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1

Abstract

Generalised linear mixed models are a particularly powerful and well established statisti-

cal tool. Unlike linear mixed models, where the integrals arising in likelihood functions

can be expressed in closed form, the likelihood functions expressed in generalised linear

mixed models do not follow tractable solutions. Methods such as Gauss-Hermite quadra-

ture and Laplace approximation are the standard approaches to overcome these integrals.

Although Gauss-Hermite quadrature is accurate it is also slow, rendering it unsuitable

for analyses with more than two or three random e↵ects. Laplace approximations are the

most feasible solution, however the approximate inference they provide in binary models

is well known to be inaccurate. A less common approach is to use Bayesian ideas such

as data cloning, however they involve a number of technicalities and as such are di�cult

to implement. Although expectation propagation is generally used in Bayesian settings,

in this thesis we introduce a novel approach where we use it as frequentists to achieve

high accuracy results with minimal computational cost for inference on generalised

linear mixed models. We show our methodology can be used to solve one level probit

models without the need for quadrature, providing consistent and accurate results. We

explain how using quadrature we can also extend our method to logistic, Poisson and

negative-binomial models. Additionally we show how these models can be extended

to two level models and crossed random e↵ects models for the probit case. Finally

we present applications of our methodology on two real datasets, both with di↵erent

technical challenges.
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Chapter 1

Introduction and background

This chapter provides an introduction to the thesis as well as background information

and theory required for the upcoming chapters. None of the work presented in this

chapter is novel.

1.1 Introduction

In reality analysts do not always receive data that conforms to the properties required for

the implementation of classical statistical procedures. Data often contains non-normally

distributed response variables and heterogeneous variance. These variance structures

may be explained by multilevel or hierarchical structures, where the heterogeneity stems

from observations nested within larger groups of experimental units (Steenbergen &

Jones, 200262). As an example consider a dataset of results from an experiment that

is repeated 100 times by 5 di↵erent people (there are a total of 500 replicates). Since

each person will conduct the experiment slightly di↵erently, modelling the data requires

accounting for variability both within and across persons. This type of dataset is

common in biological, medical and social sciences, and is becoming increasing prevalent

in other fields. Secton 1.2 of Gelman & Hill (2007)19 and the R package “mlmRev”

(Bates, Maechler & Bolker, 20194) provide real examples. Although it may be tempting

to coerce data into classical statistical frameworks via tricks such as data transformations

or ignoring the e↵ect of data structures, doing so may violate key statistical assumptions

and limit the scope of inference gained (Bolker, et al., 20098). Subsequently, a more

suitable approach of analysis is required.

Generalised linear mixed models (GLMMs) are a particularly powerful and well
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established statistical tool. Like generalised linear models GLMMs can model non-

normal responses, however they additionally account for nested data structures. GLMMs

do this by allowing a population intercept and slope (known as fixed e↵ects) as well

as a unique intercept and slope for each experimental unit (known as random e↵ects).

These are the attributes that allow GLMMs to handle combinations of data structures

and response distributions.

Unlike linear mixed models where the integrals required to solve likelihood func-

tions can be obtained analytically, they do not have tractable solutions in GLMMs.

Additionally, as the number of random e↵ects increases they become more computation-

ally intensive. In the frequentist setting, methods such as Gauss-Hermite quadrature

(GHQ), penalised quasi-likelihood (PQL) and Laplace approximation are the standard

approaches to overcome these integrals. PQL is one of the simplest and most widely

used methods, available in a variety of computing software. However, it deals poorly

with binary data where the standard deviations of random e↵ects are large, often

producing biased parameter estimates (Bolker, et al., 20098). Additionally, rather than

approximate a true likelihood, PQL approximates a quasi-likelihood, making likelihood

based inference infeasible. Both GHQ and Laplace approximation are more accurate

than PQL, with GHQ the most accurate of the three. However, the accuracy of GHQ

comes at the price of speed. As the number of random e↵ects increases GHQ slows

considerably, rendering it unsuitable for analyses with more than two random e↵ects.

While Laplace approximations provide the most feasible solution, the approximate infer-

ence it provides in binary models is inaccurate (McCulloch, et al., 200841), particularly

when the number of observations per grouping unit are low.

Lele, et al. (2007)35 present a reformulation of the typically Bayesian method Markov

chain Monte Carlo, known as data cloning, which allows for the calculation of maximum

likelihood estimates and confidence intervals. Although the proposed method is able

to cover random e↵ects, it also involves several di�cult technical details regarding

its fitting and implementation. Similar issues exist for the R package “MCMCglmm”

(Hadfield, 201725).

Perhaps a lesser known method, expectation propagation (EP) (Minka, 200143)

has underpinnings originating from computer science. A variety of software such as

Stan (Stan Development Team, 201724) and Infer.Net (Minka, et al., 201445) exist

and facilitate the implementation of such deterministic algorithms for fast inference.

Although the speed of computation is increased over more traditional methods, algebraic

overheads mean utilisation of this methodology is cumbersome. Minka (2005)44 partially

solves this issue by developing a message passing approach to EP, which allows the
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algebra to be broken into fragments. Although the initial algebraic overhead is still

large, once calculated, fragments can be reused via graphical structures without any

additional algebra. Further numerical studies have shown EP to be more accurate

than variational alternatives such as mean field variational Bayes and easily faster than

Markov chain Monte Carlo. Specifically, Kim & Wand (2016)31 provide computational

studies which suggest EP becomes more accurate than mean field variational Bayes as

sample size increases (Kim & Wand, 201732).

Kim & Wand (2016)31 demonstrate the form of EP for the simple statistical problem

of Bayesian inference from independent and identically distributed observations from

a normal distribution. This paper also provides the means to implement a message

passing approach using factor graphs, which facilitates extension to larger models with

minimal algebraic overheads. Kim & Wand (2017)32 provide the structure of algorithms

required for implementing EP in GLMM settings.

1.2 Thesis aim

Although many methods for GLMM analysis in a frequentist setting exist, they provide

either poor accuracy or bad computational performance. Additionally, current applica-

tions of EP in statistics are primarily limited to Bayesian settings. This thesis aims to

develop novel methodology for GLMM analysis in a frequentist setting which utilises

EP for consistent and accurate inference, particularly in the case when low numbers of

observations per group variable occur. We aim to build on Kim & Wand (2017)32 by

utilising message passing to streamline the computations from the factor graph. We

aim to provide frameworks for one level probit, logistic, Poisson and negative binomial

models, as well as two level and crossed random e↵ects probit models. Finally we aim

to create an R package and make the methodology available, with a demonstration on a

dataset provided by the Australian Red Cross Blood Service.
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1.3 Matrix storage and notation

For a vector a of length d, we denote the elements from i to j by ai:j . For clarity,

consider

a =





a0

a1

a2




, then a1:2 ≡



a0

a1



 .

To combat issues arising from storage of large matrices we now introduce concepts and

notation analogous to Magnus & Neudecker (1999).38 For a d × d matrix A, vec(A)

returns a d2 × 1 vector, where the columns of A are stacked underneath each other in

order from left to right. vech(A) returns a 1
2d(d+1)× 1 vector, where the entries above

the diagonal are removed and the remaining entries are stacked by column from left to

right. vecbd(A) returns a 1
2d(d− 1)× 1 vector, where the entries below the diagonal

are stacked by column from left to right. For example, if

A ≡





a11 a12 a13

a21 a22 a23

a31 a32 a33




,

then

vec(A) ≡





a11

a21

a31

a12

a22

a32

a13

a23

a33





, vech(A) ≡





a11

a21

a31

a22

a32

a33





and vecbd(A) ≡





a21

a31

a32




. (1.1)

For a vector a of length d2, vec−1(a) returns a d×d matrix. The ith column corresponds

to the entries

a(
d(i−1)+1

)
:(di)

.
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For a vector a∗ of length 1
2d(d+ 1), vech−1(a∗) returns a symmetric d× d matrix. The

ith lower diagonal column and ith upper diagonal row correspond to the entries

a
∗(
d(i−1)−

Pi�1
j=1(j−1)+1

)
:
(
di−

Pi
j=1(j−1)

).

As an example, where a = vec(A) and a
∗ = vech(A),

vec−1(a) ≡





a11 a12 a13

a21 a22 a23

a31 a32 a33




, vech−1(a∗) ≡





a11 a21 a31

a21 a22 a32

a31 a32 a33




.

Note that when A is symmetric

vech−1
(
vech(A)

)
= A.

We denote the transpose of A by A
#, and assuming A is invertible we denote its inverse

by A
−1. The 3 × 3 diagonal matrix formed setting the upper and lower o↵ diagonal

entries of A to 0 is given by

diag(A) ≡





a11 0 0

0 a22 0

0 0 a33




,

where A is defined in equation (1.1). The d× d identity matrix is denoted as Id, the

d× 1 vector with all entries equal to zero as 0d, and the d1 × d2 matrix with all entries

equal to zero as 0d1×d2 .

The duplication matrix of order d is the unique d2 × 1
2d(d+ 1) matrix Dd of zeros

and ones such that

Ddvech(A) = vec(A),

where A is symmetric. The R function “duplication.matrix()” in the “matrixcalc”

package (Novomestky, 202048) allows for easy calculation of the duplication matrix for

any matrix A. The Moore-Penrose inverse of Dd is

D
+
d
≡ (D#

d
Dd)

−1
D

#
d
.
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The norm of a vector a is defined as

‖a‖ =
√
a#a.

and for the same vector we define

a
⊗k ≡






1 for k = 0

a for k = 1

aa
T for k = 2

. (1.2)

1.4 Notation for spaces

We denote spaces as follows:

R Set of real numbers.

Rd Real coordinate space of d dimensions.

R≥0 Coordinate line with all real positive numbers (real numbers greater than or equal

to zero).

R>0 Coordinate line with all strictly positive real numbers (real numbers greater than

zero).

Z≥0 Coordinate line with all positive integers (integers greater than or equal to zero).

1.5 Exponential family theory and distributions

1.5.1 Exponential family theory

The exponential family is a set of probability distributions which can be written in a

specified parameteric form, where di↵erent distributions arise from varying parameter

values.
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Definition 1. Given a natural parameter vector η, a vector x is from an exponential

family of probability distributions if its probability distribution conditional on η can be

expressed in the following form:

fX(x;η) = exp
(
η
#
T (x)−A(η)

)
h(x), (1.3)

where η is the natural parameter vector, T (x) is the su�cient statistic, A(η) is the

log-partition function and h(x) is the base measure.

Note that Definition 1 can be simplied for single parameter and univariate distributions.

We now clarify the previously arbitrary definitions of η, T (x) and A(η):

• T (x) is the su�cient statistic of the distribution, which is a function that given

data x provides all the information required to describe the posterior distribution

of the natural parameters η.

• η are the parameters of each distribution written in their natural form. Canonical

link functions take distribution parameters as an argument and return natural

parameters. The natural parameter space H is the convex space given by the set

of values

H = {η : A(η) < ∞}.

• A(η) is the log of the normalising factor

A(η) = log
{∫

h(x) exp
(
η
#
T (x)

)
dx

}
,

which ensures that fX(x;η) is a probability density function. Additionaly, the

moments of the su�cient statistc T (x) can be derived by di↵erentiating A(η).

More explicitly, the mean and variance of the su�cient statistic are respectively

given by the first and second derivatives of A(η),

E
(
T (x)

)
= D⌘A(η)

# = (∇A)(η) and Cov
(
T (x)

)
= D⌘

(
D⌘A(η)

#) = H
(
A(η)

)

(1.4)

where Cov
(
T (x)

)
is the covariance matrix of T (x), Dxf(x) is a p × d matrix

with (i, j) entry equal to df(x)i/dxj for a Rp-valued function f with argument

2 Rd, and (∇A)(η) is a one-to-one function that returns a column vector of

partial derivatives of A(η) with respect to the entries of η. A summary of A(η)

and (∇A)(η) for exponential families is provided in Section 3.5 of Wainwright &

Jordan (2008).66
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Exponential families have extremely useful properties in statistical analysis. As such,

they have been used in classical statistics for decades and more recently in machine

learning settings. A major benefit of exponential families is conjugate priors, where

posterior distributions are in the same probability distribution family as the prior

probability distribution. This helps reduces computational complexity for Bayesian

inference.

1.5.2 Probability distribution

We now present the distributions used in this thesis and their exponential family

parameterisation.

1.5.2.1 Univariate normal distribution

Definition 2. A scalar random variable x is from a univariate normal distribution with

mean µ and variance �2 > 0 when its density function is

f(x) = (2⇡�2)−1/2 exp
(
− (x− µ)2

2�2

)
,

which is written as x ∼ N(µ,�2).

Definition 3. A scalar random variable x is from a standard univariate normal distri-

bution with µ = 0 and �2 = 1 when its density function is

�(x) = (2⇡)−1/2 exp
(
− x2

2

)
,

which is written as x ∼ N(0, 1), and cumulative distribution function (CDF)

�(x) ≡
∫

x

−∞
�(t)dt.

We set

⇣(x) = log
(
2�(x)

)
,

with first and second derivatives respectively

⇣ ′(x) = �(x)/�(x) and ⇣ ′′(x) = −⇣ ′(x)
(
x+ ⇣ ′(x)

)
.
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The su�cient statistic and base measure for the univariate normal distribution are

respectively defined as

T (x) =



 x

x2



 and h(x) = (2⇡)−1/2.

The natural parameter vector and inverse mapping are respectively

η ≡



⌘1

⌘2



 =



 µ/�2

−1/(2�2)



 and
µ = −⌘1/(2⌘2)

�2 = −1/(2⌘2)
. (1.5)

The log-partition function is

A(η) = −⌘21/(4⌘2)− 1
2 log(−2⌘2).

The domain of both A(η) and (∇A)(η) is H = (⌘1, ⌘2) : ⌘1 ∈ R, ⌘2 ∈ R>0. The column

vector of partial derivatives of A(η) is given by

(∇A)(η) =



 −⌘1/(2⌘2)

(⌘21 − 2⌘2)/(4⌘22)



 .

1.5.2.2 Multivariate normal distribution

Definition 4. A d× 1 vector of random variables x is from the multivariate normal

distribution with d × 1 mean vector µ and d × d positive definite covariance matrix

variance Σ when its density function is

f(x) = (2⇡)−d/2 |Σ|−1/2 exp
(
− 1

2
(x− µ)#Σ−1(x− µ)

)
,

which is written as x ∼ N(µ,Σ).

Definition 5. A d× 1 vector of random variables x is from the standard multivariate

normal distribution with d × 1 mean vector 0d and d × d positive definite covariance

matrix variance Id when its density function is

�I(x) = (2⇡)−d/2 exp
(
− 1

2
x
#
x

)
,

which is written as x ∼ N(0d, Id).
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The su�cient statistic and base measure for the multivariate normal distribution

are respectively defined as

T (x) =



 x

vec(xx#)



 and h(x) = (2⇡)−d/2.

The natural parameter vector and inverse mapping are respectively

η ≡



η1

η2



 =



 Σ−1
µ

−1
2D

#
d
vec(Σ−1)



 and
µ = −1

2H
−1
2 η1

Σ = −1
2H

−1
2

, (1.6)

where

η2 ≡ D
#
d
vec(H2) and H2 = vec−1

(
(D+

d
)#η2

)
. (1.7)

The log-partition function is

A(η) = −1

4
η
#
1 H

−1
2 η1 −

1

2
log |− 2H2|,

The domain of both A(η) and ∇A(η) is H = (η1,η2) : η1 ∈ Rd, η2 ∈ R
1
2d(d×1)
>0 . The

column vector of partial derivatives of A(η) is

(∇A)(η) = D⌘A(η)
#.

1.5.2.3 Bernoulli distribution

Definition 6. A scalar random variable x is from the Bernoulli distribution with

probability of success p when its probability mass function is

f(x) = px(1− p)1−x, x ∈ {0, 1}, (1.8)

which is written as x ∼ Bernoulli(p).

The su�cient statistic and base measure for the Bernoulli distribution are respectively

defined as

T (x) = x and h(x) = I(x ∈ {0, 1}).
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Definition 7. For a scalar input variable x

logit(x) ≡ log
( x

1− x

)
and expit(x) ≡ exp(x)

1 + exp(x)
. (1.9)

The natural parameter vector and inverse mapping are respectively

⌘ = logit(p) and p = expit(⌘). (1.10)

The log-partition function is

A(⌘) = log
(
1 + exp(⌘)

)
.

The domain of A(⌘) and ∇A(⌘) is H = ⌘ : ⌘ ∈ R. The derivative of A(⌘) is

(∇A)(⌘) =
exp(⌘)

1 + exp(⌘)
.

1.5.2.4 Poisson distribution

Definition 8. A scalar random variable x ∈ Z≥0 is Poisson distributed with mean and

variance � when its density function is

f(x) =
�x exp(−�)

�(x+ 1)
, , (1.11)

which is written as x ∼ Poisson(�), where �(x) = (x− 1)!.

The su�cient statistic and base measure for the Poisson distribution are respectively

defined as

T (x) = x and h(x) = I(x ∈ Z≥0)

The natural parameter vector and inverse mapping are respectively

⌘ ≡ log � and � = exp(⌘). (1.12)

The log-partition function is

A(⌘) = exp(⌘).

The domain of both A(⌘) and ∇A(⌘) is H = ⌘ : ⌘ ∈ R. The derivative of A(⌘) is

(∇A)(⌘) = exp(⌘).
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1.5.2.5 Negative binomial distribution

Definition 9. A distributed scalar random variable x ∈ Z≥0 is from the negative

binomial distribution with probability of success p and shape parameter  > 0 when its

density function is

f(x) =
�(x+ )

�(x+ 1)�()

( µ

µ+ 

)
x
( 

µ+ 

)


, (1.13)

which is written as x ∼ NB(µ,), where �(x) = (x− 1)! and p = µ/(µ+ ).

The negative binomial distributions is closely related to the Poisson distribution, and

begins to resemble it as the shape parameter  increases to infinity. The su�cient

statistic and base measure for the multivariate normal family are respectively defined as

T (x) = x and h(x) =




x+ − 1

x



.

The natural parameter vector and inverse mapping are respectively

⌘ ≡ logµ and µ = exp(⌘). (1.14)

The log-partition function is

A(⌘) = − log
(
1− exp(⌘)

)
.

The domain of both A(⌘) and ∇A(⌘) is H = ⌘ : ⌘ ∈ R. The derivative of A(⌘) is

(∇A)(⌘) =
 exp(⌘)

1− exp(⌘)
.

1.6 Graph theory

Graph theory is vital in understanding message passing and helps to simplify what is

an otherwise complex task. In this section we provide a brief review of the required

graphical theory.
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1.6.1 Directed acyclic graphs

Directed acyclic graphs are a graphical representation of a model consisting of nodes

and edges. The nodes are used to represent vectors/matrices, while the lines between

them known as edges, demonstrates the relationships between nodes. To be a directed

acyclic graph, all edges must be directed and without cycles; that is, there cannot be

any connected directed edge, where following the direction of said edge returns to the

starting edge (see Figure 1.1b).

c

ba

(a) A non DAG.

a b

dc

(b) A DAG.

a b

dc

(c) Moralised DAG from Fig-
ure 1.1b.

Figure 1.1: Three basic graphical models. Figure 1.1b shows a directed acyclic graph

(DAG); all edges are directed and without cycles. Conversely, Figure 1.1a is not a

directed acyclic graph. Although it contains directed edges, it also contains a cycle. The

moralised version of the directed acyclic graphs from Figure 1.1b is Figure 1.1c. No

edges have a direction and the parent nodes a and d are linked.

Moralisation of directed acyclic graphs help uncover the relationship between nodes.

A parent node is the node connected away from the directed edge, while the node on

the directed edge is the child node. Co-parents occur when a child node has two edges

directed towards it. Specifically, the process of moralisation involves linking parents and

co-parents. Consider the moralisation of Figure 1.1b; the child node b has co-parents a

and d. To moralise this graph, we link nodes a and d with an undirected edge. However,

no further links are required for the parent node of a and d (node c) since it does not

have a co-parent. We then change all directed edges to undirected edges (Figure 1.1c).

The a node’s Markov blanket consists of the nodes directly linked to it. Finding the

Markov blanket is easy on a moralised graph and can lead to significant simplifications

for large graphical models. For example, in our moralised graph, the Markov blanket of

node a would be nodes b, c and d, where as the Markov blanket for node c would be

nodes a and d (Pearl, 198853).
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1.6.2 Factor graphs

An extension of moralised graphs are factor graphs. Figure 1.2 demonstrates a factor

graph corresponding to the model in equation (1.15),

h(x1, x2, x3, x4, x5) =
√
x1 + x2x5 log(x2 + x23x

7
4)

1/2 sin(x23)(|x5|
2 − 10), (1.15)

where the square nodes are functions in the equation known as factor nodes, and the

circle nodes are arguments in the equation known as stochastic nodes. Neighbours of a

x1 x5

p
x1 + x2x5

x2

|x5|2 � 10

log
�
x2 + x2

3x
7
4

�1/2
x4

x3 sin(x2
3)

Figure 1.2: The factor graph corresponding to the model presented in equation (1.15).

The two types of nodes in the factor graph are shown here, where square nodes represent

factor nodes and circular nodes represent stochastic nodes.

node are the those nodes linked by an edge. For example, the factor node
√
x1 + x2x5

in Figure 1.2 is neighbours with stochastic nodes (x1, x2, x5), where as the factor node

|x5|2 − 10 only is neighbours with the stochastic node (x5) (Rohde & Wand, 201558).

1.7 Multilevel datasets

Often it is not possible or practical to collect data from a single experimental group with

one source of variance. As such, real world datasets are often structured in a multilevel

or hierarchical manner, whereby they have nested levels stemming from observations

occuring within groups (Steenbergen & Jones, 200262). For categorical variable A and

B, A is nested in B if each category of A only occurs in one category of B. A variable

is defined as a level if its values are a random sample from a wider population of values,
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in which case the values it takes are called groups. In other words, groups of a level are

a sample from a larger population of groups, where the observations have a distribution

(McCulloch, Searle & Neuhaus, 200841). Alternatively, a variable is a level if there is a

functional di↵erence between its values (Borenstein, et al., 200910). Each level of the

structure contains an unobserved residual component, which accounts for correlation

within the structure.

Levels are a consequence of experimental design and data collection. We aim to

clarify what constitutes a level by explaining an example. Before we continue with the

example, we note variables can have two types of e↵ect on the response. Fixed e↵ects

occur when a variable is deemed to have a constant functional e↵ect on the response

from a finite set of functional e↵ects. Generally analysts are aware of such variables in

studies. Random e↵ects occur when variables are deemed to have di↵ering functional

e↵ects from an infinite set of functional e↵ects. They are assumed to be a sample of

a random categorical variables from some distribution and are caused by unknown

variables (McCulloch, Searle & Neuhaus, 200841). It is often not immediately obvious

when variables have fixed or random e↵ects, with inference being a key motivating

factor. Additionally there is some overlap between variables that are levels and cause

random e↵ects. We aim to clarify this in our example as well.

Consider a school that wants to compare the e↵ect of time spent studying on pupils’

exam scores for di↵erent subjects. Because class sizes are limited the school must collect

pupils’ exam scores from four classes (Raudenbush, 199357). The structure of this data

is called a one level dataset and is shown in Figure 1.3, where pupils are nested in

classes. Time spent studying is a continuous variable and no assumption is made that

the number of hours studied are random, so it is likely similar values will have a similar

e↵ect on exam score. With this in mind the e↵ect of time spent studying on pupils’

exam scores is fixed and it is not level in the dataset. Although the e↵ect of subject on

exam score is not continuous or random, even in the case where subjects are chosen at

random, it is more than likely their e↵ects are explainable and should be considered

fixed e↵ects. This is also evidence they are not a level in the study.

As mentioned earlier, inference is an important consideration when determining

levels, as well as fixed and random e↵ects. If inference from the study is restricted to the

four classes in the study only, the classes represent the population of classes in the study.

In other words, they have a finite set of fixed functional e↵ects and are not a level in the

dataset (they should be included as a fixed e↵ect). Alternatively, if inference from the

study is extended to the population of students in the school, it is reasonable to assume

classes in the study are a random sample from the wider population of classes in the
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school (McCulloch, Searle & Neuhaus, 200841). These classes come from a probability

distribution regarding their relationship with exam score. As such, in this case class is a

level with four groups (one for each class). It should be clear that experimental design,

data interpretation and inference all play a role in determining whether variables are a

level and the type of e↵ect they have on the repsonse.

In this thesis we cover two other types of multilevel datasets which we now explain

briefly with examples. The natural extension of the one level dataset explained above

is a two level dataset, where an additional level of nesting is added. Continuing the

exam score example, consider exam scores measured on pupils of di↵erent classes from

multiple schools in an area. Assuming inference is now extended to the population of

pupils in all classes of schools in the area, it is reasonable to assume both schools and

classes have random e↵ects with their own distributions. This is a two level dataset

where pupils are nested in classes nested in schools, as shown in Figure 1.4.

Alternatively, datasets with two levels can be crossed. For two arbitrary levels

B and C are crossed if each observation nested from each groups in level C occur in

di↵erent groups of level B. Following our exam score example, consider exam scores

are measured on pupils of di↵erent classes in the same school, however the pupils of

each class live in di↵erent areas. Assuming inference is extended to both classes and the

areas where pupils live, a crossed dataset results as shown in Figure 1.5, where pupils

are nested in classes and classes crossed with area. As before, both levels have random

e↵ects with their own distributions. Note, although it the crossed example has two

levels, the first level is not nested in the second level. Instead, they both nest pupils

and can be thought of as structurally at the same level in the data.

Because mutlilevel datasets are composed of non-homogeneous experimental units

we must model them accordingly. Failing to do so can facilitate incorrect model

interpretation. Linear mixed models provide a solution to modeling multilevel datasets

composed of non-homogeneous experimental units. They are a form of regression model

which gained popularity with the rise of computing power. These models improve on

linear models by allowing an intercept and slope for the population e↵ects (known

as fixed e↵ects) and a unique intercept and slope to account for the e↵ect of each

experimental unit (known as random e↵ects).

Perhaps the clearest advantage of mixed models is when they are used for prediction

(Gelman, 200618). Mixed models allow for the estimation of group e↵ects simultaneously

with the e↵ects of group-level predictors. This is not possible in fixed e↵ects and

ANOVA models, where the inferences are limited to the groups in the sample. With
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Level 1

P1 P2 P3 P4 P5 P6 P7 P8 P9

C1 C2 C3 C4

Figure 1.3: Example of a two level dataset following the schools example. We denote Pj

as the pupils in the classes and Ci the classes in the schools.

Level 1

Level 2

P1 P2 P3 P4 P5 P6 P7 P8 P9

C1 C2 C3 C4

S1 S2 S3

Figure 1.4: Example of a two level dataset following the schools example. We denote Pj

as the pupils in the classes, Ci the classes in the schools and Sk the schools.

these traits in mind, it is clear that multilevel models provide a significant advantage

over traditional regression techniques for prediction and data reduction.
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P1 P2 P3 P4 P5 P6 P7 P8 P9

Level 1

Level 2

C1 C2 C3

A1 A2 A3

Figure 1.5: Example of a crossed dataset following the schools example. We denote Pj

as the pupils in the classes, Ci the classes in the schools and Ak the area.

1.8 Generalised linear mixed models

Generalised linear mixed models are a powerful model that facilitate inference from

multilevel datasets with non-normal response variables. Much like generalised linear

models, a linear predictor ⌘ is used to incorporate information about the independent

variables into the model. However, GLMMs include fixed and random e↵ects in the linear

predictor to account for error structures in the data, similar to linear mixed models.

For GLMMs it is optional whether fixed intercepts and slopes are included in the linear

predictor, however they must always include a random e↵ect, via either an intercept

or slope. The relationship between these model types is more clearly demonstrated in

Table 1.1. The expected value of the response y conditional on the random e↵ects is

related to a linear predictor using a link function g(.), where F (.) = g−1(.) is the inverse

link function, also called the mean function. In other words, although the mean is not

directly a linear combination of predictors, some function of the mean is. We now show

general models for the three data structures explained in the previous subsection.

For a dataset with one level of nesting analogous to Figure 1.3, where level one has

Table 1.1: The relationship between four types of linear models, where LM refers to

linear models, GLM refers to generalised linear models, LMM refers to linear mixed

models and GLMM refers to generalised linear mixed models.

Response is normally
distributed

Response is not
normally distributed

Fixed e↵ects only LM GLM

Fixed and random e↵ects LMM GLMM
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m groups and ni measurements in each group, assuming the e↵ect of each group is

normally distributed and the distribution of the response yij conditional on the random

e↵ects is from an exponential family f , the mixed model has the general form

yij |ui

ind.∼ f
(
F (yij |ui)

)
, ui

ind.∼ N(0dR ,Σ),

1 ≤ i ≤ m, 1 ≤ j ≤ ni. (1.16)

The linear predictor is related to the expected value of the response by the link function

F

g
(
E(yij |ui)

)
= ⌘ij , where E(yij |ui) = F (⌘ij).

For the one level mixed model the linear predictor is

⌘ij = β
#
x
F
ij + u

#
i x

R
ij ,

where xF
ij
is a dF×1 vector of predictors modelled as having fixed e↵ects with coe�cient

vector β, and x
R
ij

is a dR×1 vector of predictors modelled as having random e↵ects with

coe�cient vectors ui. Note, when the first entry of xF
ij
or xR

ij
equals 1, it corresponds

to including a fixed or random intercept respectively.

For a dataset with two levels of nesting analogous to Figure 1.4, consisting of m

outer groups, ni inner groups in each outer group, and oij measurements each in each

inner group, assuming the random e↵ects uL1
i

of the inner group and u
L2
ij

of the outer

group are independent and identically distributed as normal, and the distribution of

the response yijk conditional on the random e↵ects is from an exponential family f , the

mixed model has the general form

yijk|uL1
i
,uL2

ij

ind.∼ f
(
F (yij |uL1

i
,uL2

ij
)
)
,

u
L1
i

ind.∼ N(0dR1 ,ΣL1) independently of u
L2
ij

ind.∼ N(0dR2 ,ΣL2),

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij . (1.17)

The linear predictor is related to the expected value of the response by the link function

F

g
(
E(yijk|uL1

i ,uL2
ij )

)
= ⌘ijk where E(yijk|uL1

i ,uL2
ij ) = F (⌘ijk).

For the two level mixed model the linear predictor is

⌘ijk = β
#
x
F
ijk

+ (uL1
i )#xR1

ijk
+ (uL2

ij )
#
x
R2
ijk

,

where xF
ijk

is a dF×1 vector of predictors, modelled as having fixed e↵ects with coe�cient

vector β, xR1
ijk

is a dR1 × 1 vector of predictors modelled as having random e↵ects from
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the outer groups with coe�cient vectors uL1
i
, and x

R2
ijk

is a dR2 × 1 vector of predictors

modelled as having random e↵ects from the inner groups with coe�cient vectors uL2
ij
.

Note, when the first entry of xF
ijk

, xR1
ijk

or xR2
ijk

equals 1, it corresponds respectively to

including a fixed or random intercept for the outer or inner groups.

For a dataset with crossed levels of nesting analogous to Figure 1.5, consisting

of two levels of m and m′ groups, with observations indexed according to the pair

(i, i′) ∈ {1, . . . ,m}× {1, . . . ,m′}, and nii0 observations in the (i, i′) pair, assuming the

random e↵ects of each level denoted by ui and u
′
i0 are independent and identically

distributed as normal, and the distribution of the response yii0j conditional on the

random e↵ects is from an exponential family f , the crossed mixed model has the general

form

yii0j |ui,u′
i0

ind.∼ f
(
F (yii0j |ui,u′

i0)
)
,

ui

ind.∼ N(0dR ,Σ) independently of u
′
i0

ind.∼ N(0
dR

0 ,Σ′),

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 . (1.18)

The linear predictor is related to the expected value of the response by the link function

F

g
(
E(yii0j |ui,u

′
i0)
)
= ⌘ii0j where E(yii0j |ui,u

′
i0) = F (⌘ii0j).

For the crossed mixed model the linear predictor is

⌘ii0j = β
#
x
F
ii0j + u

#
i x

R
ii0j + (u′

i0)
#
x
R0
ii0j ,

where x
F
ii0j is a dF × 1 vector of predictors, modelled as having fixed e↵ects with

coe�cient vector β, xR
ii0j is a dR × 1 vector of predictors modelled as having random

e↵ects from the groups of the first level with coe�cient vectors ui, and x
R0
ii0j is a dR

0 × 1

vector of predictors modelled as having random e↵ects from the groups of the second

level with coe�cient vectors u′
i0 . Note, when the first entry of xF

ii0j , x
R
ii0j or xR0

ii0j equals

1, it corresponds respectively to including a fixed intercept, or a random intercept for

the first or second groups.

Although other choices exist, selecting the link function F as the canonical link

for the conditional response distribution f is a good default and provides a number of

desirable properties. We now present distributions and link functions for binary and

count response data on an arbitrary model structure. The distributions and links that

follow can be applied to the random e↵ects structures presented.
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1.8.1 Binary response models

When dealing with binary response variables where y ∈ {0, 1}, it is common to

assume the response is Bernoulli distributed where

y|u ∼ Bernoulli
(
F (⌘)

)
.

For binary outcomes, several popular inverse link functions exist, however we focus on

two:

F =





expit logistic inverse link,

� probit inverse link

where expit and � are defined in Section 1.5.2. The expit inverse link (inverse of the

logit link) function is the most frequently used link when modelling binary data. It

a↵ords an elegant log-odds model interpretation as well as algebraic simplifications

due to it being the canoncial link of the Bernoulli distribution. Although Probit links

often facilitate more tractable solutions, their model coe�cients do not have a direct

interpretation in the same way that logit links do, and inference is restricted. As a side

note, although special cases of grouped data with responses proportional to the number

of observations per group exist, they are uncommon and as such are not discussed in

this thesis.

