained experimentally and numerically. As represented

in Figure 3.14, the peak load is estimated as 2,100 kN for λ̄=0.5 experimentally, whereas

XFEM provides higher values near the peak load for studied criteria.

Figure 3.14: Load versus vertical displacement at the loaded node for mixed-mode
three point bending beam with λ̄ = 0.5.
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It is worth mentioning that, in previous studies (Belytschko et al., 2000; John and Shah, 1990;

Mariani and Perego, 2003), the crack path has not been traced in the last steps of softening

when the crack approaches the upper surface of the beam. This is related to the limitations of

the criteria utilised in those studies that were not capable of capturing crack propagation in

compression states, which is why the last stage of softening was never analysed. Note that, this

is another difficulty that resulted from using the inappropriate failure surface (e.g. Rankine).

The failure surfaces with emphasis on tensile stress as the only indicator of cracking (e.g.

Rankine) cannot allow the crack occurring in structures facing the tensile and compressive

state during the failure to grow to the last stages of the softening. Otherwise, the crack

grows symmetrically (e.g. three point bending beam). Accordingly, a crack only propagates

appropriately until the cracking area is on the tensile state. As a consequence, the criterion

conventionally adopted cannot predict the crack path immediately after entering compression

state, and practically the analysis fails without giving information on the last stage of the

softening. Therefore, another problem is tackled in the current study is using the modified

cracking surfaces (e.g. Alfaiate’s and Carol’s) to cover this kind of commonly-occurred case

in engineering.

In Figure 3.15, the stress field along the horizontal axis is presented for different failure

surfaces for vertical displacement of loaded node in uy=0.06. As the stress field and crack

path of Alfaiate’s and Carol’s criteria are identical, the results of Carol criterion have been

omitted.

For λ̄ = 0.25, another model of mixed-mode three point bending beam is simulated to

investigate the crack pattern and nodal values obtained by different failure surfaces. The
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Figure 3.15: Mixed-mode three point bending test λ̄ = 0.5 : Stress field σxx in MPa
and crack path during softening when uy=0.06 mm: (a) Alfaiate cracking surface (b)
Rankine (displacements magnified 100 times).

material properties and boundary condition are the same as the previous model with λ̄ = 0.5,

as depicted in Figure 3.12.

In Figure 3.16, the comparison between crack propagation indicated by the failure surfaces are

presented. As observed, the Rankine criterion can predict the crack direction realistically for

the three point bending beam with λ̄ = 0.25 compared to λ̄ = 0.5. According to experimental

results, the peak load, in this case, is about 1,750 kN. In Figure 3.17, the load-displacement

curve shows that Alfaiate’s and Carol’s failure surfaces can predict more reliable peak load

compared to the Rankine overestimating peak load in this analysis.

In Figure 3.18 the stress field along the horizontal axis in vertical displacement uy = 0.06 for

loaded node is presented.
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Figure 3.16: The comparison between the crack paths predicted by different cracking
surface with experimental results for λ̄ = 0.25).

Figure 3.17: Load versus vertical displacement at the loaded node for mixed-mode
three point bending beam with λ̄ = 0.25).

3.5.4 Uniaxial compression test

The uniaxial compression test studied by Van Geel (1998) is investigated to show the ability

of modified failure surfaces to handle fracture in compression state. The cross-section of the

rectangular prism is 97×97 mm2 and the height equals 200 mm, as represented in Figure 3.19.

The material parameters are used: Young’s modulus E =30 GPa, Poisson ratio ν = 0.18, tensile

strength ft=2.96 MPa, compressive strength fc=55.0 MPa (Van Geel, 1998). To estimate the

compressive fracture energy GFc , empirical model proposed by Lertsrisakulrat et al. (2001) is
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Figure 3.18: Mixed-mode three point bending test λ̄ = 0.25 : Stress field σxx in MPa
and crack path during softening when uy=0.06 mm: (a) Alfaiate cracking surface (b)
Rankine (displacements magnified 100 times).
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Figure 3.19: Uniaxial compression test: geometry and mesh.

utilised in this study as below:

GFc = 8.6 fc
1
4 (3.9)
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where the compressive fracture energy GFc has a relation with forth root of compressive

strength fc. According to Equation (3.9), GFc ≈ 23.4 N/mm. For the discontinuity, the traction-

separation relation proposed by Mariani and Perego (2003) and described in section 2.2 is

used, where β =1.

As shown in Figure 3.19, a uniformly distributed compressive load is applied in this study

instead of loading platen with Teflon layer to remove the friction between loading platen and

specimen on experimental research. The adopted mesh consists of 121 bilinear finite elements.

Note that, to guarantee the symmetry of the problem, the two different cracks should grow

from two upper and bottom surfaces of the prism and meet together at the middle surface of

the specimen.

The crack pattern obtained by Alfaiate’s and Carol’s failure surfaces are represented and

compared to experimental results in Figure 3.20. The results show a good agreement with

experimental observation and the robustness of modified surfaces as a reliable full range of

stress criteria to trace the crack path in contrast with Rankine pocket. Although the crack

propagation results obtained from Alfaiate’s and Carol’s envelops are similar geometrically,

there is a significant difference between peak load calculated by Alfaiate’s and Carol’s failure

surfaces, as presented in Table 3.1. Note that, the traction-separation relationship used in the

current study ( see – section 2.2) has been developed for tensile state, and it cannot handle the

compressive state properly. However, the peak load calculated indicates the accuracy of the

simulation in terms of crack propagation.
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Figure 3.20: Uniaxial compression test: crack path at the end of softening stage for
Alfaiate’s and Carol’s cracking surfaces.

Table 3.1: Uniaxial compression test: comparison of peak axial stress-displacement.

Criterion Axial stress (MPa) Displacement (mm)
Alfaiate 42 0.31
Carol 22 0.18
Experiment 45 0.32

In Figure 3.21, the snap shots of the stress field (σxx) along the horizontal axis in uy=0.25 and

0.35 mm for Alfaiate’s failure surface are represented.

This example shows that both components of the cracking process (initiation and propagation)

dominate the analysis of concrete fracture. That is why the appropriate criterion picked for

the cracking process can make a considerable change of results in fracture mechanics of

quasi-brittle materials.
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Figure 3.21: Uniaxial compression test: stress field along horizontal axis for Alfaiate’s
surface in (a) uy=0.25 mm (b) uy=0.35 mm (displacements amplified 20 times).

3.6 Conclusions

In this chapter, the criteria tracing the crack path, including the approaches considering failure

surfaces and averaged effective stress field to determine the crack initiation and propagation

process are investigated. It is shown that all criteria used in literature and proposed here have

advantages and disadvantages, such that their applicability depends on the problem at hand.

In contrast to the conventional approach, the modified failure surfaces proposed here can

tackle mixed-mode failure problems during the softening as represented in section 3.5.3.

Two different failure surfaces for mixed-mode loading condition are proposed in this study.

The proposed failure envelops represent the compatibility with the different loading conditions,

compared to traditional fracture mechanics using Rankine cracking pocket conceptually

covering mode-I fracture only.
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The modified cracking surfaces reduce the computational effort to categorise the cracking

states (shear, tensile or compressive) as done by the Mohr-Coulomb-based crack tracking

algorithms responding to each state separately. This capability decreases the computational

cost needed to check the cracking condition experienced by each element of a structure, which

is a requirement for Mohr-Coulomb-based crack tracking approaches.

The comparison provided with the experimental results shows that the modified failure

pockets can be employed as a full range criterion for predicting crack initiation and crack

propagation in all loading conditions, including compression. Since the traction-separation

laws introduced in conventional fracture mechanics are appropriate for tensile and shear states

only, this shortage needs to be investigated further in future studies. Also, the results obtained

reveal that the average effective stress should be utilised more carefully because of the severe

sensitivity to the suggested length parameter.

As a final remark, the full range criterion studied here is a precious tool for all discrete strong

discontinuity approaches, including Strong Discontinuity Approach (SDA), Discrete Strong

Discontinuity Approach (DSDA), Generalised Strong Discontinuity Approach (GSDA),

Linear Elastic Finite Element (LEFM) and X/GFEM, which need an initiation criterion

transmitting the strain localisation information to the bulk. This study further reveals that the

modified surfaces can be utilised as the credible alternative to the Rankine failure pocket used

to initiate and propagate the crack for many years in discrete crack approaches. In addition,

Alfaiate’s failure surface can be useful to cover all range of loading conditions and even if

high compression states.



CHAPTER 4

An XFEM multi-layered Heaviside enrichment for fracture propagation

Numerical modelling of material failure is relevant to numerous fields in science and engin-

eering. The development of advanced numerical techniques such as eXtended Finite Elements

Method has provided means of accurate prediction of failure in brittle, as well as in ductile

materials. However, the present theories mostly rely on a global formulation, where the

system of equations is subject to progressive increase of its dimension for crack propagation.

An independent multi-layered enrichment is proposed in this chapter for an XFEM family of

methods where groups of few elements in close proximity are assigned to an enrichment layer

independent of the remaining ones. The enhanced degrees of freedom can be condensed out

at the layer level, which in turn leads to system dimensions, sparsity, and bandness identical to

those of the underlying finite elements. Nodal and elemental enrichment methods are shown

to be particular limit cases of present approach.

The definition of the enrichment layers, the boundary value problem, and finite element

discretisation are addressed in section 4.1. Implementation aspects in regards to multi-layered

enrichment method is detailed in section 4.2. The degrees of freedom condensation process is

given in section 4.3, and a cost-effective static condensation procedure, as an alternative, is

suggested in section 4.4. The performance of the proposed technique is first studied using

83
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element level examples for different crack geometries in terms of crack opening modes and

condition number in Sec. 4.5. Then, using several structural examples, accuracy of the method

is studied considering crack patterns, traction continuity and force-displacement responses.

Finally, Sec. 4.6 summarises the main conclusions.

4.1 Theoretical formulation and finite element

discretisation

The inevitable increasing computational cost of XFEM/GFEM stems from the use of a single

enrichment layer and thus can be easily circumvented using multiple enrichment layers

which can progressively be condensed out in the analysis. Each of these enrichment layers

can be realised as the set of degrees of freedom responsible to enrich a certain neighbour-

hood of cracked elements as depicted in Figure 4.1 for a typical crack propagating path.

These layers merely represent the enrichment neighbourhood; their height does not bear

any physical/numerical meaning. The union of the subsets of enhanced degrees of freedom

(corresponding to enrichment layers) must cover the entirety of cracked elements. Their

intersection on the other hand, is null outside each layer; that is, the degrees of freedom

from any two layers are independent of each other. The Schur complement system of such

a multi-layered enrichment technique naturally overcomes dealing with any progressively

enlarging system, which will be discussed further in the following.
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Figure 4.1: Enrichment layers with crack propagation.