1.8.2 Count response models

When modelling count variables where y ∈ Z≥0, two models are commonly used.

The Poisson model assumes the response is from a Poisson distribution as

y|u ind.∼ Poisson
(
F (⌘)

)
,

where the inverse link is the canonical function F = exp. As Poisson distributed

variables are constrained to have an equal mean and variance, it is not appropriate for

over-dispersed data where the variance is greater than the mean.
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The negative binomial model is similar to the Poisson model but includes an

additional parameter  to account for over-dispersed data. It can be written as

y|u ind.∼ NB
(
F (⌘),

)
,

where as before the inverse link is the canonical function F = exp. As the shape param-

eter  → ∞ the negative binomial distribution converges to the Poisson distribution.

1.9 Maximum likelihood

1.9.1 Likelihood functions

The likelihood of a model is the probability of observing the data given parameter inputs.

It is a function of the parameters where random variables are fixed at the observed

values. For a statistical model with probability density function f(y) for data y and

unknown parameters θ, the likelihood function is equivalent to the probability density

function of the observed data y,

L(θ; y) = f(y;θ),

with a log-likelihood function given by (Collins, 200816)

`(θ; y) = logL(θ).

In the case of m independent observations of yi

`(θ; y) =
m∑

i=1

log f(yi;θ).

Note that by using the log-likelihood we sum over the independent observations as

opposed to taking their product, which helps reduce numerical instability.

For the general one level model given in equation (1.16), the joint log-likelihood

function for parameters β and Σ is

`(β,Σ) =
m∑

i=1

log

∫

RdR

ni∏

j=1

p(yij |ui;β)p(ui;Σ)dui,



1.9. MAXIMUM LIKELIHOOD 24

where

p(yij |ui;β) = f
(
F (yij |ui)

)
and p(ui;Σ) = N(0dR ,Σ).

For the general two level model given in equation (1.17), the log-likelihood for the

parameters (β,ΣL1,ΣL2) is

`(β,ΣL1,ΣL2) =
m∑

i=1

log

∫

RdR1+dR2

ni∏

j=1

oij∏

k=1

p



yijk
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For the general crossed random e↵ects model given in equation (1.18), the log-

likelihood for the parameters (β,Σ,Σ′) may be written as

`(β,Σ,Σ′) = log

∫

RmdR+m0dR0

∏

(i,i0):nii0>0

nii0∏

j=1

p



yii0j

∣∣∣∣∣
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1.9.2 Maximum likelihood

Parameters at the peak of a likelihood function hypersurface can be interpreted as

those that give the maximum probability of observing the data obtained under the

fitted model. This process forms a frequentist probablistic framework called maximum

likelihood estimation. By taking L(θ|y) as a function of θ, the goal of maximum

likelihood estimation is to return the parameters that maximise the L(θ|y) (denoted by

θ̂).

Generally, maximum likelihood estimates can be solved by di↵erentiating the likeli-

hood function with respect to parameters and solving to find the root. The maxima

of the likelihood and log-likelihood are equivalent, although as mentioned it is often

preferable to work with the log-likelihood for several reasons. As such, the maximum

likelihood estimates are given by

d`

dθ

∣∣∣
✓=✓̂

= 0d.

Maximum likelihood estimates are consistent and asymptotically normally distributed,

with mean equal to θ and variance equal to the inverse Fisher information (McCulloch,

Searle & Neuhaus, 200841),

θ̂ ∼ N
(
θ, I(θ̂)−1

)
.

Two important issues arise from this. Firstly, the range of parameters being estimated

must be considered. Specifically, in the case of variance parameters which occur only on

the positive real number line, the search space must be constrained. Second, analytic

solutions are not always tractable or practical to obtain. For models with parameters of

varying dimensions derivative free options become more appealing.

1.10 Best prediction

GLMMs are often used for predicting values of random e↵ects, despite the fact they are

unobservable. The best predictor (BP) is the predictor with the lowest mean squared

error. That is, for an arbitrary GLMM with data yij , the best predictor of the random

e↵ect ui is

BP(ui) ≡ argmin
ui∈R

E
[(
ui − u

)2]
.
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It is straightforward to show the best predictor is the average of the random e↵ect

(Scott, Simono↵ & Marx, 201360)

BP(ui) = E(ui|yij).

This can be calculated using the conditional specification

BP(ui) =

∫

RdR
ui

(
f(yij |ui)f(ui)∫

RdR f(yi|ui)f(ui)

)
dui.

McCulloch & Neuhaus (2012)42 show prediction accuracy measured by mean square

error is robust to moderate violations of the assumed random e↵ects distribution. This

suggests that for prediction, inference is relatively immune to variations of assumptions.

Since it is di�cult to confirm whether or not the assumptions of the random e↵ects

distribution are met, this attribute of best predictors is extremely useful.

A number of prediction schemes such as best linear predictors and best linear

unbiased predictors. Best linear predictors are useful when the full PDF is not available

as it only requires the first and second order moments. Unlike best predictors, restrictive

assumptions are imposed in best linear predictors to minimise the mean squared error.

Although these assumptions may result computation of results, they also ensure that

best linear predictors never has a smaller mean squared error than best predictors. Best

linear unbiased predictors are a subclass of best linear predictors, and as such their

mean squared error never has a smaller mean squared error than best linear predictors.

Sections 2 to 3 of Teunissen (2007).63 provide a good overview of the di↵erences between

predictors and we refer interested readers there.

1.11 Current approximation methods

The integrals involved with calculating the likelihood surface and best predictors of

GLMMs do not have tractable solutions. In the frequentist GLMM setting the two

standard approaches to solving intractable integrals are Laplace approximations and

Gauss-Hermite quadrature. We now provide a brief overview of each method.
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1.11.1 Laplace approximation

Laplace approximations were established in 1774 and have since gone on to become a

fundamental technique in mathematics and statistics. These approximations are in e↵ect

a second order Taylor series approximation around the maximum of the function to be

approximated. This approximation allows the integral to be expressed as a Gaussian

distribution with an analytic solution.

Consider an integrals of the form

I(x) =

∫
b

a

exp
(
f(x)

)
dx,

where the function f(x) has a maxima at x0 such that a < x0 < b and f ′′(x0) < 0. A

second order Taylor expansion of f(x) around x0 is

f(x) ≈ f(x0) + (x− x0)f
′(x0) +

1

2
(x− x0)

2f ′′(x0).

Since f ′(x0) = 0

f(x) = f(x0)−
1

2
(x− x0)

2
(
− f ′′(x0)

)
.

It can be seen that exp
(
f(x)

)
is expressible as a normal density function with mean x0

and variance −f ′′(x0)−1. Given the assumptions imposed on f(x)

∫
b

a

exp
(
f(x)

)
dx ≈ exp

(
f(x0)

) ∫ b

a

exp

(
(x− x0)2

2f ′′(x0)−1

)
dx.

When the integral on the right side of the previous equation is evaluated between −∞
and ∞ it becomes a Gaussian integral, thus

∫
b

a

exp
(
f(x)

)
dx ≈ exp

(
f(x0)

)√
−2⇡f ′′(x0).

For an arbitrary GLMM with log-likelihood function of parameters θ

`(θ) =
m∑

i=1

`i(θ)

where

`i(θ) =

∫

RdR

ni∏

j=1

f(yij |ui)f(ui)dui,



1.11. CURRENT APPROXIMATION METHODS 28

the integral can be expressed as

`i(θ) =

∫

Rd
exp

{
ni∑

j=1

log
(
f(yij |ui)f(ui)

)
}
dui

=

∫

Rd
exp f̃(ui)dui,

where

f̃(ui) =
ni∑

j=1

log f(yij |ui)f(ui).

It can subsequently solved as shown above. Laplace approximation provides fast inference

for GLMMs, performing well in cases where the number of observations of each group

is large, i.e. large ni. However, they are less accurate in cases where the number of

observations of each group are low and the random e↵ects have high variance. As such,

it is worthwhile considering alternative approximation methods.

1.11.2 Gauss Hermite quadrature

Perhaps the simplest and most robust method of numerical integration, quadrature

facilitates an approximate calculation of definite integrals. Gauss-Hermite quadrature

(GHQ) approximates definite integrals from the normal family or with a log-quadratic

factor by a weighted sum. For polynomials of degree 2m− 1 GHQ provides an exact

result or less over the domain [−1, 1] by focusing on selection of m optimal nodes xi.

Each node corresponds to the roots of an mth order Hermite polynomial Hm(x) and

is accompanied by a weight wi defined by the Gauss-Hermite weight function (Liu &

Pierce, 199436)

wi =
2m−1m!

√
⇡

m2
(
Hm−1(xi)

)2 .

The nodes are symmetric about zero, where the range increases with m. The integral is

then computed as the weighted sum of function values f(xi) at these points

∫ ∞

−∞
f(x)�(x)dx =

m∑

i=1

wif(xi).

Note, that since Gaussian quadrature works over the domain [−1, 1], a change of interval

is required from [a, b]. Implementation of the Gaussian quadrature rule suggests the
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integral can be approximated as follows

∫
b

a

f(x)�(x)dx ≈ b− a

2

n∑

i=1

wif

(
b− a

2
xi +

a+ b

2

)
.

Adaptive quadrature follows a similar process to the one for traditional quadrature,

however also implements an accuracy criterion based on the di↵erence between two

subintervals. If a large discrepancy exists between two intervals (i.e. there is a large

amount of error between them), the subinterval is re-divided into two smaller subintervals

and recalculated. It is this process which improves the accuracy of adaptive quadrature

over traditional methods for poorly behaved functions. Additionally, the computational

burden of this refinement process is reduced by implementing the accuracy criterion

only when needed for smaller subintervals. The R function “integrate()” in the

“stats” package allows for easy implementation of the adaptive quadrature via the

Gauss-Kronrod method. Gauss-Kronrod quadrature extends Gaussian quadrature by

adding n + 1 points to an n-point rule, such that the resulting rule is a polynomial

of degree 2n + 1. As such, a set of function evaluation points can be created, where

the extra points (corresponding to the Kronrod extension) allow the computation of

higher-order estimates, and the function values at the set points (corresponding to the

Gaussian quadrature rule) provide lower-order estimates. The di↵erence between these

values forms the accuracy criterion previously discussed.

A major advantage of GHQ over other methods of quadrature is that once weights

and nodes are calculated they can be stored to reduce computational costs of future

calculations. For GLMMs the complexity of GHQ increases with the dimension of

random e↵ects. It additionally becomes inaccurate if the dimension of the random

e↵ects is greater than two due to limitations in the method used to factorise the high-

dimensional integrals into a lower-dimensional one. As such it is not suitable for crossed

models and models with more than two levels (Handayani, et al., 201727).

1.11.3 Other methods

In addition to the previous a number of other methods exist. Penalised quasi-likelihood

(PQL) (Breslow & Clayton, 199311) is one of the most popular and high speed methods

for handling the di�cult integrals arising in GLMMs. PQL is useful in cases where we

are missing information regarding the distribution of data and as such cannot obtain a

full likelihood function, in which case a quasi-likelihood function can be used with a
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penalty on the random e↵ects component. The penalty ensures values of the random

e↵ects have a mean of zero. Laplace approximation can then be used to solve the

intractable integral which arises. Although it provides fast inference and is robust to

model misspecification it is not accurate and provides biased estimates when there is

little data per group, such as in binary or low count data cases. More importantly, PQL

calculates a quasi-likelihood rather than the true likelihood and as such may not be

appropriate in situations where likelihood ratio testing is implemented.

Although traditional methods such as Markov chain Monte Carlo provide highly

reliable estimates of intractable integrals for Bayesian models, there is little literature

regarding implementation in a frequentist framework. Lele, et al. (2007)35 present

a reformulation of Markov chain Monte Carlo, known as data cloning, which allows

maximum likelihood and confidence interval calculation. This method involves building

a fully specified Bayesian model of the problem with uninformative priors and creating

a large number of copies of the data which are assumed to be independent. The

posterior is then calculated with the usual Markov chain Monte Carlo approach and

the likelihood over the copies is used as the data. The mean of the resulting posterior

distribution is equal to the maximum likelihood estimate and the number of copies times

the variance of the posterior is equal to the variance of maximum likelihood estimate.

Unlike GHQ and Laplace approximation, it easily extends to consider multiple random

e↵ects. However, this approach involves several di�cult technical details. Additionally,

although heuristic framework for data cloning exist, current software packages do not

yet support the looping facility required for its fitting. Furthermore, it is not widely

proven and still bares inherent issues of Markov chain Monte Carlo algorithms such as

being computationally intensive.

1.12 Expectation propagation

Expectation propagation (EP) is a Bayesian iterative algorithm used for the com-

putation of intractable posterior distributions. While Opper & Winther (2000)52 first

provided the scheme for Gaussian approximating families, Minka (2001)43 provided

the generalised scheme of the EP algorithm for all exponential families. EP is a

reinterpretation of assumed density filtering (Opper, 199951) such that the posterior

approximation is no longer dependent on the order of data. Although this makes EP
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more computationally intensive than assumed density filtering, EP is more accurate

and consistent. Both algorithms are examples of mean field approximations (a common

type of variational inference). These algorithms rely on approximating intractable

posteriors by selecting approximate densities from tractable families by minimising a

distance measure. This divergence measure and the choice of approximating density

family di↵erentiate methods of mean field approximations. The Kullback Leibler (KL)

divergence is a popular distance measure used in mean field approximations, which we

now explain.

1.12.1 Kullback Leiber divergence and projection

The KL divergence is defined as a measure of distance between two density functions

f1 and f2 such that

KL(f1‖f2) =
∫

Rd
f1(x) log

(
f1(x)

f2(x)

)
+ f2(x)− f1(x)dx, (1.19)

where both densities are on Rd. In other words, a KL divergence of zero indicates the

two density functions are identical. The two rightmost terms of equation (1.19) are a

correction factor for unnormalised densities, thus in the case of normalised densities the

KL divergence can be simplified to

KL(f1‖f2) ≡
∫

Rd
f1(x) log

(
f1(x)

f2(x)

)
dx.

By Gibb’s inequality it can be shown that KL(f1‖f2) ≥ 0. It is also easy to show that

KL divergence is an asymmetric measure where KL(f1‖f2) /= KL(f2‖f1).

The KL projection of the density function f onto a family Q is defined as the

distribution q closest to f in the family of density functions Q,

proj[f ] ≡ argmin
q∈Q

KL(f‖q). (1.20)

This is a di�cult problem to solve without placing any constraints on the family Q.

However, by constraining Q to be an exponential family density function the problem is
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simplified to moment-matching. Suppose

Q =
{
q : q(x) = exp

(
T (x)#η −A(η)

)
h(x), η ∈ H

}
.

Then projection of f onto q is solved by

proj[f ] = exp
(
T (x)#η∗ −A(η∗)

)
h(x),

where η
∗ is

η
∗ = argmin

⌘∈H

(
A(η)− η

#
∫ ∞

−∞
T (x)f(x)dx

)
.

However, since we are working with the exponential family, it can be shown that the

derivative vector of A(η) equates to the expectation of the natural statistic and thus η∗

is the solution to

∫ ∞

−∞
T (x)f(x)dx =

∫ ∞

−∞
T (x) exp

(
T (x)#η −A(η∗)

)
h(x)dx.

That is, η∗ is chosen such that f and proj[f ] have the same natural statistic moments.

When the approximating family is Gaussian, Result 1 of Kim & Wand (2016)31 follows:

Result 1. Let x be a non-degenerate random variable with density function f . The KL

projection of a density function f onto the normal family, denoted by projN [f ], is the

N
(
µ∗, (�2)

∗)
density function where

µ∗ = E(x) and (�2)
∗
= E(x2)−

(
E(x)

)2
.

Result 1 is easily extended to the multivariate normal distribution as in Result 2. That

is, the projection is chosen to be the d-variate normal density function with the same

mean vector and covariance as f (Kim & Wand, 201768).

Result 2. Let x be a non-degenerate random variable with density function f . The

KL projection of a d-variate density function f onto the multivariate normal family,

denoted by projN [f ], is the N(µ∗,Σ∗) density function where

µ
∗ = E(x) and Σ∗ = E(xx#)− E(x)E(x)#.
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1.12.2 Mean field approximations

We now provide a brief overview of mean field approximations and how popular

variational methods such as mean field variational Bayes and belief propagation are

related to EP. For observed data x and parameter vector θ consider approximations to

the joint posterior density function f(θ|x) of the form

f(θ|x) ≈ q∗(θ),

where q∗(θ) =
∏

m

i=1 q
∗(θi) and (θ1, ...,θm) is a partition of θ and the q∗(θi)s are chosen

to minimise the KL divergence of f(θ|x) from a product density over the elements of

the partition, that is

q∗(θ) = argmin
q∈Q

KL

( m∏

i=1

q(θi)‖f(θ|x)
)
. (1.21)

The optimisation problem in equation (1.21) corresponds to mean field variational Bayes.

This leads to a mode seeking approximation, where q∗(θ) is selected by maximising the

probability of being under f(θ|x). As such, all samples from q∗(θ) will lie within a

mode of f(θ|x). Belief propagation is motivated by reversing the KL divergence that

drives mean field variational Bayes, i.e.

q∗(θ) = argmin
q∈Q

KL

(
f(θ|x)‖

m∏

i=1

q(θi)

)
. (1.22)

By reversing the direction of KL divergence, q∗(θ) is selected by maximising the

probability of f(θ|x) being under q(θi). As such, the optimal approximate distribution

q∗(θ) will cover all modes of f(θ|x). The di↵erence in the approximation resulting from

the di↵erent directions of KL divergence is illustrated in Figure 1.7. The mean seeking

approximation that arises can be solved by a moment matching problem. However,

this problem has the potential to become unboundedly complex. As mentioned before,

one way to control the complexity of projections required is to restrict approximating

factors to be in an exponential family. Both ADF and EP use the same direction of KL

divergence as belief propagation, but constrain the approximating distributions to be

from the exponential family to aid their implementation.
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Figure 1.6: Plot comparing density estimates using both directions of the KL divergence.

The approximating density was Gaussian and the target density was a mixture of two

Gaussians.

1.12.3 Expectation propagation

We now explain the general EP schematic, re-iterating points previously made in

this section. For m independent data points xi where i ∈ {1, ...,m} and latent variable

u consider an intractable posterior

p(u|x) = p0(u)
∏

m

i=1 p(xi|u)∫
p0(u)

∏
m

i=1 p(xi|u)du

= Z−1p0(u)
m∏

i=1

p(xi|u), (1.23)

where

p(xi|u) = fi(u), p0(u) = f0(u), Z =

∫
p0(u)

m∏

i=1

p(xi|u)du,

and f0(u) is a member of the exponential family. Note the posterior in equation (1.23)

is proportional to

p(u|x) ∝ f0(u)
m∏

i=1

fi(u).

We wish to obtain a global approximation of the posterior with a density q selected
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from the exponential family (denoted by Q)

q(u) ∝
m∏

i=0

qi(u),

where q0(u) = f0(u). The optimal global approximation is the density which minimises

the KL divergence to the posterior

q∗(u) = argmin
q∈Q

KL
(
p(u|x)

∥∥q(u)
)
.

Since the approximating density family is selected to be exponential, finding the optimal

approximation reduces to a simple moment matching problem. This moment matching

problem is not feasible over the whole posterior, so we instead conduct it on each site.

The product of these site approximations is equivalent to the approximation over the

whole posterior. As such, our goal is to find an approximation qi(u) which minimises the

KL divergence over a site of the likelihood factor p(xi|u). In other words, we require the

KL projection of a site of our target distribution onto the approximating density family.

However, as the target distribution is outside the exponential family space, we instead

use a tractable hybrid distribution hi(u) that lies in between the target distribution and

the approximating distribution, as shown in Figure 1.7. Each hybrid distribution (also
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Figure 1.7: Visualisation of the EP process (Barthelme, 2016
3
). The hybrid approxi-

mations are marked with triangles, the approximations are marked with cricles and the

target density is marked with a star.

called tilted distribution) is found by removing an approximating site from the global

approximation (removing the ith site forms a cavity distribution denoted by q−i(u))

and replacing it with the equivalent true likelihood site. Formally the ith hybrid is

hi(u) = fi(u)q−i(u),
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where the ith cavity distribution q−i(u) is given by

q−i(u) =
m∏

i0 *=i

qi0(u).

We can now project this hybrid to the approximating family by computing the moments,

which results in a new approximation of the whole posterior with features of the hybrid

qnew(u) = proj[hi(u)].

In the special case where the approximating family is Gaussian this problem simplifies

to finding the mean, variance and normalising factor of the hybrid distribution. Using

the new global approximation of the posterior we must now update the site qi(u) such

that qi(u)q−i(u) has the same moments as the hybrid distribution, i.e.

qnewi (u) =
qnew(u)

q−i(u)
.

We hope that by iterating projections of the hybrid distributions onto the exponential

family space and updating each qi(u), we find a stationary point which minimises

the KL distance to the target density, as shown in Figure 1.7. At this point a global

approximation to the posterior can be obtained by taking the product of the partitions,

q(u) =
m∏

i=0

qi(u).

This process forms the EP algorithm, and is presented explicitly in Algorithm 1. By using

natural parameters further simplification is available, where the optimal parameters are

found by linear algebra.
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Algorithm 1 A generalised version of the EP algorithm.

Initialise: by setting q(u) =
∏

m

i=0 qi(u), q0(u) = f0(u) and for 1 ≤ i ≤ m, qi(u) = 1.
Cycle: Pick i = 1, ...,m:

Remove qi(u) from q(u) to get the cavity distribution q−i(u),

q−i(u) ∝
m∏

i0 *=i

qi0(u). (1.24)

Update the tilted distribution by replacing the approximating likelihood qi(u) by
the exact one fi(u),

hi(u) = fi(u)q−i(u).

Project hi(u) back to the exponential family

qnew(u) = proj
[
hi(u)

]
.

Update the approximate terms

qnewi (u) ∝ qnew(u)

q−i(u)
(1.25)

until all qi converge.
After convergence is reached obtain a tractable approximation from

q(u) =
m∏

i=0

qi(u).

1.12.4 Message passing

Minka (2005)44 streamlines EP and other variational inference algorithms into a

framework known as message passing, which allows significant algebraic and computa-

tional simplifications for large factor graphs. In this section we focus on the message

passing approach for simple EP models and refer interested readers to Minka (2005)44

for other variational methods.

A message is simply a function defined by a factor node that takes a subset of

parental stochastic nodes as an input. The EP problem of obtaining a KL projection

onto the required exponential family can be solved in terms of messages passed between

neighbouring nodes of a relevant factor graph. Since the approximating family is

constrained to be exponential, the messages can be expressed in natural parameters.
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Let fi, 1 ≤ i ≤ m denote factor nodes and u denote a stochastic node that corresponds

to a latent variable. For the models presented in this thesis, the neighbours of any ith

factor node are the stochastic node u. Kim & Wand (2016)31 provide additional details

for larger models. Given the latent variable u and observed data x the joint density

function can be written as

p(u,x) =
m∏

i=1

fi(u).

For the simple factor graphs presented in this thesis, the message passing EP algorithm

can be reduced to updating messages from the stochastic node to factor node as

mu→fi(u) ←−
m∏

i0 *=i

mfi0→u(u), (1.26)

and updating the message from the factor to stochastic node as

mfi→u(u) ←−
proj

[
Z−1mu→fi(u)fi(u)

]

mu→fi(u)
, (1.27)

where Z is the normalising factor. In terms of the Algorithm 1, equation (1.26) for

message passing EP corresponds to forming the cavity distribution in equation (1.24),

and equation (1.27) corresponds updating the qi(u) approximation as in equation (1.25).

Once the messages have reached convergence, the KL optimal q-densities are obtained

via

q(u) ∝
m∏

i=1

mfi→u(u).

This process is presented consisely in Algorithm 2. Kim & Wand (2016)31 suggest using

relative change in the approximate marginal log-likelihood as a stopping criterion. We

refer readers there for further details.
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Algorithm 2 A generalised version of the message passing EP algorithm.

Initialise: by setting mfi→u(u) = 1, where 1 ≤ i ≤ m.
Cycle: Pick i = 1, ...,m:

Get the cavity distribution,

mu→fi(u) ←−
m∏

i0 *=i

mfi0→u(u).

Project the tilted distribution onto the exponential family and update the approx-
imate terms

mfi→u(u) ←−
proj

[
Z−1mu→fi(u)fi(u)

]

mu→fi(u)

until all mfi→u converge.
After convergence is reached obtain a tractable approximation from

q(u) =
m∏

i=1

mfi→u(u).

1.13 Thesis structure

We have now explained the background information required and from this point on

present novel research. Chapter 2 explores a simple model for the probit link where we

estimate only the variance parameter �2 i.e. (the model only has a random intercept).

Chapter 3 extends the work in Chapter 2 to the general case where there are multiple

fixed and random e↵ects. Chapter 4 applies the work of Chapters 2 and 3 to the

logistic link function. Chapter 5 continues from Chapter 3 by applying the work from

the previous chapters to count data with the Poisson link and the negative binomial

link. Chapter 6 explores models with crossed random e↵ects. Chapter 7 applies the

methodology implemented in this thesis to two real datasets, one provided by the

Australian Red Cross Blood Service. The thesis ends with a discussion and concluding

remarks in Chapter 8.
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Chapter 2

Expectation propagation for the
simplest one level probit mixed
model

In this chapter we develop methodology for frequentist inference of binary probit GLMMs

for the simplest random intercepts only model. Our goal is to approximate the maximum

likelihood of the parameter for variance between groups only (i.e. random intercepts

only model) with 95% confidence intervals. Since this model assumes only one source of

variance, a change in notation occurs from the covariance matrix ⌃ shown in Section

1.7, to the scalar variance �2. This model provides a good starting point for testing

new methodology since only one dimensional integrals are required, as opposed to the

integrals required for more complex models. Additionally, any di�culties caused by

matrices are negated. We trial various methods of calculating confidence intervals and

show how to obtain best predictors.

In this chapter, we assume a balanced dataset, where all m groups have the same n

number of observations in them. For observed values of

yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where yij ∈ {0, 1}, the probit binary mixed model form is

yij |ui
iid∼ Bernoulli

(
�(ui)

)
, ui

iid∼ N(0,�2), (2.1)

where ui is a scalar unobserved latent variable. The variance parameter likelihood can
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be expressed as

`(�2) =
m∑

i=1

`i(�
2),

where

`i(�
2) ≡ log

∫ ∞

−∞

n∏

j=1

�
(
(2yij − 1)ui

)
(2⇡�2)−1/2 exp(−u2i /2�

2) dui, (2.2)

and the best predictor of ui is

BP(ui) =

∫∞
−∞ ui

∏
n

j=1�
(
(2yij − 1)ui

)
exp(−u2

i
/2�2) dui∫∞

−∞
∏

n

j=1�
(
(2yij − 1)ui

)
exp(−u2

i
/2�2) dui

.

We denote the maximum likelihood estimate of �2 by

�̂2 = argmax
�2

`(�2).

Calculation of the maximum likelihood estimator and best predictor are complicated by

the intractable integral arising in equation (2.2). Each `i(�2) can approximated and

summed to obtain the full log-likelihood. Traditionally these univariate integrals are

solved using quadrature. We develop an EP scheme for estimating the likelihood surface

by approximating each `i(�2) and summing them to obtain the full log-likelihood. We

compare its performance to quadrature. Our aim is to show both methods provide

reasonable and similar estimates.

Details of the quadrature approach to estimating the likelihood surface are given in

Section 2.1. Our novel method using EP is explained in Section 2.2. Section 2.4 explores

di↵erent ways to obtain the maximum likelihood estimate and confidence intervals

for both our novel method and the quadrature approach. Details on obtaining best

predictors for this model are given in Section 2.5, before comparing the approaches of

likelihood estimation in a simulation study in Section 2.6.

2.1 Traditional quadrature likelihood approximation

Likelihood surface approximation by quadrature is easy to implement using software

such as the R function integrate() in the “stats” package (R Core Team, 201956) as

discussed in Section 1.11.2. However, one must be careful to avoid issues with numerical

instability. As such, we express the integrand in equation (2.2) as a function that attains
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a maximum value of 1 over u ∈ R, where the ith integral arising in each `i(�2) is

Ii(�
2) = exp

{
max
u0∈R

(
hi(u0)

)}∫ ∞

−∞
exp

{
hi(u)− max

u0∈R

(
hi(u0)

)}
du

and

hi(u) ≡
n∑

j=1

log�
(
(2yij − 1)u

)
− u2

2�2
.

The first and second derivatives of hi(u) are

h′i(u) =
n∑

j=1

⇣ ′
(
(2yij − 1)u

)
(2yij − 1)− u

�2

and

h′′i (u) =
n∑

j=1

⇣ ′′
(
(2yij − 1)u

)
− 1

�2
.

Assuming ⇣ ′′(x) < 0 for all x ∈ R, then h′′
i
(u) < 0 for all u ∈ R. From this fact,

• hi is a strictly concave function over R

• exp
(
hi(u)

)
is log-concave

• lim
u→−∞

h′i(u) = −∞ and lim
u→∞

h′i(u) = +∞.

As such, each `i(�2) of the likelihood is calculated as

1

2
log(2⇡�2) + `i(�

2) = h(u0i) + log

∫ ∞

−∞
exp

(
hi(ui)− hi(u0i)

)
dui,

where h′
i
(u0i) = 0 and the unique root u0i is found using a bisection search, where the

starting values are selected -1 and 1 to be for the lower and upper bounds respectively.

2.2 Expectation propagation likelihood approximation

We now propose a novel approach to likelihood approximation using EP (the log-

likelihood is denoted by s̀(�
2)) which is more amenable to cases involving higher

dimensional integrals than traditional quadrature routines. As discussed in Section

1.12.3, the EP approximation is motivated by minimisation of a KL divergence criterion

(see equation (1.19)), which selects an unnormalised normal density function to replace



2.2. EXPECTATION PROPAGATION LIKELIHOOD APPROXIMATION 43

each

�
(
(2yij − 1)ui

)
, 1 ≤ j ≤ n

in equation (2.2). Subsequently, the integrand is proportional to a product of univariate

normal density functions which have explicit forms in probit case. Furthermore, the

calculation of `(�2) requires only fixed point iteration, so there is no need for any

numerical integration. A major downfall of EP implementation is the high algebraic

overhead. We aim to minimise this by using message passing similar to Kim & Wand

(2017).32

Consider the family of unnormalised normal density functions written in exponential

family form,

fUN(x) = exp










1

x

x2





# 



⌘0

⌘1

⌘2










(2.3)

with natural parameters ⌘0, ⌘1 ∈ R and ⌘2 < 0. The goal of the EP problem is to

find the optimal natural parameters, ⌘∗0, ⌘
∗
1 and ⌘∗2, which minimise KL(finput ‖ fUN)

where finput ∈ L1. This solution is referred to as the KL projection onto the family of

unnormalised normal density functions, and is written as

projUN[finput](x) = exp










1

x

x2





#

η
∗






, (2.4)

where

η
∗ ≡





⌘∗0

⌘∗1

⌘∗2




,

(⌘∗0, ⌘
∗
1, ⌘

∗
2) = argmin

(⌘0,⌘1,⌘2)∈H
KL(finput ‖ fUN)

and H is the set of all allowable natural parameters. In the special case of KL projection

onto the unnormalised univariate normal family this problem simplifies further to

moment-matching, where (⌘∗0, ⌘
∗
1, ⌘

∗
2) is the unique vector that matches the zeroth, first

and second order moments of fUN and finput. For the case of probit binary GLMMs,
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EP requires repeated KL projections of the form

finput(x) = �(c0 + c1x) exp
(
⌘input1 x+ ⌘input2 x2

)
(2.5)

onto an unnormalised normal distribution, where c0 = 0, c1 = 2yij−1, x = ui, ⌘
input
1 ∈ R

and ⌘input2 < 0. As such, we seek η
∗ such that

∫ ∞

−∞
xk�(c0 + c1x) exp








 x

x2




#

η
input





dx =

∫ ∞

−∞
xk exp










1

x

x2





#

η
∗






dx. (2.6)

Consider Result 3.

Result 3. For an unnormalised input function f ∈ L1 such that f ≥ 0 for all x ∈ R,

where Cf ≡
∫
R f(x)dx, the projection onto the unnormalised normal family is

projUN[f ] = CfprojN[f/Cf ](x),

where projN is the projection onto the normal family.

By Result 3, obtaining the natural parameters η
∗ for projection onto the unnor-

malised normal family follows from obtaining the projection onto the normal family.

More explicitly, the optimal natural parameters, ⌘∗1 and ⌘∗2, are given according to

the projection of the normalised function finput/Cfinput onto the normal family. We

can subsequently use these optimal natural parameters to find the normalising natural

parameter ⌘∗0 via Result 4 and thus obtain the projection onto unnormalised normal

family.

Result 4. When the input density follows the form of equation (2.5), ⌘∗0 is given by

⌘∗0 = log(Cfinput)−A(⌘∗1, ⌘
∗
2)−

1

2
log(2⇡),

= log(Cfinput) + (⌘∗1)
2/(4⌘∗2) +

1

2
log(−⌘∗2/⇡).

Thus to obtain the required projection, we first obtain the optimal natural parameters

⌘∗1 and ⌘∗2 to project onto the normal family as is presented in Result 5.
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Result 5. Given f follows the form of equation (2.5), the projection onto the univariate

normal family is given by

projN[f ] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x)

where

η
input
−1 ≡



 ⌘input1

⌘input2



 , η
∗
−1 ≡



 ⌘∗1

⌘∗2



 = kprobit
(
η
input
−1 ; c0, c1

)
,

kprobit







 a1

a2



 ; c0, c1



 is defined in Definition 10 and T (x) and h(x) follow from

Section 1.5.2.1.

Definition 10. For primary scalar arguments a1 ∈ R and a2 < 0 and auxiliary scalar

arguments c0, c1 ∈ R, the function kprobit : H → H is given by

kprobit







 a1

a2



 ; c0, c1



 =



 r5(a1 + r3c1)

r5a2



 ,

with

r1 =
√
2(2− c21a

−1
2 ), r2 = (2c0 − c1a

−1
2 a1)r

−1
1 , r3 = 2⇣ ′(r2)r

−1
1 ,

r4 = −2⇣ ′′(r2)r
−2
1 and r5 = (a2 + r4c

2
1)

−1
a2.

Using Result 5 we now obtain the normalising natural parameter ⌘∗0 to find the projection

onto unnormalised normal family.

2.2.1 Projection onto the unnormalised normal family

Recalling the moment matching problem described by equation (2.6) and Result 4, the

normalising factor can be shown to be

Cfinput =

∫

R

finput(x) dx = (2⇡)−1/2 exp
(
A(ηinput)

)
�(r2),
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where r2 is given in Definition 10 and A(η) is defined in Section 1.5. By Result 4

⌘∗0 = log �(rinput2 ) +
1

4
(⌘∗1)

2/⌘2 −
1

4
(⌘input1 )2/⌘input2 +

1

2
log(⌘∗2/⌘

input
2 ).

To obtain ⌘∗0 we introduce the cprobit(a, b; c0, c1) function in Definition 11, for a =

[a1 a2]# and b = [b1 b2]#.

Definition 11. Consider first, primary scalar arguments a1, a2, b1 and b2, and auxiliary

scalar arguments c0 and c1. Then the function cprobit : H → R is given by

cprobit







a1

a2



 ,



b1

b2



 ; c0, c1



 ≡ log �(r2) +
1

4
b21/b2 −

1

4
a21/a2 +

1

2
log(b2/a2),

where r2 follows from Definition 10.

To summarise, the projection of the input function onto the unnormalised normal family

is obtained as in Result 6.

Result 6. For an unnormalised input function of the form of equation (2.5),

projUN [finput] = exp










1

x

x2





# 



⌘∗0

⌘∗1

⌘∗2










,

where

⌘∗0 = cprobit







 ⌘input1

⌘input2



 ,



 ⌘∗1

⌘∗2



 ; c0, c1





and 

 ⌘∗1

⌘∗2



 = kprobit







 ⌘input1

⌘input2



 ; c0, c1



.

Note the forms of these functions are useful in the next section where we show how to

organise the projections required.
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2.2.2 Message passing formulation

We now express the EP approximation of `(�2) using message passing updates as

presented in Kim & Wand (2017).68 Note each `i(�2) can be written as

`i(�
2) = log

∫ ∞

−∞

(
n∏

j=1

p(yij |ui)
)
p(ui;�

2)dui, (2.7)

where

p(yij |ui) ≡ �
(
(2yij − 1)ui

)
and p(ui;�

2) ≡ (2⇡�2)−1/2 exp
(
− u2i /(2�

2)
)

are respectively the conditional density function of each response given its random e↵ect

and the density function of the random e↵ect. The alternate expression

p(ui;�
2) = exp










1

ui

u2
i





#

η�2






, where η�2 ≡





−1
2 log(2⇡�

2)

0

−1/(2�2)




(2.8)

is more amenable to the message passing approach to follow and is also worth noting.

Using factor graphs (discussed in Section 1.6.2), Figure 2.1 visualises the dependence

structure of the product in equation (2.7), where the circular stochastic node corresponds

to the random vector ui and solid squares indicate the n+1 factor nodes. The dependence

of each factor node on the stochastic node ui is demonstrated through the edges.

uip(ui;�
2)

p(yi1|ui)

p(yin|ui)

Figure 2.1: Factor graph representation of the product structure of the integrand in

equation (2.7).

With this factor graph in place implementing EP is analogous to the Bayesian

approach in Minka (2005).44 As previously explained, the EP approximation of `i(�2)

is motivated by minimization of a KL divergence and imposition of exponential family
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constraints. Consider that

⇠
p(yij |ui) = exp










1

ui

u2
i





#

ηij






, 1 ≤ j ≤ n

is initialised such that ui is an unnormalised normal density function. Then for each

j = 1, ..., n, the ηij update requires minimisation of

KL



p(yij |ui)
(

n∏

j0 *=j

⇠
p(yij0 |ui)

)
p(ui;�

2)

∥∥∥∥∥

(
n∏

j0=1
⇠
p(yij0 |ui)

)
p(ui;�

2)



 (2.9)

as functions of ui. Thus we can use Result 6 to perform updates until convergence of

ηijs. Using Figure 2.1, EP can be compartmentalised by the notion of message passing

as shown in Section 4.1 of Minka (2005).44 First let us define messages passed from the

factor p(yij |ui) to ui as

mp(yij |ui)→ui
(ui) ≡ ⇠

p(yij |ui).

Messages from the factor p(yij |ui) to the stochastic node ui are updated by equation

(60) of Minka (2005),44 where ↵ = 1 and s′ = 1 (since the KL divergence we are working

with is unnormalised). Simplifications given we have one stochastic node result in the

following expression for equation (2.9),

mp(yij |ui)→ui
(ui) ←−

projUN

[
mui→p(yij |ui)(ui) p(yij |ui)

]
(ui)

mui→p(yij |ui)(ui)
, 1 ≤ j ≤ n. (2.10)

Similarly the update of message passed from p
(
ui;�2

)
to ui is

mp(ui;�2)→ui
(ui) ←−

projUN

[
mui→p(ui;�2)(ui) p(ui;�

2)
]
(ui)

mui→p(ui;�2)(ui)
. (2.11)

By equation (54) of Minka (2005)44 the updates of stochastic node to factor messages

are

mui→p(yij |ui)(ui) = mp(ui;�2)→ui
(ui)

n∏

j0 *=j

mp(yij |ui)→ui
(ui), 1 ≤ j ≤ n (2.12)

and

mui→p(ui;�2)(ui) =
n∏

j=1

mp(yij |ui)→ui
(ui). (2.13)
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We now seek any algebraic simplifications of the key messages. Recall that p(ui;�2)

can be written using natural parameters in the form of equation (2.8) and that the

unnormalised normal density constraint is enforced on equations (2.10) and (2.12). Then

mui→p(ui;�2)(ui) = exp










1

ui

u2
i





#

ηui→p(ui;�2)






. (2.14)

Substituting the above forms into equation (2.11) leads to

mp(ui;�2)→ui
(ui) ←−

projUN




exp










1

ui

u2
i





#

ηui→p(ui;�2)






exp










1

ui

u2
i





#

η�2










exp










1

ui

u2
i





#

ηui→p(ui;�2)






=

exp










1

ui

u2
i





#

ηui→p(ui;�2)






exp










1

ui

u2
i





#

η�2






exp










1

ui

u2
i





#

ηui→p(ui;�2)






= exp










1

ui

u2
i





#

η�2






.

This implies that the message mp(ui;�2)→ui
(ui) = p(ui;�2) is constant throughout the

message passing updates. As such, we now set

ηp(ui;�2)→ui
←− η�2 . (2.15)
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For convenience,

η
⊗ ≡ ηui→p(yij |ui).

Recall that from equation (2.14)

mui→p(yij |ui)(ui) = exp










1

ui

u2
i





#

η
⊗






= exp(⌘⊗0 ) exp
(
⌘⊗1 ui + ⌘⊗2 u

2
i

)
.

Substituting this into equation (2.10) leads to

mp(yij |ui)→ui
(ui) ←−

projUN

[
exp(⌘⊗0 ) exp(⌘

⊗
1 ui + ⌘⊗2 u

2
i
)�

(
(2yij − 1)ui

)]

exp(⌘⊗0 ) exp(⌘
⊗
1 ui + ⌘⊗2 u

2
i
)

=
exp(⌘⊗0 )projUN

[
�
(
(2yij − 1)ui

)
exp(⌘⊗1 ui + ⌘⊗2 u

2
i
)
]

exp(⌘⊗0 ) exp(⌘
⊗
1 ui + ⌘⊗2 u

2
i
)

=
projUN

[
�(c0 + c1ijui) exp(⌘

⊗
1 ui + ⌘⊗2 u

2
i
)
]

exp(⌘⊗1 ui + ⌘⊗2 u
2
i
)

,

where c0 = 0 and c1ij ≡ 2yij − 1. By utilising Result 6,

mp(yij |ui)→ui
(ui) ←− exp










1

ui

u2
i





#

ηp(yij |ui)→ui






, (2.16)

where the linear and quadratic coe�cient updates are

(
ηp(yij |ui)→ui

)
1:2

←− kprobit
(
η
⊗
1:2; c0, c1ij

)
− η

⊗
1:2 (2.17)

and the constant coe�cient update is

(
ηp(yij |ui)→ui

)
0
←− cprobit

(
η
⊗
1:2,

(
ηp(yij |ui)→ui

)
1:2

+ η
⊗
1:2; c0, c1ij

)
. (2.18)

Using the simplification of equation (2.10) and (2.11), equation (2.12) can be shown to
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be

mui→p(yij |ui)(ui) ←− exp










1

ui

u2
i





#

ηui→p(yij |ui)






, (2.19)

where

ηui→p(yij |ui) ←− ηp(ui;�2)→ui
+

∑

j0 *=j

ηp(yij0 |ui)→ui
.

The scheme of the message passing approach to EP can be summarised as in Section 6

of Minka (2005):44

1. Initialise all factor to stochastic node messages.

2. Cycle until convergence of all factor to stochastic node message:

For each factor:

(a) Compute the messages passed to the factor via equation (2.14) or equation

(2.19).

(b) Compute the messages passed from the factor via equation (2.15) or equation

(2.16).

The EP approximation to each log-likelihood ⇠̀i(�
2) component is given by

⇠̀i(�
2) = log

∫

R

(
n∏

j=1

mp(yij |ui)→ui
(ui)

)
mp(ui;�2)→ui

(ui)dui. (2.20)

The success of EP depends on each of the messages in equation (2.20) being an

unnormalised normal density. This allows results in a closed form solution to the
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integral as follows:

∫

R

(
n∏

j=1

mp(yij |ui)→ui
(ui)

)
mp(ui;�2)→ui

(ui)dui

=

∫

R

n∏

j=1

exp










1

ui

u2
i





#

ηp(yij |ui)→ui






exp










1

ui

u2
i





#

ηp(ui|�2)→ui






dui

= (2⇡)1/2 exp






(
η�2 +

n∑

j=1

ηp(yij |ui)→ui

)

0

+A





(
η�2 +

n∑

j=1

ηp(yij |ui)→ui

)

1:2









.

The full algorithm for the approximation of `(�2) using EP is provided in Algorithm 3.
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Algorithm 3 Explicit expression of the algorithm used for the message passing approach

to EP in the random intercepts only model.

Inputs: yij , xR
ij
, 1 ≤ i ≤ m, 1 ≤ j ≤ n; Σ(dR × dR, is symmetric and positive definite).

Set constants: c0 ←− 0, c1ij ←− 2yij − 1; 1 ≤ i ≤ m, 1 ≤ j ≤ n,

ηp(ui;�2)→ui
←− η�2 ≡





−1
2 log(2⇡�

2)

0

1/(2�2)



 , 1 ≤ i ≤ m. (2.21)

For i = 1, ...,m:
Initialise: ηp(yij |ui)→ui

∈ R, 1 ≤ j ≤ n as per equation (2.25).
Cycle:

SUM
(
ηp(yij |ui)→ui

)
←−

n∑

j=1

ηp(yij |ui)→ui

For j = 1, ..., n :
ηui→p(yij |ui) ←− ηp(ui;�2)→ui

+ SUM
(
ηp(yij |ui)→ui

)
− ηp(yij |ui)→ui

(
ηp(yij |ui)→ui

)
1:2

←− kprobit
((

ηui→p(yij |ui)

)
1:2

; c0, c1ij

)

−
(
ηui→p(yij |ui)

)
1:2

until all natural parameter vectors converge.
For j = 1, ..., n :

(
ηp(yij |ui)→ui

)
0
←− cprobit

((
ηui→p(yij |ui)

)
1:2

,

(
ηp(yij |ui)→ui

)
1:2

+
(
ηui→p(yij |ui)

)
1:2

; c0, c1ij

)
.

SUM
(
ηp(yij |ui)→ui

)
←−

n∑

j=1

ηp(yij |ui)→ui

Output: The full approximate log-likelihood is given by

s̀(�
2) =(m/2) log(2⇡) +

m∑

i=1

{(
η�2 + SUM

(
ηp(yij |ui)→ui

))

0

+A

{(
η�2 + SUM

(
ηp(yij |ui)→ui

))

1:2

}}
,

where A(η) is defined in equation (1.5) and η�2 follows from equation (2.21).
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2.2.3 Starting values for Algorithm 3

The EP message passing algorithm proposed relies on good starting values for conver-

gence. We now derive starting values for ηp(yij |ui)→ui
using a Taylor series expansion.

Note that

log p(yij |ui) = ⇣(aij)− log(2),

where aij ≡ (2yij − 1)ui and ⇣ is defined in Section 1.5.2.1. Let ûi be a Laplace

approximation to ui. Now consider the following Taylor series expansion of the data

dependent component of `(�2):

⇣(aij) = ⇣
(
âij + (ui − ûi)(2yij − 1)

)

= ⇣(âij) + (ui − ûi)(2yij − 1)⇣ ′(âij) +
1

2

(
(ui − ûi)(2yij − 1)

)2
⇣ ′′(âij) + ...

=





1

ui − ûi

(ui − ûi)2





#

qηij + ...,

where âij ≡ (2yij − 1)ûi and

qηij =





⇣(âij)

(2yij − 1)⇣ ′(âij)

1
2⇣

′′(âij)




.

It follows that the quadratic approximation to log p(yij |ui) based on Taylor expansion

about ûi is log qp(yij |ui) where

qp(yij |ui) ≡ exp










1

ui − ûi

(ui − ûi)2





#

qηij






. (2.22)

The starting value recommendation for ⌘p(yij |ui) is based on replacement of p(yij |ui) by
qp(yij |ui) in equation (2.15):

mqp(yij |ui)→ui
(ui) ←−

proj
[
mui→qp(yij |ui)(ui)qp(yij |ui)

]
(ui)

mui→qp(yij |ui)(ui)
= qp(yij |ui). (2.23)
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Note that in this case, since qp(yij |ui) is already univariate normal the projection is

superfluous. The starting values for ⌘p(yij |ui)→ui
that arises from this substitution is

exp










1

ui

u2
i





#

⌘start
p(yij |ui)→ui






= exp










1

ui − ûi

(ui − ûi)2





#

qηij






. (2.24)

By matching coe�cients of like terms it is easy to show

⌘start
p(yij |ui)→ui

=





⌘start0

(2yij − 1)⇣ ′(âij)− ⇣ ′′(âij)ûi

1
2⇣

′′(âij)




(2.25)

where

⌘start0 = ⇣(âij)− (2yij − 1)⇣ ′(âij)ûi +
1

2
⇣ ′′(âij)û

2
i .

Note that in Algorithm 3 ⌘start0 is not used in the cycle loop and thus can be set to

any arbitrary number without a↵ecting the algorithm. A good choice for ûi is Laplace

approximation. For the R computing environment, the function glmer() of the package

“lme4” (Bates, et al., 20185) provides fast Laplace approximation-based predictions for

the ui.

2.3 Evaluation of the estimates

Using R software, we implemented and compared the quadrature and EP approach to

calculating `(�2) and s̀
′(�2) respectively. Figure 2.2 shows estimates of the likelihood

surface for both methods. It demonstrates that they provide reasonable estimates of

the true value of �2 and that any di↵erences between them are extremely small. Having

shown equivalence of the methods with regard to estimating the likelihood function, we

now turn to methodology for estimation of its maximum with 95% confidence intervals.
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Figure 2.2: A comparison plot of the log-likelihood surface over the parameter �2
for

probit models calculated using univariate quadrature and EP. The true �2
value is

represented by the red line on the log scale and other lines follow the legend. The data

generated had a 30 groups with 5 responses per group and the true value of �2
was 0.09.

2.4 Computing point estimates and confidence intervals

The maximum likelihood estimator of the probit mixed model parameter �2 for the

quadrature and EP approach are respectively given by �̂2 = argmax
�2

`(�2) and ŝ�
2 =

argmax
�2

s̀(�
2). To find their stationary points we require the first derivative of the

likelihood functions `′(�2) and s̀
′(�2). Calculation of the second derivative (denoted

by `′′(�2) and s̀
′′(�2)) facilitates calculation of confidence intervals. Using the second

derivatives, we now show how to obtain confidence intervals.
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2.4.1 Confidence interval estimation

The overarching schematic for calculation of confidence intervals for both approximate

and exact approaches to estimating the �2 parameter are analogous so we show it only

for the exact case. Since the variance parameter �2 is constrained to be a positive

number it is more appropriate to work with the parameter in the transformed space

! ≡ log(�) =
1

2
log(�2) = g(�2).

Given the maximum likelihood estimator is asymptotically normally distributed, the

transfomed parameter estimate is

!̂ ∼ N

(
g(�2

true),
1

I
(
g(�̂2)

)

)
. (2.26)

Since

I
(
g(�̂2)

)
=

I(�̂2)
(
g′(�̂2)

)2 (2.27)

and g′(�2) = (2�2)−1, it follows

!̂ ∼ N

(
!true,

1

(2�̂2)2
(
− `′′(�̂2)

)

)
.

Thus for a 95% confidence interval we expect that

0.95 ≈ P



!̂ − 1.96√
(2�̂2)2

(
− `′′(�̂2)

) < !true < !̂ +
1.96√

(2�̂2)2
(
− `′′(�̂2)

)



 .

Setting

!low =
1

2
log(�̂2)− 1.96√

(2�̂2)2
(
− `′′(�̂2)

) and !upp =
1

2
log(�̂2)+

1.96√
(2�̂2)2

(
− `′′(�̂2)

) ,

the lower and upper 95% confidence intervals for parameter �2 are given by

�2
low = exp(2!low) and �2

upp = exp(2!upp).
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2.4.2 Derivative approximation

For the quadrature and EP approach to obtaining the �2 log-likelihood, there are

multiple methods by which the first and second derivatives can be obtained. These

solutions are either based on analytical or quasi-Newtown solutions to the derivatives

required.

Quasi-Newton methods negate the need to analytically compute the first and

second derivatives and can return the Hessian matrix for higher dimensional cases. We

implement both Nelder-Mead (NM) and Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithms for optimisation via the R function optim() in the “stats” package (R Core

Team, 201956). We can use unconstrained optimisation on log transformed �2, then

back transform to calculate confidence intervals. First we use the more robust NM

search to roughly locate the maxima, then refine it via a BFGS search. Using the BFGS

method for optimisation at the maxima via the optim() function has the additional

benefit of returning the second derivative. We initialise the NM algorithm using an

estimate for the optimal value �̂2 via Laplace approximation, which is provided by

the R function glmer() in the package “lme4” (Bates, et al., 2018).5 Implementation

in R of optimisation for both quadrature and EP approaches involves using a simple

wrapper function around the parameter to be optimised, such that optimisation is on

the unconstrained space.

The analytical solution may be available at a lower computational cost compared

to quasi-Newtown approaches, however are without doubt more algebraically intensive.

First, for the exact likelihood we let

Jsi(�
2) ≡ (2⇡�2)−1/2

∫ ∞

−∞
usi

n∏

j=1

�
(
(2yij − 1)ui

)
exp(−u2i /2�

2)dui,

where s ∈ {0, 1, 2, 3, 4, 5, 6}, such that

`(�2) =
m∑

i=1

log
(
J0i(�

2)
)
.

Then the first and second derivatives of the likelihood function can be shown to be,

`′(�2) =
1

2�4

( m∑

i=1

J2i(�2)

J0i(�2)
−m�2

)
(2.28)
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and

`′′(�2) =
1

4�8






m∑

i=1

{
J4i(�2)− 4�2J2i(�2)

J0i(�2)
−

(
J2i(�2)

J0i(�2)

)2
}

+ 2m�4





. (2.29)

In the quadrature case, each Jsi(�2) is computed individually before being summed

to compute the relevant derivative likelihood. To improve numerical stability we re-

implement the work in Section 2.1 to find the maximum value of the integral within

each Jsi(�2) and limit the range of values each integral can obtain to between 0 and 1,

i.e.

Jsi(�
2) ≡ (2⇡�2)−1/2

∫ ∞

−∞
usi exp

(
h(ui)− h(u0i)

)
dui exp

(
h(u0i)

)
, (2.30)

where h(x) and u0i are defined as in Section 2.1. Note that the exp
(
h(u0i)

)
term

becomes superfluous since all Jsi(�2) are calculated as ratios of other Jsi(�2). We use

a bisection search over the surface of `′(�2) to find the minimum and then compute

the confidence intervals as explained in Section 2.4.1. Figure 2.3 shows plots of the

likelihood and its first and second derivatives obtained via adaptive Gauss-Hermite

quadrature.

EP approximation of the maximum likelihood estimate ŝ�
2 benefits from letting

˜
Jsi(�

2) ≡ (2⇡�2)−1/2
∫ ∞

−∞
usi ˜
wi(ui) exp

(
− u2i /(2�

2)
)
dui,

where

˜
wi(u) ≡ exp










1

u

u2





#

SUM
(
⌘p(yi|ui)→ui

)






such that

˜
`(�2) =

m∑

i=1

log
(
˜
J0i(�

2)
)
.

Since
˜
wi(u) is proportional to a normal density function closed form solutions for the

integrals arising in
˜
`′(�2) and

˜
`′′(�2) exist as before. There are two di↵erent approaches

for obtaining EP approximations of
˜
Jsi(�2), which we now discuss.
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Figure 2.3: Plot of the `(�2) and its first two derivatives solved via adaptive Gauss-

Hermite quadrature. The red line represents the true �2 = 0.19, the light blue line is

the point where the first derivative cuts the x axis and the green line is analogous to the

light blue line for the second derivative. The number of groups was 30 with 5 responses

per group.
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2.4.2.1 Expectation propagation analytical approach I

The first approach involves directly approximating the
˜
Jsi(�2) via the natural parameters

passed in Algorithm 3. Consider that,

˜
Jsi(�

2) =

∫ ∞

−∞
us exp










1

u

u2





#

η
�
i






du,

where

η
�
i =





⌘�0i

⌘�1i

⌘�2i




≡ η�2 + SUM

(
ηp(yi|ui)→ui

)
(2.31)

and η�2 is defined in equation (2.8). Since ui is a normal random variable with natural

parameters ⌘�1i and ⌘�2i, we can write

˜
Jsi(�

2) = (2⇡)−1/2 exp
(
⌘�0iu+A(⌘�1i, ⌘

�
2i)

)
E(us),

where

E (us) = (2⇡)−1/2
∫ ∞

−∞
us exp

(
⌘�1iu+ ⌘�2iu

2 −A(⌘�1i, ⌘
�
2i)

)
du.

The integrals required for these expressions can be solved with closed form solutions.

Consider Result 7.
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Result 7. If x is a normal random variable with natural parameters ⌘1 and ⌘2, then

E(x) = − ⌘1
2⌘2

,

E(x2) =
⌘21
4⌘22

− 1

2⌘2
,

E(x3) =
3⌘1
4⌘22

− ⌘31
8⌘32

,

E(x4) =
⌘41

16⌘42
− 3⌘21

4⌘32
+

3

4⌘22
,

E(x5) =
5⌘31
8⌘42

− ⌘51
32⌘52

− 15⌘1
8⌘32

,

and

E(x6) =
⌘61

64⌘62
− 15⌘41

32⌘52
+

45⌘21
16⌘42

− 15

8⌘32
.

By Result 7,

˜
J0i(�

2) = (2⇡)−1/2 exp
(
⌘�0i +A(⌘�1i, ⌘

�
2i)

)
,

˜
J1i(�

2) = (2⇡)−1/2 exp
(
⌘�0i +A(⌘�1i, ⌘

�
2i)

)(
− ⌘�1i/(2⌘

�
2i)

)
,

˜
J2i(�

2) = (2⇡)−1/2 exp
(
⌘�0i +A(⌘�1i, ⌘

�
2i)

)(
(⌘�1i)

2 − 2⌘�2i
)
/
(
4(⌘�2i)

2
)

and

˜
J4i(�

2) = (2⇡)−1/2 exp
(
⌘�0i +A(⌘�1i, ⌘

�
2i)

){
(⌘�1i)

4 + 12⌘�2i
(
⌘�2i − (⌘�1i)

2
)}

/
(
16(⌘�2i)

4
)
.

To aid with simplification of the following calculations we introduce Result 8.

Result 8. When s = {1, 2, 4}, ratios of the form ˜
Jsi(�2)

˜
J0i(�2) can be simplified to

˜
J1i(�2)

˜
J0i(�2)

= −⌘�1i/(2⌘
�
2i),

˜
J2i(�2)

˜
J0i(�2)

=
(
(⌘�1i)

2 − 2⌘�2i
)
/
(
4(⌘�2i)

2
)
,

˜
J4i(�2)

˜
J0i(�2)

=
{
(⌘�1i)

4 + 12⌘�2i
(
⌘�2i − (⌘�1i)

2
)}

/
(
16(⌘�2i)

4
)
.
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Recalling the form of the exact expression from equation (2.28), we can implement an

EP approximation approach to the first derivative by replacing each Jsi with
˜
Jsi. This

leads to

˜
`′(�2) =

1

2�4

( m∑

i=1

˜
J2i(�2)

˜
J0i(�2)

−m�2

)
.

Analogously, the EP approximation approach to the second derivative can be obtained

by replacing each Jsi by
˜
Jsi in the `′′(�2) expression given in equation (2.29), such that

˜
`′′(�2) =

1

4�8






m∑

i=1

{

˜
J4i(�2)− 4�2

˜
J2i(�2)

˜
J0i(�2)

−
(
˜
J2i(�2)

˜
J0i(�2)

)2
}

+ 2m�4





.

In summary, at the end of Algorithm 2.2.3 when the natural parameters have

converged, they can be used to calculate the derivatives required. Algorithm 4 aims to

clarify this process.

Algorithm 4 Alteration of Algorithm 3 to calculate the log-likelihood of �2
and its first

and second derivatives via EP analytical approach I.

After convergence is reached of Algorithm 3, we can obtain s̀
′(�2) and s̀

′′(�2) by,

˜
`′(�2) =

1

2�4

( m∑

i=1

˜
J2i(�2)

˜
J0i(�2)

−m�2

)
,

˜
`′′(�2) =

1

4�8






m∑

i=1

{

˜
J4i(�2)− 4�2

˜
J2i(�2)

˜
J0i(�2)

−
(
˜
J2i(�2)

˜
J0i(�2)

)2
}

+ 2m�4






where the ratios of
˜
Jsi are defined in Result 8.

2.4.2.2 Expectation propagation analytical approach II

The second approach involves approximating each
˜
`′
i
(�2) and

˜
`′′
i
(�2) by finding the

required
˜
Jsi(�2) and then summing them to obtain the first and second derivatives of

the likelihood. As opposed to the previous approach where we project finput(x) (as

defined in equation (2.5)) onto the normal family, here we project it onto what we refer

to as the “power normal” family, which has the general form of

p(x) ∝ xs(2⇡�2)−1/2 exp
(
− (x− µ)2/(2�2)

)
, s ∈ {0, 2, 4}.
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As before, closed form solutions to the integrals required exist, however the algebra

neccessary becomes increasingly di�cult as s increases. Consider then, the following

family of unnormalised power normal density functions written in exponential family

form

fUN(x) = exp










xs

xs+1

xs+2





# 



⌘0

⌘1

⌘2










, (2.32)

with natural parameters ⌘0, ⌘1 ∈ R and ⌘2 < 0. Then as before, we wish to find

projUN[finput](x) = exp










xs

xs+1

xs+2





#

η
∗






, (2.33)

where

η
∗ ≡





⌘∗0

⌘∗1

⌘∗2





and

(⌘∗0, ⌘
∗
1, ⌘

∗
2) = argmin

(⌘0,⌘1,⌘2)∈H
KL(finput ‖ fUN).

For the first and second derivatives of probit binary GLMMs, EP requires repeated

projection of the form given in equation (2.5) onto an unnormalised power normal

distribution where ⌘input1 ∈ R and ⌘input2 < 0. Consider Result 9.

Result 9. For an unnormalised input function f ∈ L1 such that f(x) ≥ 0 for all x ∈ R

where Cf ≡
∫
R f(x)dx, the projection onto the unnormalised power normal family is

projUPN[f ] = CfprojPN[f/Cf ].

where projPN [.] is the projection onto the power normal family and projUPN [.] is the

projection onto the unnormalised power normal family.

As before, the optimal natural parameters ⌘∗1 and ⌘∗2 are given according to the

projection of the normalised function f/Cf onto the power normal family. We can

subsequently use these optimal natural parameters to find the normalising natural
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parameter ⌘∗0 via Result 4 and thus obtain the projection onto unnormalised power

normal family.

Result 10. When the input density follows the form of equation (2.5), projections onto

the power normal family ⌘∗0 is given by

⌘∗0 = log(Cf )−As(⌘
∗
1, ⌘

∗
2) + log hs(x),

where

As(⌘1, ⌘2) =
−⌘21
4⌘2

− 1

2
log (−2⌘2) + log

(
E(xs)

)
, hs(x) =

xs√
2⇡

and E(xs) is given by Result 7.

Thus to obtain the required projection, we first obtain the optimal natural parameters

⌘∗1 and ⌘∗2 to project onto the power normal family. To do this, first consider the

normalised approximation of the input density to be of the form

finput(x) = xs(2⇡�2)−1/2 exp
(
− (x− µ)2/(2�2)

)(
E(xs)

)−1
,

where

E(xs) =

∫ ∞

−∞
xs(2⇡�2)−1/2 exp

(
− (x− µ)2/(2�2)

)
dx

is used to normalise the unnormalised approximation of finput(x) from the power normal

family. Next note that using matrix notation and converting to natural parameters,

finput(x) = xs exp








 x

x2




# 

⌘1

⌘2



−
{
− 1

2
log (−2⌘2) + log

(
E(xs)

)
− ⌘21

4⌘2

}




(2⇡)−1/2.

As in the proof of Result 5, this can be expressed as

finput(x) = exp
(
T (x)#η−1 −As(η−1)

)
hs(x),

where

T (x) ≡



 x

x2



 , hs(x) ≡
xs√
2⇡

, η−1 ≡



⌘1

⌘2



 ≡



 µ/�2

−1/
(
2�2

)



 (2.34)

and

As(η−1) =
−⌘21
4⌘2

− 1

2
log(−2⌘2) + log

{
E(xs)

}
.
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Consider the following relationship which defines the gradient of the likelihood function

at η−1:

∇f(η−1) ≡ (∇As) (η−1)− τ . (2.35)

Note that when ∇f(η−1) = 0 we have

η−1 ≡ (∇As)
−1 (τ )

where

τ =



Ms+1/Ms

Ms+2/Ms



 , (∇As) (η−1) =




@

@⌘1
As(η−1)

@

@⌘2
As(η−1)





and Ms is defined as per Section 2.7.2 of the appendix. To find the optimal natural

parameters for the projection required we must minimise the function (∇As) (η)− τ

such that we obtain the η
∗
−1 where it is 0. We do this using a Newton-Raphson search,

initialised at a rough estimate of the value that minimises the sum of squares deviation

from the root of the inverse-defining equation,

η
∗
−1 = argmin

∑(
(∇As)(η−1)− τ

)2
,

found via a Nelder-Mead search initialised at (∇As) (η) for the normal family. We

can accomplish the Nelder-Mead step using the same optim() function in R as in the

previous section. To match our previous notation, consider Definition 12.
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Definition 12. Define the function

kprobitPower(a; c0, c1, s) = (∇A)−1 (τ , s), (2.36)

where

τ =



Ms+1(c0, c1,a)/Ms(c0, c1,a)

Ms+2(c0, c1,a)/Ms(c0, c1,a)



 ,

(∇A)−1 (τ , s) is the function that returns η−1 when ∇f(η−1) = 0 (as per equation

(2.35)) and Ms+k(c0, c1,a) is

M0(c0, c1,a) = W0(r8, r9),

M1(c0, c1,a) = a1W0(r8, r9) + c1r
−1
9 W1(r8, r9),

M2(c0, c1,a) = a21W0(r8, r9) + 2a1c1r
−1
9 W1(r8, r9)− 2a2W2(r8, r9),

M3(c0, c1,a) = a31W0(r8, r9) + 3a21c1r
−1
9 W1(r8, r9)− 6a1a2W2(r8, r9)

−2c1r
−1
9 a2W3(r8, r9),

M4(c0, c1,a) = a41W0(r8, r9) + 4a31c1r
−1
9 W1(r8, r9)− 12a21a2W2(r8, r9)

−8a1a2c1r
−1
9 W3(r8, r9) + 4a22W4(r8, r9),

M5(c0, c1,a) = a51W0(r8, r9) + 5a41c1r
−1
9 W1(r8, r9)− 20a31a2W2(r8, r9)

−20a21a2c1r
−1
9 W3(r8, r9) + 20a1a

2
2W4(r8, r9) + 4a22c1r

−1
9 W5(r8, r9),

M6(c0, c1,a) = a61W0(r8, r9) + 6a51c1r
−1
9 W1(r8, r9)− 30a41a2W2(r8, r9)

−40a31a2c1r
−1
9 W3(r8, r9) + 60a21a

2
2W4(r8, r9)

+24a1a
2
2c1r

−1
9 W5(r8, r9)− 8a32W6(r8, r9),

for Ws+k(a, b) defined as in equation (2.47) and (2.43), a =



 a1

a2



, r1 =

√
2(2− c21a

−1
2 ), r2 = (2c0 − c1a

−1
2 a1)r

−1
1 , r8 = 2r2r1 and r9 = c1(−2a2)

−1/2
.