The continuous and discontinuous displacement fields are discretised using the multi-layered

concept as follows:

û= ∑
I∈Ntot

NI(x)âI, (4.1)

ũ= ∑
L∈NS

∑
J∈NL

NJ(x)ΨJ(x)ãJ,L (4.2)

In Equation (4.1), N(x)I , âI , and Ntot represent respectively the usual element shape functions,

nodal displacements associated with the continuous displacement field, and total set of nodes.

The alternative definition of the discontinuous displacement field is found in Equation (4.2)

with ΨJ(x) representing the shifted Heaviside function (Zi and Belytschko, 2003), while ãJ,L

shows the enhanced nodal displacements of the Jth node enriched within the Lth enrichment

layer. NS and NL on the other hand, are the total number of enrichment layers and the total

number of nodes enriched in each layer L. For the sake of clarity, the full crack configuration

of Figure 4.1 is repeated in Figure 4.2 to illustrate the above definitions.
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Figure 4.2: Multi-layer enrichment definitions; • represents the enrichment nodes at
different layers.

It is important to note that, without further considerations, the total number of enriched

degrees of freedom at this stage would be higher compared with the standard XFEM. This is

so because the additional enhanced degrees of freedom found at the common edges of adjacent

elements are independently included in more than one enrichment layer. Nevertheless, such an

enrichment strategy can allow the complete condensation of the enhanced degrees of freedom

and thus keep the global system dimensions the same as the uncracked mesh. Condensation

process is realised independently of the size of each enrichment layer, which can be arbitrarily

chosen between two limit cases. In the first case, a coarse scale problem can potentially

represent the entire domain, in which case the standard XFEM/GFEM family of methods

(Belytschko and Black, 1999; Duarte et al., 2000; Moës et al., 1999) are recovered. In the

second case, an extremely fine scale would consider each element as an independent layer,

which would lead to a standard type of embedded discontinuity approach. Accordingly, the

static equilibrium can be expressed in terms of the regular and enriched nodal displacements.

The finite element discretisation of Equation (2.56a) and Equation (2.56b) by means of the

field approximations given in Equation (4.1) and Equation (4.2) leads to the similar stiffness

and force terms in Equations (2.63a)-(2.68b) as described in section 2.3.3. Consequently, the
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static equilibrium for a cracked element can be finally expressed as follows:

 Kââ Kâã

KT
ãâ Kãã +Kd




â

ã

=


f̂

f̃

 . (4.3)

Note that in the integrals involving the Heaviside function, the domain is split into subdomains

Ω− and Ω+, and the integrals are carried out on each triangular element defined by the centroid

of each subdomain and the vertices (Dias-da-Costa et al., 2010; Moës et al., 1999; Park et al.,

2009). Furthermore, the integral carried over Γd is calculated based on the Newton–Cotes

scheme using two integration points for each element to alleviate the spurious oscillations

that have been reported in the literature (Coutinho et al., 2003; Dias-da-Costa et al., 2010;

Simone, 2004) and in chapter 5 is detailed.

4.2 Layer activation and enrichment procedure

A Rankine criterion is used to identify the onset of crack localisation based on a weighed

stress state which is monitored at the centroid of non-cracked elements and at the tips of

existing cracks. In the calculation of the weighed stress state, a Gaussian weight function is

employed to smooth the stress field (Dias-da-Costa et al., 2009; Wells and Sluys, 2001a). A

new discontinuity is introduced through the element whenever the averaged maximum stress

at the crack tip reaches the tensile strength of the material, and the propagation angle is taken

orthogonal to the first principal stress. The process of crack propagation is handled using a

simplified version , which assures the continuity of the crack path and involves the following
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steps depending on the number of pre-existing crack tips at the edges of the element about

to crack: if there are no tips, a new crack segment is embedded through the centroid of the

element (crack front initiation); otherwise, the crack is constrained to propagate through the

tip (crack propagation).

When the crack initiation criterion is met at any given element, the possibility of assigning it

to the existing enrichment layers must be explored first. An active length scale parameter la

is used to progressively define concentric circles of diameter ηL = Lla at the centroid of the

first cracked element, where L is a natural number smaller than (or equal to) NS, the number

of current enrichment layers (see – Figure 4.3.a). Each time the crack propagates to a new

element, this element is automatically assigned to the last enriched layer if its centroid lays

inside the circle ηL. Otherwise, a new layer of enrichment must be initialised and the element

is then assigned to it. This approach is very effective during crack propagation, as any element

can be quickly associated to a layer by simply searching for the concentric circle with the

minimum diameter that contains its centroid.

Algorithm 4.1 Enrichment procedure during crack propagation
1: procedure ENRICHMENT(el,NS, la)
2: d← element el distance from first cracked element
3: L← NS
4: ηL← Ll
5: if d > ηL then
6: NS← NS +1 (initialising a new layer)
7: L← NS
8: end if
9: return L

10: end procedure

The initial active length, la, is here defined as λh, where λ is a natural number (including zero)

and h is the characteristic element size, which is the diameter of the smallest circumference that



4.3 LOCAL SCHUR COMPLEMENT 89

Lη 2=

=
h2

Lη
=

al

h

2

al

al

al

(a)

h hh

(b)

Figure 4.3: Multi-layer enrichment details: a) active length (la = 2h); and b) charac-
teristic element size (h).

fully inscribes a finite element of typical size (see – Figure 4.3.b). Note that, an active length

of λ = 1 implies that each enrichment layer will contain mostly a pair of adjacent cracked

elements for a regular mesh (see – Figure 4.3.a). A completely independent enrichment of

each cracked element would be achieved by taking λ = 0, whereas λ = ∞ would lead to a

single layer encompassing all enriched elements, therefore matching with the standard XFEM

approach. The procedure discussed above is summarised in Algorithm 4.1. d in line 2 of the

algorithm, denotes the distance between the centroids of the first element and the one being

currently enriched (i.e. cracked).

4.3 Local Schur complement

The condensation of the enhanced degrees of freedom is the last step in the development

and implementation of the multi-layered enrichment strategy. Given that the layers are

independently enriched, they can also be independently condensed out of the system of
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equations. In fact, each layer of enrichment can be seen as a local Schur complement (Kraus,

2006) of a multiple system composed of all enriched layers. By manipulating the system

of equations, the Schur complement or condensed stiffness matrix of each layer, KelsL
cond , and

force counterpart, f elsL
cond , can be written as follows:

KelsL
cond = [Kââ−Kâã(Kãã +Kd)

−1KT
ãâ]

elsL , (4.4)

f elsL
cond = [̂f −Kâã(Kãã +Kd)

−1f̃ ]elsL . (4.5)

where all the entities are assembled stiffness and force terms of the cracked elements belonging

to the layer L. This is denoted by the superscript elsL, while subscript cond stands for static

condensation. Naturally, the Schur complement, KelsL
cond , has the same dimension as the

uncracked system of elements, Kââ
elsL . An alternative option that can be implemented for

tackling the condensation process is presented in section 4.4.

The condensed stiffness of each layer is handled as a generalised element in the assembly

of the global system. The standard finite element procedure is followed for this purpose in

the first step of analysis. If there are already any enrichment layers, the condensed stiffness

of each layer is used in the assembly. After that, in each step or iteration, whenever an

event occurs that requires the update of an existing layer of enrichment, e.g. the stiffness of a

cracked element changes and/or the crack propagates to another element within the same layer,

the global stiffness matrix will also need to be updated. This, however, is done by directly

updating the stiffness associated with the layer (or layers) where the change is detected. This

requires disassembling the current stiffness matrix of the layer from the global system, which
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includes all previously enriched elements and the newly cracked element (if it exists). Note

that if this is the first cracked element to be added in the layer, only the original stiffness

matrix of the element is disassembled. The local Schur complement is then calculated as

represented in Equation (4.4) and added to the global stiffness matrix of the structure in the

step of analysis. It is important to highlight that because of the shifted Heaviside function

there is no need to consider blending elements (Zi and Belytschko, 2003).

The complete procedure described above is summarised in Algorithm 4.2, where Line 11

represents the stiffness matrix of a local Schur complement system. It should also be men-

tioned that, as will be discussed thoroughly in section 4.5.1, each enrichment layer typically

only contains a few enriched elements, which means that the condensation processes does not

involve more than a handful of elements given independence of enrichment layers.

Algorithm 4.2 Updating stiffness matrix in crack propagation problems.
1: procedure UPDATE(K, U)
2: for each element el do
3: if crack is required (initiation criterion 4.2) then
4: disassemble Kel from Kglobal
5: L← Algorithm 4.1
6: elsL← elements already enriched by L
7: if elsL 6= /0 then
8: disassemble KelsL from Kglobal
9: end if

10: elsL← elsL∪ el
11: KelsL

cond ← [Kââ−Kâã(Kãã +Kd)
−1KT

ãâ]
elsL

12: assemble KelsL
cond in Kglobal

13: end if
14: end for
15: end procedure
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4.4 Alternative Static condensation

The concept of multi-layer enrichment and condensing each layer out leads to a global system

of equations of the same size regardless of the enrichment. In addition, the sparsity as

well as bandness of the stiffness matrix are also kept unchanged. It should be noted that

[Kbb +Kd]
elsL in Equation (4.4) typically varies in each step due to the non-linear material

behaviour. In many applications of fracture mechanics, however, the bulk is assumed linear

elastic, whereas the non-linear behaviour is lumped at the discontinuity. Even in cases where

the bulk is non-linear, during the softening of the discontinuity it still unloads elastically in

the neighborhood of the crack because of equilibrium conditions. In practical terms, KelsL
bb

can be frequently constant during analyses, while KelsL
d may vary depending on the non-linear

response of the discontinuity. Within a layer, the discontinuity stiffness term in Equation (4.4)

results from the assembly of the contribution of each individual cracked elements calculated

by Equation (2.67) as follows:

KelsL
d =

elsL

A[
4
∫

Γd

NT RT T R N dΓ

]
, (4.6)

where A represents the standard assembly operator. The integration is done based on the

2-point Newton–Cotes scheme within each element. Regardless of the selected integration

scheme, the resulting expression can be generically cast for two integration points as follows:

KelsL
d =

elsL

A[
N

T
i Ti Ni +N

T
j T j N j

]
, (4.7)
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where

N = R N (4.8)

T = 4wT, (4.9)

and subscripts i and j represent each integration point over the interface, while w stands for

the corresponding integration weight. In general, N will have the same dimensions of the

regular shape functions: 2 by the number of regular degrees of freedom of a cracked element

for bidimensional problems, whereas T is 2 by 2. Equation (4.7) can be alternatively arranged

as follows:

KelsL
d = NT

pqTqq Nqp, (4.10)

where N and T are obtained by stacking in N and T, respectively, for the elements elsL

enriched by layer L. In addition, assembly operation is implied in N and T where p = 2NL,

the number of enriched degrees of freedom in layer elsL while q is the rank of matrix KelsL
d .