Note that the derivation of Definition 12 follows that of Definition 5 and as such

we do not provide details and instead refer interested readers to Appendix 2.7.2. Each

Ms(c0, c1,a) is found by simple algebra in an analogous manner to those required

for Definition 10. The first and second derivatives required for both search methods

of (∇A)−1 (τ , s) are provided in Appendix 2.7.4. As before, to obtain the required

projection, we present Result 11.
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Result 11. Given f follows the form of equation (2.5), the projection onto the power

normal family is given by

projPN [finput] = exp
(
T (x)#η∗

−1 −As(η
∗
−1)

)
hs(x)

where

η
∗
−1 = kprobitPower

(
η
input; c0, c1, s

)
, η

input
−1 ≡



 ⌘input1

⌘input2



 , η
∗
−1 ≡



 ⌘∗1

⌘∗2



 ,

and T (x) and hs(x) follow from equation (2.34).

We now require a function to find the normalising natural parameter ⌘∗0 required for

the projection onto unnormalised power normal family. Following analogous arguments

used for the projection onto the unnormalised normal family, we define

cprobitPower







a1

a2



 ,



b1

b2



 ; c0, c1, s



 = log Ms



c0, c1,



a1

a2







−As







b1

b2







−log hs(x),

where log
(
Ms(c0, c1,a)

)
, As(b) and log hs(x) are defined as per the previous definitions.

We present Algorithm 5, which requires three loops over the main portion of the algorithm

to calculate the each
˜
Jsi(�2), as opposed to the previous method. Additionally note that

each
˜
Jsi(�2) is found in each loop and then used to find the first and second derivative

of the likelihood.
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Algorithm 5 Algorithm to calculate the log-likelihood of �2
and its first and second

derivatives via EP analytical approach II.

Set constants: c0 ← 0; c1ij ← 2yij − 1; 1 ≤ i ≤ m, 1 ≤ j ≤ n.

ηp(ui;�2)→ui
← η�2 ≡





−1
2 log(2⇡�

2)

0

1/(2�2)



 , 1 ≤ i ≤ m.

For s = 0, 2, 4:
For i = 1, ...,m:

Initialise: ηp(yij |ui)→ui
∈ R, 1 ≤ j ≤ n as per the equation (2.25).

Cycle:
SUM

(
ηp(yij |ui)→ui

)
←

∑
n

j=1 (ηp(yij |ui)→ui
)

For j = 1, ..., n :

ηui→p(yij |ui) ← η�2 + SUM
(
ηp(yij |ui)→ui

)
− ηp(yij |ui)→ui

(
ηp(yij |ui)→ui

)
1:2

← kprobitPower
((

ηui→p(yij |ui)

)
1:2

; c0, c1ij , s
)

−
(
ηui→p(yij |ui)

)
1:2

until all natural parameter vectors converge.
For j = 1, ..., n :

(ηp(yij |ui)→ui
)
0

← cprobitPower
((

ηui→p(yij |ui)

)
1:2

,
(
ηp(yij |ui)→ui

)
1:2

+
(
ηui→p(yij |ui)

)
1:2

; c0, c1ij , s
)

η
�
i ≡ η�2 + SUM

(
ηp(yi|ui)→ui

)

˜
J0i(�

2) = (2⇡)−1/2 exp
(
⌘�0i +A(⌘�1i, ⌘

�
2i)

)
,

If s = 2,
˜
J2i(�

2) =
˜
J0i(�

2)
(
(⌘�1i)

2 − 2⌘�2i
)
/
(
4(⌘�2i)

2
)
,

If s = 4,
˜
J4i(�

2) =
˜
J0i(�

2)
{
(⌘�1i)

4 + 12⌘�2i
(
⌘�2i − (⌘�1i)

2
)}

/
(
16(⌘�2i)

4
)
.

where the ratios of
˜
Jsi are defined in Result 8.

After convergence is reached.

˜
`′(�2) =

1

2�4

( m∑

i=1

˜
J2i(�2)

˜
J0i(�2)

−m�2

)
,

˜
`′′(�2) =

1

4�8






m∑

i=1

{

˜
J4i(�2)− 4�2

˜
J2i(�2)

˜
J0i(�2)

−
(
˜
J2i(�2)

˜
J0i(�2)

)2
}

+ 2m�4





.



2.5. BEST PREDICTOR 70

2.5 Best predictor

In addition to estimating �2, we also wish to predict the random e↵ect ui for each group.

First, consider that in the exact case

BP(ui) = E(ui|yi)

=

∫ ∞

−∞
uip(ui|yi;�

2)dui

=

∫∞
−∞ uip(yi|ui)p(ui;�2)dui∫∞
−∞ p(yi|ui)p(ui;�2)dui

=
J1i(�2)

J0i(�2)
, (2.37)

where yi = (yi1, ..., yin) and Jsi(�2) for s ∈ {0, 1, 2} follows from equation (2.28).

Equation (9.7) of McCulloch, Searle & Neuhaus (2008)41 suggests that Eyi

(
Var(ui|yi)

)

provides a reasonable approximation of prediction errors i.e. Var
(
BP(ui)− ui

)
, where

Var(ui|yi) =
J2i(�2)

J0i(�2)
−

(
J1i(�2)

J0i(�2)

)2

.

However, the approximation is hindered by the expectation over the distribution of the

yi vector. For the EP case, the best predictor of ui can be obtained via products of

Algorithm 3. Let

ŝ
η
i

≡ η
2
� + SUM(ηp(yi|ui)→ui

) =



ŝ
⌘
i1

ŝ
η
i2



 , (2.38)

where
ŝ
⌘
i1

corresponds to the first entry of
ŝ
η
i
,

ŝ
η
i2

corresponds to the remaining entries

and η
2
� and SUM(ηp(yi|ui;�)→ui

) are as previously defined in Algorithm 3 with �2 = ŝ�
2.

Note that Algorithm 3 involves using

exp










1

ui

u2
i





#

ŝ
η
i






to replace p(yi|ui)p(ui;�2).

We can approximate BP(ui) = E(ŝui), where ŝui is univariate normal with natural

parameters
ŝ
η
i
. Thus,

BP(ui) = −
ŝ
⌘
i1
/2

ŝ
η
i2
.

As before, the approximation of prediction errors given by Eyi

(
Var(ui|yi)

)
, where

sVar(ui|y) = −1/2
ŝ
η
i2
,
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is hindered by the expectation over the distribution over the yi vector.

2.6 Simulation Study

A simulation study comparing four methods of obtaining maximum likelihood estimates

and confidence intervals in Section 2.4 was run in the R computing environment (R

Core Team, 201956) on a MacBook Air laptop with two 2.2 gigahertz processors and 8

gigabytes of random access memory. The four methods are:

• Adaptive Gauss-Hermite quadrature using quasi-Newton optimisation and second

derivative calculation.

• EP using quasi-Newton optimisation and second derivative calculation.

• EP using analytical approach I to first and second derivative calculation.

• EP using analytical approach II to first and second derivative calculation.

Preliminary studies of datasets of m = 20 groups with n = 2 observations per group

showed a lack of stability for EP analytical approach II. It was deemed such instability

was caused by poor starting values in the bisection search. Although it is possible

to increase the number of iterations in the bisection and get convergence on a root,

for speed starting values were based on the results of the quadrature approach using

quasi-Newtown methods. Additionally, poor behaviour of the likelihood function for

low sample sizes may have caused problems during the optimisation of its derivative.

With this in mind our study consisted of 100 repetitions of �̂ estimates for each of

the estimation methods for each set of simulated data. The true � value of the dataset

was either �true = 0.25, 0.50 or 1.00. Each of these true values were used to generate test

datasets with m = 50, 250 and 1250 groups. The number of observations per group was

fixed at n = 10. Due to the presence of multiple iterative loops, computational speed

was severely compromised. Since the code used implements a variety of R packages

which make calls to various low level languages, we omit a comparison of run speed and

focus purely on the accuracy and stability of the methods.

A random sample of 10 confidence intervals for each method are compared visually

in Figure 2.5, showing although there is generally parity between the methods, approach

I to EP returned the tightest intervals by a small margin.

A comparison between the estimated �̂ of each method and the �true for each dataset

was conducted using Wilcoxon-tests. The p-values from this study are presented with
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boxplots of log estimate error in Figure 2.4, where the error ✏ is given by

✏ =
‖�̂ − �true‖

�̂
. (2.39)

For each of the methods tested and each of the �true values, the variance decreased

as the number of groups in the dataset increased. For the dataset where �true = 0.5,

there was no statistical di↵erence between the estimate and true parameter regardless

of the number of groups in the dataset. For the dataset with �true = 1 and m = 1250

groups, the variance of the estimates for the exact case using optim() and approach

I to EP increased, while the other methods did not. For datasets where �true = 0.25,

there was no statistical di↵erence for group sizes less than m = 1250. The discrepancy

at m = 1250 is most likely due to the reduction of variance in datasets with a high

number of groups which lead to an oversensitive test statistic.

Given the algebraic simplifications a↵orded by using quasi-Newton methods to

facilitate derivative calculation in addition to the stability problems of other methods,

there is little evidence it is worthwhile to continue with Approach I and Approach II

to EP. Furthermore these approaches are di�cult to implement for the general case of

GLMMs where variates and random e↵ects can be any dimension.
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Figure 2.4: Panel plot with error boxplots for the four methods of approximation discussed

in this section. P-values from a Wilcoxon comparison test are shown under each boxplot.

The legend shows which method producted each boxplot. The calculation of error is given

in equation (2.39).
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Figure 2.5: Plot displaying 10 randomly selected 95% confidence intervals of each method

across various group sizes and �true = 0.5, as shown by the red line. The lines correspond

with the methods of this section as shown in the legend of Figure 2.4.
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2.7 Appendix

2.7.1 Proof of Result 3

Consider an unnormalised normal univariate density function

fUN(x;η) = exp










1

x

x2





#

η





.

Then the KL divergence of fUN(x;η) from finput is

KL
(
finput ‖ fUN

)
=

∫

R

finput(x) log
(
finput(x)/fUN(x;η)

)
+ fUN(x;η)− finput(x)dx

= K(η) + const,

where

K(η) ≡ (2⇡)d/2 exp
(
η0 +A(η1:2)

)
−





∫
R finput(x)dx∫
R xfinput(x)dx∫
R x2finput(x)dx





#

η,

and “const” represents all the terms not dependent on η. Note that the derivative
vector of K(η) is

DK(η) = (2⇡)d/2 exp
(
η0 +A(η1:2)

)
[

1

DA(η1:2)#

]#

−





∫
R finput(x)dx∫
R xfinput(x)dx∫
R x2finput(x)dx





#

.

Setting DK(η)# = 0 to minimise the KL
(
finput ‖ fUN

)
,

(2⇡)d/2 exp
(
η0 +A(η1:2)

)
[

1

∇A(η1:2)

]#

=





∫
R finput(x)dx∫
R xfinput(x)dx∫
R x2finput(x)dx





#

where ∇A(η1:2) ≡ DA(η1:2)# is the gradient vector of A(η1:2). It is then easy to show

η
∗
0 = log(Cfinput)−A(η∗

1:2)−
d

2
log(2⇡),

where

η
∗
1:2 = (∇A)−1

{[ ∫
R xfinput(x)/Cfinputdx∫
R x2finput(x)/Cfinputdx

]}
(2.40)
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with existence and uniqueness of (∇A)−1 being guaranteed by Proposition 3.2 of
Wainwright & Jordan (2008),66 and Cfinput ≡

∫
R finput(x)dx. The Hessian matrix of

K(η) is

HK(η) = (2⇡)d/2 exp
(
η0 +A(η1:2)

)

×






[
1

∇A(η1:2)

][
1

∇A(η1:2)

]#

+

[
0 0

0 HA(η1:2)

]


.

By Proposition 3.1 of Wainwright & Jordan (2008),66 A is strictly convex on its domain
and thus HA(η1:2) is positive definite. Thus, HK(η) is positive definite for all η and so
equation (2.40) is the unique maximiser of KL

(
finput ‖ fUN

)
. Therefore

projUN[finput](x) = exp










1

x

x2





#

η
∗





,

where η
∗ is as previously defined. However, η∗

1:2 is the same natural parameter vector
that arises via projection of finput/Cfinput onto the family of univariate normal density
functions, thus

projN[finput/Cfinput ](x) = exp






[
x

x2

]
η
∗
1:2 −A(η∗

1:2)





(2⇡)−d/2

which immediately leads to Result 3.

2.7.2 Proof of Result 5

We now detail closed form solutions to the integrals arising in the log-likelihood calcula-
tions of univariate GLMMs and its derivatives.
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Lemma 1. For the following integrals of the form Ws(a, b) =
∫∞
−∞ xs�(a+ bx)�(x)dx,

where s ∈ {0, 1, 2, 3, 4, 5, 6} and a, b ∈ R, the following closed form solutions exist:

W0(a, b) =

∫ ∞

−∞
�(a+ bx)�(x)dx = �

(
a√

b2 + 1

)
, (2.41)

W1(a, b) =

∫ ∞

−∞
x�(a+ bx)�(x)dx =

b√
b2 + 1

�

(
a√

b2 + 1

)
, (2.42)

W2(a, b) =

∫ ∞

−∞
x2�(a+ bx)�(x)dx = �

(
a√

b2 + 1

)

− ab2√
(b2 + 1)3

�

(
a√

b2 + 1

)
, (2.43)

W3(a, b) =

∫ ∞

−∞
x3�(a+ bx)�(x)dx =

|b|
(
2b4 + (a2 + 5)b2 + 3

)

√
(b2 + 1)5

×�

(
a√

b2 + 1

)
, (2.44)

W4(a, b) =

∫ ∞

−∞
x4�(a+ bx)�(x)dx = 3�

(
a√

b2 + 1

)

−
ab2

(
3b4 + (a2 + 9)b2 + 6

)

√
(b2 + 1)7

�

(
a√

b2 + 1

)
, (2.45)

W5(a, b) =

∫ ∞

−∞
x5�(a+ bx)�(x)dx = (b2 + 1)−9/2

(
15 + 10(5 + a2)b2

+(63 + 14a2 + a4)b4 + 4(9 + a2)b6 + 8b8
)
�

(
a√

b2 + 1

)
, (2.46)

W6(a, b) =

∫ ∞

−∞
x6�(a+ bx)�(x)dx = 15�

(
a√

b2 + 1

)
− (b2 + 1)−11/2

×
{
ab2

(
45 + 15(9 + a2)b2 + (150 + 20a2 + a4)b4 + 5(15 + a2)b6

+15b8
)}

�

(
a√

b2 + 1

)
. (2.47)

2.7.2.1 Proof of Lemma 1

We next provide the derivation of Ws(a, b) where s = 3. s ∈ {0, 1, 2, 4, 5, 6} are solved
analogously and hence their working out is omitted. For the integral

Ws(a, b) =

∫ ∞

−∞
x3�(a+ bx)�(x)dx,

consider the following conjecture:

�(3)(x) ≡ (3x− x3)�(x). (2.48)
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Proof: First note the derivatives

�′(x) = −x�(x),

�′′(x) = (x2 − 1)�(x),

�′′′(x) = (3x− x3)�(x).

Using simple algebraic manipulations

x3�(x) = −(3x− x3)�(x) + 3x�(x)

= −�′′′(x)− 3�′(x).

Thus
∫ ∞

−∞
x3�(a+ bx)�(x)dx =

∫ ∞

−∞
�(a+ bx)�′′′(x)dx− 3

∫ ∞

−∞
�(a+ bx)�′(x)dx

= −TA − 3TB, (2.49)

where

TA ≡
∫

R

�′′′(x)�(a+ bx)dx and TB ≡
∫

R

�′(x)�(a+ bx)dx.

Now

TA =

∫

R

�′′′(x)�(a+ bx)dx

= −b

∫

R

�′′(x)�(a+ bx)dx

= −
∫ ∞

∞
�(2)(x)

1
1
b

�(0)

(
x− (−a/b)

(1/b)

)
dx

= −
∫ ∞

∞
�(2)(x)�(0)

1
b

(
x− (−a/b)

)
dx.

Then by C.1.12 of Wand & Jones (1995)67 it can be written

= −(−1)2�(2)q
1+ 1

b2

(
− (−a/b)

)

= −
(

b2

1 + b2

)3/2

�(2)

(
a√

1 + b2

)
.

Using the form of �(2) where x is given in the proof of the conjecture

= − |b|3√
(1 + b2)3

(
a2

1 + b2
− 1

)
�

(
a√

(1 + b2)

)

= − |b|3√
(1 + b2)3

(
a2 − (1 + b2)√

(1 + b2)2
− 1

)
�

(
a√

(1 + b2)

)

= − |b|3(a2 − b2 − 1)√
(1 + b2)5

�

(
a√

(1 + b2)

)
.
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The TB part is calculated analogously to the first

TB =

∫ ∞

−∞
�′(x)�(a+ bx)dx

= −b

∫ ∞

−∞
�(0)(x)�(0)(a+ bx)dx

= −
∫ ∞

−∞
�(0)(x)�(0)

1
b

(
x− (−a/b)

)
dx

= −
(
1 +

1

b2

)−1/2

�

(
a√

(b2 + 1)

)

= − |b|√
1 + b2

�

(
a√

b2 + 1

)
.

Substituting TA and TB into equation (2.49) leads directly to the required result. Two
interesting patterns worth noting occur:

• The cumulative density function � occurs only for even values of s.
• The algebraic expression of the integral (equation (2.49) for the s = 3 case) takes

a negative value when s is odd and positive when s is even.

Each moment of the target density shown in equation (2.5) can be obtained as

Mk ≡
∫ ∞

−∞
xk�(c0 + c1x)(2⇡)

−1/2 exp






[
x

x2

]#

η −A(η)





dx exp

(
A(η)

)
(2⇡)1/2.

Taking the inverse of natural parameters as per equation 1.5 yields,

Mk =

∫ ∞

−∞
xk�(c0 + c1x) (2⇡)

−1/2 exp

{
− 1

2

(
x− µ

�

)2
}
dx exp

(
A(η)

)
(2⇡)1/2�.

Let u = x−µ

�
, then x = µ+ �u and dx = �du , then

Mk =

∫ ∞

−∞
(µ+ �u)k �(c0 + c1µ+ c1�u) �(u)du Z1,

where Z1 = exp
(
A(η) + 1/2 log(2⇡) + log(�)

)
. Using Lemma 1, it is easy to find each

of the kth moments

Z−1
1 M0 = �(r2),

Z−1
1 M1 = µ�(r2) + (2c1�

2r−1
1 )�(r2),

Z−1
1 M2 = µ2�(r2) + (4c1�

2µr−1
1 )�(r2) + �2�(r2)− (4r2c

2
1�

4r−2
1 )�(r2),

for r2 = 2(c0 + c1µ)r
−1
1 and r1 = 2

√
(c1�)

2 + 1. The optimal mean and variance
parameters follow respectively,

µ∗ = E(x) =
M1

M0
= µ+ (2c1�

2r−1
1 )⇣ ′(r2)
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and

(�∗)2 = E(x2)− E(x)2 =
M2

M0
−

(
M1

M0

)2

= �2 − (4c21�
4r−2

1 )
(
r2 − ⇣ ′(r2)

)
⇣ ′(r2).

By converting to natural parameters and using matrix notation we arrive at the
required result. Stable computation of ⇣ ′(r2) and ⇣ ′′(r2) in R is provided by the function
zeta() in the package “sn” (Azzalini, 20161), where the derivatives are controlled by
the argument “k”.

2.7.3 Proof of Result 7

We next provide the derivation of E(xs) for s = 2. Note s ∈ {0, 1, 3, 4, 5, 6} are solved
analogously and hence their working out is omitted. First note, for each s the integral

∫ ∞

−∞
xs�(x)dx

takes the following values:

∫ ∞

−∞
x0�(x)dx = 1,

∫ ∞

−∞
x1�(x)dx = 0,

∫ ∞

−∞
x2�(x)dx = 1,

∫ ∞

−∞
x3�(x)dx = 0,

∫ ∞

−∞
x4�(x)dx = 3,

∫ ∞

−∞
x5�(x)dx = 0,

∫ ∞

−∞
x6�(x)dx = 15.

With this in mind consider

E(u2) =

∫ ∞

−∞
u2 exp

(
T (u)#⌘ −A(⌘)

)
(2⇡)−1/2du

=

∫ ∞

−∞
u2

1

�
�
(u− µ

�

)
du.

Then employing the change of variables z = u−µ

�
=⇒ u = µ+ �z, it can be written

E(u2) =

∫ ∞

−∞
(µ+ �z)2�(z)dz

= µ2
∫ ∞

−∞
�(z)dz + 2µ�

∫ ∞

−∞
z�(z)dz + �2

∫ ∞

−∞
z2�(z)dz.

Noting
∫∞
−∞ z�(z)dz integrates to zero while

∫∞
−∞ �(z)dz and

∫∞
−∞ z2�(z)dz integrates

to 1 leads to the required result.
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2.7.4 Details on finding the inverse function gradient map log-partition
function for each s

The following section of appendix aims to more explicitly explain the function (∇A)−1(τ , s)
and the calculations it involves for each s. We only provide a full explanation for the
s = 0 case since the other cases are analogous.

2.7.4.1 The s = 0 case

Firstly note that
E(x0) = 1.

Following from the previous section, E(x0) can be used to normalise the approximation
of the input density

fUN(x) = (2⇡�2)−1/2 exp
(
− (x− µ)2/(2�2)

)
.

Next note that using the standard change of variables and natural parameters

fUN(x) = (2⇡)−1/2 exp






[
x

x2

]#

η−1 −
(
− ⌘21/(4⌘2)− 1/2 log(−2⌘2)

)





= exp
(
T (x)#η−1 −A(η−1)

)
h(x),

where

h(x) ≡ (2⇡)−1/2, A(η−1) = −⌘21/(4⌘2)− 1/2 log(−2⌘2).

The derivative vector of the log-partition function can be shown to be

(∇A)(η−1) =

[
− ⌘1

2⌘2(
⌘1
2⌘2

)2 − 1
2⌘2

]
.

We can now use the derivative vector of the log-partition to find an estimate of the
minimum sum of squares deviation from the root of the inverse-defining equation using
a Nelder-Mead search implemented through the optim() function in R. We then obtain
the Hessian of the derivative vector of the log-partition function

H
(
A(η−1)

)
=




− 1

2⌘2
⌘1

2⌘22
⌘1

2⌘22

⌘2−⌘
2
1

2⌘32





such that we can implement a Newton Raphson search to further refine the approximation
of η∗ using the minimum calculated through our Nelder-Mead search as a starting value.
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2.7.4.2 The s = 2 case

Following calculations analogous to the s = 0 case it is easy to show:

(∇A)(η−1) =




⌘1(6⌘2−⌘

2
1)

2⌘2(⌘21−2⌘2)
12⌘21⌘2−12⌘22−⌘

4
1

4⌘22(2⌘2−⌘
2
1)





and

H (A(η−1)) =





−⌘
4
1−12⌘22

2⌘2(⌘21−2⌘2)2
⌘1(12⌘22−4⌘21⌘2+⌘

4
1)

2⌘22(2⌘2−⌘
2
1)

2 ,

⌘1(12⌘22−4⌘21⌘2+⌘
4
1)

2⌘22(2⌘2−⌘
2
1)

2

12⌘32−24⌘21⌘
2
2+9⌘41⌘2−⌘

6
1

2⌘32(2⌘2−⌘
2
1)

2



 .

2.7.4.3 The s = 4 case

As in the first derivative case, the calculations required are analogous to the s = 0 case,
and so

(∇A)(η−1) =




4⌘31−24⌘2⌘1

12⌘22−12⌘2⌘21+⌘
4
1
− ⌘1

2⌘2
180⌘21⌘

2
2−120⌘32−30⌘41⌘2+⌘

6
1

4⌘22(12⌘
2
2−12⌘21⌘2+⌘

4
1)





and

H(A(η−1)) =




16⌘2⌘61−⌘
8
1−120⌘22⌘

4
1−720⌘42

2⌘2(12⌘22−12⌘21⌘2+⌘
4
1)

2

⌘1(720⌘42−480⌘21⌘
3
2+216⌘41⌘

2
2−24⌘61⌘2+⌘

8
1)

2⌘22(12⌘
2
2−12⌘21⌘2+⌘

4
1)

2

⌘1(720⌘42−480⌘21⌘
3
2+216⌘41⌘

2
2−24⌘61⌘2+⌘

8
1)

2⌘22(12⌘
2
2−12⌘21⌘2+⌘

4
1)

2

720⌘52−2160⌘21⌘
4
2+1560⌘41⌘

3
2−384⌘61⌘

2
2+33⌘81⌘2−⌘

10
1

2⌘32(12⌘
2
2−12⌘21⌘2+⌘

4
1)

2







Chapter 3

Expectation propagation for
general one level probit mixed
models

With knowledge from Chapter 2 on the random intercepts only model, we now extend

our model to the more general case of GLMMs discussed in Section 1.7 that allow

for any number of fixed and random e↵ects. We aim to find an approximation to the

maximum likelihood of the parameters β and Σ with 95% confidence intervals. Our

model is specified as in equation (3.1)

yij |ui

ind.∼ Bernoulli
(
�
(
β
#
x
F
ij + u

#
i x

R
ij

))
, ui

ind.∼ N(0dR ,Σ),

1 ≤ i ≤ m, 1 ≤ j ≤ ni, (3.1)

where the notation follows from the general one level model presented in Section 1.8.

The log-likelihood can be expressed as

`(β,Σ) =
m∑

i=1

`i(β,Σ),

where

`i(β,Σ) = log

∫

RdR

{ ni∏

j=1

�
(
(2yij − 1)

(
β
#
x
F
ij + u

#
i x

R
ij

))}
(3.2)

× |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)
dui

The content of this chapter is published as: Hall, P., Johnstone, I. M., Ormerod, J. T., Wand, M. P., &

Yu, J. C. F. (2020). Fast and Accurate Binary Response Mixed Model Analysis via Expectation

Propagation, Journal of the American Statistical Association, 115:532, 1902–1916, DOI:

10.1080/01621459.2019.1665529
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and the best predictor of ui is

BP(ui) ≡

∫
RdR u

{∏
ni
j=1�

(
(2yij − 1)

(
β
#
x
F
ij
+ u

#
i
x
R
ij

))}
exp

(
− 1

2u
#Σ−1

u
)
du

∫
RdR

{∏
ni
j=1�

(
(2yij − 1)

(
β#xF

ij
+ u

#
i
x
R
ij

))}
exp

(
− 1

2u
#Σ−1u

)
du

.(3.3)

We are now left with the more complex problem of intractable dR-dimensional integrals.

As mentioned in Section 2.1, although Gauss-Hermite quadrature can be used to obtain

high accuracy results for models with one random e↵ect (i.e dR = 1), it is often not

feasible computationally for the case where more than two or three random e↵ects exist.

It is in this case that the benefits of approximate inference, specifically via EP, become

more obvious. Additionally, the maximisation problem of `(β,Σ) is complicated over a

changing dimensional space, so we utilise the quasi-Newton approach discussed in the

Chapter 2.

The structure of this chapter follows that of the previous, first explaining the

schematic of likelihood approximation using EP in Section 3.1, before discussing com-

putation of point estimates and confidence intervals in Section 3.2. The calculation of

best predictors for the random e↵ects is given in Section 3.3 before the results of our

simulation studies are presented in Section 3.4.

3.1 Expectation propagation likelihood approximation

We now show how EP can be used to approximate the likelihood by updating and

summing the natural parameter updates. Details of the required projections and the

message passing formulation to compartmentalise the algebra are provided. As in the

univariate case, we can approximate each `i(β,Σ) and sum them to obtain the full

log-likelihood. EP is motivated by the selection of an unnormalised multivariate normal

density function that minimises the KL divergence criterion to replace each

�
(
(2yij − 1)

(
β
#
x
F
ij + u

#
i x

R
ij

))
, 1 ≤ j ≤ ni

in equation (3.2). Doing so for the probit case constrains the integrand to be a product

of multivariate normal density functions with closed form solutions.

Consider the full KL divergence presented in equation (1.19) and the following family

of unnormalised multivariate normal density functions written in exponential family
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form

fUN(x) = exp










1

x

vech(xx#)





# 



⌘0

η1

η2










, (3.4)

with natural parameters ⌘0 ∈ R, η1 (a d× 1 vector) and η2 (a 1
2d(d+ 1) vector). In the

higher dimensional general case of GLMM, the goal of the EP problem is to find the

optimal natural parameters (denoted by ⌘∗0,η
∗
1 and η

∗
2) which minimise KL(finput ‖ fUN),

where finput ∈ L1(Rd). This solution is referred to as the KL projection onto the family

of multivariate normal density functions and is written as

projN [finput](x) = exp










1

x

vech(xx#)





#

η
∗






, (3.5)

where

η
∗ ≡





⌘∗0

η
∗
1

η
∗
2





and

(⌘∗0,η
∗
1,η

∗
2) = argmin

(⌘0,⌘1,⌘2)∈H
KL(finput ‖ fUN).

In the special case of KL projection onto the unnormalised multivariate normal family,

this problem simplifies further to moment-matching, where (⌘∗0,η
∗
1,η

∗
2) is the unique

vector that matches the zeroth, first and second order moments of fUN and finput.

For probit binary GLMMs, EP requires repeated projection of

finput(x) = �(c0 + c1
#
x) exp

(
(ηinput

1 )#x+ x
#
H

input
2 x

)
(3.6)

onto an unnormalised multivariate normal distribution, c0 = (2yij − 1)β#
x
F
ij
, c1 =
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(2yij − 1)xR
ij

and x = ui. With this in mind, we seek η
∗ such that

∫

Rd
x
⊗k�(c0 + c

#
1 x)exp








 x

vech(xx#)




#

η
input





dx

=

∫

Rd
x
⊗kexp










1

x

vech(xx#)





#

η
∗






dx, (3.7)

where k ∈ {0, 1, 2}.

Now consider the multivariate extension of Result 3.

Result 12. For an unnormalised input function f ∈ L1(Rd) such that f ≥ 0 for all

x ∈ R where Cf ≡
∫
Rd f(x)dx, the projection onto the unnormalised multivariate

normal family is

projUN[f ](x) = CfprojN [f/Cf ](x),

where projN is the projection onto the multivariate normal family.

Obtaining the natural parameters η∗ for projection onto the unnormalised multivari-

ate normal family follows from obtaining the projection onto the multivariate normal

family. More explicitly, the optimal natural parameters η∗
1 and η

∗
2, are given accord-

ing to the projection of the normalised function finput/Cfinput onto the multivariate

normal family. We can subsequently use these optimal natural parameters to find the

normalising natural parameter η∗
0 via Result 13 and thus obtain the projection onto

unnormalised normal family.

Result 13. When finput density follows the form of equation (2.5), ⌘∗0 is given by

⌘∗0 = log(Cfinput)−A(η∗
1,η

∗
2)−

d

2
log(2⇡),

where the log-partition function is as defined in Section 1.5.2.2.

Thus to obtain the required projection, we first obtain the optimal natural parameters

η
∗
1 and η

∗
2 to project onto the multivariate normal family as is presented in Result 14.
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Result 14. Given finput follows the form of equation (3.6), the projection onto the

multivariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x),

where

η
∗
−1 = Kprobit

(
η
input
−1 ; c0, c1

)
, η

input
−1 ≡



 η
input
1

η
input
2



 , η
∗
−1 ≡



 η
∗
1

η
∗
2



 ,

Kprobit







 a1

a2



 ; c0, c1



 is defined in Definition 13 and T (x) and h(x) follow from

Section 1.5.2.2.

Definition 13. For primary arguments a1 (d× 1) and a2
(
1
2d(d+ 1) × 1

)
such that

vec
−1(−D

+
d

#
a2) is symmetric and positive definite, and auxiliary arguments c0 ∈ R

and c1 (d× 1), the function Kprobit : H → H is given by

Kprobit







a1

a2



 ; c0, c1



 ≡



R
#
5 (a1 + r3c1)

D
#
d
vec(R#

5 A2)



 , (3.8)

where

A2 ≡ vec
−1(D+

d

#
a2), r1 ≡

√
2(2− c

#
1 A

−1
2 c1), r2 ≡ (2c0 − c

#
1 A

−1
2 a1)r

−1
1

r3 ≡ 2⇣ ′(r2)r
−1
1 , r4 ≡ −2⇣ ′′(r2)r

−2
1 and R5 ≡ (A2 + r4c1c

#
1 )

−1A2.

The proof of Definition 13 is given in Appendix 3.5.1. Using Result 14 we now

obtain the normalising natural parameter ⌘∗0 to find the projection onto unnormalised

normal family.
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3.1.1 Projection onto the unnormalised multivariate normal family

Recall the moment matching problem described by equation (3.7) and Result 13. Then,

as in the univariate case we require

Cfinput =

∫

Rd
finput(x)dx = (2⇡)d/2exp

(
A(ηinput)

)
�(r2),

where r2 is given in Definition (13) and A(η) is defined in Section 1.5.2.2. Analogous to

the argument given in the univariate case we then get

η
∗
0 = log �(r2)+

1

4
(η∗

1)
#(H∗

2 )
−1

η
∗
1−

1

4

(
η
input
1

)#(
H

input
2

)−1
η
input
1 +

1

2
log

(
|H∗

2 |/|H
input
2 |

)
.

Definition 14. Consider first, primary arguments a1 and b1 and auxiliary argument c1

where all three are d×1. Next consider arguments a2 and b2 which are all
(
1
2d(d+1)×1

)

such that both vec
−1

(
−
(
D

+
d

)#
a2

)
and vec

−1
(
−
(
D

+
d

)#
b2

)
are symmetric and positive

definite. Finally note auxiliary argument c0 ∈ R. Then the function Cprobit : H×H → R

is given by

Cprobit







a1

a2



 ,



b1

b2



 ; c0, c1



 ≡ log�(r2) +
1

4
b
#
1 B

−1
2 b1 −

1

4
a
#
1 A

−1
2 a1

+
1

2
log

(
|B2|/|A2|

)
,

where A2 ≡ vec
−1

((
D

+
d

)#
a2

)
, B2 ≡ vec

−1
((

D
+
d

)#
b2

)
and r2 follows from Definition

13.

In summary, the calculations required obtain the KL projection of the input function

onto the unnormalised multivariate normal family are given by Result 15.
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Result 15. For an unnormalised input function of the form of equation (3.6) then

projUN [finput] (x) = exp










1

x

vech
(
xx

#)





# 



⌘∗0

η
∗
1

η
∗
2










,

where



η
∗
1

η
∗
2



 = Kprobit







η
input
1

η
input
2



 ; c0, c1



 and ⌘∗0 = Cprobit







η
input
1

η
input
2



 ,



η
∗
1

η
∗
2



 ; c0, c1



.

We now show how this result can be used in a message passing framework to minimise

the algebra required.

3.1.2 Message passing formulation

Note the components of the sum of the log-likelihood function `i (β,Σ) can be written

as

`i (β,Σ) = log

∫

RdR

( ni∏

j=1

p(yij |ui;β)

)
p(ui;Σ) dui, (3.9)

where

p(yij |ui,β) ≡ �
(
(2yij − 1)

(
β
#
x
F
ij + u

#
i x

R
ij

))

and

p(ui;Σ) ≡ |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i
Σ−1

ui

)

are respectively the conditional density functions of each response given its random

e↵ect and the density function of that random e↵ect. Also note the alternate matrix

expression

p(ui;Σ) ≡ exp










1

ui

vech(uiu
#
i
)





#

η⌃






, where η⌃ ≡





−1
2 log

∣∣2⇡Σ
∣∣

0dR

−1
2D

#
dR

vec(Σ−1)




. (3.10)
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The structure of the product of equation (3.9) can be represented as Figure 3.1, where

circular stochastic nodes correspond to the random vector ui, solid squares indicate the

ni + 1 factor nodes and the dependencies of the factor nodes on the stochastic node ui

is demonstrated through the edges.

uip(ui;⌃)

p(yi1|ui;�)

p(yini |ui;�)

Figure 3.1: Factor graph representation of the product structure of the integrand in

equation (3.9).

We now proceed in a manner analogous to Section 2.2.2 for the univariate case, using

the Bayesian approach of Minka (2005).44 The EP approximation of `i(β,Σ) involves

projection onto the unnormalised multivariate normal family. Suppose that

p(yij |ui;β) = exp










1

ui

vech(uiu
#
i
)





#

ηij






, 1 ≤ j ≤ ni,

is initialised to be from the family of unnormalised multivariate normal density functions

in ui. Then, for each j = 1, ..., ni, the ηij update involves minimisation of

KL

(
p(yij |ui;β)

( ni∏

j0 *=j

p(yij0 |ui;β)

)
p(ui;Σ)

∥∥∥∥

( ni∏

j0=1

p(yij0 |ui;β)

)
p(ui;Σ)

)
(3.11)

as a function of ui. This can be achieved using Result 15 to update ηij in an iterative

procedure until it converges.

Using message passing, we compartmentalise the otherwise cumbersome algebra via

a simple extension of the steps involved in the univariate case. As such we do not repeat

all of the steps again, instead providing the main key equations, which mirror equation

(54) and (83) of Minka (2005).44 Since derivation of the simplification required for the

structure of the message passing scheme is a simple extension of the univariate case, we

do not repeat it. The KL divergence of equation (3.11) can be re-expressed, such that
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the messages from the factor p(yij |ui;β) to stochastic node ui are updated according to

mp(yij |ui;�)→ui
(ui) ←−

projUN

[
mui→p(yij |ui;�)(ui)p(yij |ui;β)

]
(ui)

mui→p(yij |ui;�)(ui)
, 1 ≤ j ≤ ni

(3.12)

and the update of message passed from p(ui;Σ) to ui is

mp(ui;⌃)→ui
(ui) ←−

projUN

[
mui→p(ui;⌃)(ui)p(ui;Σ)

]
(ui)

mui→p(ui;⌃)(ui)
. (3.13)

Similarly, the updates of stochastic node to factor messages are

mui→p(yij |ui;�)(ui) = mp(ui;⌃)→ui
(ui)

ni∏

j0 *=j

mp(yij0 |ui;�)→ui
(ui), 1 ≤ j ≤ ni (3.14)

and

mui→p(ui;⌃) (ui) =
ni∏

j=1

mp(yij |ui;�)→ui
(ui). (3.15)

We now seek any algebraic simplifications of the key messages, particularly use of

natural parameters. Recall that p(ui;Σ) can be written using natural parameters in the

form of equation (3.10) and that the unnormalised normal density constraint is enforced

on equations (3.12) and (3.14). Then

mui→p(ui;⌃)(ui) = exp










1

ui

vech(uiu
#
i
)





#

ηui→p(ui;⌃)






. (3.16)

Substituting the above forms into equation (3.13) leads to

mp(ui;⌃)→ui
(ui) ←− p(ui;Σ) = exp










1

ui

vech(uiui)#





#

η⌃






.

This implies the message mp(ui;⌃)→ui
(ui) is constant throughout the message passing

updates. As such, we now set

ηp(ui;⌃)→ui
←− η⌃. (3.17)
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For convenience, we denote the natural parameter vector

η
⊗ ≡ ηui→p(yij |ui;�).

Recall that from equation (3.16)

mui→p(yij |ui;�)(ui) = exp










1

ui

vech(uiu
#
i
)





#

η
⊗






= exp(⌘⊗0 ) exp
{
u
#
i η

⊗
1 +

(
vech(uiu

#
i )

)#
η
⊗
2

}
.

Substituting this into equation (3.12) and following simplifications analogous to the

univariate case lead to

mp(yij |ui;�)→ui
(ui) ←−

projUN

[
�(c0 + c

#
1ijui) exp

{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

}]

exp
{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

} ,

where c0 = (2yij − 1)β#
x
F
ij
and c1ij ≡ (2yij − 1)xR

ij
. Utilising Result 15,

mp(yij |ui;�)→ui
(ui) ←− exp










1

ui

vech(uiui)#





#

ηp(yij |ui;�)→ui






, (3.18)

where the linear and quadratic coe�cient updates are

(
ηp(yij |ui;�)→ui

)
1:2

←− Kprobit

(
η
⊗
1:2; c0, c1ij

)
− η

⊗
1:2 (3.19)

and the constant coe�cient update is

(
ηp(yij |ui;�)→ui

)
0

←− Cprobit

(
η
⊗
1:2,

(
ηp(yij |ui;�)→ui

)
1:2

+ η
⊗
1:2; c0, c1ij

)
.

Using the simplification of equation (3.12) and (3.13), equation (3.14) can be shown to

be

mui→p(yij |ui;�)(ui) ←− exp










1

ui

vech(uiu
#
i
)





#

ηui→p(yij |ui;�)






, (3.20)
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where

ηui→p(yij |ui;�) ←− ηp(ui;⌃)→ui
+

∑

j0 *=j

ηp(yij0 |ui;�)→ui
.

The EP approximation of each component ⇠̀i(β,Σ) of the log-likelihood sum is given

by

⇠̀i(β,Σ) = log

∫

RdR

( ni∏

j=1

mp(yij |ui;�)→ui
(ui)

)
mp(ui;⌃)→ui

(ui)dui. (3.21)

The success of EP depends on each of the messages in equation (3.21) being an

unnormalised multivariate normal density function and that a closed from solution to

the integral as follows:

∫

RdR

( ni∏

j=1

mp(yij |ui;�)→ui
(ui)

)
mp(ui;⌃)→ui

(ui)dui

=

∫

RdR

ni∏

j=1

exp










1

ui

vech(uiu
#
i
)





#

ηp(yij |ui;�)→ui






× exp










1

ui

vech(uiu
#
i
)





#

ηp(ui;⌃)→ui






dui

=(2⇡)d
R
/2 exp






(
η⌃ +

ni∑

j=1

ηp(yij |ui;�)→ui

)

0

+A

((
η⌃ +

ni∑

j=1

ηp(yij |ui;�)→ui

)

1:2

)



.

The full algorithm for the approximation of `(β,Σ) using EP is provided in Algorithm

6.
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Algorithm 6 Explicit form of algorithm used for the message passing approach to EP

Inputs: yij , xF
ij
, xR

ij
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni; β(dF × 1), Σ(dR × dR, are symmetric and

positive definite).
Set constants: c0ij ←− (2yij − 1)(β#

x
F
ij
), c1ij ←− (2yij − 1)xR

ij
, 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

ηp(ui;⌃)→ui
←− η⌃ ≡





−1
2 log |2⇡Σ|

0dR

−1
2D

#
dR

vec(Σ−1)



 , 1 ≤ i ≤ m.

For i = 1, ...,m:
Initialise: ηp(yij |ui;�)→ui

, 1 ≤ j ≤ ni as per the equation (3.24).
Cycle:

SUM
(
ηp(yij |ui;�)→ui

)
←−

ni∑

j=1

ηp(yij |ui;�)→ui

For j = 1, ..., ni :
ηui→p(yij |ui;�) ←− ηp(ui,⌃)→ui

+ SUM
(
ηp(yij |ui;�)→ui

)
− ηp(yij |ui;�)→ui

(ηp(yij |ui;�)→ui
)1:2 ←− Kprobit

((
ηui→p(yij |ui;�)

)
1:2

; c0ij , c1ij

)

−
(
ηui→p(yij |ui;�)

)
1:2

until convergence of all natural parameters vectors.
For j = 1, ..., ni :

(ηp(yij |ui;�)→ui
)0 ←− Cprobit

((
ηui→p(yij |ui;�)

)
1:2

,

(
ηp(yij |ui;�)→ui

)
1:2

+
(
ηui→p(yij |ui;�)

)
1:2

; c0ij , c1ij

)

SUM
(
ηp(yi|ui;�)→ui

)
←−

ni∑

j=1

ηp(yij |ui;�)→ui
.

Output: The full approximate log-likelihood is given by

⇠̀(β,Σ) =
mdR

2
log(2⇡) +

m∑

i=1

{(
η⌃ + SUM

(
ηp(yij |ui;�)→ui

))

0

+A

{(
η⌃ + SUM

(
ηp(yij |ui;�)→ui

))

1:2

}}

where, A(η) is defined as in equation (1.7) and η⌃ follows from equation (3.10).
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3.1.3 Starting values for Algorithm 6

The EP message passing algorithm proposed relies on good starting values for conver-

gence. We now derive starting values for ηp(yij |ui;�)→ui
using a Taylor series expansion.

Note that

log p(yij |ui;β) = ⇣(aij)− log(2), where aij ≡ (2yij − 1)
(
β
#
x
F
ij + u

#
i x

R
ij

)

and ⇣ is defined as before. Let ûi be a Laplace approximation to ui. Now consider the

following Taylor series expansion of the data dependent component of `(β,Σ):

⇣(aij) = ⇣
(
âij + (2yij − 1)(ui − ûi)

#
x
R
ij

)

= ⇣(âij) + (2yij − 1)⇣ ′(âij)(ui − ûi)
#
x
R
ij +

1

2

(
(ui − ûi)

#
x
R
ij

)2
⇣ ′′(âij) + ...

=





1

ui − ûi

vech
(
(ui − ûi)(ui − ûi)#

)





#

qηij + ...,

where âij ≡ (2yij − 1)
(
β
#
x
F
ij
+ û

#
i
x
R
ij

)
and

qηij =





⇣(âij)

(2yij − 1)⇣ ′(âij)xR
ij

1
2⇣

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




.

It follows that the quadratic approximation to log p(yij |ui;β) based on Taylor expansion

about ûi is log qp(yij |ui;β) where

qp(yij |ui;β) ≡ exp










1

ui − ûi

vech
(
(ui − ûi)(ui − ûi)#

)





#

qηij






. (3.22)

The starting value recommendation for ⌘p(yij |ui;�)→ui
is based on replacement of

p(yij |ui;β) by qp(yij |ui;β) in equation (3.17):

mqp(yij |ui;�)→ui
(ui) ←−

proj
[
mui→qp(yij |ui;�)(ui)qp(yij |ui;β)

]
(ui)

mui→qp(yij |ui;�)(ui)
= qp(yij |ui;β).(3.23)
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Note that in this case, since qp(yij |ui;β) is already univariate normal the projection is

superfluous. The starting values for ⌘p(yij |ui;�)→ui
that arises from this substitution is

exp










1

ui

vech(uiu
#
i
)





#

⌘start
p(yij |ui;�)→ui






= exp










1

ui − ûi

vech
(
(ui − ûi)(ui − ûi)#

)





#

qηij






.

By matching coe�cients of like terms it is easy to show

⌘start
p(yij |ui)→ui

=





⌘start0

(2yij − 1)⇣ ′(âij)xR
ij
− ⇣ ′′(âij)xR

ij
(xR

ij
)#ûi

1
2⇣

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




, (3.24)

where

⌘start0 = ⇣(âij)− (2yij − 1)⇣ ′(âij)(x
R
ij )

#
ûi +

1

2
⇣ ′′(âij)

(
(xR

ij )
#
ûi

)2
.

In Algorithm 3 ⌘start0 is not used in the cycle loop and thus can be set to any arbitrary

number without a↵ecting the algorithm. We use Laplace approximation to estimate ûi.

For the R computing environment, the function glmer() of the package “lme4” (Bolker,

et al., 20185) provides fast Laplace approximation-based predictions for the ui.

3.2 Computation of point estimates and confidence inter-

vals

We now address the computations required to find point estimates and confidence

intervals for the parameters β,Σ. Although we still use the R function optim() in

the “stats” package (R Core Team, 201956) the higher dimensionality introduces new

problems, particularly when optimising the variance parameter Σ since it is constrained

to be symmetric and positive definite. Before conducting any optimisation, we must

ensure the search occurs over the cone of symmetric positive definite dR × dR matrices,

which can be accomplished by re-parameterising the Σ matrix (Bateman & Pinheiro,

200055). For the general case where d-random e↵ects are involved, the following procedure

is recommended:

1. Before conducting any optimisation, convert Σ to the unconstrained space θ.

When:
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(a) d = 1:

θ ≡ 1

2
log(Σ).

(b) d > 1:

i. Obtain the spectral decomposition of Σ,

Σ = u⌃λ⌃ u
#
⌃,

where λ⌃ is the diagonal matrix of eigenvalues and u⌃ is the orthogonal

matrix of matching eigenvectors.

ii. Calculate the matrix logarithm of Σ using the spectral decomposition,

log(Σ) = u⌃ log(λ⌃)u
#
⌃.

iii. Use the logarithm Σ to aquire θ,

θ ≡ vech

(
1

2
log(Σ)

)
.

2. Now use a quasi-Newton optimisation method to obtain the maximum likelihood

approximation

(̂
⇠
β, ⇠̂θ) =

✓2Rd(d+1)/2
argmax ⇠̀(β,θ).

We suggest conducting an initial search via the Nelder-Mead method, with refine-

ments by BFGS algorithm. Both can be implemented via the optim() R function

in the “stats” package (R Core Team, 201956).

3. Since it is well established that working with log(standard deviation) and tanh−1(correlation)

parameters for confidence interval contruction results in better asymptotic nor-

mality than their non-transformed counterparts, convert (β̂, θ̂) to (β̂, ω̂). For:

(a) d = 1, no conversion is required since there is no correlaton parameter and

the variance parameter is already log transformed. For consistancy with the

multidimensional setting, note the following notation change:

ω̂ = θ̂.

(b) d > 1:

i. Obtain the spectral decomposition of vech−1(θ̂),

vech−1(θ̂) = ub✓ λb✓ u
#
b✓ ,
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where λb✓ is the diagonal matrix of eigenvalues and ub✓ is the orthogonal

matrix of matching eigenvectors.

ii. Then using the spectral decomposition find exponent of λb✓,

Σ̂ = ub✓ exp(2λb✓)u
#
b✓ .

iii. Convert to ω̂

ω̂ =




1
2 log

(
diag(Σ̂)

)

tanh−1
{
vecbd(Σ̂)

/√
vecbd

(
diag(Σ̂)diag(Σ̂)#

) }



 .

4. Find the Hessian matrix at the maximum (β̂, ω̂) (denoted by H`(β̂, ω̂)) using the

BFGS quasi-Newton method, which returns the hessian when implemented via

the R function optim() in the “stats” package (R Core Team, 201956). Although

we need values of (β̂, ω̂) to be returned in the Hessian, the constraints on these

parameters mean the Hessian should be calculated on the (β̂, θ̂) space. The

conversion can be obtained as follows, for:

(a) d = 1:

θ̂ = exp(2ω̂).

(b) d > 1, form the d× d symmetric matrix Σ̂:

i. Let ω̂1 denote the first d entries of ω̂ and ω̂2 denote the remaining
1
2d(d − 1) entries of ω̂. Set diag(Σ̂) = exp(2ω̂1). Obtain the below-

diagonal entries of Σ̂ so that

vecbd(Σ̂) = tanh(ω̂2)3 vecbd
(
exp(ω̂1) exp(ω̂1)

#)

holds. Obtain the above-diagonal entries of Σ̂, and reconstruct Σ̂ by

symmetry.

ii. Find the spectral decomposition of Σ̂,

Σ̂ = ub⌃diag(λb⌃)u
#
b⌃.

iii. Using the spectral decomposition make the conversion to θ,

θ̂ = vech
{1

2
ub⌃diag

(
log(λb⌃)

)
u
#
b⌃

}
.
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5. Form 100(1− ↵)% confidence intervals for the entries of (β̂, ω̂) using



β̂

ω̂



± �−1

(
1− 1

2
↵

)√
−diag

{(
H `(β̂, ω̂)

)−1
}
.

6. Back transform the confidence interval limits for the ω̂ component, to correspond

to the standard deviation and correlation parameters as follows:





√
diag(Σ̂)

vecbd(Σ̂)
/√

vecbd
(
diag(Σ̂)diag(Σ̂)#

)



 .

3.3 Best predictor

In addition to estimating (β,Σ), we also wish to predict the random e↵ects ui for each

group. For the binary mixed model via EP, the best predictor of ui for the multivariate

case is found in a similar manner to the univariate case,

BP(ui) = E(ui|yi)

=

∫

RdR
uip(ui|yi;β,Σ)dui

=

∫

RdR
ui

{
p(yi|ui;β)p(ui;Σ)∫

RdR p(yi|ui;β)p(ui;Σ)

}
dui, (3.25)

where yi = (yi1, ..., yini). We now show that by products of Algorithm 6 facilitate the

empirical best predictions of the ui. Let

ŝ
η
i
≡ η⌃ + SUM

(
ηp(yi|ui;�)→ui

)
=



ŝ
η
i1

ŝ
η
i2



 , (3.26)

where
ŝ
η
i1

corresponds to the first dR entries of
ŝ
η
i
,

ŝ
η
i2

corresponds to the remaining dR

entries of
ŝ
η
i
and η⌃ and SUM

(
ηp(yi|ui;�)→ui

)
are as previously defined in Algorithm 6

with (β,Σ) =
(
s
β̂, ŝΣ

)
. Note that Algorithm 6 involves using

exp










1

ui

vech(uiu
#
i
)





#

ŝ
η
i






to replace p(yi|ui;β)p(ui;Σ).
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Subsequently as in the univariate case, we can approximate BP(ui) = E(ŝui
), where ŝui

is multivariate normal with natural parameter
ŝ
η
i
. Thus,

BP(ui) = −1

2

(
vec−1

((
D

+
d

)#
ŝ
η
i2

))−1

ŝ
η
i1
.

Although Cov
(
BP(ui) − ui

)
is well approximated with Eyi

(
Cov(ui|yi)

)
(McCulloch,

Searle & Neuhaus, 200841), where

sCov(ui|y) = −1

2

(
vec−1

((
D

+
d

)#
ŝ
η
i2
)

)−1

,

the approximation is hindered by the expectation over the distribution over the yi

vector.

3.4 Simulation study

Three simulation studies were conducted, each for 1000 replicates on two computers:

• Computer 1 - MacBook Air laptop with two 2.2 gigahertz processors and 8

gigabytes of random access memory.

• Computer 2 - University of Technology Sydney Interactive High Performance Com-

puting facility Jupiter node with eight 3.6 gigahertz processors and 32 gigabytes

random access memory.

We will refer to these computers by name from here on. For each EP algorithm we

set our error tolerance value to 10−5 and use a maximum of 100 Nelder-Mead search

iterations during the optimisation process.

3.4.1 Comparison of maximum likelihood estimates for univariate ran-

dom effects

The first simulation study was repeated on datasets simulated according to equation

(3.1) with true parameter values,

βtrue = [0, 1]# and Σtrue = �2
true = 1. (3.27)
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Each dataset had m = 100 groups and ni = 2 observations in each group. The x
F
ij

and

x
R
ij

vectors were respectively of the form

x
F
ij = [1, x1ij ]

# and x
R
ij = 1,

where x1ij was generated independently from a uniform distribution on the unit interval.

The model described was fit using each of the following methods:

1. Adaptive Gauss-Hermite quadrature using 100 points of evaluation, implemented

via the function glmer() in the R package “lme4” (Bates, et al., 20185).

2. Laplace approximation implemented via the function glmer() in the R package

“lme4” (Bates, et al., 20185).

3. EP as described in this Section.

4. Data cloning as used by the R package “dclone” (Solymos, 201061) with 10 clones.

We first compare point estimates and confidence intervals produced by adaptive

Gauss-Hermite quadrature against Laplace approximation, EP and data cloning. The

first row of Figure 3.3 shows Laplace approximation results in poor statistical inference

for all parameters estimated, with empirical coverage less than 95% level. The empirical

coverage of the variance parameter by Laplace approximation is particularly low at

81.1%. The second row of Figure 3.3 shows EP produces very similar results to adaptive

Gauss-Hermite quadrature for both the empirical coverage and confidence intervals

of fixed e↵ects parameters. It also shows EP is slightly conservative with coverage

97.5% for the variance parameter compared to 94.2% that of adaptive Gauss-Hermite

quadrature. Data cloning produced similar empirical coverage values to EP (95.7%,

95.1% and 97.4% for �0, �1 and � respectively). Out of the methods tested, data cloning

and EP were the only methods with empirical coverage greater than or equal to 95%

across all parameters.

Figure 3.2 compares estimated mean squared error and mean squared error of

prediction for the four approaches, where the latter is given by the mean squared

error of five randomly selected ui random intercepts. We also include t-based 95%

confidence intervals to provide an indication of the variability of simulation-based mean

squared error estimation. The plots show EP performs well in comparison with adaptive

Gauss-Hermite quadrature for maximum likelihood estimation and best prediction, and

generally improves upon Laplace approximation and data cloning. Although we are aware

that a comparison of time is obscured by factors such as language of implementation,
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exact Laplace expec. propag. data cloning

16.10 (5.25) 0.158 (0.0163) 0.1960 (0.0198) 143 (4.38)

Table 1: Average (standard deviation) computing times in seconds for fitting and inference for the
four approaches using in the first simulation study.

indication of the inherent variability of simulation-based mean squared error estimation.
Expectation propagation is shown to perform well in comparison with exact maximum
likelihood and best prediction, and generally improves upon Laplace approximation and
data cloning for this particular yardstick.
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Figure 3: First three upper panels: Estimated mean squared errors for the parameters in dR = 1
simulation study with true parameter values given by (19) for four different approaches: exact
maximum likelihood (exact), Laplace approximation (Lapl.), expectation propagation (EP) and data
cloning (DC). The estimates are the average squared error values over the 1, 000 replications in
the simulation study. The vertical line segments indicate corresponding t-based 95% confidence
intervals for the mean squared error. Remaining panels: the same as the first three panels but with
mean squared errors of prediction for 5 randomly chosen ui values.

Table 1 compares the computing times of the four approaches when run on a MacBook
Air laptop with 8 gigabytes of random access memory and a 2.2 gigahertz processor. Even
though such comparison necessarily is obscured by factors such as the computer language
in which an approach is implemented, Table 1 provides a reasonable indication of comput-
ing times in practice. Laplace approximation and expectation propagation take less than
a fifth of a second on average. Exact computation takes about 10–20 seconds, with confi-
dence interval construction for � (not provided by glmer()) accounting for most of that
time. Data cloning, with an average of about 2.4 minutes, is much slower than the three
other approaches.

14

Figure 3.2: Summary of confidence interval coverage for the simulation study with true

parameter values from equation (3.29). The horizontal lines are the EP-based confidence

intervals for 50 randomly chosen replications of the simulation study, the solid circular

points indicate the corresponding point estimates and the vertical lines indicate true

parameter values. The percentage given in the top right-hand corner of each panel is

the empirical coverage over all 1000 replications.

the average time for the EP routine over the 1000 replications completed on Computer

1 was 0.1960 seconds, whilst data cloning and adaptive Gauss-Hermite took an average

of 143 and 16.1 seconds respectively. Laplace was also extremely time e�cient, taking

on average 0.158 seconds. It is worthing noting construction of confidence intervals

occupies a large amount of time for the quadrature approach as it is not optimised with

the glmer() function.
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Fi g u r e 2: C o m p aris o n of p oi nt esti m ati o n a n d 9 5 % c o n Þ de n ce i nter v al c o ver a ge f or t he Þrst si m-
ul ati o n st u d y  wit h tr ue p ar a meter v al ues gi ve n b y ( 1 9).  T he u p per r o w of p a nels c o m p ares e x a ct
m a xi m u m li keli h o o d  wit h L a pl a ce a p pr o xi m ati o n.  T he l o w r o w of p a nels c o m p ares e x a ct  m a xi m u m
li keli h o o d  wit h e x pe ct ati o n pr o p a g ati o n a p pr o xi m ati o n.  T he h ori z o nt al li nes i n di c ate e x pe ct ati o n
pr o p a g ati o n- b ase d c o n Þ de n ce i nter v als f or 2 0 r a n d o ml y c h ose n re pli c ati o ns of t he si m ul ati o n st u d y
des cri be d i n t he te xt.  T he p oi nts i n di c ate t he c orres p o n di n g a p pr o xi m ate  m a xi m u m li keli h o o d es-
ti m ates.  T he verti c al li nes i n di c ate tr ue p ar a meter v al ues.  T he perce nt a ges dis pl a ye d at t he t o p
of e a c h p a nel are e m piri c al c o ver a ges o ver all 1 , 0 0 0 re pli c ati o ns f or e a c h  met h o d i n v ol ve d i n t he
c o m p aris o n.

Fi g u r e 3 c o m p a r e s t h e a p p r o a c h e s vi a e sti m at e d  m e a n s q u a r e d e r r o r a n d  m e a n s q u a r e d
e r r o r of  p r e di cti o n.  T h e l att e r c o m p a ri s o n i n v ol v e d r a n d o ml y s el e cti n g 5 of t h e o n e h u n-
d r e d u i r a n d o m i nt e r c e pt s a n d r e c o r di n g t h ei r  p r e di cti o n s f o r e a c h a p p r o a c h. I n Fi g u r e 3
w e h a v e al s o  pl ott e d c o r r e s p o n di n g t- b a s e d 9 5 % c o n Þ d e n c e i nt e r v al s,  w hi c h  p r o vi d e a n

1 3

Fi g u r e 3. 3: C o m p a ri s o n of p oi nt e sti m at e s a n d 9 5 % c o n fi d e n c e i nt e r v al s f o r t h e si m ul a-
ti o n st u d y  wit h t r u e p a r a m et e r v al u e s gi v e n b y e q u ati o n ( 3. 2 7 ).  W e di s pl a y 2 0 r a n d o ml y
c h o s e n r e pli c ati o n s of t h e si m ul ati o n st u d y d e s c ri b e d.  T h e fi r st r o w of p a n el s c o m p a r e s
e x a ct  m a xi m u m li k eli h o o d  wit h  L a pl a c e a p p r o xi m ati o n  w hil e t h e s e c o n d r o w c o m p a r e s
e x a ct  m a xi m u m li k eli h o o d  wit h e x p e ct ati o n p r o p a g ati o n a p p r o xi m ati o n.  T h e v e rti c al
li n e s i n di c at e t r u e p a r a m et e r v al u e s a n d t h e p e r c e nt a g e s di s pl a y e d at t h e t o p of e a c h
p a n el a r e e m pi ri c al c o v e r a g e s o v e r all 1 0 0 0 r e pli c ati o n s f o r e a c h  m et h o d i n v ol v e d i n t h e
c o m p a ri s o n.
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3.4.2 Maximum likelihood estimates for bivariate random effects

Data for the second simulation study was simulated according to equation (3.1) with

true parameter values

βtrue = [0.37, 0.93,−0.46, 0.08,−1.34, 1.09]# and Σtrue =



 0.53 −0.36

−0.36 0.92



 . (3.28)

We fixed the number of groups in the data at m = 250 and the number of measurements

in the ith group was a randomly generated integer between 20 and 30 on a uniform

distribution. The x
F
ij
and x

R
ij

vectors were of the form

x
F
ij = [1, x1ij , x2ij , x3ij , x4ij , x5ij ]

# and x
R
ij = [1, x1ij ]

#,

where each xkij was generated independently from a uniform distribution on the unit

interval.

Figure 3.4 displays point estimates and corresponding 95% confidence intervals for

each interpretable model parameters, for 50 randomly chosen replications. As before,

the empirical coverage values based on all 1000 replications are in the top right-hand

corner of each panel. For five of the nine parameters the empirical coverage values of

EP is greater then the expected 95% empirical coverage. However, even the random

intercept variance parameter with the lowest coverage of 94.2% is within 1% of the

expected coverage. By implementing the required EP algorithm in the low level language

Fortran 77 we maintain high speed inference despite the higher samples and increased

complexity of the model. On Computer 1, the average computing time over the 1000

replications of the simulation study was 18 seconds, the upper quartile was 20 seconds

and the maximum was 34 seconds.
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Fi g u r e 4: S u m m ar y of c o n Þ de n ce i nter v al c o ver a ge f or t he se c o n d si m ul ati o n st u d y  wit h tr ue
p ar a meter v al ues gi ve n b y ( 2 1).  T he h ori z o nt al li nes i n di c ate e x pe ct ati o n pr o p a g ati o n- b ase d c o n Þ-
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c o ver a ge o ver all 1 , 0 0 0 re pli c ati o ns.
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el s N f o r n ot  Þ ni s h e d  p ri m a r y s c h o ol, P f o r  Þ ni s h e d  p ri m a r y s c h o ol, S f o r  Þ ni s h e d
s e c o n d a r y s c h o ol a n d U f o r  u n k n o w n,

m o m W o r k a t w o-l e v el f a ct o r v a ri a bl e i n di c ati n g  w h et h e r o r n ot t h e c hil dÕ s  m ot h e r h a d e v e r
w o r k e d o ut si d e t h e h o m e,  wit h l e v el s Y f o r  w o r k e d o ut si d e of t h e h o m e a n d N f o r
n e v e r  w o r k e d o ut si d e of t h e h o m e,

r u r a l a t w o-l e v el f a ct o r v a ri a bl e i n di c ati n g  w h et h e r o r n ot t h e c hil dÕ s l o c ati o n i s c o n si d-
e r e d r u r al o r  u r b a n,  wit h l e v el s Y f o r r u r al a n d N f o r  u r b a n,

m o m a  m ultil e v el f a ct o r v a ri a bl e t h at c o d e s t h e c hil d r e nÕ s  m ot h e r s, o ut of 1, 5 9 5  m ot h e r s i n
t ot al.

1 6

Fi g u r e 3. 4: S u m m a r y of c o n fi d e n c e i nt e r v al c o v e r a g e f o r t h e si m ul ati o n st u d y  wit h t r u e
p a r a m et e r v al u e s f r o m e q u ati o n ( 3. 2 8 ).  T h e h o ri z o nt al li n e s a r e t h e  E P- b a s e d c o n fi d e n c e
i nt e r v al s f o r 5 0 r a n d o ml y c h o s e n r e pli c ati o n s of t h e si m ul ati o n st u d y, t h e s oli d ci r c ul a r
p oi nt s i n di c at e t h e c o r r e s p o n di n g p oi nt e sti m at e s a n d t h e v e rti c al li n e s i n di c at e t r u e
p a r a m et e r v al u e s.  T h e p e r c e nt a g e gi v e n i n t h e t o p ri g ht- h a n d c o r n e r of e a c h p a n el i s
t h e e m pi ri c al c o v e r a g e o v e r all 1 0 0 0 r e pli c ati o n s.
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3.4.3 Maximum likelihood estimates for trivariate random effects

The third simulation study was repeated 1000 times, where datasets were simulated

according to (3.29) with true parameter values

βtrue = [0.37, 0.93,−0.46, 0.08,−1.34, 1.09]# and Σtrue =





0.53 −0.36 −0.11

−0.36 0.92 0.08

−0.11 0.08 0.74




.

(3.29)

Each dataset had m = 250 groups, and each ith group had a randomly generated

number of observations, between 20 and 30 on a uniform distribution. The x
F
ij

and x
R
ij

vectors were of the form

x
F
ij = [1, x1ij , x2ij , x3ij , x4ij , x5ij ]

# and x
R
ij = [1, x1ij , x2ij ]

#,

where each xkij was generated independently from a uniform distribution on the unit

interval.

The resulting estimates and 95% confidence intervals for each interpretable model

parameter of the study are presented in Figure 3.5, where the numbers in the upper-right

hand corner of each panel are the empirical coverage values based on all 1000 replicates.