Considering that the matrix T is a block diagonal matrix composed of constitutive matrices

of individual elements, Te for e ∈ elsL, possibility of an alternative procedure for static

condensation can be explored. In the following, the Sherman-Morrison-Woodburry identity

(Gentle, 2007) for the inverse of the sum of two matrices is applied. Considering that Kbb

and Kbb +Kd are both invertible and by dropping the superscript elsL for convenience, then:

(Kãã +Kd)
−1 = K−1

ãã −K−1
ãã N

T
(T−1

+NK−1
ãã N

T
)−1NK−1

ãã . (4.11)
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By substituting Equation (4.11) in Equation (4.4), the following form can be obtained:

Kcond = Kââ−Kâã
[
K−1

ãã −K−1
ãã N

T
(T−1

+NK−1
ãã N

T
)−1NK−1

ãã ]K
T
âã, (4.12)

which can be recast as:

Kcond = Kââ−KâãK
−1
ãã KT

ãâ︸ ︷︷ ︸[
Const.

]
pp

+KâãK
−1
ãã N

T︸ ︷︷ ︸[
Const.

]
pq

T−1
+NK−1

ãã N
T︸ ︷︷ ︸[

Const.
]

qq


−1

NK−1
ãã KT

ãâ︸ ︷︷ ︸[
Const.

]
qp

. (4.13)

Note that within the assumptions described in the beginning of this section, as the discontinu-

ities represented within a layer progressively soften, only T−1 remains non-constant during

the analysis. All other matrices identified in Equation (4.13) are constant and only need to

be evaluated once when a new discontinuity propagates within the layer. In addition, with

softening, (T−1
+NK−1

ãã N
T
)−1 gradually reduces until completely vanishing, which in turn

renders the condensed stiffness matrix that of the stress-free cracked elements.

4.5 Numerical examples

This section presents several element and structural examples used to assess the performance

of the new multi-layered approach. For this purpose, the effect of the active length is

first studied on the jump continuity across layers. The second example investigates the

conditioning of the Schur complement system as a function of the crack location with respect

to mesh nodes. Next, several structural examples having different geometries, discontinuity

constitutive models, and loading conditions, are used to assess the performance at local and
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global levels, and to establish a comparison with experimental and numerical data in the

literature.

4.5.1 Discontinuities cutting a corner

When a discontinuity cuts a corner in a quadrilateral element, associated numerical issues can

lead to either a truly rank deficient system (Linder and Armero, 2007a; Manzoli and Shing,

2006); or an ill-conditioned one with consequences in both static (Fries and Belytschko, 2010;

Siavelis et al., 2013; Strouboulis et al., 2000) and dynamic problems (Belytschko et al., 2003;

Remmers et al., 2008). While the latter imposes difficulties in obtaining accurate and efficient

solutions, the former leads to internal mechanisms (instabilities) which if not addressed

robustly, can completely hamper the solution procedure. In this regard, the performance of

the proposed multi-layer strategy is first studied for the case of internal mechanisms using an

element level example. The effect of the number of enrichment layers on the continuity of

jumps is studied on a domain discretised using a regular mesh of 2 by 2 elements, each with

an edge length of 2. The domain has a crack crossing three finite elements with the geometry

depicted in Figure 4.4. Non-homogeneous Dirichlet boundary conditions are applied over the

perimeter of the domain to reproduce an arbitrary opening with non-constant jumps along the

cracks. The Young’s modulus and Poisson ratio of the bulk are 1 and 0.2, respectively. The

normal tangent stiffness is chosen as −1×10−5 and 0, respectively to capture the behaviour

of an almost and a fully softened step of analysis. In both cases, the shear tangent stiffness is

zero.
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For each normal stiffness, three different enrichment strategies are compared. Firstly, three

enrichment layers are used, one for each cracked element. In the second case, two layers

are used, one containing two neighbour cracked elements, and the other containing the third

cracked element. Finally, in the third case, a single layer contains all the cracked elements.

All enriched layers are illustrated using colours in the first row of Figure 4.4. Naturally,

the number of additional degrees of freedom required by each model prior to the static

condensation are different, in this case, 24, 20, and 16. The results for an almost and fully

softened discontinuity are shown in the second and third rows of Figure 4.4. From this figure

it is clear that the non-conforming crack openings are enhanced considerably. However,

when two elements are enriched in the same layer this problem is substantially reduced, and

vanishes when all elements are in the same layer, as it would be expected.

The instability becomes severe in the case of the fully softened cracks in the models with

three layers, which is in agreement with the instability reported for embedded approaches

(Linder and Armero, 2007a; Manzoli and Shing, 2006). In this case, the stiffness matrix of

the model is indeed rank deficient by one, which can be verified by an eigen-decomposition

following the application of the Dirichlet boundary conditions. Therefore, there is an internal

spurious deformation mode allowing the non-physical rotation of the triangular domain cut

by the discontinuity and seen on the bottom left corner of Figure 4.4. More importantly,

the rank deficiency is not present for any other model, regardless of the stiffness of the

discontinuity. Therefore, as long as every enrichment layer contains more than a single

element in the present problem, the deficiency is resolved. In general however, certain

mesh/crack geometries might necessitate the use of slightly more than two elements in each
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enrichment layer in order to resolve the aforementioned numerical issues. Stress locking

was also noticed when using three enrichment layers which is associated with the substantial

non-conforming crack openings. Considering the ability of XFEM in capturing the kinematics

of both transnational and rotational rigid body movements along with the relative stretching

of Ω+ over Ω− (Dias-da-Costa et al., 2010), stress locking was not observed for the models

containing more than one element in a layer. In addition, unlike the embedded approaches,

no additional constraints were needed on the enhanced field to overcome the singularity

associated with rigid body rotation as suggested by (Linder and Armero, 2007a; Manzoli and

Shing, 2006).

4.5.2 Circular inclusion

Following the discussion in section 4.5.1, the performance of the method is here investigated

by targeting the ill-conditioning of the system, which can compromise the accuracy and

efficiency of the solution procedure. For this purpose, the effect of the condensation on the

condition number of the stiffness matrix is studied on an inclusion embedded in a domain (see

– Figure 4.5.a). This problem was first solved analytically in (Keer et al., 1973), and using

XFEM in (Belytschko et al., 2001). For the sake of clarity in the investigation of the effect

of the enrichment and crack location relative to mesh nodes, a very coarse discretisation is

employed (see – Figure 4.5.b). The domain size is 0.9 by 0.9 and has the same properties

of the circular inclusion: Young’s modulus and Poisson ratio of 1 and 0, respectively. A

unitary uniform compressive stress in the vertical direction, and a unitary tensile stress in the

horizontal direction are simultaneously applied to the matrix. The interface is cohesionless,
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Figure 4.4: Instability of stiffness matrix in case of a crack separating a single node on
one side. Almost softened and softened normal tangent stiffness represent respectively,
kn = −1× 10−5 and kn = 0. Arrows represent the prescribed Dirichlet boundary
conditions.

which means that only compressive stresses can develop at the interface between the inclusion

and matrix. Accordingly, a very small penalty value of 10−5 is chosen in the shear direction

(ks) just to prevent the rotational motion of the inclusion. In the normal direction and when

in contact, the normal penalty is selected in the range of 1 to 1010. When the interface is

in tension, a zero normal tangent stiffness is assumed instead. Four different enrichment

configurations employed in this example are illustrated in Figure 4.6.
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The geometry of the interface is defined by the intersection of the edges of the elements with

the inclusion perimeter. The inclusion size defined by its radius, R, is varied in each analysis

from Rmin – which creates small regions where discontinuities separate a single node – to

Rmax where discontinuities are tangent to the external boundaries of the elements.

(a)

Rmax

Rmin

R

a

a

(b)

Figure 4.5: Inclusion problem definition: a) analytical model; b) finite element mesh
with variable inclusion radius range.

N  = 8S N  = 4S N  = 2S N  = 1S

Figure 4.6: Inclusion problem enrichment layers.

Figure 4.7 shows the condition number as a function of the inclusion radius for different

active lengths, as well as that obtained using standard XFEM. For the latter, the normal

stiffness directly impacts the condition number as illustrated by the shaded area on the figure,



100 4 AN XFEM MULTI-LAYERED HEAVISIDE ENRICHMENT FOR FRACTURE PROPAGATION

kn=1010

kn=105

kn=100

=0 =2
=1 =4

Figure 4.7: Condition number as a function of inclusion radius.

which is the envelope for all the range of tested values and varying radius. There is indeed

considerable linear dependency between the regular and enrichment shape functions when

the crack approaches a single node (Siavelis et al., 2013), i.e. when the radius is close to

Rmin. With an increasing radius, the condition number decreases, regardless of the penalty

employed, until R ≈ (Rmin +Rmax)/2. After that, there is a slight increase when the interface

approaches the parallel outer edges. Conversely, the multi-layer enrichment strategy, shows a

drastic smaller condition number for all active lengths. In fact, this is of the same order of the

underlying uncracked finite element mesh. In addition, the condition number remains nearly

constant with respect to the interface stiffness, which is why only the curve for kn = 105 is

represented in the figure. This is a significant advantage of the multi-layered approach, which

is associated with the static condensation of the enhanced degrees of freedom and allows

maintaining the condition number similar to the non-cracked mesh.
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4.5.3 Single-edge notched beam

A single-edge notched beam with anti-symmetric loading conditions (Schlangen, 1993)

is simulated in this section. The reference beam is 400× 100× 100 mm3 with a 5× 20×

100 mm3 notch at the top, and is discretised by 474 bilinear finite elements – see representation

in Figure 4.8. Concrete is treated as linear elastic, with a Young’s modulus of 35,000 N/mm2

and a Poisson’s ratio equal to 0.15. The tensile strength of the material is 3.0 N/mm2 and

fracture energy GF = 0.1 N/mm (Schlangen, 1993). The initial normal and shear stiffnesses

are kn = ks = 105 N/mm5, and upon crack opening the uncoupled mode-I at the discontinuity

with zero shear stiffness.The arc-length method is applied to monotonically increase the

relative crack mouth sliding displacement (CMSD).

180 180
5

80
20

17.517.5

P

10P
11

P
11

100

Figure 4.8: Geometry and mesh (dimensions in ‘mm’).

Figure 4.9 shows the enrichment layers for λ = 1, which on average implies two or three

elements compose each enrichment layer for a regular mesh. The crack mouth sliding

displacement (CMSD) versus load curves for different active lengths of λ = 1, 2 and 8 are

represented in Figure 4.10, where it can be seen the good agreement among the lengths and

also standard XFEM. The results of λ = 0 are also presented, which, as was already discussed
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Figure 4.9: Representation of enrichment layers for λ = 1 at an advanced stage of
crack propagation.

in a previous section, leads to internal mechanisms and difficulties in the numerical solution.