Only 25 randomly chosen replicates are shown in each of the panels for ease of viewing.

Across all 12 parameters estimated, the empirical coverage values showed excellent

accuracy. While three of the fixed e↵ects parameters had less than 95% empirical

coverage, three of the random e↵ects parameters had more than 96% empirical coverage.

This component of the study was run on Computer 2 and thus we do not provide

computational times.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

β0 95.5%.

0.6 0.7 0.8 0.9 1.0 1.1 1.2

β1 95.6%.

−0.8 −0.6 −0.4 −0.2 0.0

β2 94.5%.

−0.2 −0.1 0.0 0.1 0.2 0.3

β3 95%.

−1.6 −1.5 −1.4 −1.3 −1.2 −1.1

β4 94.8%.

0.8 0.9 1.0 1.1 1.2 1.3

β5 94.3%.

0.5 0.6 0.7 0.8 0.9 1.0

σ1 95.5%.

0.6 0.8 1.0 1.2

σ2 95.8%.

0.4 0.6 0.8 1.0 1.2

σ3 96.6%.

−0.8 −0.6 −0.4 −0.2 0.0

ρ12 96.6%.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

ρ13 95.7%.

−0.4 −0.2 0.0 0.2 0.4 0.6

ρ23 96.1%.

Figure 3.5: Summary of confidence interval coverage for the simulation study with true

parameter values from equation (3.29). The horizontal lines are the EP-based confidence

intervals for 25 randomly chosen replications of the simulation study, the solid circular

points indicate the corresponding point estimates and the vertical lines indicate true

parameter values. The percentage given in the top right-hand corner of each panel is

the empirical coverage over all 1000 replications.
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3.5 Appendix

3.5.1 Proof of Definition 13

To facilitate the computation of intractable integrals that arise in each of the moments,
we now introduce Lemmas 2 and 3. For x ∈ Rd, define

�⌃(x) ≡ (2⇡)−d/2|Σ|−1/2 exp

(
− 1

2
x
#Σ−1

x

)
.

Lemma 2. For any function g : R → R and d× 1 vectors α1, α2 and α3, the following

is true:

∫

Rd
g
(
α

#
1 x

)
�I(x)dx =

∫ ∞

−∞
g
(
‖α1‖x

)
�(x)dx, (3.30)

∫

Rd
g
(
α

#
1 x

)(
α

#
2 x

)
�I(x)dx =

(
α

#
1 α2

)
/‖α1‖

∫ ∞

−∞
xg

(
‖α1‖x

)
�(x)dx (3.31)

and

∫

Rd
g
(
α

#
1 x

)(
α

#
2 x

)(
α

#
3 x

)
�I(x)dx =

(
α

#
2 α3

) ∫ ∞

−∞
g
(
‖α1‖x

)
�(x)dx

+
(
α

#
1 α2

)(
α

#
1 α3

)
/‖α1‖2

∫ ∞

−∞
(x2 − 1)g

(
‖α1‖x

)
�(x)dx. (3.32)

3.5.1.1 Proof of Lemma 2

Note that the integrals on the left-hand side in equations (3.30), (3.31) and (3.32) are
respectively

E
(
g
(
α

#
1 x

))
, E

(
g
(
α

#
1 x

)(
α

#
2 x

))
and E

(
g
(
α

#
1 x

)(
α

#
2 x

)(
α

#
3 x

))
,

where
x ∼ N

(
0d, Id

)
.

We now present simplification of the integral in equation (3.32). Simplification of the
integrals in equation (3.30) and (3.31) are analogous. Make the change of variables

s ≡





s1

s2

s3



 = Ax, where A ≡





α
#
1

α
#
2

α
#
3





so that

E
(
g
(
α

#
1 x

)(
α

#
2 x

)(
α

#
3 x

))
= E

(
g(s1)s2s3

)
, where s ∼ N

(
03,AA

#).
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We then note that,

E
(
g(s1)s2s3

)
=

∫ ∞

−∞
g(s1)

(∫ ∞

−∞

∫ ∞

−∞
s2s3p(s2s3|s1)ds2ds3

)
p(s1)ds1

=

∫ ∞

−∞
g(s1)

(∫ ∞

−∞

∫ ∞

−∞

(
Cov(s2, s3|s1) + E(s2|s1)E(s3|s1)

)
ds2ds3

)

× p(s1)ds1

and
[
s2

s3

] ∣∣∣∣∣s1 ∼ N

(
(
s1/‖α1‖2

)
[
α

#
1 α2

α
#
3 α2

]
,

[
‖α2‖2 α

#
2 α3

α
#
2 α3 ‖α3‖2

]
−

(
1/‖α1‖2

)
[ (

α
#
1 α2

)2 (
α

#
1 α2

)(
α

#
1 α3

)
(
α

#
1 α2

)(
α

#
1 α3

) (
α

#
1 α3

)2

])
.

Simple algebraic manipulations can be used to arrive at equation 3.32.

Lemma 3. For integrals of the forms listed below, corresponding closed form solutions

exist:

∫

Rd
�(a+ b

#
x)�I(x)dx = �

(
a√

b#b+ 1

)
, (3.33)

∫

Rd
x�(a+ b

#
x)�I(x)dx =

b√
b#b+ 1

�

(
a√

b#b+ 1

)
, (3.34)

∫

Rd
xx

#�(a+ b
#
x)�I(x)dx

= �

(
a√

b#b+ 1

)
Id −

abb#√
(b#b+ 1)3

�

(
a√

b#b+ 1

)
, (3.35)

where a ∈ R and b is d× 1 vector.

3.5.1.2 Proof of Lemma 3

To arrive at equation (3.34), let ei be a d× 1 vector with its ith entry equal to 1 and
zeroes elsewhere. Then, using Lemma 2 the ith entry of the right-hand side of equation
(3.34) is

∫

Rd
(e#i x)�

(
a+ b

#
x
)
�I(x)dx =

e
#
i
b

‖b‖

∫ ∞

−∞
x�

(
a+ ‖b‖x

)
�(x)dx

= −e
#
i
b

‖b‖

∫ ∞

−∞
�
(
a+ ‖b‖x

)
�′(x)dx

= e
#
i b

∫ ∞

−∞
�
(
a+ ‖b‖x

)
�(x)dx, (3.36)



3.5. APPENDIX 110

where equation (3.36) follows via integration by parts. The components of the integrand
in equation (3.36) can be expressed as

(2⇡)−1 exp
{
− 1

2

(
(a+ ‖b‖x)2 + x2

)}
= �

(
a√

b#b+ 1

)
�

(
x+ a‖b‖√
b#b+ 1

)
.

Equation (3.34) is of direct consequence.

To arrive at equation (3.35), define ej as a d× 1 vector with jth entry equal to 1
and with zeroes elsewhere. Then by equation (3.32), the (i, j) entry of the right-hand
side of equation (3.35) is
∫

Rd

(
e
#
i x

)(
e
#
j x

)
�
(
a+ b

#
x
)
�I(x)dx

=
(
e
#
i ej

) ∫ ∞

−∞
�
(
a+ ‖b‖x

)
�(x)dx+

(
e
#
i
b
)(
e
#
j
b
)

‖b‖2

∫ ∞

−∞
�
(
a+ ‖b‖x

)
�′′(x)dx

=
(
e
#
i ej

)
�

(
a√

b#b+ 1

)
�(x)dx−

(
e
#
i
b
)(
e
#
j
b
)

‖b‖2

∫ ∞

−∞
�
(
a+ ‖b‖x

)
�′(x)dx, (3.37)

where equation (3.37) follows via integration by parts. The integrand in equation (3.37)
is expressible as

(2⇡)−1x exp

{
− 1

2

((
a+ ‖b‖x

)2
+ x2

)}
= −x�

(
a√

b#b+ 1

)
�

(
x+ a‖b‖√
b#b+ 1

)
.

Equation (3.35) follows. It is easy to prove equation (3.33) using the same method.

Consider the input function from equation (3.6). To obtain the projection of this
function to the multivariate normal, we require closed form solutions to the equivalent
of the zeroth, first and second moments. Using the ⊗k notation given in equation (1.2)
we can calculate each moment as

Mk ≡
∫

Rd
x
⊗k�

(
c0 + c

#
1 x

)
exp

(
(ηinput

1 )#x+ x
#
H

input
2 x

)
dx (3.38)

and subsequently obtain the optimum natural parameters via algebraic manipulations.
Note in the interest of brevity we represent the input parameter ηinput as η. We now
work on the general case for all ⊗k. Using the matrix notation defined in equation
(1.14)

Mk =

∫

Rd
x
⊗k�

(
c0 + c

#
1 x

)
(2⇡)−d/2 exp






[
x

vech(xx#)

]#

η −A(η)





dx

× exp
(
A(η)

)
(2⇡)d/2.

Using the inverse map of the natural parameters in equation (1.14)

Mk =

∫

Rd
x
⊗k�

(
c0 + c

#
1 x

)
�⌃(x− µ)dx (2⇡)d/2 exp

(
A(η)

)
.
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We now implement a change of variable such that z = Σ−1/2(x− µ)thus

Mk =

∫

Rd

(
µ+Σ1/2

z
)⊗k

�
(
c0 + c

#
1 µ+ (Σ1/2

c1)
#
z
)
�I(z)dz Z1, (3.39)

where Z1 = exp
(
A(η) + d/2 log(2⇡)

)
. It is then easy to show that each of the kth

moments are

Z−1
1 M0 = �(r2),

Z−1
1 M1 = µ�(r2) + 2Σc1r

−1
1 �(r2),

Z−1
1 M2 = (µµ# +Σ)�(r2) + 2r−1

1 (Σc1µ
# + µc

#
1 Σ− 2r2r

−1
1 Σc1c

#
1 Σ)�(r2).

The expressions for the optimal mean and variance parameters follow respectively, as

µ
∗ = E(x) =

M1

M0
= µ+ 2Σc1r

−1
1 ⇣ ′(r2),

and

Σ∗ = E(xx#)− E(x)E(x)# =
M2

M0
− M1

M0

(
M1

M0

)#
= Σ− (4Σc1c

#
1 Σr−2

1 )⇣ ′′(r2).

Converting back to non-vectorised natural parameter form using conversion defined in
equation (1.7) leads to the required result.

3.5.2 Proof of Result 12

Consider an unnormalised multivariate normal density function f(x;η)

fUN(x;η) = exp










1

x

vech(xx#)





#

η





.

Then the Kullback-Leibler divergence of fUN from finput is

KL(finput ‖ fUN) =

∫

Rd
finput(x) log

(
finput(x)/fUN(x;η)

)
+ fUN(x;η)− finput(x)dx

= K(η) + const,

where

K(η) ≡ (2⇡)d/2 exp
(
η0 +AN (η1:2)

)
−





∫
Rd finput(x)dx∫
Rd xfinput(x)dx∫

Rd vech(xx#)finput(x)dx





#

η.

Note that the derivative vector of K(η) is

DK(η) = (2⇡)d/2 exp
(
η0+AN(η1:2)

)
[

1

DAN (η1:2)#

]#

−





∫
Rd finput(x)dx∫
Rd xfinput(x)dx∫

Rd vech(xx#)finput(x)dx





#

.



3.5. APPENDIX 112

Since the stationary condition to minimise the KL(finput ‖ fUN) occurs at DK(η)# = 0,

(2⇡)d/2 exp
(
η0 +AN (η1:2)

)
[

1

∇AN(η1:2)

]
=





∫
Rd finput(x)dx∫
Rd xfinput(x)dx∫

Rd vech(xx#)finput(x)dx



 , (3.40)

where ∇AN (η1:2) ≡ DAN (η1:2)# is the gradient vector of AN (η1:2). It is then easy to
show

η
∗
0 = log(Cfinput)−AN (η∗

1:2)−
d

2
log(2⇡),

where

η
∗
1:2 = (∇AN )−1

([ ∫
Rd x

(
finput(x)/Cfinput

)
dx

∫
Rd vech(xx#)

(
finput(x)/Cfinput

)
dx

])
(3.41)

with existence and uniqueness of (∇AN )−1 being guaranteed by Proposition 3.2 of
Wainwright & Jordan (2008),66 and Cfinput ≡

∫
Rd finput(x)dx. The Hessian matrix of

K(η) is

HK(η) = (2⇡)d/2 exp
(
η0+AN(η1:2)

)





[
1

∇AN (η1:2)

][
1

∇A(η1:2)

]#

+

[
0 0#

0 HAN(η1:2)

]



By Proposition 3.1 of Wainwright & Jordan (2008),66 AN is strictly convex on its domain
and thus HA(η1:2) is positive definite. Thus, HK(η) is positive definite for all η and so
equation (2.40) is the unique maximiser of KL

(
finput ‖ fUN

)
. Therefore,

projUN[finput](x) = exp










1

x

vech(xx#)





#

η
∗






where η
∗ is as previously defined. However, η∗

1:2 is the same natural parameter vector
that arises via projection of finput/Cfinput onto the family of univariate normal density
functions, thus

projN [finput/Cfinput ](x) = exp

{[
x

vech(xx#)

]
η
∗
1:2 −AN(η

∗
1:2)

}
(2⇡)−d/2

which immediately leads to Result 3.



Chapter 4

Expectation propagation for one
level logistic mixed models

Although a probit model can be used to handle data with a binary response variable,

logistic models are used more frequently for the elegant interpretation they facilitate.

However, since the integral arising in the projection required for fitting logistic GLMMs

via EP does not have a closed form solution, the models explored in this section will be

more computationally intensive than their probit counterparts. We now explore two

methods of obtaining the appropriate update for the logistic link function. The benefit

of implementing the message passing approach in the previous two chapters becomes

obvious over the next two sections, as the logistic extension becomes easily available

with minimal algebraic overheads.

This chapter is broken into two main sections. As in Chapter 2, we start with the

simplest random intercepts only model in Section 4.1. The next Section 4.2 follows the

work presented in Chapter 3 and extends our methodolgy to a general logistic model

for any number of fixed and random e↵ects. Since the previous two chapters explain

the message passing frameworks in detail, we provide only the updated details and refer

back to the previous Chapters when required.

The content of this chapter is published as: Hall, P., Johnstone, I. M., Ormerod, J. T., Wand, M. P., &

Yu, J. C. F. (2020). Fast and Accurate Binary Response Mixed Model Analysis via Expectation

Propagation, Journal of the American Statistical Association, 115:532, 1902–1916, DOI:

10.1080/01621459.2019.1665529
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4.1 The simplest logistic mixed model

As in the probit case, we develop our methodology on the simplest GLMM with random

intercepts only, where we consider only the parameter �2. For observed values of

yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where is yij ∈ {0, 1}, the simplified logistic binary mixed model can be shown to be

yij |ui
iid∼ Bernoulli

(
expit(ui)

)
, ui

iid∼ N(0,�2),

where expit(x) is given by equation (1.9) and ui is a scalar unobserved latent variable.

We wish to find the maximiser of `(�2) denoted by �̂2. The log-likelihood can be

expressed as a sum

`(�2) =
m∑

i=1

`i(�
2),

where

`i(�
2) ≡ log

∫ ∞

−∞

n∏

j=1

expit
(
(2yij − 1)ui

)
(2⇡�2)−1/2 exp(−u2i /2�

2)dui, (4.1)

and the maximum likelihood estimate of �2 is given by

�̂2 = argmax
�2

`(�2).

The best predictor is given by

BP(ui) =

∫∞
−∞ ui

∏
n

j=1 expit
(
(2yij − 1)ui

)
exp(−u2

i
/2�2)dui∫∞

−∞
∏

n

j=1 expit
(
(2yij − 1)ui

)
exp(−u2

i
/2�2)dui

.

Although we are working with the simplest model, the calculation of the maximum

likelihood estimator and best predictors are complicated by the intractable integrals

arising in equation (4.1). To calculate the log-likelihood surface of `(�2) we explore an

EP approximation scheme and compare it to a traditional quadrature approach.

The following subsections copy the structure of Chapter 2. In Subsection 4.1.1 we

provide details of the quadrature approach to estimating the likelihood surface, then

explain our novel method using EP in Subsection 4.1.2. We compare the likelihood

surface of both methods in Subsection 4.1.3 and discuss best predictor computation

in Subsection 4.1.4. Point estimate and confidence interval calculation is conducted
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analogously to Section 2.4.1 and thus we do not repeat it.

4.1.1 Traditional quadrature likelihood approximation

Implementation of the adaptive quadrature via the Gauss-Kronrod method follows

the same approach as in the probit case, where we utilise the R function integrate()

included with base R. Although it is possible to directly implement the integrate function

for calculation of intractable integrals arising in equation (4.1), doing so leads to results

of small absolute value and as such are di�cult to store. With this in mind, denoting

y†
ij
≡ 2yij − 1, we suggest that for numerical stability each `i(�2) is calculated as

1

2
log(2⇡�2) + `i(�

2) = h(u0i) + log

∫ ∞

−∞
exp

(
hi(u)− hi(u0i)

)
du,

where

hi(u) ≡
n∑

j=1

{
y†
ij
u− log

(
1 + exp

(
y†
ij
u
))}

− u2

2�2
,

h′i(u) =
n∑

j=1

{
y†
ij

(
1 + exp

(
y†
ij
u
))−1

}
− u

�2

and u0i is the root of h′i which we recommend finding using a bisection search, where the

starting values are selected -1 and 1 to be for the lower and upper bounds respectively.

4.1.2 Expectation propagation likelihood approximation

We now consider an EP approach to the approximate likelihood (denoted by s̀(�
2)) which

follows that of Section 2.2. The EP approximation is motivated by the minimisation of

a KL divergence criterion, which in the logistic case is used to select an unnormalised

normal density function to replace each

expit
(
(2yij − 1)ui

)
, 1 ≤ j ≤ n

in equation (4.1). Subsequently, the integrand is proportional to a product of univariate

normal density functions.

The goal of the EP problem is to find the KL projection of the input function

onto the family of normal density functions. For logistic binary GLMMs, EP requires
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repeated projection of the form

finput(x) = expit(c0 + c1x) exp
(
⌘input1 x+ ⌘input2 x2

)
(4.2)

onto an unnormalised normal distribution (written in exponential form in equation

(2.3)), where ⌘input1 ∈ R and ⌘input2 < 0, and c0, c1 and x follow from the probit case.

As such, we seek η
∗ such that

∫ ∞

−∞
xkexpit(c0 + c1x) exp

(
⌘input1 x+ ⌘input2 x2

)
dx =

∫ ∞

−∞
xk exp










1

x

x2





#

η
∗






dx,

(4.3)

where η∗ is defined in equation (2.4). As before, obtaining the natural parameters η∗ for

projection onto the unnormalised normal family follows from obtaining the projection

onto the normal family. As per Result 3, the optimal natural parameters ⌘∗1 and ⌘∗2,

are given according to the projection of the normalised function finput/Cfinput onto the

normal family. We can subsequently use these optimal natural parameters to find the

normalising natural parameter ⌘∗0 via Result 4 and thus obtain the projection onto

unnormalised normal family.

Thus to obtain the required projection, we first obtain the optimal natural parameters

⌘∗1 and ⌘∗2 to project onto the normal family. However, unlike the probit case no closed

form solution exists for the integral arising in the required projection (left hand side of

equation (4.3)). As in Nolan & Wand (2017)47 we turn to the piecewise approximation of

the expit function by Monahan & Stefanski (1989).46 The key result can be summarised

as,

expit(x) ≈ expitMS(x),

where expitMS(x) =
8∑

i=1

pi�(six) (4.4)

and pi and si are fixed constants given in Table 18.4.1 of Monahan & Stefanski (1989).46

Thus we can write

8∑

i=1

pi

∫ ∞

−∞
xk�(sic0 + sic1x) exp

(
⌘input1 x+ ⌘input2 x2

)
dx ≈

∫ ∞

−∞
xk exp










1

x

x2





#

η
∗






dx
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and implement Lemma 1 to solve the required integrals. Using simple algebraic ma-

nipulations analogous to the simplest probit case shown in equation (2.2) we arrive at

Result 16.

Result 16. Given finput follows the form of equation (4.2), the projection onto the

univariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x)

where

η
∗
−1 = klogistic

(
η
input
−1 ; c0, c1

)
, η

input
−1 ≡



 ⌘input1

⌘input2



 , η
∗
−1 ≡



 ⌘∗1

⌘∗2



 ,

klogistic







a1

a2



 ; c0, c1



 is as per Definition 15 and T (x) and h(x) follow from Section

1.5.2.1.

Definition 15. For primary arguments a1 ∈ R and a2 < 0 and auxiliary arguments

c0, c1 ∈ R the function klogistic : H → H is given by

klogistic







a1

a2



 ; c0, c1



 =



r5(a1 + c1r3)

r5a1



 ,

where

r1i =
√
2
(
2− s2

i
c21a

−1
2

)
, r2i = si

(
2c0 − c1a

−1
2 a1

)
r−1
1i , r3 =

2
∑8

i=1 pisi�(r2i)r
−1
1i∑8

i=1 pi�(r2i)
,

r̃3 = 4
8∑

i=1

(
pis2i r2i∑8

i=1 pi�(r2i)

)
, r4 =

1

2

(
r23 + r̃3

)
, r5 =

(
a2 + r4c

2
1

)−1
a2.

Using Result 16 we now obtain the normalising natural parameter ⌘∗0 to find the

projection onto unnormalised normal family.
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4.1.2.1 Projection onto the unnormalised normal family

Recall the moment matching problem described by equation (4.3) and Result 4. Then

the normalising factor, can be shown to be

Cfinput =

∫

R

finput(x)dx = (2⇡)−1/2 exp
(
A(ηinput)

) 8∑

i=1

pi�(r2i),

where r2i is given in Definition 10 and A(η) is defined in Section 1.5. By Result 4

⌘∗0 = log
8∑

i=1

pi�(r2i) +
1

4
(⌘∗1)

2/⌘∗2 −
1

4
(⌘input1 )2/⌘input2 +

1

2
log(⌘∗2/⌘

input
2 ).

Thus to obtain ⌘∗0 we introduce Definition 16.

Definition 16. Consider first primary scalar arguments a1, a2, b1 and b2, and auxiliary

scalar arguments c0 and c1. The function clogistic : H → R is given by

clogistic







a1

a2



 ,



b1

b2



 ; c0, c1



 ≡ log

(
8∑

i=1

pi�(r2i)

)
+

1

4
b21/b2 −

1

4
a21/a2 +

1

2
log(b2/a2),

where r2i follow from Definition 15.

In summary, we can obtain the projection of the input function onto the univariate

normal family using klogistic, then find projection onto the unormalised univariate normal

family using clogistic. This is formalised in Result 17.
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Result 17. For an unnormalised input function of the form of equation (4.2),

projUN[finput] = exp










1

x

x2





# 



⌘∗0

⌘∗1

⌘∗2










,

where 

 ⌘∗1

⌘∗2



 = klogistic







 ⌘input1

⌘input2



 ; c0, c1





and

⌘∗0 = clogistic







 ⌘input1

⌘input2



 ,



 ⌘∗1

⌘∗2



 ; c0, c1



.

We now explain how to implement the results shown in this section in a message

passing framework.

4.1.2.2 Message passing formulation

As mentioned throughout this section, only minor changes to the message passing

algorithm discussed in Section 2.2.2 are required to account for the logistic case. Note

the components of the sum of the log-likelihood function `i(�2) are changed to

`i(�
2) = log

∫ ∞

−∞

(
n∏

j=1

p(yij |ui)
)
p(ui;�

2)dui, (4.5)

where

p(yij |ui) ≡ expit
(
(2yij − 1)ui

)
and p(ui;�

2) ≡ (2⇡�2)−1/2 exp
(
− u2i /(2�

2)
)

are the conditional density functions of each response given its random e↵ect and the

density function of that random e↵ect respectively.

Note the dependence structure of the product in equation (4.5) matches the probit
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model shown in Figure 2.1. As such, we only need to update the messages depending

on the conditional density functions of each response given its random e↵ect. Following

Section 2.2.2, this involves updating messages mp(yij |ui)→ui
(ui) (as in equation (2.10))

to

mp(yij |ui)→ui
(ui) ←−

projUN

[
expit(c0 + c1ijui) exp(⌘

⊗
1 ui + ⌘⊗2 u

2
i
)
]

exp(⌘⊗1 ui + ⌘⊗2 u
2
i
)

,

where c0 = 0 and c1ij ≡ 2yij − 1. Utilising Result 6 leads to equation (2.16), where the

linear and quadratic coe�cient updates in equation (2.17) are changed to

(
ηp(yij |ui)→ui

)
1:2

←− klogistic
(
η
⊗
1:2; c0, c1ij

)
− η

⊗
1:2 (4.6)

and where the constant coe�cient update in equation (2.18) is changed to

(
ηp(yij |ui)→ui

)
0
←− clogistic

(
η
⊗
1:2,

(
ηp(yij |ui)→ui

)
1:2

+ η
⊗
1:2; c0, c1ij

)
. (4.7)

In summary, Algorithm 3 applies to the logistic model, however equations (2.17) and

(2.18) are replaced with equations (4.6) and (4.7). Additionally, the initialisation of

ηp(yij |ui)→ui
now follows equation (4.9).

4.1.2.3 Starting values for the univariate logistic case

The EP message passing algorithm proposed relies on good starting values for

convergence. We now derive starting values for ηp(yij |ui)→ui
using a Taylor series

expansion. Note that

log p(yij |ui) = f(aij)− log(2), where aij ≡ (2yij − 1)ui,

and

f(x) = expit(x),

f ′(x) =
exp(−x)

(
exp(−x) + 1

)2 , (4.8)

f ′′(x) =
exp(−x)

(
1− exp(−x)

)
(
exp(−x) + 1

)3 .
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Let ûi be a Laplace approximation to ui. Now consider the following Taylor series

expansion of the data dependent component of `(�2)

f(aij) = f(âij) + (ui − ûi)(2yij − 1)f ′(âij) +
1

2

(
(ui − ûi)(2yij − 1)

)2
f ′′(âij) + ...

=





1

ui − ûi

(ui − ûi)2





#

qηij + ...,

where âij ≡ (2yij − 1)ûi and

qηij =





f(âij)

(2yij − 1)f ′(âij)

1
2f

′′(âij)




.

As in the probit case the quadratic approximation to log p(yij |ui) based on Taylor

expansion about ûi is log qp(yij |ui), where qp(yij |ui) is analogous to equation (2.22). By

following the same logic it is easy to show

⌘start
p(yij |ui)→ui

=





⌘start0

(2yij − 1)f ′(âij)− f ′′(âij)ûi

1
2f

′′(âij)




, (4.9)

where

⌘start0 = f(âij)− (2yij − 1)f ′(âij)ûi +
1

2
(2yij − 1)f ′′(âij)û

2
i .

The comments at the end of Section 2.2.3 are also applicable for these starting values.

4.1.3 Evaluation of the estimates

Implementing the quadrature and EP approaches in the R computing environment,

we now visually compare the accuracy of our likelihood approximation s̀
′(�2) to the

exact likelihood surface `(�2). Figure 4.1 plots the estimates of the likelihood surface

for both methods. The data generated had m = 30 groups with n = 5 responses per

group, and the true variance of �2 = 0.19. Using the quadrature method as exact,
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the plot shows that although there are some discepencies on the tails of the likelihood

surface, the approximate method follows the exact likelihood surface near the maximum.

Additionally, the true value of �2 matches well with the maximum of the likelihood.

With this in mind, we now turn to methodology for determination of its maximum with

95% confidence intervals.

−3 −2 −1 0

−1
07

−1
06

−1
05

−1
04

log(σ2)

lo
g−

lik
el

ih
oo

d

Exact Approach
EP Approach

Figure 4.1: A comparison plot of the log-likelihood surface over the parameter �2
for

logistic models calculated using univariate quadrature and EP via the Monahan &

Stefanski (1989)
46

approximation to the expit function. The true �2 = 0.19 and is

represented on the log scale by the red line. The EP approximation is the dark blue line

and the exact is the light blue line.
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4.1.4 Best predictor

Best prediction of ui for logistic models via quadrature and EP is the same for the

probit model presented in Section 2.5, although for the later we redefine

Jsi(�
2) ≡

∫ ∞

−∞
usi

n∏

j=1

expit
(
(2yij − 1)ui

)
(2⇡�2)−1/2 exp(−u2i /2�

2)dui, s = {0, 1, 2}.

The calculations are otherwise analogous.

4.2 General logistic mixed models

With knowledge from Section 4.1 on the random intercepts only model, we now extend

our model to the more general case of GLMMs discussed in Section 1.7 that allow for

any number of fixed and random e↵ects. As such we respecify our model as

yij |ui

ind.∼ Bernoulli
(
expit

(
β
#
x
F
ij + u

#
i x

R
ij

))
, ui

ind.∼ N
(
0dR ,Σ

)
, (4.10)

1 ≤ i ≤ m, 1 ≤ j ≤ ni,

where the notation follows the general one level model presented in Section 1.8. The

resulting log-likelihood can be written as

` (β,Σ) =
m∑

i=1

`i (β,Σ) ,

where

`i (β,Σ) = log

∫

RdR

{ ni∏

j=1

expit
(
(2yij − 1)

(
β
#
x
F
ij + u

#
i x

R
ij

))}

× |2⇡Σ|−1/2 exp

(
−1

2
u
#
i Σ

−1
ui

)
dui,

and the best predictor of ui is

BP(ui) ≡

∫
RdR ui

{∏
ni
j=1 expit

(
(2yij − 1)

(
β
#
x
F
ij
+ u

#
i
x
R
ij

))}
exp

(
− 1

2u
#
i
Σ−1

ui

)
dui

∫
RdR

{∏
ni
j=1 expit

(
(2yij − 1)

(
β#xF

ij
+ u

#
i
x
R
ij

))}
exp

(
− 1

2u
#
i
Σ−1ui

)
dui

.

(4.11)
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Quadrature for integrals greater than two dimensions becomes too computationally

intensive for practical implementation, and as such we no longer consider it. The

computations required for the multivariate logistic model via EP are mostly the same as

the multivariate extension of the probit model, with the only changes being the starting

values and projections onto the normalised and unnormalised inverse-logistic density

functions.

The structure of this section follows that of the previous, first explaining the schematic

of likelihood approximation using EP in Section 4.2.1 and the changes required from the

probit model in Section 3.1. It concludes with the results of our simulation studies in

Section 4.2.2. Details regarding computation of point estimates and confidence intervals

are analogous to those presented in Section 3.2, whilst the same calculations in Section

3.3 can be used for best prediction of ui. We do not repeat either section again and

instead refer readers to the previous work.

4.2.1 Expectation propagation likelihood approximation

The details of the EP approximation of the likelihood are largely analogous to those

provided in Section 3.1 for the probit case. As before, the goal of the EP problem is to

find the optimal natural parameters ⌘0, η1 and η2 which minimise KL(finput ‖ fUN ),

where fUN is defined by equation (3.4) and

finput(x) = expit
(
c0 + c

#
1 x

)
exp

((
η
input
1

)#
x+ x

#
H

input
2 x

)
, (4.12)

where ηinput
1 is a d× 1 vector and H

input
2 is a d× d matrix, and c0, c1 and x follow from

the general probit case. As such, we seek an η
∗ such that

∫

Rd
x
⊗kexpit

(
c0 + c

#
1 x

)
exp








 x

vech
(
xx

#)




#

η
input





dx

=

∫

Rd
x
⊗k exp










1

x

vech
(
xx

#)





#

η
∗






dx (4.13)

where k ∈ {0, 1, 2}. To obtain the required projection, we first obtain the optimal

natural parameters η1 and η2 to project onto the multivariate normal family. For the

generalised case, there are two possible solutions worth exploring to solve the otherwise
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intractable integrals required for the projections, as per Result 18.

Result 18. Given finput follows the form of equation (4.12), the projection onto the

multivariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A
(
η
∗
−1

))
h(x),

where

η
∗
−1 ≡ KlogisticQuad

(
η
input
−1 ; c0, c1

)
≈ KlogisticApprox

(
η
input
−1 ; c0, c1

)
,

η
input
−1 ≡



 η
input
1

η
input
2



 , η
∗
−1 ≡



 η
∗
1

η
∗
2



 ,

KlogisticQuad







 a1

a2



 ; c0, c1



 is defined in Definition 17,

KlogisticApprox







 a1

a2



 ; c0, c1



 is defined in Definition 18, and T (x) and h(x)

follow from Section 1.5.2.2.

Definition 17. For primary arguments a1 (d× 1) and a2
(
1
2d(d+ 1) × 1

)
such that

vec
−1

(
−
(
D

+
d

)#
a2

)
is symmetric and positive definite, and auxiliary arguments c0 ∈ R

and c1 (d× 1), the function KlogisticQuad
: H → H is given by

KlogisticQuad







a1

a2



 ; c0, c1



 ≡



R#
5 (a1 + r3c1)

D
#
d
vec

(
R#

5 A2
)



 , (4.14)

where

r1 = c
#
1 A

−1
2 c1, r2 =

(
2c0 − c

#
1 A

−1
2 a1

)
r−1
1 , r3 = r2 + 2 Cb,1:0(r6, r7)r7,

r4 = 2
(
Cb,1:0(r6, r7)2 − Cb,2:0(r6, r7)− r1

)
r−2
1 , R5 =

(
A2 + r4c1c

#
1

)−1
A2,

r6 = 1− r2, r7 = −r−1
1 , Cb,1:0(r6, r7) =

Cb(1, r6, r7)
Cb(0, r6, r7)

,

Cb,2:0(r6, r7) =
Cb(2, r6, r7)
Cb(0, r6, r7)

, b(x) = log
(
1 + e−x

)
,

and Cb(k, r, q) is as per equation (4.24).
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Definition 18. For primary arguments a1 (d× 1) and a2
(
1
2d(d+ 1) × 1

)
such that

vec
−1

(
−
(
D

+
d

)#
a2

)
is symmetric and positive definite, and auxiliary arguments c0 ∈ R

and c1 (d× 1), the function KlogisticApprox
: H → H is given by

KlogisticApprox







a1

a2



 ; c0, c1



 ≡



R
#
5 (a1 + r3c1)

D
#
d
vec(R#

5 A2)



 , (4.15)

where

r1i =
√
2
(
2− s2

i
c
#
1 A

−1
2 c1

)
, r2i = si

(
2c0 − c

#
1 A

−1
2 a1

)
r−1
1i ,

r3 =
2
∑8

i=1 pisir
−1
1i �(r2i)∑8

i=1 pi�(r2i)
, r̃3 = 4

8∑

i=1

(
pis2i r2i∑8

i=1 pi�(r2i)

)
,

r4 =
1

2

(
r23 + r̃3

)
, R5 =

(
A2 + r4c

2
1

)−1
A2.