This explains the different response after softening begins, which significantly deviates from

the solution at the last stages of loading. The effect of the internal mechanism is represented

in Figure 4.11 for a crack mouth opening displacement (CMOD) of 0.1 mm, which seems to

support the conclusion that enough conformity is obtained for λ above 1. Interestingly, even

though the curves are quite similar for an active length of 1 and 2, differences can still be

found in the stress distribution particularly at the last stages of the analysis (see – Figure 4.12).

The model with the smallest active length does not capture appropriately the stress localisation

near the lower support, which may be caused by the combined effect of insufficient mesh size

and not enough compatibility among the elements inside each layer. Regardless of this local

effect, the crack patterns are nearly coincident.
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Figure 4.10: Load versus CMSD curves for different active lengths and experimental results.

(b)(a)

Figure 4.11: Single-edge notched beam: deformed mesh at CMOD=0.1mm (with
displacements amplified 50 times): (a) λ= 0; (b) λ= 1.

4.5.4 Galvez notched beam

A single-notched beam was tested under bending by Gálvez et al. (1998) with different support

conditions. The sample with K = 0 is adopted here to investigate further the effect of mixed

mode fracture. The geometry of the structure is represented in Figure 4.13 together with the

selected mesh of 1,217 bilinear elements. The concrete is simulated using a Young’s modulus

of 38,400 N/mm2 and a Poisson ratio of 0.2, whereas the tensile strength is ft = 3.0 N/mm2.
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Figure 4.12: Single edge notched beam – maximum principal stress (N/mm2) contour
at uv=0.3mm (with displacements amplified 100 times): (a) λ = 1; (b) λ = 2; (c)
XFEM.

The uncoupled mode-I exponential softening law with fracture energy GF = 0.0688 N/mm

is taken for the discontinuity. The crack path is defined with an angle of 64◦ based on the

experimental data and a relatively high penalty stiffness, kn = ks = 108 N/mm3, is used to

enforce it to remain closed at each integration point until reaching the tensile strength. The

shear stiffness drops to zero with the opening of the crack, whereas the normal stiffness

follows directly from the softening mode-I law. The arc-length method is used to solve the

problem by monotonically increase the Crack Mouth Opening Displacement (CMOD).
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Figure 4.13: Geometry, loading and boundary conditions, and mesh (dimensions in ‘mm’).

Figure 4.14 shows the load versus CMOD curves for multi-layers of different sizes, all with

a very good agreement with standard XFEM and experimental results. Results for different

active lengths are almost coincident. This can also be seen in the stress fields shown in

Figure 4.15, where an active length of λ = 1 already provides results in excellent agreement

with those of XFEM.

To explore more in detail the effect of the non-conforming elements, it can be seen that there

are minor localised differences in the traction profile in front of the notch (see – Figure 4.16).

A minor oscillation is found about 95 mm above the notch for the discretisation with the

smaller active radius. It should be mentioned that such an oscillation could be related to the

high penalty adopted for the discontinuity and the small number of elements connected in

the layer (see – section 4.5.1). Interestingly, although these differences are quite noticeable

in the early stages of the analysis, i.e. CMOD= 0.05 mm (see – Figure 4.16.a), they tend

to vanish at the later stages, i.e. CMOD= 0.16 mm (see –Figure 4.16.b), which is why the

multi-layer enrichment provides good results almost independently of the selected size of the

domain even though there can still sometimes occur just one element in a layer when λ = 1 is

adopted.
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Figure 4.14: Load versus CMOD curves for the different active lengths and experi-
mental results.
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Figure 4.15: First principal stress (N/mm2) contour at CMOD = 0.2 mm (with dis-
placements amplified 200 times) for: (a) λ = 1; (b) λ = 2; and (c) XFEM.
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(a) (b)

Figure 4.16: Traction profile above the notch at: (a) peak load for CMOD= 0.05 mm:
and (b) softening for CMOD= 0.16 mm.

4.5.5 Nooru-mohamed test

A double edge-notched specimen with mixed-mode fracture tested by Nooru (1992) is

analysed in this section. The specimen measures 200×200×50 mm3, and has two notches

with 25×5×50 mm3 horizontally at the middle of both left and right edges (see – Figure 4.17).

The mesh with 435 bi-linear finite elements is also represented in the same figure. The material

properties are given in (Nooru, 1992), where the Young’s modulus and Poisson ratio are

E = 30,000 N/mm2 and ν = 0.2, respectively, whereas the tensile strength and fracture energy

are 3.0 N/mm2 and 0.11 N/mm, respectively. The isotropic damage model from (Dias-da-

Costa et al., 2009) is adopted to describe the discontinuity, where the mixed-mode is taken

into account by selecting β = ft0/c0 = 0.6, where ft0 and c0 are the tensile and cohesive

strengths of concrete.

Note that, the cohesion c0 to calculate β as a crucial factor in constitutive model can be

estimated using the Mohr’s failure theory for brittle materials (Alfaiate et al., 2002) assuming
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a concrete compressive strength of 38 N/mm2. As a result, c0 = 1/2
√

| fc| ft ≈ 5 MPa leads to

β = ft/c0 = 0.6 . Loading is applied by two L-shaped steel frames attached to the specimen

uv
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Figure 4.17: Geometry, loading and boundary conditions, and mesh (dimensions in ‘mm’).

on each side (see – Figure 4.17). A load is first applied horizontally and kept constant at

104 N, after which the vertical displacement, uv, is gradually increased on the top frame until

the failure of the specimen. This non-proportional loading scheme causes the direction of

the principal stresses to gradually rotate with an increasing vertical displacement. The load

versus vertical displacement curves for different active lengths are shown in Figure 4.18.

The formulation fails to capture the experimental peak load, which was also found in other

works in the literature and could be related to deficiencies associated with the load set-up, that

could introduce spurious bending stresses and therefore reduce the strength of the specimen

during testing (Cervera and Chiumenti, 2006; Gasser and Holzapfel, 2006; Pivonka et al.,

2004). However, such a difference does not prevent from assessing the proposed formulation;

in particular, it can be again mentioned the nearly matching results among all enrichment

choices with λ ≥ 2 and the standard XFEM. In this case, the differences found for λ = 0 are
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not so significant as the ones identified earlier in the single-edge notched beam. This could

certainly be related to the constitutive model of the discontinuity which involves mixed-mode

and therefore constrains the shear mode more effectively (i.e. reduces the ability to form

internal mechanisms) during the analysis.

Figure 4.18: Load versus vertical displacement for different active lengths superposed
with experimental results.

The stress field and crack path are shown in Figure 4.19, which confirms the similarity of

results even for the smallest active length. In the traction profile, there is a minor disruption of

the field associated with a triangular domain appearing in the early stages of crack propagation

in the neighbourhood of the notches for the model with zero active length (see – Figure 4.20.a).

This also caused instability in the analysis close to the peak load, which is represented in

Figure 4.18. The effect of the non-conforming field completely vanishes for higher active

lengths and results from λ = 1 are in perfect agreement with the standard XFEM.
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Figure 4.19: First principal stress (N/mm2) maps at uv=0.1mm (with displacements
amplified 50 times): (a) λ = 1; (b) λ = 2; and (c) standard XFEM.

4.5.6 Pre-notched gravity dam model

A gravity dam model tested by Barpi and Valente (2000) with the geometry, boundary

conditions and loading scheme represented in Figure 4.21 is simulated in this section. The

mesh is composed of 1,848 bi-linear elements with a noticeable refinement near the notch,

which is required to correctly capture the stress and direction of crack propagation. The

material properties are provided in (Barpi and Valente, 2000): dead-weight 2,400 kg/m3,

Young’s modulus 35,700 N/mm2, Poisson ratio 0.1, tensile strength 3.6 N/mm2 and fracture

energy 0.184 N/mm. An uncoupled mode-I law with exponential softening is adopted for the

discontinuity, with the shear stiffness dropping to zero upon crack opening at each integration

point. The structure is loaded in two stages, with the weight of the concrete being applied first,
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(a)

(b)

(c)

(d)

Figure 4.20: Traction vectors at each integration point at CMOD=0.013 (displace-
ments amplified 500 times) for: (a) λ = 0; (b) λ = 1; (c) λ = 2; and (d) standard
XFEM.

followed by the effect of the water pressure which is increased until failure. This is achieved

by gradually increasing four concentrated loads which have the same resultant of the pressure
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(see – Figure 4.21.a). The arc-length method is used to obtain the solution of the problem by

enforcing the monotonic increase of the CMOD.
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Figure 4.21: Prenotched gravity dam model: (a) geometry (dimensions in ‘cm’); and
(b) mesh.

Figure 4.22 shows the load versus CMOD curves from all simulations. Overall, the simulations

capture well the peak load and initial stages of softening. However, the selected contitutive

model, which is based on a mode-I law, is unable to correctly approximate the mixed-mode

behaviour after the peak load. This insufficiency was already reported by Barpi and Valente

(2000) who adopted a similar mode-I model. An active length larger than λ = 0 provides

results showing a very good match with the standard XFEM, although for λ = 1 some

differences can be found for a CMOD≥ 0.25 mm. It should be mentioned though that the

active length is here set based on the typical size of the refined mesh around the notch, which

means that outside that region the same active length leads to an independent enrichment of

each element and this explains the inability apparent at final stages of softening. This effect,

however, vanishes for higher active lengths, since they are capable of capturing at least two

elements for each enrichment layer in the region around the refinement (and this number

was already shown to be enough for a good approximation in other examples). The result
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for λ = 0 is also shown in the figure for completeness, although the instabilities caused by

the internal mechanisms do not allow obtaining convergence beyond CMOD= 0.2 mm. This

can also be seen in the deformed mesh, and the stress profile represented in Figure 4.23 and

Figure 4.24 respectively.

Figure 4.22: Load versus CMOD curves superposed with experimental results.

(a) (b) (c)

Figure 4.23: Deformed mesh at CMOD = 0.2 mm for (a) λ = 0; (b) λ = 1, and
CMOD=0.3 for (c) λ = 1 (displacements amplified 500 times).

The traction profile is plotted for the various active lengths and standard XFEM in Figure 4.25

when CMOD= 0.028 mm, where it can be seen the good among all approaches. Again some
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Figure 4.24: Notched gravity dam – maximum principal stress contour at CMOD =
0.2 mm : (a) λ = 0; (b) λ = 1; (c) λ = 2; (d) XFEM (displacements amplified 500
times).

minor oscillations in the profile can be found for the smallest length. Despite the oscillation

found, the remaining traction profile is not contaminated, which means that this effect remains

local. Such an effect is not present in the simulations with λ ≥ 2.

4.6 Conclusions

This chapter presented a local formulation for XFEM which keeps the number of degrees of

freedom, sparsity as well as bandness of the stiffness matrix associated with the underlying
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Figure 4.25: Traction profile in front of the notch.

standard finite element mesh fixed. Multi-layer enrichments were used while resolving the

singularities related to specific crack geometries. The robustness and accuracy of the method

was demonstrated using several element and structure level examples in terms of condition

number, crack opening, force-displacement response and traction profile along the cracks.

The local enrichment degrees of freedom were defined based on an active length independent

of the remaining cracked elements. Using two element level examples it was shown that

enriching each element separately could lead to a singular stiffness matrix when a crack

cuts a single node. Enriching pairs of adjacent elements, on the other hand, was enough to

prevent any zero energy deformation mode. This, contrary to embedded strong discontinuity

approaches, was achieved without the need to eliminate any deformation mode such as linear

jumps.

Although only a piece-wise jump continuity was guaranteed due to the active length, the

deformed state resembled that of standard XFEM almost perfectly for active lengths above 1.

This held true for both element and structure level examples independent of the finite element
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mesh, loading direction and traction-jump law. Traction profiles, as a representative of local

behaviour, showed oscillations for active lengths of 0 and 1, but become in good agreement

with standard XFEM above that. Finally, global (i.e. force-displacement) responses also

showed excellent agreement when compared with the standard XFEM results.



CHAPTER 5

Surmount spurious behaviour of PU-based discontinuous elements

This chapter presents a new formulation to overcome underlying difficulties in existing PU-

based discontinuous elements in the framework of XFEM. The formulation proposed employs

polygonal shape functions as an alternative to enrichment layers in conventional XFEM. By

doing so, the spurious oscillation of traction profile and fictitious displacement jumps can be

naturally overcome.

In section 5.1, the computational issues found with the shape functions of standard finite

elements, in particular, quadrilateral elements are discussed, and the results of previous studies

are summarised. The polygonal finite element and their interpolants are studied in section 5.2.

The enrichment technique employing polygonal interpolants in polygonal enrichment-based

XFEM is described in section 5.3. Four different numerical tests are simulated in section 5.4

to assess the robustness of the proposed formulation.

5.1 Computational issue

As discussed briefly in section 2.4.1, PU-based discontinuous elements show a spurious

behaviour affecting the traction profile of the discontinuity (Simone, 2004) and consequent

117
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nodal values (Ahmed and Sluys, 2013), specially if higher values of the penalty considered

in cohesive zone models. Among the previous studies, Ahmed and Sluys (2013) relate this

phenomenon to the unsatisfied moment equilibrium occurring at the interface of quadrilateral

elements with bilinear shape functions. The traction between two discontinuity faces needs

to be transmitted to the finite element nodes by the equivalent forces. In this situation, the

moment couple generated may not be satisfied by ∑F = 0, which results in the fictitious

rotation of the interface as represented in Figure 5.1. However, any specific treatment,

except for mesh refinement, which would decrease the unbalanced moment at the interface

and spurious behaviour, has not been suggested. In fact, the careful selection of the nodal

integration scheme, as an alternative, has been found only to alleviate the anomalous behaviour

if the discontinuity propagates along with the one of the element local axes. According to

previous works, three main conclusions could be drawn:
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Figure 5.1: Representation of unrealistic moment couple in the transmission of the
traction to the equivalent nodal forces.

a) The use of a nodal integration scheme may lead to improving of the results if it

removes the pathological coupling while maintaining the natural coupling (Simone,

2004) (see – section 2.4.1). This is so because the inappropriate coupling between



5.1 COMPUTATIONAL ISSUE 119

degrees of freedom, which can be considered as one of the main reasons behind

the spurious behaviour of PU-based discontinuous elements, is mitigated by nodal

integration.

b) The bilinear interpolation used for quadrilateral elements results in unrealistic dis-

placement (e.g. rotational movement) across the discontinuity such that the nodal in-

tegration schemes and the mesh refinement cannot completely treat this phenomenon

(Ahmed and Sluys, 2013).

c) If the discontinuity propagates parallel to one of the element local axes, despite

using bilinear interpolation functions, appropriate results can be obtained with nodal

integration (Ahmed and Sluys, 2013).

According to Ahmed and Sluys (2013), bilinear finite elements as a family member of

PU-based discontinuous elements cannot interpolate the strain field appropriately across

the discontinuity in most cases, which contaminates the stress field over the corresponding

element. However, this cannot be the only reason due to c).

Moreover, as represented in Figure 5.2, the interaction between nodes 2 and 1, and between 2

and 3 are considered as natural coupling. In contrast, the interaction between nodes 2 and 4

generates pathological coupling, which leads to spurious oscillation (Simone, 2004). As a

consequence, treatment is required to avoid pathological coupling in PU-based element.

To sum up, the information obtained from previous studies reveal that the standard inter-

polation functions cannot describe the kinematics of discontinuity inside the corresponding
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Figure 5.2: Representation of polygonal parts formed in a quadrilateral element with
corner cut (regular and additional nodes are represented by black circle and square
respectively).

element. In fact, using the inappropriate interpolation function leads to pathological coupling,

which provides the element with fictitious freedom generating spurious oscillation.

In the following sections, polygonal element shape functions are proposed to enrich the

interpolation function used in bilinear finite elements to overcome the difficulties mentioned

above.

5.2 Polygonal shape functions

As discussed in section 5.1, adopting shape functions suitable for the two separate domain

cut by a crack could interpolate the corresponding displacement/strain field more accurately.

According to Simone (2004), using the isoparametric shape functions for conventional linear

and quadratic interface elements results in the construction of the pathological coupling in

the corresponding stiffness matrix. Pathological couplings relate the degrees of freedom

together that are not naturally coupled in an element. Accordingly, this thesis aims to use

the polygonal shape functions to avoid these inappropriate coupling between degrees of
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freedom. For irregular polygons, Wachspress (see – Appendix A) and Laplace (Sukumar and

Tabarraei, 2004; Wachspress, 1971) interpolants can be employed as polygonal interpolants.

For enrichment, Laplace shape functions realised as natural neighbour-based interpolants are

used in the present study.

Laplace interpolants

Sibson (1980) introduced natural neighbour interpolation as an approach to fit and smooth the

data. The Laplace interpolant, also called natural neighbour interpolants, is computationally

more attractive than Sibson interpolant (Sukumar and Tabarraei, 2004).

As depicted in Figure 5.3, if there is a common Voronoi edge for point P and node Pi in

Voronoi cell, Pi is called a natural neighbor of the P. Accordingly, the Laplace shape function

for node Pi is given by (Christ et al., 1982):

ϕ
l
i (x) =

αi(x)
n
∑
j=1

α j(x)
, (5.1)

α j(x) =
s j(x)

h j(x)
, x ∈ R2 (5.2)

where αi(x) denotes Laplace weight function, s j(x) is the length of Voronoi edge between

point P and node Pi, and h j(x) shows the Euclidean distance between P and Pi, as represented

in Figure 5.3.
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Figure 5.3: Voronoi diagram of point P.

Since the Laplace interpolant meets all properties discussed in Appendix A2 and essential

boundary condition with a Galerkin procedure required for finite elements, Laplace interpolant

is utilised herein.

5.3 XFEM enrichment by polygonal interpolant

In this section, a polygonal interpolant is utilised to overcome the difficulties due to some

limitations in XFEM, whose enrichment is provided by the second layer of degrees of freedom

(Dias-da-Costa et al., 2010). To this end, the interpolation functions conventionally used

by XFEM to interpolate the enrichment layer are replaced by polygonal shape functions. It

is worth mentioning that the polygonal shape function is chosen according to the shape of

each subdomain defined by the discontinuity passing through the corresponding element.

Consequently, if the finite element is separated into two quadrilaterals, a quadrilateral Laplace

shape function would be recovered to interpolate the field on enrichment layer, otherwise

pentagonal and triangular Laplace shape functions are utilised in the case of quadrilateral

elements.
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As represented in Figure 5.4, since the enrichment layer in conventional XFEM treats the

displacement jump, the physical meaning of the discontinuity cannot be interpreted explicitly.

Conversely, the XFEM enriched by polygonal interpolants can position the additional nodes

at the discontinuity and solves this incompatibility.

enrichment layer

bulk layer

∙
∙

∙
∙

(a)

∙
∙

∙
∙∙∙∙

∙∙∙

(b)

Figure 5.4: Representation of the enrichment difference: (a) conventional XFEM and
(b) XFEM enriched by polygonal interpolant (black and white nodes show regular
and additional nodes respectively).

5.3.1 Finite element discretisation

The variational form of an elasto-static boundary value problem with a strong discontinuity is

given in Equation (2.13).

The total displacement field as a summation of continuous and discontinuous fields is given

as follows:

u(x) =N(x)â+HΓdN(x)ã, (5.3)

In Equation (5.3), N(x) and â represent respectively the usual finite element shape functions

and nodal displacements associated with the continuous field. N(x) and ã on the other hand,

represent Laplace shape functions and enhanced nodal displacements defined at polygon
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vertices (see – Figure 5.2). Nodal displacement decomposition can also be written similar to

Equation (5.3) as follows:

a = â+HΓd ã, (5.4)

where HΓd = (HΓdI | 0) is the augmented polygonal Heaviside matrix. HΓd represents

the Heaviside function which is chosen as 0 and 1 over Ω− and Ω+, respectively, while I

is the square identity matrix with dimensions of underlying cracked element. In addition,

considering that enhanced nodal displacements on the crack ends do not contribute to those

on the regular nodes (Kronecker-delta property), 0 is defined as a zero rectangular matrix with

4 columns. The use of Equation (5.4) directly in the variational form given in Equation (2.13)

would lead to blending elements similar to conventional XFEM (Belytschko and Black,

1999). In order to eliminate the additional computational cost and implementation complexity

associated with those elements, an alternative approach is adopted here. Using the change of

variables â = a−HΓd ã, Equation (5.3) is recast as follows:

u(x) = N(x)a+
(
HΓdN(x)−N(x)HΓd

)
ã, (5.5)
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Inserting Equation (5.5) back in Equation (2.13) the following is obtained:

−
∫

Ω\Γd

[
Bδa+(HΓdB−BH)δ ã

]T
D
[
Ba+(HΓdB−BH)ã

]
dΩ

−
∫

Γd

[
Nδ ã

]T
Td

[
Nã
]

dΓ+
∫

Ω\Γd

[
Nδa+(HΓdN−NH)δ ã

]T
b dΩ

+
∫

Γt

[
Nδa+(HΓdN−NH)δ ã

]T
t̄ dΓ = 0,

(5.6)

By progressively taking δ ã = 0 and δa = 0 in Equation (5.6), the following discretised

equilibrium equations can be obtained in terms of total and discontinuous nodal displacements:

Kaa Kaã

sym Kãã +Kd




a

ã

=


fa

fã

 , (5.7)

with the stiffness and force terms defined as follows:

Kaa =
∫

Ω

BT DB dΩ, (5.8)

Kaã = KBB−Kaa H, where KBB =
∫

Ω+
BT DB dΩ (5.9)

Kãã = KBB−KT
BB H−HT KBB +HT KaaH, where KBB =

∫
Ω+

B
T
DB dΩ (5.10)

Kd =
∫

Γd

N
T
Td N dΓ, (5.11)

fa =
∫

Ω

NT b dΩ+
∫

Γt

NT t̄ dΓ, (5.12)
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fã =
∫

Ω+
N

T
b dΩ+

∫
Γ
+
t

N
T
t̄ dΓ−HT fa, (5.13)

where �T stands for transpose, while B and B correspond to the strain displacement matrices

of the conventional underlying element and polygon enrichment counterpart, respectively.