The first solution using function KlogisticQuad
as per Definition 17 requires solving

each of the projections using univariate quadrature. Although this causes computational

di�culties, it is still significantly faster than using multivariate quadrature. This

approach involves utilising Lemma 2 to express the multivariate integrals required as

univariate integrals. To account for the numerically unstable integrals, we express them

using the form of Cb(p, q, r) as in Section 2.1 of Kim & Wand (2018).32

While optimising the likelihood surface via the EP algorithm, it is not unreason-

able for the required integral to be calculated millions of times. As such, speed of

integration for each projection becomes a vital issue. For univariate models, adaptive

trapezoidal quadrature is a feasible option and provides high accuracy as well as an

error criterion. However due to speed limitations its implementation is not practical for

multivariate models. Although Gauss-Hermite quadrature with stored weights solves

the computational speed issues, it is di�cult to implement an error criterion to ensure a

reasonable approximation of each integral is obtained. We leave this as an open problem

and implement 100 point Gauss-Hermite quadrature for the simulations in this thesis.

Details of the algebra required to arrive at Definition 17 are provided in Appendix 4.3.2.

The second approach denoted by KlogisticApprox
as per Definition 18 involves using

the piecewise approximation of the expit function by Monahan & Stefanski (1989)46 in

a similar manner to the previous random intercepts only section. By implementing this

approximation, we are able to obtain closed form solutions to the integrals required.

Details of the algebra required to arrive at Definition 18 are provided in Appendix 4.3.3.
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Practical implementation of this approach in the higher dimensional setting proved

to be troublesome with convergence issues arising in the EP algorithm. Figure 18.4.1

of Monahan & Stefanski (1989)46 demonstrates the behaviour of the approximation

compared to the expit function. An analysis showed that for some values arising in the

required projections it is possible for the cumulative normal density function in the expit

approximation to become very small, leading to underflow and causing convergence

issues in the EP algorithm.

Using Result 18 we now show two methods to obtain the normalising natural

parameter and subsequently, the projection onto unnormalised normal family.

4.2.1.1 Projection onto the unnormalised multivariate normal family

Obtaining the projection onto the unnormalised multivariate normal family involves

similar algebra to the multivariate probit case. Recall the moment matching problem

from equation (4.13) and Results 12 and 13. We require

Cf =

∫

Rd
finput(x)dx = M0(c0, c1;η),

where

M0(c0, c1;η) ≡
∫

Rd
x
⊗kexpit

(
c0 + c

#
1 x

)
exp

(
η
#
1 x+ x

#
H2x

)
dx,

and the right hand side is available by either quadrature or a piecewise approximation.

Using the quadrature method, we express

M0(c0, c1;η) = Cb(0, r6, r7)Z0Z1,

where Z0 = exp
(
(r2/2)2r1 + 0.5 log(r7/⇡)

)
, Z1 = exp

(
A(η) + d

2 log(2⇡)
)
and r6 and r7

are given in Definition 17. Analogous to the argument given in the univariate case we

then get

⌘∗0 = log Cb(0, r6, r7) + (r2/2)
2r1 +

1

2
log(r7/⇡) +

1

4
(η∗

1)
#(H∗

2 )
−1

η
∗
1

−1

4

(
η
input
1

)#(
H

input
2

)−1
η
input
1 +

1

2
log

(
|H∗

2 |/|H
input
2 |

)
.

To calculate ⌘∗0 using the quadrature method we introduce Definition 19.
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Definition 19. Consider first, primary arguments a1 and b1 and auxiliary argument c1

where all three are d× 1. Next consider arguments a2 and b2 which are
(
1
2d(d+ 1)× 1

)

such that both vec
−1

(
−
(
D

+
d

)#
a2

)
and vec

−1
(
−
(
D

+
d

)#
b2

)
are symmetric and positive

definite. Finally note auxiliary argument c0 ∈ R. Then the function ClogisticQuad
:

H ×H → R is given by

ClogisticQuad







a1

a2



 ,



b1

b2



 ; c0, c1



 ≡ log Cb(0, r6, r7) + (r2/2)
2r1 +

1

2
log(r7/⇡)

+
1

4
b
#
1 B

−1
2 b1 −

1

4
a
#
1 A

−1
2 a1 +

1

2
log

(
|B2|/|A2|

)
,

where A2 ≡ vec
−1

((
D

+
d

)#
a2

)
, B2 ≡ vec

−1
((

D
+
d

)#
b2

)
, r1, r2, r6 and r7 follow from

Definition 17.

Using the alternative using piecewise approximation,

M0 =
8∑

i=1

pi�(r2i) Z1

where Z1 is defined as in the quadrature approach and r2i is given in Definition 18. It

is then easy to show

η
∗
0 = log

( 8∑

i=1

pi�(r2i)

)
+

1

4
(η∗

1)
#(H∗

2 )
−1

η
∗
1 −

1

4

(
η
input
1

)#(
H

input
2

)−1
η
input
1

+
1

2
log

(
|H∗

2 |/|H
input
2 |

)

and arrive at Definition 20.
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Definition 20. Consider first, primary arguments a1 and b1 and auxiliary argument c1

where all three are d×1. Next consider arguments a2 and b2 which are all
(
1
2d(d+1)×1

)

such that both vec
−1

(
−
(
D

+
d

)#
a2

)
and vec

−1
(
−
(
D

+
d

)#
b2

)
are symmetric and positive

definite. Finally note auxiliary argument c0 ∈ R. Then the function ClogisticApprox
:

H ×H → R is given by

ClogisticApprox







a1

a2



 ,



b1

b2



 ; c0, c1



 ≡ log

( 8∑

i=1

pi�(r2i)

)
+

1

4
b
#
1 B

−1
2 b1 −

1

4
a
#
1 A

−1
2 a1

+
1

2
log

(
|B2|/|A2|

)
,

where A2 ≡ vec
−1

((
D

+
d

)#
a2

)
, B2 ≡ vec

−1
((

D
+
d

)#
b2

)
, r1, r2, r6 and r7 follow from

Definition 18.

For either method, the projection onto the unormalised multivariate normal family can

be obtained with Result 19.

Result 19. For an unnormalised input function finput of the form of equation (4.12),

projUN [finput](x) = exp










1

x

vec
(
xx

#)





# 



⌘∗0

η
∗
1

η
∗
2










,

where



η
∗
1

η
∗
2



 = KlogisticQuad







η1

η2



 ; c0, c1



 ≈ KlogisticApprox







η1

η2



 ; c0, c1





and

⌘∗0 = ClogisticQuad







η1

η2



 ,



η
∗
1

η
∗
2



 ; c0, c1



 ≈ ClogisticApprox







η1

η2



 ,



η
∗
1

η
∗
2



 ; c0, c1



.
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4.2.1.2 Message passing formulation

Only minor changes to Algorithm 6 are required to account for the logistic case. For the

logistic model, the components of the sum of the log-likelihood function `i(β,Σ) follow

`i(β,Σ) = log

∫

RdR

( ni∏

j=1

p(yij |ui;β)

)
p(ui;Σ)dui, (4.16)

where

p(yij |ui;β) ≡ expit
(
(2yij − 1)

(
β
#
x
F
ij + u

#
i x

R
ij

))

and

p(ui;Σ) ≡ |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)

are the conditional density functions of each response given its random e↵ect and the

density function of that random e↵ect.

As the dependence structure of the product in equation (4.16) is the same as the

probit model shown in Figure 3.1, we only need to update the messages depending on

the conditional density functions of each response given its random e↵ect. This involves

updating messages mp(yij |ui;�)→ui
(ui) (equation (3.12))

mp(yij |ui;�)→ui
(ui) ←−

projUN

[
expit(c0ij + c

#
1ijui) exp

{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

}]

exp
{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

} ,

where c0ij = (2yij − 1)β#
x
F
ij

and c1ij = (2yij − 1)xR
ij
. Following Section 3.1.2, we

see that this task reduces down to adjusting the calculation of the optimal natural

parameters ηp(yij |ui;�)→ui
in equation (3.18), where the linear and quadratic coe�cient

updates in equation (3.19) given by Kprobit are changed to either

(
ηp(yij |ui;�)→ui

)
1:2

← KlogisticQuad

(
η
⊗
1:2; c0, c1ij

)
− η

⊗
1:2

or

(
ηp(yij |ui;�)→ui

)
1:2

← KlogisticApprox

(
η
⊗
1:2; c0, c1ij

)
− η

⊗
1:2

(as per Definitions 17 and 18 respectively), and where the constant coe�cient update in

equation (3.20) given by Cprobit is changed to either

(
ηp(yij |ui;�)→ui

)
0
← ClogisticQuad

(
η
⊗
1:2,

(
ηp(yij |ui;�)→ui

)
1:2

+ η
⊗
1:2; c0, c1ij

)
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or

(
ηp(yij |ui;�)→ui

)
0
← ClogisticApprox

(
η
⊗
1:2,

(
ηp(yij |ui;�)→ui

)
1:2

+ η
⊗
1:2; c0, c1ij

)

(as per Definitions 19 and 20 respectively).

Barring the aforementioned changes and the initialisation of ηp(yij |ui;�)→ui
which

now follows equation (4.17), the full algorithm for the approximation of `(β,Σ) follows

Algorithm 6.

4.2.1.3 Starting values for the multivariate logistic case

Regardless of the projection methods, the EP algorithm for the logistic model uses the

same starting values. We derive starting values using the same principles as in the

probit case. Let

p(yij |ui;β) = f(aij), where aij = (2yij − 1)
(
β
#
x
F

ij + u
#
i x

R
ij

)

and f(x) and its derivatives are as defined in equation (4.8). For a Laplace approximation

of ui denoted by ûi let

âij = (2yij − 1)
(
β
#
x
F

ij + û
#
i x

R
ij

)
.

A Taylor series expansion of f(aij) evaluated at âij leads to

f(aij) = f(âij) + (2yij − 1)f ′(âij)
(
u
#
i − û

#
i

)
x
R
ij +

1

2
f ′′(âij)

((
u
#
i − û

#
i

)
x
R
ij

)2
+ ...

=





1

ui − ûi

vech
((

ui − ûi

)(
ui − ûi

)#)





#

qηij + ...,

where

qηij =





f(âij)

(2yij − 1)f ′(âij)xR
ij

1
2f

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




.

Following the same logic of the probit case, quadratic approximation to log p(yij |ui;β)

based on Taylor expansion about ûi is log qp(yij |ui;β) as per equation (3.22) It is easy
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to show

η
start
p(yij |ui;�)

=





⌘start0

(2yij − 1)f ′(âij)xR
ij
− f ′′(âij)xR

ij

(
x
R
ij

)#
ûi

1
2f

′′(âij)D#
dR

vec
(
x
R
ij

(
x
R
ij

)#)




, (4.17)

where

⌘start0 = f(âij)− (2yij − 1)f ′(âij)x
R
ij û

#
i +

1

2
f ′′(âij)û

#
ijx

R
ij

(
x
R
ij

)#
ûij .

The final comments of Section 3.1.3 regarding obtaining Laplace approximations to ui

are also applicable for these starting values.

4.2.2 Simulation study

We now provide a simulation study analogous to that provided for the probit model,

where we first compare a quadrature approach to EP and Laplace approximation

approach for a random intercept model (i.e. dR = 1) and then test the empirical

coverage of the EP approach on a random intercept model and slope model (i.e. dR = 2).

For the simulation studies in this chapter we used the quadrature approach to obtaining

the projections required for EP and did not assess the speed component.

4.2.2.1 Comparison of maximum likelihood estimates for univariate ran-

dom effects

The first simulation study was repeated 1000 times, where datasets were simulated with

true parameter values:

�true = [0.37, 0.93]# and �2
true = −0.53. (4.18)

There were 100 groups generated in the data with each group containing 10 measurements

(i.e. m = 100, n = 10). The x
F
ij
and x

R
ij

vectors were of the form

x
F

ij = [1, x1,ij ]
# and x

R
ij = 1

where xk,ij was generated independently from a uniform distribution on the unit interval.

The tolerance of error values were set to 10−5 for the EP scheme and the maximum

number of iterations for optimisation was set to 1000. We compared our EP approach
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to Laplace approximation and 100 point adaptive Gauss-Hermite quadrature. Both

alternative approaches were implemented via the R function glmer() from the R package

“lme4” (Bates, et al., 20185).

The resulting estimates and 95% confidence intervals for each interpretable model

parameter of the study are presented in Figure 4.3, where the numbers in the upper-

right hand corner of each panel are the empirical coverage values based on all 1000

replicates. Only 20 randomly chosen replicates from each method are shown in the

panels for ease of viewing, where Laplace approximation and EP are shown in black,

super imposed adaptive Gauss-Hermite quadrature shown in grey. For the fixed slopes

all three methods had the same empirical coverage of 96.3%. The methods also produced

similar results for the fixed intercepts, although adaptive Gauss-Hermite quadrature

performed the best, with 95.8%, ahead of the 95.7% of EP and 95.4% of Laplace

approximation. However, for the variance parameter EP had 97.1% empirical coverage,

notably higher Laplace approximation and adaptive Gauss-Hermite quadrature which

produced empirical coverages of 93.8% and 94.5% respectively. It appears the results of

the three methods are similar for settings of the data, however our method manages to

marginally out perform the alternatives based on empirical coverage.
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−0.2 0.0 0.2 0.4 0.6 0.8 1.0

β0 Emp cover of Lapl = 95.4%.
Emp cover of AGHQ = 95.8%.

0.0 0.5 1.0 1.5 2.0

β1 Emp cover of Lapl = 96.3%.
Emp cover of AGHQ = 96.3%.

0.4 0.6 0.8 1.0

σ Emp cover of Lapl = 93.8%.
Emp cover of AGHQ = 94.5%.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

β0 Emp cover of EP   = 95.7%.
Emp cover of AGHQ = 95.8%.

0.0 0.5 1.0 1.5 2.0

β1 Emp cover of EP   = 96.3%.
Emp cover of AGHQ = 96.3%.

0.4 0.6 0.8 1.0

σ Emp cover of EP   = 97.1%.
Emp cover of AGHQ = 94.5%.

Figure 4.2: Summary comparison between confidence interval coverage for the univariate

model with true parameter values from equation (4.18) for models fit with adaptive

Gauss-Hermite quadrature and Laplace approximation. The horizontal lines are the

confidence intervals for 50 randomly chosen replications of the simulation study, the

solid circular points indicate the corresponding point estimates, the vertical lines indicate

true parameter values, the grey lines correspond to adaptive Gauss-Hermite quadrature,

the black lines on the top row correspond to Laplace approximations and the black lines

on the bottom row correspond to EP. The percentage given in the top right-hand corner

of each panel is the empirical coverage over all 1000 replications.

4.2.2.2 Maximum likelihood estimates for bivariate random effects

The simulation study was repeated 1000 times, where datasets were simulated according

to equation (4.10) with arbitrarily chosen true parameter values

βtrue = [0.37, 0.93,−0.46, 0.08,−1.34, 1.09]# and Σtrue =



 0.73 −0.52

−0.52 0.95



 . (4.19)

We note positive and negative correlation parameters are equally likely, but that neither

has a large a↵ect on the model from a mathematical perspective. Additionally, we

note that correlations close to 1 pose numerical issues, and in reality we recommend
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careful variable selection to avoid them. The number of groups in the data were fixed at

m = 1000 with six measurements per group. The x
F
ij

and x
R
ij

vectors were of the form

x
F
ij = [1, x1ij , x2ij , x3ij , x4ij , x5ij ]

# and x
R
ij = [1, x1ij , x2ij ]

#

where xkij was generated independently from a uniform distribution on the unit interval.

The tolerance of error values were set to 10−5 for the EP scheme and the maximum

number of iterations for optimisation was set to 1000. The resulting estimates and 95%

confidence intervals for each interpretable model parameter of the study are presented

in Figure 4.3, where the numbers in the upper-right hand corner of each panel are

the empirical coverage values based on all 1000 replicates. Only 50 randomly chosen

replicates are shown in the each of the panels for ease of viewing. Across all 12

parameters estimated the empirical coverage showed excellent accuracy. While the

empirical coverage for 94.3% and 94.6% was below 95% the estimates for the other fixed

e↵ects and variance parameters were as promised. The correlation parameter had 96.3%

coverage which is slightly conservative.
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0.0 0.2 0.4 0.6 0.8

β0 95.3%.

0.6 0.8 1.0 1.2 1.4

β1 95%.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

β2 95.1%.

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

β3 94.3%.

−1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1

β4 95.1%.

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

β5 94.6%.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

σ1 95.7%.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

σ2 95.8%.

−0.8 −0.4 0.0 0.2 0.4 0.6

ρ 96.3%.

Figure 4.3: Summary of confidence interval coverage for the simulation study with true

parameter values from equation (4.19). The horizontal lines are the EP-based confidence

intervals for 50 randomly chosen replications of the simulation study, the solid circular

points indicate the corresponding point estimates and the vertical lines indicate true

parameter values. The percentage given in the top right-hand corner of each panel is

the empirical coverage over all 1000 replications.
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4.3 Appendix

4.3.1 Proof of Result 16

Using matrix notation and simple algebraic manipulations we can rewrite the target
density of equation (4.2) as

Mk =
8∑

i=1

pi

∫ ∞

−∞
xk�(sic0 + sic1x) exp






[
x

x2

]#

η −A(η)




 dx exp
(
A(η)

)
.

Taking the inverse of the natural parameters as per equation (1.5) and implementing a
variable change where u = (x− µ)�−1, such that x = µ+ �u and dx = �du,

Mk =
8∑

i=1

pi

∫ ∞

−∞
(µ+ �u)k�

(
si(c0 + c1µ) + sic1�u

)
�(u)duZ1,

where Z1 = exp
(
A(η)

)
(2⇡)1/2�. Thus, using Lemma 1,

Z−1
1 M0 =

8∑

i=1

pi�(r2i),

Z−1
1 M1 =

8∑

i=1

pi
(
µ�(r2i) + 2sic1�

2r−1
1i �(r2i)

)
,

Z−1
1 M2 =

8∑

i=1

pi
(
µ2�(r2i) + 4sic1µ�

2r−1
1i �(r2i) + �2�(r2i)− 4s2i c

2
1�

4r2ir
−2
1i �(r2i)

)
,

where r2i = 2si(c0 + c1µ)r
−1
1i and r1i = 2

(
(sic1�)2 + 1

)−1/2
. We can then show that the

optimal mean and variance parameters are respectively

µ∗ = E(x) = µ+ c1�
2r3

and
(�∗)2 = E(x2)−

(
E(x)

)2
= �2 − 2c21�

4r4,

where

r3 =
2
∑8

i=1 sipi�(r2i)r
−1
1i∑8

i=1 pi�(r2i)
,

r4 =
1

2
(r̃3 + r23) and r̃3 =

4
∑8

i=1 s
2
i
pir2i�(r2i)r

−2
1i∑8

i=1 pi�(r2i)
.

Using matrix notation, converting back to natural parameter form and implementing
additional simplification, we arrive at the required result.
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4.3.2 Proof of Definition 17

Using simple algebraic manipulations based on Lemma 2, we arrive at Lemma 4:

Lemma 4. For integrals of the forms listed below, the corresponding solutions exist:

∫

Rd
expit

(
a+ b

#
x
)
�I(x)dx =

∫ ∞

−∞
expit

(
a+ ‖b‖x

)
�(x)dx, (4.20)

∫

Rd
xexpit

(
a+ b

#
x
)
�I(x)dx =

b

‖b‖

∫ ∞

−∞
xexpit

(
a+ ‖b‖x

)
�(x)dx, (4.21)

∫

Rd
xx

#
expit

(
a+ b

#
x
)
�I(x)dx = Id

∫ ∞

−∞
expit

(
a+ ‖b‖x

)
�(x)dx

+
bb

#

b#b

(∫ ∞

−∞
x2expit

(
a+ ‖b‖x

)
�(x)dx−

∫ ∞

−∞
expit

(
a+ ‖b‖x

)
�(x)dx

)
, (4.22)

where a ∈ R and b is a d× 1 vector.

We wish to obtain the projection of an input function following the form of equation
(4.12) onto the multivariate normal family. Note in the interest of brevity we represent
the input parameter ηinput as η. For the general case for all ⊗k

Mk ≡
∫

Rd
x
⊗kexpit

(
c0 + c

#
1 x

)
exp

(
η
#
1 x+ x

#
H2x

)
dx. (4.23)

Using the matrix notation defined in equation (1.14) we can write

Mk =

∫

Rd
x
⊗kexpit

(
c0 + c

#
1 x

)
(2⇡)−d/2 exp






[
x

vech
(
xx

#)

]#

η −A(η)




 dx

× (2⇡)d/2 exp
(
A(η)

)
.

Taking the inverse of the natural parameters as per equation (1.14) and implementing
the change of variables x = µ+Σ1/2

u leads to

Mk =

∫

Rd

(
µ+Σ1/2

u
)⊗k

expit
(
c0 + c

#
1 µ+

(
Σ1/2

c1
)#

u

)
�I(u)duZ1,

where Z1 = exp
(
A(η) + (d/2) log(2⇡)

)
. Using equations (4.20) - (4.22), we can now

obtain each of the moments using only univariate quadrature. Note that the integrals
required are renowned for being numerically unstable. For stability, we rewrite the
integrals in the forms of those presented by Kim & Wand (2017),32

Cb(k, r, q) =
∫ ∞

−∞
xk exp

(
rx− qx2 − b(x)

)
dx, (4.24)

where b(x) = log
(
1 + exp(x)

)
. Using simple algebraic manipulations it is easy to show

∫ ∞

−∞
ukexpit

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖u
)
�(u)du

=

∫ ∞

−∞

(
(r2 + 2r7x)(2r7)

−1/2)k exp
(
r6x− r7x

2 − b(x)
)
dxZ0,
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where

r1 = −2c#1 Σc1, r2 = 2
(
c0 + c

#
1 µ

)
r−1
1 , r6 = 1− r2, r7 = −r−1

1

and
Z0 = exp

(
(r2/2)

2r1 + (1/2) log(r7/⇡)
)
.

It follows,

Z−1
0

∫ ∞

−∞
expit

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖ u
)
�(u) du = Cb(0, r6, r7),

Z−1
0

∫ ∞

−∞
uexpit

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖u
)
�(u) du

=
(
r2 Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)
(2r7)

−1/2,

and

Z−1
0

∫ ∞

−∞
u2expit

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖ u
)
�(u) du

= 2
(
r2 Cb(1, r6, r7) + r7Cb(2, r6, r7)

)
− (r22r1/2)Cb(0, r6, r7).

It is then easy to find each of the kth moments

Z−1
0 Z−1

1 M0 = Cb(0, r6, r7),
Z−1
0 Z−1

1 M1 = µ Cb(0, r6, r7) +Σc1
(
2r7Cb(1, r6, r7) + r2Cb(0, r6, r7)

)
,

Z−1
0 Z−1

1 M2 = (µµ# +Σ) Cb(0, r6, r7)
+ (µc#1 Σ+Σc1µ

#)
(
r2 Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)

+Σc1c
#
1 Σ

(
4r27Cb(2, r6, r7) + 4r7r2 Cb(1, r6, r7) + (r22 − 2r7) Cb(0, r6, r7)

)
.

Thus the optimal mean parameter for the projection is

µ
∗ = E(x) =

M1

M0
= µ+Σc1

(
r2 + 2r7Cb,1:0(r6, r7)

)
,

and the optimal variance parameter is

Σ∗ =E
(
xx

#)− E(x)E(x)#

=
M2

M0
− M1

M0

(
M1

M0

)#

=Σ+ (2r7)
2Σc1c

#
1 Σ

(
Cb,2:0(r6, r7)− Cb,1:0(r6, r7)2 + r1/2

)
,

where Cb,1:0(r6, r7) = Cb(1,r6,r7)
Cb(0,r6,r7) and Cb,2:0(r6, r7) = Cb(2,r6,r7)

Cb(0,r6,r7) . By converting back to
natural optimal and input parameters we arrive at Definition 17.
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4.3.3 Proof of Definition 18

We wish to obtain the projection of an input function following the form of equation
(4.12) onto the multivariate normal family. Note in the interest of brevity we represent
the input parameter η

input as η. For the general case for all ⊗k. As before, we can
obtain closed form solutions to the equivalent of the zeroth, first and second moments.
Using the x

⊗k notation as described in equation (1.2), we can write

Mk ≡
∫

Rd
x
⊗kexpitMS

(
c0 + c

#
1 x

)
exp

(
η
#
1 x+ x

#
H2x

)
dx

≡
8∑

i=1

pi

∫

Rd
x
⊗k�

(
sic0 + sic

#
1 x

)
exp

(
η
#
1 x+ x

#
H2x

)
dx,

where expitMS(x) is given in equation (4.4). Using the matrix notation defined in
equation (1.14) we can write

Mk =
8∑

i=1

pi

∫

Rd
x
⊗k�

(
sic0 + sic

#
1 x

)
(2⇡)−d/2 exp






[
x

vech(xx#)

]#

η −A(η)




 dx

× (2⇡)d/2 exp
(
A(η)

)
.

Using the inverse of the natural parameters in equation (1.2) and implementing the
change of variable x = µ+Σ1/2

u

Mk =
8∑

i=1

pi

∫

Rd
(µ+Σ1/2

u)⊗k�
(
si
(
c0 + c

#
1 µ

)
+

(
siΣ

1/2
c1
)#

u

)
�I(u)duZ1,

where Z1 = exp
(
A(η)+ d

2 log(2⇡)
)
. Then using Lemma 3 we can now obtain exact forms

for each of the moments and thus calculate the optimal parameters for the projection.
It is then easy to show each kth moment,

Z−1
1 M0 =

8∑

i=1

pi�(r2i),

Z−1
1 M1 =µ

8∑

i=1

pi�(r2i) +Σc1

8∑

i=1

(
2pisir

−1
1i

)
�(r2i),

Z−1
1 M2 =

(
µµ

# +Σ
) 8∑

i=1

pi� (r2i) +
(
µc

#
1 Σ+Σc1µ

#)
8∑

i=1

(
2pisir

−1
2i

)
� (r2i)

−Σc1c
#
1 Σ

8∑

i=1

(
4pis

2
i r2ir

−2
1i

)
� (r2i) ,

where r1i = 2
(
s2
i
c
#
1 Σc1 + 1

)1/2
and r2i = 2si

(
c0 + c

#
1 µ

)
r−1
1i . The optimal mean and

variance parameters for the projection follow and are respectively

µ
∗ = E(x) =

M1

M0
= µ+Σc1r3
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and

Σ∗ = E
(
xx

#)− E(x)E(x)# =
M2

M0
− M1

M0

(
M1

M0

)#
= Σ− 2r4Σc1c

#
1 Σ,

where

r4 =
1

2

(
r̃3 + r23

)
, r3 =

∑8
i=1

(
2pisir

−1
1i

)
�(r2i)∑8

i=1 pi�(r2i)
and r̃3 =

∑8
i=1

(
4pis2i r2ir

−2
1i

)
�(r2i)∑8

i=1 pi�(r2i)
.

By converting both the input and optimal parameters back to natural parameters we
arrive at the desired result.
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Chapter 5

Expectation propagation for one
level count response mixed
models

Thus far, the novel methodology presented in this thesis has concerned datasets with

binary response variables. We now consider Poisson and negative binomial models

for datasets with count response variables. As the projections required for EP cannot

be solved via closed form solutions, we implement the quadrature approach used for

the logistic models. The message passing framework implemented in the binary case

remains mostly unchanged, with only minor alterations required. Additionally, care

must be taken during optimisation of the shape parameter for the negative binomial

model. We negate any repeated details of work presented in previous chapters and refer

readers back where appropriate.

This chapter is broken into four main sections. Section 5.1 explains the simplest

random intercepts only Poisson model, while Section 5.2 discusses it’s extension to

a general model for any number of fixed and random e↵ects. Section 5.3 explains a

simple model for inference on the shape parameter of the negative binomial model,

while Section 5.5 explains its extension to a general model for any number of fixed and

random e↵ects.
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5.1 The simplest Poisson mixed model

We consider a random intercepts only model first for simplicity with a balanced dataset,

where all m groups have the same n number of observations in them. Note for the

random intercept only model the EP approach a↵ords no benefit over directly computing

the integrals via quadrature, acting as a test bed for the general case which follows. For

observed values of

yij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where yij ∈ Z≥0, the form of the model is

yij |ui
iid∼ Poisson

(
exp(ui); yij

)
, ui

iid∼ N(0,�2),

where Poisson(�;x) is given by equation (1.11) and ui is a scalar unobserved latent

variable. We wish to find the maximiser of `(�2) denoted by �̂2 and the best predictor

of the random e↵ects BP(ui).

The log-likelihood of the simplified model can be written as

`(�2) =
m∑

i=1

`i(�
2),

where

`i(�
2) ≡ log

∫ ∞

−∞

n∏

j=1

Poisson
(
exp(ui); yij

)
(2⇡�2)−1/2 exp(−u2i /2�

2)dui, (5.1)

and the maximum likelihood estimate of �2 is given by

�̂2 = argmax
�2

`(�2).

The best predictor of the random e↵ect is given by

BP(ui) =

∫∞
−∞ ui

∏
n

j=1 Poisson
(
exp(ui); yij

)
exp(−u2

i
/2�2)dui∫∞

−∞
∏

n

j=1 Poisson
(
exp(ui); yij

)
exp(−u2

i
/2�2) dui

.

Using EP, we develop an approximation and sum each `i(�2) to obtain the full log-

likelihood and best-predictors. We compare it to a traditional quadrature approach and

show both methods provide reasonable and similar estimates.

The following subsections copy the structure of Chapter 4. In Subsection 5.1.1 we
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provide details of the quadrature approach to estimating the likelihood surface, then

explain our novel method using EP in Subsection 5.1.2. We compare the likelihood

surface of both methods in Subsection 5.1.3, and outline computation of best predictors

in Subsection 5.1.4. Point estimate and confidence interval calculation is conducted

analogously to Section 2.4.1 and as such we do not repeat it.

5.1.1 Traditional quadrature likelihood approximation

Implementation of adaptive quadrature via Gauss-Kronrod follows the probit and expit

cases explained in Sections 2.1 and 4.1.1 respectively, where we utilise the R function

integrate() in the “stats” package (R Core Team, 201956). Denoting yi. ≡
∑

n

j=1 yij ,

we suggest that for numerical stability each `i(�2) is calculated as

1

2
log(2⇡�2) + `i(�

2) = h(u0i) + log

∫ ∞

−∞
exp

(
hi(u)− hi(u0i)

)
du,

where

hi(u) ≡ yi.u− n exp(u)− u2

2�2
,

h′i(u) = yi. − n exp(u)− u

�2

and u0i is the root of h′
i
, which we recommend finding by a bisection search, where the

starting values are selected -1 and 1 to be for the lower and upper bounds respectively.

5.1.2 Expectation propagation likelihood approximation

We now consider an EP approach to the approximate likelihood (denoted by s̀(�
2)) as in

Section 2.2. The EP approximation requires an unnormalised normal density function

selected by minimising the KL-divergence criterion, to replace each

Poisson
(
exp(ui); yij

)
, 1 ≤ j ≤ n

in equation (5.1). For the case of Poisson GLMMs, the required projections onto an

unnormalised univariate normal distribution can be written as

finput(x) = Poisson
(
exp(c0 + c1x); c2

)
exp

(
⌘input1 x+ ⌘input2 x2

)
, (5.2)
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where ⌘input1 ∈ R, ⌘input2 < 0, c0 = 0, c1 = 1, c2 = yij and x = ui. Subsequently, the

integrand is proportional to a product of univariate normal density functions. As such,

we seek η
∗ such that

∫ ∞

−∞
xkPoisson

(
exp(c0 + c1x); c2

)
exp

(
⌘input1 x+ ⌘input2 x2

)
dx

=

∫ ∞

−∞
xk exp










1

x

x2





#

η
∗






dx. (5.3)

To obtain the required projection, we first obtain the optimal natural parameters

⌘∗1 and ⌘∗2 to project onto the normal family. Since the integral arising in the required

projection does not have a closed form solution, we use univariate quadrature to obtain

it. As before, caution must be exercised when calculating the integrals since they are

prone to be numerically unstable. As such, each integral is calculated using the form of

Cb(p, q, r) as in Section 2.1 of Kim & Wand (2018)32 for numerical stability. By doing

so we arrive at Result 20.