Given that the bulk is assumed linear isotropic, the properties of the Voigt notation were

explored to make use of stiffness matrix D and matrix multiplication in Equations (5.8)–

(5.10). Finally, fa and fã define the vectors of external forces applied on the regular and

enriched degrees of freedom.

5.3.2 Integration procedure

According to Equations (5.8)-(5.13), integration over the underlying conventional finite

element and enrichment polygon domains are required. While any standard quadrature rule

can be adopted for the former, in case of latter, the integrals are carried out on triangular sub-

regions defined by the centroid of a polygon and its vertices (Dias-da-Costa et al., 2010; Moës

et al., 1999; Park et al., 2009; Sukumar and Tabarraei, 2004). For this, the integration points

over the parent triangular element are first mapped to the physical sub-triangular region (see –

Figure 5.5). This is given in line 6 of the Algorithm 5.1. However, the shape functions are

defined on the canonical elements for both conventional finite element and polygon element.

Therefore, the corresponding location of the integration point on the physical domain must

be obtained in the coordinate system of the canonical element. This is performed using a

simple Newton-Raphson (NR) procedure (Sukumar and Tabarraei, 2004) as given in lines 7

and 9 of the Algorithm 5.1 for polygonal and underlying finite elements, respectively. The



5.4 NUMERICAL EXAMPLES 127

input arguments in the pseudocode, n, nint , xel , and xcrack represent the number of polygon

nodes, number of integration points in the triangular parent element, nodal coordinates of the

underlying mesh, and crack end counterparts.

P

2ξ

2ξ

1ξ

Regular node

Enrichment node

Integration point

NR

NR

Map
Centroid

X
Y

η

ξ

1ξ

Figure 5.5: Isoparametric mapping for canonical element.

The shape function derivatives in the physical coordinate system for polygon elements are

obtained similarly to conventional finite elements as follows:


∂Ni
∂x

∂Ni
∂y

=


∂ξ

∂x
∂η

∂x

∂ξ

∂y
∂η

∂y


︸ ︷︷ ︸

J−1


∂Ni
∂ξ

∂Ni
∂η

 (5.14)

Finally, the integral carried over Γd is calculated using a Newton–Cotes scheme with two

integration points for each crack.

5.4 Numerical examples

In this section, three numerical examples are simulated to explore the effectiveness of proposed

formulation on alleviation of spurious behaviour of PU-based discontinuous elements. To this
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Algorithm 5.1 Integration over Ω+

1: procedure ENRICHMENT INTEGRATION(n,nint ,xel,xcrack)

2: F ← 0, (initialising F'
∫

Ω+ f dΩ – see Eqs. (5.9)- (5.11) and (5.13))

3: for i = 1 : n do

4: Ji←

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
, (Jacobian matrix)

5: for j = 1 : nint do

6: xP← ∑
3
k=1 Nk(ξPj ,ηPj)xk, (map)

7: ξ
n−gon
P ← f (ξ1,ξ2) = xP−∑

n
k=1 Nk(ξ1,ξ2)xk = 0, (Newton-Raphson)

8: obtain N & ∇N, for sub-triangle i and integration point j

9: ξ bulk
P ← f (ξ1,ξ2) = xP−∑

4
k=1 Nk(ξ1,ξ2)xk = 0, (Newton-Raphson)

10: obtain N & ∇N for sub-triangle i and integration point j

11: F ← F + fi j|Ji|w j

12: end for
13: end for
14: return F
15: end procedure

end, section 5.4.1 is devoted to studying on anomalous displacement jump in the interface

by single element test. In section 5.4.2, an investigation is conducted on the oscillation in

traction profile by Linear elastic notched beam test. section 5.4.3 is dedicated to assessing the

robustness of the developed formulation in the analysis of delamination problems. Eventually,

the accuracy of the proposed formulation is discussed by a structural example in section 5.4.4.

5.4.1 Single element test

In order to investigate the PU based methods and spurious behaviour of the bilinear quadrilat-

eral element, a single element test is simulated by Ahmed and Sluys (2013) (see – Figure 5.6),

where the anomalous displacement jump (crack opening) is taken into consideration. To this
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end, a finite element with unstructured mesh and unparalleled discontinuity to the edges of

the elements is considered (see – Figure 5.7).

tu

Discontinuity

bu
n

s
80 20

20 8010

10
0

y
x

Figure 5.6: Single element test: geometry and boundary conditions.

(a) (b)

Figure 5.7: Representation of adopted meshes for single element test: (a) fine mesh
(b) coarse mesh.

The material proprieties are given as: the bulk is treated as linear elastic, with a Young’s

modulus of 40GPa and a Poisson ration equals zero (Ahmed and Sluys, 2013). An Isotropic

damage law (see– section 2.2.2) is assumed for discontinuity, where the normal and tangential

penalties kn = ks = 105 N/mm3.

As represented in Figure 5.6, a prescribed displacement is applied to the right surface of

the single element structure by displacement control method. Two loading conditions can

be considered for this structure to model the uniform and nonuniform crack opening. The
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former is modelled by uniform prescribed displacement ub = ut = 10−3mm. In the later,

a prescribed linear displacement is imposed along the right surface of the structure while

ub = 0 and ut = 10−3mm. The Newton-Cotes/Lobatto integration scheme is considered for

numerical integration of the bulk and corresponding discontinuity.

The numerical results are compared to the analytical solution of the problem, leading to

the total load P = 398.6327N applied at the loading ends with the displacement jumps

[[u]]x = 3.4182×10−6mm and [[u]]y = 0 along the x and y axes respectively.

As depicted in Figure 5.8, the displacement jump along x-axis has an excellent agreement

with reference solution for uniform and nonuniform crack opening. These results reveal that

the polygonal interpolation function can remove the pathological coupling between degrees of

freedom. Besides, the unstructured meshes adopted herein indicate that polygonal enrichment

is such effective that the discontinuity can propagate arbitrarily through the elements without

the need to be parallel to the corresponding elements of local axes.

(a) (b)

Figure 5.8: Horizontal displacement jump for single element test: (a) uniform crack
opening (b) nonuniform crack opening.
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In Figure 5.9, the traction profiles for finer mesh indicate that the standard XFEM enrichment

cannot provide stable traction map along with the crack faces during the uniform crack

opening even for the penalty with small value (i.e. 103 N/mm3). On the contrary, polygonal

enrichment formulation shows flawless performance on traction profiles along with the X and

Y axes. Similarly, in Figure 5.10, the traction considerably deviates applying higher penalty

parameters for standard XFEM formulation whereas this trend remains stable for proposed

formulation and the difference between traction values is related to higher stiffness applied

for the interface as the penalty parameter.

(a) (b)

Figure 5.9: Traction profile for uniform crack opening: (a) along X axis (b) along Y axis.

The corresponding results for non-uniform opening along with the X and Y axes are repres-

ented in Figure. 5.11. Significant oscillations are found in the traction profile in the case

of standard XFEM, which confirms the reported difficulties in capturing traction profiles

in the presence of the high penalties in stiff interface problems (Aragón and Simone, 2017;

Dias-da-Costa et al., 2010; Simone, 2004).
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(a) (b)

Figure 5.10: Traction profile of uniform crack opening: (a) polygonal enrichment (b)
standard XFEM enrichment for different penalty parameters.

The effect of the stiffness of the interface is presented in Figure 5.12. Interestingly, only

for a relatively soft discontinuity (i.e. 103 MPa/mm), standard XFEM provides a smooth

traction profile along the crack. The oscillatory phenomenon becomes worst with increasing

stiffness, and severe oscillations appear for the highest tier. In the case of the polygonal

enrichment approach, the oscillations are effectively avoided and the solution remains nearly

unchanged even when the stiffness is increased from stiff (i.e. 108 MPa/mm) to very stiff (i.e.

1020 MPa/mm).

5.4.2 Linear elastic notched beam

Rots (1988) introduced a linear elastic test to examine the conventional interface elements.

Dias-da-Costa et al. (2010) and Simone (2004) used this test to study the difficulty of traction

oscillation in XFEM by focusing on numerical integration schemes. In this section, this test is
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(a) (b)

Figure 5.11: Traction profile for non-uniform crack opening: (a) along X axis (b)
along Y axis.

(a) (b)

Figure 5.12: Traction profile of non-uniform crack opening: (a) polygonal enrichment
(b) standard XFEM enrichment for different penalty parameters.

used to investigate the effectiveness of polygonal enrichment on XFEM and its problem with

traction profile. The four-node quadrilateral elements are utilised under plane stress condition.

As depicted in Figure 5.13, the discontinuity is located at the centre of the beam and the

material properties are assumed as : the Young’s modulus equals 20000N/mm2 and Poisson’s

ratio is considered 0.2 for the bulk (Simone, 2004).
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Figure 5.13: Linear elastic notched beam: geometry and boundary condition.

The load of P = 1kN is imposed to the beam. As depicted in Figure 5.14, an unstructured

mesh and structured mesh are adopted herein. The notch with 20mm depth is considered as a

traction free discontinuity (kn = ks = 0). The high value penalty parameters are adopted for

the prefect contact and the horizontal displacement jump should be activated to simulate the

pure mode-I.

(a) (b)

Figure 5.14: Representation of adopted meshes for Linear elastic notched beam: (a)
structured mesh (b) unstructured mesh.

The traction profile of linear elastic notched beam for polygonal and standard XFEM en-

richments by Newton–Cotes/Lobatto integration scheme is represented in Figure 5.15 and

Figure 5.16, respectively for structured and unstructured meshes adopted. The results indicate

that the polygonal enrichment can remove the spurious oscillation in traction profile of quad-

rilateral element by using Newton–Cotes/Lobatto integration scheme, whereas bilinear shape

functions utilised in standard XFEM leads to spurious behaviour in the unstructured meshed

model.
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(a) (b)

Figure 5.15: Linear elastic notched beam – traction profile in front of the notch with
polygonal enrichment and Newton-Cotes/Lobatto with two points for different penalty
parameters: (a) structured mesh (b) unstructured mesh.

(a) (b)

Figure 5.16: Linear elastic notched beam – traction profile in front of the notch with
standard XFEM enrichment and Newton-Cotes/Lobatto with two points for different
penalty parameters: (a) structured mesh (b) unstructured mesh.

Figure 5.17a, in contrast to the results of standard XFEM enrichment (see – Figure 5.17b),

indicates that the polygonal enrichment can omit the spurious oscillation in traction profile

even though any local axes of the cracking elements are not along with the crack path.
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(a)

(b)

Figure 5.17: Linear elastic notched beam – representation of traction vectors for
unstructured mesh by means of Newton-Cotes/Lobatto : (a) Polygonal enrichment (b)
standard XFEM enrichment.

5.4.3 Peel test

A double-cantilever beam tested by Remmers et al. (2001) is simulated to assess the ability of

the proposed formulation to analyse the delamination or interface problems.

The beam consists of two layers with equal thickness and identical material properties. As

depicted in Figure 5.18, the reference beam is 10× 1× 1mm3 with a 1mm traction-free

notch, which is loaded by the peel forces at the right end. The material properties given are

assumed: the Young’s modulus E = 100N/mm2; Poisson ration ν = 0.3; tensile strength

ft = 1N/mm2 and fracture energy GF = 0.1N/mm (Remmers et al., 2001).

P

P
9 mm 1mm

1mm 1m
m

Figure 5.18: Peel test: geometry and boundary conditions.
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The fracture mode-I is assumed as the dominant fracture mode. Consequently, shear traction

is considered to be zero. As represented in Figure 5.19, structured and unstructured mesh

with 250 and 288 bilinear finite elements, respectively are adopted to investigate the mesh

dependency of the results. The penalty parameter for the interface is set to kn= 106 N/mm3.

(a)

(b)

Figure 5.19: Representation of adopted meshes for peel test: (a) structured mesh (b)
unstructured mesh.

As represented in Figure 5.20, the load versus displacement response of the structure for

standard XFEM and polygonal enrichments demonstrate that the proposed formulation

has a perfect agreement with the results of the previous study (Remmers et al., 2001).

Since the formulation of standard XFEM faces serious difficulties in analysing this test

using unstructured mesh, the inaccurate results of standard XFEM formulation are removed.

Consequently, this approach can be considered as a mesh-independent and reliable alternative

to standard XFEM.

The traction profile for different penalty parameters during the peak load and the last softening

stages in vertical displacement uy = 0.4mm and uy = 4mm (see – Figure 5.21) indicate the

robustness of the proposed formulation, leading no oscillation in traction profile even for the

penalties greater than 108 N/mm3, which is studied previously (Dias-da-Costa et al., 2010;

Rots, 1988; Simone, 2004). As a consequence, the proposed formulation may be appropriate
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Figure 5.20: Peel test: load versus vertical displacement curves for different formulations.

and accurate option to be utilised for interface problems that need perfect bound between two

surfaces, which is simulated utilising the high value of interface stiffness.

(a) (b)

Figure 5.21: Peel test: traction profile of unstructured mesh for different penalty
parameters in vertical displacement (a) uy = 0.4mm and (b) uy = 4mm.

The stress maps for polygonal and standard XFEM enrichments are represented in Figure 5.22,

which reveal that the proposed formulation has a good agreement with standard XFEM and

accurately captures the stress field around the crack tip during the softening.
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Figure 5.22: Peel test: stress map of (a) polygonal enrichment and (b) standard XFEM
enrichment in uy = 4mm.

5.4.4 Four-point shear test

Four-point shear beam tested by Arrea (1982) is simulated in this section to investigate the

effect of proposed formulation on a structural example treated the mixed-mode problem.

The specimen geometry, boundary conditions and the mesh adopted are depicted in Fig-

ure 5.23. Since compressive strength, fc, the Young’s modulus, E, and the Poisson’s ratio, ν

are the only parameters measured in (Arrea, 1982), the previous studies consider significantly

different values for the corresponding parameters, including cohesive zone parameters can only

be assessed experimentally (Arrea, 1982; Cendón et al., 2000). Consequently, the constitutive

parameters utilised in this study are assumed: the Young’s modulus E = 24800N/mm2; Pois-

son ratio ν = 0.18; tensile strength ft = 3.8N/mm2; and fracture energy GF = 0.125N/mm.

The traction-separation law introduced by Alfaiate et al. (2002) in section 2.2.2 is adopted to

treat the mixed-mode fracture in four-point shear test. To this end, β = 0.7, the normal and

shear stiffness is considered kn = ks = 105 N/mm3 for discontinuity closure.
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The mesh adopted is discretised by 1236 quadrilateral finite elements (see – Figure 5.23).

The arc-length method is utilised to enforce the monotonic increase of Crack Mouth Sliding

Displacement (CMSD).

0.13P P

203 203397 3976161

22
4

82

152

Figure 5.23: Four-point shear test: geometry and mesh.

The CMSD versus load curves for standard XFEM and the developed formulation are repres-

ented in Figure 5.24 and compared with experimental results. The obtained results indicate

that the difference between the two formulation lies in the post-peak part of the loading.

Although the difference is not significant, the polygonal enrichment presents better agreement

with experimental results.

Figure 5.24: Four-point shear test: Comparison of polygonal enrichment with stand-
ard XFEM and experimental results.
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The deformed structure and the corresponding stress maps depicted in Figure 5.25 for different

stages of loading show the accuracy of the proposed formulation without any difficulties at

the crack tip.
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(c)

Figure 5.25: Four-point shear test: stress map of polygonal enrichment for: (a)
CMSD = 0.025mm; (b) CMSD = 0.07mm; and (c) CMSD = 0.085mm.

5.5 Conclusions

This chapter presented a new formulation utilising polygonal interpolants for XFEM en-

richment. This formulation results in resolving the XFEM difficulties caused by using

quadrilateral finite elements, including spurious oscillation in traction between two faces of a

discontinuity, and fictitious displacement jump at the interface. The robustness and accuracy

of the formulation were assessed using both element and structural examples in terms of
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force-displacement response, traction profile along with the discontinuity, and displacement

jump (crack opening).

In contrast to the conventional remedies (e.g. mesh refinement, using nodal integration) of

the anomalous oscillatory behaviour, the proposed formulation is capable of overcoming it

without loss of generality regarding discontinuity propagation path in terms of the parent

element natural co-ordinates.

Eventually, the new formulation gives physical meaning to the degrees of freedom used for

calculating the opening of the discontinuity in XFEM. As a consequence, the enrichment by

polygonal interpolant enables XFEM to be utilised for the penalty stiffness above 108 N/mm3,

leading to the remarkable ability to treat boundary conditions directly at the discontinuity

such as moisture, temperature or the injection of epoxy resin for crack repair.



CHAPTER 6

Conclusions

In this work, different aspects of crack propagation modelling in quasi-brittle materials are

improved. The contributions made to the research field can be divided into three parts as

follows.

The discrete crack approaches use two constitutive models to analyse the fracture process: one

for the discontinuity and another for the bulk (i.e. continuum part). The bulk can be handled

as linear elastic, with the non-linear behaviour being lumped in the discontinuity. With such

an approach, the constitutive model of the bulk cannot provide information about strain

localisation, which is required to capture the process of crack localisation and propagation.

The first drawback can be overcome by a crack initiation criterion. The adequate determination

of the path of the discontinuity, traced by propagation criterion, should be considered as

the second most important term used to analyse the fracture process, which considerably

influences nodal values.

In conventional approaches, the Rankine failure surface is a widely-used criterion, where a

discontinuity is initiated when the principal stress reaches the tensile strength of the material

and is propagated aligned with the normal to maximum principal stress plane. In a recent

study, different surfaces are proposed and compared for crack propagation to clarify the

143
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advantages and disadvantages for the problem at hand. As a new contribution of this study to

the discrete crack approach, it can be mentioned more reliable cracking criteria for the full

range of traction space (i.e. tensile and compressive states) without the need of any predefined

consideration to be given manually to identify strain localisation and trace the discontinuity

orientation.

XFEM is one of the most popular frameworks that can be used to treat the problems involving

strong discontinuities. Even though this formulation can benefit from the crack-tracking

strategies analysed, other intrinsic issues can compromise the accuracy of the analysis. For

instance, the additional degrees of freedom used in XFEM to enrich the nodes whose supports

cut by a discontinuity, rapidly increase while crack propagates across the specimen. These

additional degrees of freedom are considered as global unknowns to guarantee the continuity

of the traction and the displacement jump fields across element boundaries. This justification,

however rational, also increases the computational effort required to solve the system of

equations. In this thesis, a formulation using a novel multi-layered Heaviside enrichment

strategy is proposed. These independent multi-layers covering additional degrees of freedom

lead the associated enrichments to be condensed out of the system of equations, whose size

and conditioning are significantly improved. Eventually, without special treatment, the new

formulation enables piece-wise continuous displacement jumps across element boundaries,

even where a crack cuts a corner.

Among various elements used in the finite element method, the class of elements treating

the problems involving discontinuity, called PU-based discontinuous element, causes several

computational issues such as spurious displacement jump (i.e., crack opening) and fictitious
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oscillation in traction profile transferring between two discontinuity faces. These inaccuracies

have a severe effect on nodal values obtained by solving the system of equations to the analysis

failure in some cases. Despite several casual treatments suggested in previous studies, no

robust approach to solve these issues has been introduced in the literature. As a contribution

to the research field, a new formulation is proposed in this work to overcome those difficulties.

This formulation employs the attribute of XFEM, in which the interpolation functions used

for the second layer of degrees of freedom can be picked arbitrarily if those functions satisfy

the partition of unity. Accordingly, the polygonal interpolant is utilised for the proposed

formulation in lieu of polynomial shape functions conventionally used in XFEM. As a result,

the novel enrichment method resolves the difficulties caused by using the shape functions that

cannot interpolate the traction or/and displacement jump fields appropriately.

6.1 Main Conclusions

A new robust numerical approach has been developed to model the propagation of strong

discontinuities using a partition of unity-based approach. Three new improvements have

been presented: i) the modified failure surfaces, which are utilised as new cracking criteria

managing crack initiation and propagation processes in discrete crack approaches; ii) an

efficient formulation for XFEM using novel multi-layered Heaviside enrichment strategy to

reduce the degrees of freedom in global stiffness matrix and improve the conditioning of

the system of equations; and iii) a novel formulation utilising appropriate interpolants for

the second layer of degrees of freedom in XFEM to overcome the computational difficulties,

namely spurious displacement jump and oscillation in traction profile.
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The comparison between cracking criteria indicates that Alfaiate’s failure surface in terms of

crack initiation and propagation can be considered as the most accurate cracking surface in

different stress states (Alfaiate and De, 2004). The curved shape of the failure surface causes

some difficulties in implementation; however, it guarantees a smooth transition between

tensile and compressive states and different range of shear stresses.

The multi-layered Heaviside enrichment formulation may be interpreted as an efficient

formulation for standard XFEM. This formulation reduces the bandwidth of the global

stiffness matrix and condition number of the equation systems. In contrast to embedded

approaches showing non-conformity of approximated fields at the element level, the proposed

formulation offers piece-wise continuous displacement jumps across element boundaries.

The polygonal enrichment formulation replaces the interpolant conventionally used in XFEM.

The advantages gained by the interpolation function replacement overcome several compu-

tational issues. The new formulation improves the applicability of the XFEM to problems

which may require specific boundary conditions to be introduced at the discontinuity (e.g.

moisture and temperature). The new formulation removes the fictitious oscillation in traction

profiles caused by pathological coupling between degrees of freedom.

Several important conclusions are drawn from the numerical examples given in each chapter,

namely:

• Chapter 3 - Crack propagation criterion
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– In mode-I failure, the similarity found among results obtained from different cracking

criteria allows concluding that the Rankine criterion can be utilised as the most

straightforward criterion to implement and use for these type of problems.

– For mixed-mode failure, the reliability of the Rankine criterion depends on the

problem being analysed, which could fail to trace the crack path and consequent

load versus displacement response of the structure.

– The averaged effective stress criterion shows the inconsistency of results. The

significant sensitivity of this approach to predefined parameters and mesh sensitivity,

questions the reliability of the criterion. Accordingly, despite good results in some

cases, the criterion is not recommended for the discrete crack approach.

– In contrast to the Rankine criterion, the modified cracking surfaces (i.e. Alfaiate’s

and Carol’s failure surfaces) represent good performance to capture the peak load

and softening stage during mixed-mode failure.

– The lack of a compressive cap in the Rankine cracking surface and an incompatibility

with the discrete constitutive model prevent this criterion from reliably predicting

crack initiation and propagation in mixed-mode fracture.

– The modified cracking surfaces provide nearly coincident results for all traction

states except for uniaxial compression, where Alfaiate’s cracking surface shows

robust and accurate performance. Consequently, this method can be considered

overall the most robust one to predict both initiation and propagation for quasi-brittle

materials in different traction states.

• Chapter 4 - multi-layered XFEM approach
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– In the multi-layered XFEM formulation, the enrichment layers containing more

than a single element resolve the deficiency of non-conforming crack opening from

internal fictitious deformation modes fully preventing the non-physical rotation of

corners of elements cut by the discontinuity. This is achieved without the need to

eliminate any deformation mode such as linear jumps, which is one of the shortcom-

ings of embedded strong discontinuity approaches.

– In contrast to standard XFEM, the condition number of the proposed formulation

remains nearly constant with respect to the interface stiffness. Consequently, a con-

siderable advantage of the new formulation is associated with the static condensation

of the enhanced degrees of freedom, allowing the condition number to remain close

to the one obtained for the non-cracked mesh.

– Regardless of the size of the active length, the noticeable oscillation in the traction

profile caused by the discretisation with the smaller active length tends to vanish

at the last stages of the analysis. This reveals that the multi-layer enrichment can

provide good results almost independently of the selected size of the domain, even

when there can be a layer with just one element in certain cases.

• Chapter 5 - Polygonal enrichment functions

– In contrast to standard XFEM, integration on Ω− is not necessary for polygonal

enrichment formulation, leading to easier implementation and decrease in computa-

tional effort.

– In PU-based discontinuous finite elements, the pathological coupling between de-

grees of freedom can be eliminated using the polygonal enrichment formulation.
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Consequently, the displacement jump (crack opening) obtained using the proposed

formulation indicates excellent agreement with analytical solutions.

– One of the main shortcomings of standard XFEM, the serious spurious oscillation

in the traction profile that becomes worst for higher values of interface stiffness, is

automatically resolved utilising the proposed formulation, even when high interface

stiffnesses are adopted (i.e. penalty parameters in the order of 1020 N/mm3).

– The boundary condition cannot influence the accuracy of the results of traction

profile and displacement jump obtained from polygonal enrichment formulation,

whose robustness is approved analysing several interface problems.

– The conventional assumption that PU-based discontinuous elements require nodal

integration schemes (e.g. Newton-Cotes/Lobatto) to provide a satisfactory traction

profile and crack opening improves the presented formulation significantly compared

to standard XFEM.

– The polygonal enrichment formulation solves the severe difficulty of standard XFEM

in modelling the problems with stiff discontinuities (e.g. cracks repaired with the

injection of epoxy resin), and interface problems considering boundary condition on

discontinuity (e.g. moisture uptake, temperature-dependent problems).

Eventually, it should be emphasised that the proposed formulations can select appropriate

cracking criterion based on the problem at hand and improve the accuracy and versatility in

analysing both crack propagation and interface problems using PU-based approaches, specially

XFEM. In contrast to standard XFEM, the polygonal enrichment formulation allows the

discontinuities to be defined explicitly, leading to the strong physical meaning of the additional
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degrees of freedom. This attribute, in addition to the accuracy of obtained displacement

jump, makes this formulation especially suitable for specific problems where boundary

conditions can be introduced/specified directly at the discontinuity, such as temperature-

dependent problems or the injection of epoxy resin for crack repairing. On the other hand,

only integrating on Ω+ in polygonal enrichment formulation and employing multi-layered

Heaviside enrichment formulation reduce the computational costs in two different ways.

6.2 Suggestions for future developments

The discrete crack models have been mostly exclusively applied to situations of pure or

close-to-pure tensile cracking. An investigation of the possibilities of extending the models

for dealing with the compressive state is suggested for future development. As a result, the

appropriate cracking criteria for compression state could be further assessed to analyse the

post-peak behaviour of the specimens subjected to compressive loading.

Furthermore, the polygonal enrichment formulation can be employed in various interface

problems, namely: delamination of composite materials, bond-slip behaviour of reinforced

concrete, pull-out tests, and even more complex phenomena such as the effect of moisture

and temperature on the behaviour of reinforced concrete structures, and alkali-silica reaction

effect on steel-concrete bond behaviour.

The formulations developed herein are implemented for two-dimensional problems exclus-

ively, including plane stress. For further development, three-dimensional modelling can be



6.2 SUGGESTIONS FOR FUTURE DEVELOPMENTS 151

considered for both polygonal enrichment formulation and multi-layered Heaviside enrich-

ment. It should be emphasised that the multi-layered Heaviside strategy can be even more

effective in decreasing the global stiffness matrix bandwidth and consequent computational

cost for three-dimensional problems than two-dimensional modelling.
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APPENDIX A

Polygonal Finite Element

In contrast with conventional finite element method using polynomials as interpolants, Wach-

spress (1971) introduced a concept to generate the unconventional shape functions on convex

n−gons. Later, these interpolants were revised (Belikov et al., 1997; Moorthy and Ghosh,

2000; Rashid and Gullett, 2000; Sukumar and Malsch, 2006; Tiwary et al., 2007) and Laplace

interpolation (Hiyoshi and Sugihara, 1999), as a natural neighbor-based interpolation scheme,

which is capable to be utilised easily in finite element method framework was developed.

Since Laplace interpolants are utilised in this thesis, a brief summary about the Wachspress

interpolants as the conventional polygonal interpolants and the patch tests need to be satisfied

by shape functions used in the finite element are given herein.

A1 Wachspress interpolants

Wachspress (1971) proved that the shape function on n−gons are rational polynomials, which

are given by:

Nn
i (x,y) =

Pn−2(x,y)
Pn−3(x,y)

(A.1)

where P(m)(x,y) is a polynomial of degree m.
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A simpler expression for Wachspress interpolants is proposed by Meyer et al. (2002) as:

ϕ
w
i (x) =

wi(x)
n
∑
j=1

w j(x)
(A.2)

where:

wi(x) =
A(pi−1, p, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
=

cotγi + cotδi

‖x− xi‖2 (A.3)

where A(a,b,c) denotes the signed area of triangle [a,b,c], while γi and δi are depicted in

Figure A.1.

∙

∙
∙

∙

∙

∙P

1Pi−

1Pi+

Pi
iδ

iγ

Figure A.1: Wachspress shape functions on a pentagon.

Note that, ϕw
i (x) is non-negative and the polygon must be convex (γi +δi < 0). In addition,

instead of calculation of the angles γi and δi explicitly, the cotangents are computed by vector

cross and dot product formulae. Considering (a1,a2), (b1,b2) and (c1,c2) are the vertices

coordinates of the triangle [pi, pi+1, p], the cotδi reads as:

cotδi =
(Pi+1−Pi).(P−Pi)

|(Pi+1−Pi)× (P−Pi)|
=

(b1−a1)(c1−a1)+(b2−a2)(c2−a2)

(b1−a1)(c2−a2)− (b2−a2)(c1−a2)
≡ C

S
(A.4)
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and its derivatives can be calculated by:

∂ (cotδi)

∂c1
=

(b1−a1)− cotδi(a2−b2)

S
(A.5a)

∂ (cotδi)

∂c2
=

(b2−a2)− cotδi(b1−a1)

S
(A.5b)

Similarly the cotγi can be computed. It is noteworthy that the Wachspress shape functions

provide all conditions discussed in section A2 on polygons by means of the lowest-order

shape functions (Warren et al., 2007).

A2 Interpolant patch tests

The shape functions of the polygonal finite element need to satisfy all the patch testes of

conventional shape functions in finite elements. Consider a polygonal body Ω with boundary

∂Ω. The body is described by n nodes, which are labelled pi and located at the coordinate

xi ≡ (xi,yi) ∈ Ω̄, while Ω̄ = Ω∪ ∂Ω, as depicted in Figure A.2. A set of shape functions

φi(x) for point p can interpolate the scalar-value function u(x) as below:

u(x) =
n

∑
i=1

φi(x)ui, (A.6)

where ui denotes the unknowns at the neighbors of the point p. Accordingly, the following

patch tests should be satisfied by the interpolant:
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∙

∙
∙∙

∙ ∂Ω
Ω

x

y

1p

2p

3p

4p

5p

Figure A.2: Polygonal domain.

1- φi(x) should form a partition of unity, be non-negative and bounded:

n

∑
i=1

φi(x) = 1, 0≤ φi(x)≤ 1. (A.7)

2- The nodal value should be identical to the value interpolated at a node:

φi(x j) = δi j (A.8)

where δi j is the Kronecker-delta.

3- Since constant and linear completeness of the trial function satisfies convergence condition

in Galerkin method for second-order partial differential equations, interpolant needs to satisfy

linear completeness (Hughes, 2012):

n

∑
i=1

φi(x)xi = x. (A.9)
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