Result 20. Given finput follows the form of equation (5.2), the projection onto the

univariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x),

where

η
∗
−1 = kPoisson

(
η
input
−1 ; c0, c1, c2

)
, η

input
−1 ≡



 ⌘input1

⌘input2



 , η
∗
−1 ≡



 ⌘∗1

⌘∗2



 ,

kpoisson







 a1

a2



 ; c0, c1, c2



 is defined in Definition 21 and T (x) and h(x) follow from

equation (1.5.2.1).
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Definition 21. For primary scalar arguments a1 ∈ R and a2 < 0, and auxiliary scalar

arguments c0, c1 ∈ R and c2 ∈ Z≥0, the function kPoisson : H → H is given by

kPoisson







a1

a2



 ; c0, c1, c2



 ≡



r5(a1 + r3c1)

r5a2



 , (5.4)

where

r1 = c21a
−1
2 , r2 =

(
c1a

−1
2 a1 − 2c0

)
r7, r3 = r2 + 2Cb,1:0(r6, r7)r7,

r4 = 2
(
Cb,1:0(r6, r7)2 − Cb,2:0(r6, r7)− r1

)
r27, r5 =

(
a2 + r4c

2
1

)−1
a2,

r6 = 1− r2, r7 = −(r1)
−1, Cb,1:0(r6, r7) =

Cb(1, r6, r7)
Cb(0, r6, r7)

,

Cb,2:0(r6, r7) =
Cb(2, r6, r7)
Cb(0, r6, r7)

and b(x) = exp(x).

A proof of Definition 21 is provided in Appendix 5.6.1. Using Result 20 we now obtain

the normalising natural parameter ⌘∗0 to find the projection onto unnormalised normal

family.

5.1.2.1 Projection onto the unnormalised normal family

Recall the moment matching problem described by equation (2.6) and Result 4. Then

the normalising factor can be shown to be

Cf =

∫

Rd
finput(x)dx = Cb(0, r6, r7)Z0Z1,

where Z0 = exp
(
(r2/2)2r1 +

1
2 log(r7/⇡)

)
, Z1 = exp

(
A(η) + d

2 log(2⇡)− log�(c2 + 1)
)

and r6 and r7 are given in Definition 21. By Result 4

η
∗
0 = log Cb(0, r6, r7) + (r2/2)

2r1 +
1

2
log(r7/⇡) +

1

4
(η∗

1)
2/η∗

2

− 1

4

(
η
input
1

)2
/ηinput

2 +
1

2
log

(
η
∗
2/η

input
2

)
− log�(c2 + 1).

Thus to obtain ⌘∗0 we introduce Definition 22.
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Definition 22. For primary scalar arguments a1, b1 ∈ R and a2, b2 < 0 and auxiliary

scalar arguments c0, c1 ∈ R and c2 ∈ Z≥0 the function cPoisson : H → R is defined as:

cPoisson







a1

a2



 ,



b1

b2



 ; c0, c1, c2



 ≡ log Cb(0, r6, r7) + (r2/2)
2r1 +

1

2
log(r7/⇡)

+
1

4
a21/a2 −

1

4
b21/b2 +

1

2
log(a2/b2)− log�(c2 + 1),

where r1, r2, r6 and r7 follow as defined in Definition 21.

In summary, the projection of the input function onto the unnormalised normal family

is given in Result 21.

Result 21. For an unnormalised input function of the form of equation (5.2),

projUN [finput] = exp










1

x

x2





# 



⌘∗0

⌘∗1

⌘∗2










,

where 

 ⌘∗1

⌘∗2



 = kPoisson







 ⌘input1

⌘input2



 ; c0, c1, c2





and

⌘∗0 = cPoisson







 ⌘input1

⌘input2



 ,



 ⌘∗1

⌘∗2



 ; c0, c1, c2



.

We now show how to implement the results shown in this section in a message passing

framework.

5.1.2.2 Message passing formulation

As mentioned, only minor changes to Algorithm 3 are required to account for the Poisson

case. Note the components of the sum of the log-likelihood function `i(�2) are

`i(�
2) = log

∫ ∞

−∞

( n∏

j=1

p(yij |ui)
)
p(ui;�

2)dui, (5.5)
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where

p(yij |ui) ≡ Poisson
(
exp(ui), yij

)
and p(ui;�

2) ≡ (2⇡�2)−1/2 exp
(
− u2i /(2�

2)
)

are respectively the conditional density functions of each response given its random

e↵ect and the density function of the random e↵ect.

Since the dependence structure of the product in equation (5.5) matches that of the

probit model shown in Figure 2.1, we only need to update the messages depending on

the conditional density functions of each response given its random e↵ect. Following

Section 2.2.2, this involves updating messages mp(yij |ui)→ui
(ui) as in equation (2.10) to

mp(yij |ui)→ui
(ui) ←−

projUN

[
Poisson

(
exp(c0 + c1ui); c2ij

)
exp

(
⌘⊗1 ui + ⌘⊗2 u

2
i

)]

exp(⌘⊗1 ui + ⌘⊗2 u
2
i
)

,

where c0 = 0, c1 = 1 and c2ij = yij . Obtaining the required projection follows from

Result 21 analogous to equation (2.16), where the linear and quadratic coe�cient

updates in equation (2.17) are changed to

(
ηp(yij |ui)→ui

)
1:2

←− kPoisson
(
η
⊗
1:2; c0, c1, c2ij

)
− η

⊗
1:2 (5.6)

and where the constant coe�cient update in equation (2.18) is changed to

(
ηp(yij |ui)→ui

)
0
←− cPoisson

(
η
⊗
1:2,

(
ηp(yij |ui)→ui

)
1:2

+ η
⊗
1:2; c0, c1, c2ij

)
. (5.7)

In summary, Algorithm 3 applies to the Poisson model, however equations (2.17)

and (2.18) are replaced with equations (5.6) and (5.7), with constant term inputs set

as c0 ←− 0, c1 ←− 1 and c2ij ←− yij for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Additionally, the

initialisation of ηp(yij |ui)→ui
follows equation (5.9).

5.1.2.3 Starting values for the Poisson case

We now derive starting values for the Poisson case using the same principles shown in

the univariate probit and logistic case. Let

log p(yij |ui) = f(ui, yij)− log�(yij + 1),
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where

f(x, yij) = f(x) =yijx− exp(x),

f ′(x) =yij − exp(x),

and

f ′′(x) =− exp(x). (5.8)

Let ûi be an approximation of ui. Then a Taylor series expansion of f(ui) evaluated at

ûi leads to

f(ui) =f(ûi) + f ′(ûi)(ui − ûi) +
1

2
f ′′(ûi)(ui − ûi)

2 + ...

=





1

ui − ûi

(ui − ûi)2





#

qηij + ... ,

where

qηij =





f(ûi)

f ′(ûi)

1
2f

′′(ûi)




.

The quadratic approximation to log p(yij |ui) based on Taylor expansion about ûi is

log qp(yij |ui) as per equation (2.22). By following the same logic of the previous cases it

is easy to show

η
start
p(yij |ui)→ui

=





⌘start0

f ′(ûi)− f ′′(ûi)ûi

1
2f

′′(ûi)




, (5.9)

where

⌘start0 = f(ûi)− f ′(ûi)ûi +
1

2
f ′′(ûi)(ûi)

2.

The comments at the end of Section 2.2.3 apply for the these starting values.
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5.1.3 Evaluation of the estimates

Implementing the quadrature and EP approaches in the R computing environment, we

now visually compare the accuracy of our likelihood approximation s̀
′(�2) to the exact

likelihood surface `(�2). Figure 5.1 plots the estimates of the likelihood surface for both

methods. The data generated had 50 groups with 5 responses per group (i.e. m = 50

and n = 5) and the true value of �2 = 0.17. Using the quadrature method as exact, the

plot shows although there are some discepencies on the tails of the likelihood surface,

the approximate method follows the exact likelihood surface around the maximum

well. Additionally, the true value of �2 matches well with the maximum of the exact

likelihood.

−3 −2 −1 0

−1
0

−5
0

5

log(σ2)

lo
g−

lik
el

ih
oo

d

Exact Approach
EP Approach

Figure 5.1: A comparison plot of the log-likelihood surface over the parameter �2
for

Poisson models calculated exactly using univariate quadrature and approximated via EP.

The true �2 = 0.17 is represented on the log scale by the red line. The EP approximation

is shown by the dark blue line and the exact by the light blue line.
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5.1.4 Best predictor

Best prediction for �2 via quadrature and EP is the same as presented in Section 2.5,

although for the former we now redefine

Jsi(�
2) ≡

∫ ∞

−∞
usi

n∏

j=1

Poisson
(
exp(ui); yij

)
(2⇡�2)−1/2 exp

(
−u2i /(2�

2)
)
dui, s ∈ {0, 1, 2}.

The calculations are otherwise analogous.

5.2 General Poisson mixed models

We now consider EP for the general Poisson model where any number of fixed and

random e↵ects can be specified. Consider

yij |ui

ind∼ Poisson
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
; yij

)
, ui

ind∼ N
(
0dR ,Σ

)
,

1 ≤ i ≤ m and 1 ≤ j ≤ ni,

where the notation follows the general one level model presented in Section 1.8. The

log-likelihood can be expressed as

`(β,Σ) =
m∑

i=1

`i(β,Σ),

where

`i (β,Σ) = log

∫

RdR

{ ni∏

j=1

Poisson
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
; yij

)}

× |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)
dui,

and the best predictor of ui is

BP(ui) ≡

∫
RdR ui

{∏
ni
j=1 Poisson

(
exp

(
β
#
x
F
ij
+ u

#
i
x
R
ij

)
; yij

)}
exp

(
− 1

2u
#
i
Σ−1

ui

)
dui

∫
RdR

{∏
ni
j=1 Poisson

(
exp

(
β#xF

ij
+ u

#
i
x
R
ij

)
; yij

)}
exp

(
− 1

2u
#
i
Σ−1ui

)
dui

.

(5.10)
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Implementation of EP follows as per the previous models, with minor alterations to the

algorithm to account for the count response variable.

We first explain likelihood approximation using EP in Subsection 5.2.1, before results

of a simulation study are presented in Subsection 5.2.2. Details regarding computation

of point estimates and confidence intervals are analogous to those presented in Section

3.2, whilst the same calculations in Section 3.3 can be used for best prediction of ui.

We do not repeat either section again and instead refer readers to the previous work.

5.2.1 Expectation propagation likelihood approximation

EP centres around finding the optimal natural parameters ⌘0,η1 and η2 which minimise

KL(finput ‖ fUN ), where fUN is defined by equation (3.4) and

finput(x) = Poisson
(
exp

(
c0 + c

#
1 x

)
; c2

)
exp

((
η
input
1

)#
x+ x

#
H

input
2 x

)
, (5.11)

where η
input
1 is a d× 1 vector, H input

2 is a d× d matrix, c0 = β
#
x
F
ij
, c2 = yij , c1 = x

R
ij

and x = ui. As such, we seek an η
∗ to solve

∫

Rd
x
⊗kPoisson

(
exp

(
c0 + c

#
1 x

)
; c2

)
exp








 x

vech(xx#)




#

η
input





dx

=

∫

Rd
x
⊗k exp










1

x

vech(xx#)





#

η
∗






dx, (5.12)

where x
⊗k is as defined in equation (1.2). Thus to obtain the required projection, we

first obtain the optimal natural parameters η∗
1 and η

∗
2 to project onto the multivariate

normal family as is presented in Result 22. As the integrals required to do so are not

available in closed form solutions, we use the same properties as the expit for Poisson

models to express the multivariate integrals as univariate integrals. These integrals are

expressed as in Section 2.1 of Kim & Wand (2018)32 as denoted by Cb(p, q, r) and solved

using quadrature in a more e�cient manner.
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Result 22. Given finput follows the form of equation (5.11), the projection onto the

multivariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x),

where

η
∗
−1 ≡ KPoisson

(
η
input
−1 ; c0, c1, c2

)
,

η
input
−1 ≡



 η
input
1

η
input
2



 , η
∗
−1 ≡



 η
∗
1

η
∗
2



 ,

KPoisson







 a1

a2



 ; c0, c1, c2



 is defined in Definition 23 and T (x) and h(x) follow

from Section 1.5.2.2.

Definition 23. For primary arguments a1 (d× 1) and a2
(
1
2d(d+ 1) × 1

)
such that

vec
−1

(
− (D+

d
)#a2

)
is symmetric and positive definite, and auxiliary arguments c0 ∈ R,

c2 ∈ Z+
and c1 (d× 1), the function KPoisson : H → H is given by

KPoisson







a1

a2



 ; c0, c1, c2



 ≡



R
#
5 (a1 + r3c1)

D
#
d
vec(R#

5 A2)



 , (5.13)

where

A2 ≡ vec
−1

(
(D+

d
)#a2

)
, r1 = c

#
1 A

−1
2 c1, r2 =

(
c
#
1 A

−1
2 a1 − 2c0

)
r7,

r3 = r2 + 2 Cb,1:0(r6, r7)r7, r4 = 2
(
Cb,1:0(r6, r7)2 − Cb,2:0(r6, r7)− r1

)
r27,

R5 =
(
A2 + r4c1c

#
1

)−1
A2, r6 = 1− r2, r7 = −(r1)

−1,

Cb,1:0(r6, r7) =
Cb(1, r6, r7)
Cb(0, r6, r7)

, Cb,2:0(r6, r7) =
Cb(2, r6, r7)
Cb(0, r6, r7)

, b(x) = exp(x)

and Cb(k, r, q) is as per equation (5.42).

A proof of Definition 23 is given in Appendix 5.6.2. Using Result 22 we now obtain

the normalising natural parameter ⌘∗0 to find the projection onto unnormalised normal

family.
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5.2.1.1 Projection onto the unnormalised multivariate normal family

Recall the moment matching problem from equation (5.12) and Results 12 and 13. Then,

we require

Cfinput =

∫

Rd
finput(x)dx = Cb(0, r6, r7)Z0Z1,

where Z0 = exp
(
(r2/2)2r1 +

1
2 log(r7/⇡)

)
, Z1 = exp

(
A(η) + d

2 log(2⇡)− log�(c2 + 1)
)

and r6 and r7 are given in Definition 23. Analogous to previous arguments, we then get

η
∗
0 = log Cb(0, r6, r7) + (r2/2)

2r1 +
1

2
log(r7/⇡) +

1

4

(
η
∗
1

)#(
H

∗
2

)−1
η
∗
1

− 1

4

(
η
input
1

)#(
H

input
2

)−1
η
input
1 +

1

2
log

(
|H∗

2 |/|H
input
2 |

)
− log�(c2 + 1).

To find the normalising constant of the input function, we introduce Definition 24.

Definition 24. Consider first, primary arguments a1 and b1 and auxiliary argument c1

where all three are d×1. Next consider arguments a2 and b2 which are all
(
1
2d(d+1)×1

)

such that both vec
−1

(
− (D+

d
)#a2

)
and vec

−1
(
− (D+

d
)#b2

)
are symmetric and positive

definite. Finally note auxiliary scalar argument c0,∈ R, c2,∈ Z+
. Then the function

CPoisson : H ×H → R is given by

CPoisson







a1

a2



 ,



b1

b2



 ; c0, c1, c2



 ≡ log Cb(0, r6, r7) + (r2/2)
2r1 +

1

2
log(r7/⇡)

+
1

4
b
#
1 B

−1
2 b1 −

1

4
a
#
1 A

−1
2 a1 +

1

2
log

(
|B2|/|A2|

)
− log�(c2 + 1),

where A2 ≡ vec
−1

(
(D+

d
)#a2

)
, B2 ≡ vec

−1
(
(D+

d
)#b2

)
, r1, r2, r6 and r7 follow from

Definition 23.

In summary, the projection onto the unnormalised multivariate normal family is given

by Result 23.
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Result 23. For an unnormalised input function of the form of equation (5.11),

projUN [finput] (x) = exp










1

x

vec
(
xx

#)





# 



⌘∗0

η
∗
1

η
∗
2










,

where 

η
∗
1

η
∗
2



 = KPoisson







η
input
1

η
input
2



 ; c0, c1, c2





and

⌘∗0 = CPoisson







η
input
1

η
input
2



 ,



η
∗
1

η
∗
2



 ; c0, c1, c2



 .

5.2.1.2 Message passing formulation

As mentioned throughout this section, only minor changes to Algorithm 6 are required to

account for the Poisson case. Each component of the sum of the log-likelihood function

`i(β,Σ) can be written as

`i(β,Σ) = log

∫

RdR

( ni∏

j=1

p(yij |ui;β)

)
p(ui;Σ)dui, (5.14)

where

p(yij |ui;β) ≡ Poisson
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
, yij

)

and

p(ui;Σ) ≡ |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)

are respectively the conditional density functions of each response given its random

e↵ect and the density function of that random e↵ect.

As the dependence structure of the product in equation (5.14) is the same as the

probit model shown in Figure 3.1, we only need to update the messages depending on

the conditional density functions of each response given its random e↵ect. This involves
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updating messages mp(yij |ui;�)→ui
(ui) as in equation (3.12)

mp(yij |ui;�)→ui
(ui)

←
projUN

[
Poisson

(
exp

(
c0ij + c

#
1ijui, c2ij

))
exp

{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

}]

exp
{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

} ,

where we set the constant terms:

c0ij ← β
#
x
F
ij ; c1ij ← x

R
ij ; c2ij ← yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Following Section 3.1.2, this task reduces down to adjusting the calculation of the

optimal natural parameters ηp(yij |ui;�)→ui
in equation (3.18) for the Poisson model,

where the linear and quadratic coe�cient updates in equation (3.19) given by Kprobit

are changed to

(
ηp(yij |ui;�)→ui

)
1:2

← KPoisson
(
η
⊗
1:2; c0ij , c1ij , c2ij

)
− η

⊗
1:2 (5.15)

as per Definition 23, and where the constant coe�cient update in equation (3.20) given

by Cprobit is changed to

(
ηp(yij |ui;�)→ui

)
0
← CPoisson

(
η
⊗
1:2,

(
ηp(yij |ui;�)→ui

)
1:2

+ η
⊗
1:2; c0ij , c1ij , c2ij

)

as per Definition 24.

Barring the aforementioned changes and the initialisation of ηp(yij |ui;�)→ui
with the

values discussed in Section 5.2.1.3, the full algorithm for the approximation of `(β,Σ)

follows Algorithm 6.

5.2.1.3 Starting values for the Poisson case

We now derive starting values for the Poisson case using the same principles shown in

the probit and expit case. Let

log p(yij |ui;β) = f(aij ; yij)− log�(yij + 1),

where aij = β
#
x
F
ij
+ u

#
i
x
R
ij

and f(x) is defined as in equation (5.8). Then

(aij − âij) = (ui − ûi)
#
x
R
ij
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where âij = β
#
x
F
ij
+ û

#
i
x
R
ij

and û is an approximation of ui. A Taylor series expansion

of f(aij) evaluated at âij leads to

f(aij) =f(âij) + f ′(âij)(ui − ûi)
#
x
R
ij +

1

2
f ′′(âij)

(
(ui − ûi)

#
x
R
ij

)2
+ ...

=





1

ui − ûi

vech
(
(ui − ûi)(ui − ûi)#

)





#

qηij + ... ,

where

qηij =





f(âij)

f ′(âij)xR
ij

1
2f

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




.

Quadratic approximation to log p(yij |ui;β) based on Taylor expansion about ûi is

log qp(yij |ui;β) as per equation (3.22). By following the same logic of the previous cases

it is easy to show

η
start
p(yij |ui;�)

=





⌘start0

f ′(âij)xR
ij
− f ′′(âij)xR

ij
(xR

ij
)#ûi

1
2f

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




,

where

⌘start0 = f(âij)− f ′(âij)(x
R
ij )

#
ûij +

1

2
f ′′(âij)û

#
ijx

R
ij (x

R
ij )

#
ûij .

5.2.2 Simulation study

We now provide results of a simulation study for a random intercept model with 1000

replicates. Datasets were simulated with true parameter values

βtrue = [0.38, 0.93]# and �2
true = −0.53, (5.16)

generated with 50 groups and 5 measurements per group (i.e. m = 50 and n = 5). The

x
F
ij
and x

R
ij

vectors were of the form

x
F
ij = [1, x1ij ]

# and x
R
ij = 1,
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where x1ij was generated independently from a uniform distribution on the unit interval.

The tolerance of error values were set to 10−5 for the EP scheme and the maximum

number of iterations for optimisation was set to 1000.

We compare our EP methodology to Laplace approximation and adaptive Gauss-

Hermite quadrature using 100 quadrature points. Both alternative methods were

implemented via the R function glmer() from the R package “lme4” (Bates, et al.,

20185). Since in the Poisson case quadrature is required for each projection of EP, EP

is considerably slower than Laplace approximations and Gauss-Hermite quadrature.

Additionally we note that to run the simulations within a reasonable time frame, they

were seperated and run across mulitple high performance computers with of varying

specification.

The resulting estimates and 95% confidence intervals for each interpretable model

parameter of the study are presented in Figure 4.3, where the upper-right hand corner

of each panel shows the empirical coverage values based on all 1000 replicates. Only

20 randomly chosen replicates from each method are shown in the panels for ease of

viewing, where Laplace approximation and EP are shown by black lines, super imposed

on grey lines showing the quadrature approach. Across the fixed e↵ects parameters the

empirical coverage of EP is within 0.2% of quadrature, where as Laplace approximations

are marginally lower, particularly for the fixed slope which had coverage of 93.6%. The

EP empirical coverage for the variance parameter was 1.6% higher than the expected

95%, where Laplace and quadrature are much closer coverage to 95%, with coverages

of 94.9% and 95.1% respectively. Although we are aware that a comparison of time is

obscured by factors such as language of implementation and computer performance, the

average time for the EP routine over 100 replications was 1166.0054 seconds, whilst

Laplace approximations and adaptive Gauss-Hermite took an average of 0.3108 and

0.3133 seconds respectively.
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0.0 0.2 0.4 0.6 0.8

β0
Emp cover of Lapl = 94.5%.
Emp cover of AGHQ = 95%.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

β1
Emp cover of Lapl = 93.6%.
Emp cover of AGHQ = 94.3%.

0.2 0.3 0.4 0.5 0.6

σ Emp cover of Lapl = 94.9%.
Emp cover of AGHQ = 95.1%.

0.0 0.2 0.4 0.6 0.8

β0
Emp cover of EP = 94.9%.
Emp cover of AGHQ = 95%.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

β1
Emp cover of EP = 94.4%.
Emp cover of AGHQ = 94.3%.

0.1 0.2 0.3 0.4 0.5 0.6

σ Emp cover of EP = 96.4%.
Emp cover of AGHQ = 95.1%.

Figure 5.2: Summary comparison between confidence interval coverage for the univariate

model with true parameter values from equation (5.16) for models fit with adaptive

Gauss-Hermite quadrature and Laplace approximation. The horizontal lines are the

confidence intervals for 20 randomly chosen replications of the simulation study, the

solid circular points indicate the corresponding point estimates, the vertical lines indicate

true parameter values, the grey lines correspond to adaptive Gauss-Hermite quadrature,

the black lines on the top row correspond to Laplace approximation approach and the

black lines on the bottom row correspond to EP approximation approach. The percentage

given in the top right-hand corner of each panel is the empirical coverage over all 1000
replications.
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5.3 The simplest negative binomial models

The negative binomial model follows naturally from the Poisson model. It provides the

added benefit of a shape parameter , which facilitates handling over-dispersed count

data. Specifically, as  approaches zero the variance of the data becomes infinite. As 

increases to infinity the negative binomial distribution begins to resemble the Poisson

distribution. Large values of  can inturn lead to numerical issues, making the negative

binomial model a particularly tricky one to handle. Analysts should determine whether

to use Poisson or negative binomial links based on the nature of the data.

Since the negative binomial model brings the additional challenge of estimating

the shape parameter , we begin developing our model on the case where we consider

only the parameter . For this model we fix the variance between groups �2
Fixed and

aim to estimate . Additionally, we assume a balanced dataset with m-groups and

n-observations per group. For observed values of

yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where yij ∈ Z≥0, the negative binomial model is

yij |ui;
iid∼ NB

(
exp(ui),; yij

)
, ui

iid∼ N
(
0,�2

Fixed

)
,

where �2
Fixed ∈ R>0 is a fixed number,  ∈ R>0, NB(y, µ,) is given by equation (1.9)

and ui is a scalar unobserved latent variable. We wish to find the maximiser of `()

denoted by ̂. Note that we do not find best predictors of ui as they are assumed to be

known in this setting. The likelihood of model can be expressed as

`() =
m∑

i=1

`i(),

where

`i() ≡ log

∫ ∞

−∞

n∏

j=1

NB
(
exp(ui),; yij

) (
2⇡�2

Fixed

)−1/2
exp

(
− u2i /2�

2
Fixed

)
dui,

(5.17)

and the maximum likelihood estimate of  is given by

̂ = argmax


`().
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Given the integral arising in the calculation of the log-likelihood surface of `() does not

have a closed form solution, we develop an EP scheme to approximate it and compare

the result to a quadrature approach.

Subsection 5.3.1 provides details of the quadrature approach to estimating the

likelihood surface. We then explain our novel method using EP in Subsection 5.3.2,

before comparing the likelihood surface of both methods in Subsection 5.3.3 and

explaining point estimate and confidence interval calculation in Section 5.3.4.

5.3.1 Traditional quadrature likelihood approximation

Implementation of the adaptive quadrature via the Gauss-Kronrod method follows the

same approach as in the Poisson case, where we utilise the R function integrate() in

the “stats” package (R Core Team, 201956). We suggest that for numerical stability

each `i() arising in equation (5.17) is calculated as

`i() = h(u0i) + log

∫ ∞

−∞
exp

(
hi(u)− hi(u0i)

)
du,

where

hi(u) ≡ yi.u− u2

2�2
Fixed

− (n+ yi.) log
(
+ exp(u)

)
,

h′i(u) ≡ yi. −
u

�2
Fixed

− (n+ yi.) exp(u)

log
(
+ exp(u)

)

and u0i is the root of h′
i
. We recommend finding u0i using a bisection search, where the

starting values are selected -1 and 1 to be for the lower and upper bounds respectively.

5.3.2 Expectation propagation likelihood approximation

We now consider an EP approach to the approximate likelihood denoted by s̀(). In the

negative binomial case, the EP approximation requires an unnormalised normal density

function to replace each

NB
(
exp(ui),; yij

)
, 1 ≤ j ≤ n

in equation (5.17), such that the KL-divergence criterion is minimised. For the case of

negative binomial GLMMs, the required projections onto an unnormalised univariate
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normal distribution are

finput(x) = NB
(
exp(c0 + c1x),; c2

)
exp

(
⌘input1 x+ ⌘input2 x2

)
, (5.18)

where ⌘input1 ∈ R, ⌘input2 < 0, c0 = 0, c1 = 1, c2 = yij ,  ∈ R≥0 and x = ui. Subsequently,

the integrand is proportional to a product of univariate normal density functions. As

such, we seek η
∗ such that

∫ ∞

−∞
xkNB

(
exp(c0 + c1x),; c2

)
exp

(
⌘input1 x+ ⌘input2 x2

)
dx

=

∫ ∞

−∞
xk exp










1

x

x2





#

η
∗






dx, (5.19)

Thus to obtain the required projection, we first obtain the optimal natural parameters

⌘∗1 and ⌘∗2 to project onto the normal family. Since the integral arising in the required

projection does not have a closed form solution, we use univariate quadrature to obtain

it. As before, it is important to use caution when calculating the integrals, since they

are prone to be numerically unstable. For this reason we express each integral as in

Section 2.1 of Kim & Wand (2018)32 as denoted by Cb(p, q, r). Using algebra similar to

that required for the Poisson model, we arrive at Result 24.

Result 24. Given finput follows the form of equation (5.18), the projection onto the

univariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x),

where

η
∗
−1 = kNB

(
η
input
−1 ; c0, c1, c2,

)
, η

input
−1 ≡



 ⌘input1

⌘input2



 , η
∗
−1 ≡



 ⌘∗1

⌘∗2



 ,

kNB







 a1

a2



 ; c0, c1, c2,



 is defined in Definition 25 and T (x) and h(x) follow from

Section 1.5.2.1.
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Definition 25. For primary scalar arguments a1 ∈ R and a2 ∈ R≥0 and auxiliary

scalar arguments c0, c1 ∈ R, c2 ∈ Z≥0 and  ∈ R≥0 the function kNB : H → H is given

by

kNB







a1

a2



 ; c0, c1, c2,



 ≡



r5(a1 + r3c1)

r5a2



 ,

where

r1 = c21a
−1
2 , r2 =

(
c1a

−1
2 a1 − 2c0

)
r7, r3 = r2 + 2 Cb,1:0(r6, r7)r7,

r4 = 2
(
Cb,1:0(r6, r7)2 − Cb,2:0(r6, r7)− r1

)
r27, r5 =

(
a2 + r4c

2
1

)−1
a2,

r6 = 1− r2, r7 = −r−1
1 , Cb,1:0(r6, r7) =

Cb(1, r6, r7)
Cb(0, r6, r7)

,

Cb,2:0(r6, r7) =
Cb(2, r6, r7)
Cb(0, r6, r7)

, b(x) = (c2 + ) log
(
exp(x) + 

)
.

and Cb(k, r, q) follows from equation (5.42).

A proof of Definition 25 is given in Appendix 5.6.3. Using Result 24 we now obtain

the normalising natural parameter ⌘∗0 to find the projection onto unnormalised normal

family.

5.3.2.1 Projection onto the unnormalised normal family

Recall the moment matching problem described by equation (5.19) and Result 4. Then

the normalising factor can be shown to be

Cf =

∫

Rd
finput(x)dx = Cb(0, r6, r7)Z0Z1,

where

Z1 = exp

(
A(η) +

d

2
log(2⇡) + log(c2 + ) +  log − log�(c2 + 1)− log�()

)
,
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Z0 = exp
(
(r2/2)2r1 +

1
2 log(r7/⇡)

)
, and r6 and r7 are given in Definition 25. By Result

4

η
∗
0 = log Cb(0, r6, r7) + (r2/2)

2r1 +
1

2
log(r7/⇡) +

1

4
(η∗

1)
2/η∗

2 −
1

4
(ηinput

1 )2/ηinput
2

+
1

2
log(η∗

2/η
input
2 ) + log�(c2 + ) +  log − log�(c2 + 1)− log�().

Definition 26 follows.

Definition 26. For primary scalar arguments a1 ∈ R and a2 ∈ R≥0 and auxiliary

scalar arguments c0, c1 ∈ R, c2 ∈ Z≥0 and  ∈ R≥0 the function cNB : H → R is defined

as:

cNB







a1

a2



 ,



b1

b2



 ; c0, c1, c2,



 ≡ log Cb(0, r6, r7) + (r2/2)
2r1 +

1

2
log(r7/⇡) +

1

4
a21/a2

−1

4
b21/b2 +

1

2
log(a2/b2) + log�(c2 + ) +  log − log�(c2 + 1)− log�(),

where r1, r2, r6 and r7 follows from Definition 25.

Following the work of this section, the projection of the input function onto the

unnormalised normal family is given in Result 25.

Result 25. For an unnormalised input function of the form of equation (2.5),

projUN [finput] = exp










1

x

x2





# 



⌘∗0

⌘∗1

⌘∗2










,

where 

⌘
∗
1

⌘∗2



 = kNB







⌘
input
1

⌘input2



 ; c0, c1, c2,





and

⌘∗0 = cNB







⌘
input
1

⌘input2



 ,



⌘
∗
1

⌘∗2



 ; c0, c1, c2,



.

We now show how to implement the results shown in this section in a message passing

framework.
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5.3.2.2 Message passing formulation

Only minor changes to Algorithm 3 are required to account for the negative binomial

case. The components of the sum of the log-likelihood function `i() are

`i() = log

∫ ∞

−∞

( n∏

j=1

p(yij |ui,)
)
p
(
ui;�

2
Fixed

)
dui, (5.20)

where

p(yij |ui,) ≡ NB
(
exp(ui),; yij

)

and

p
(
ui;�

2
Fixed

)
≡

(
2⇡�2

Fixed

)−1/2
exp

(
− u2i /(2�

2
Fixed)

)

are respectively the conditional density functions of each response given its random

e↵ect and the density function of that random e↵ect.

Since the dependence structure of the product in equation (5.5) matches that of the

probit model shown in Figure 2.1, we only need to update the messages depending on

the conditional density functions of each response given its random e↵ect. Following

Section 2.2.2, this involves updating messages mp(yij |ui)→ui
(ui) as in equation (2.10)

mp(yij |ui)→ui
(ui) ←

projUN

[
NB

(
exp(c0 + c1ui),; c2ij

)
exp

(
⌘⊗1 ui + ⌘⊗2 u

2
i

)]

exp
(
⌘⊗1 ui + ⌘⊗2 u

2
i

) ,

where c0 = 0, c1 = 1, c2ij = yij and  ∈ R≥0. Utilising Result 21 leads to equation

(2.16), where the linear and quadratic coe�cient updates in equation (2.17) are changed

to

(
ηp(yij |ui)→ui

)
1:2

← kNB
(
η
⊗
1:2; c0, c1, c2ij ,

)
− η

⊗
1:2 (5.21)

and where the constant coe�cient update in equation (2.18) is changed to

(
ηp(yij |ui)→ui

)
0
← cNB

(
η
⊗
1:2,

(
ηp(yij |ui)→ui

)
1:2

+ η
⊗
1:2; c0, c1, c2ij ,

)
. (5.22)

In summary, Algorithm 3 applies to the Poisson model, however equations (2.16)

and (2.18) are replaced with equations (5.21) and (5.22), with constant term inputs

set as c0 ← 0, c1 ← 1 and c2ij ← yij for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Additionally, the

initialisation of ηp(yij |ui)→ui
follows equation (5.24).
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5.3.2.3 Starting values for the negative binomial case

We now derive starting values for the negative binomial case using the same principles

shown in the previous cases. Let

log p(yij |ui,) = f(ui, yij) + log�(yij + )− log�(yij + 1)− log�() +  log ,

where

f(yij , x,) =f(x) = yijx− (y + ) log
(
exp(x) + 

)
,

f ′(x) = yij −
(y + ) exp(x)

exp(x) + 
,

and

f ′′(x) = −(y + ) exp(x)
(
exp(x) + 

)2 . (5.23)

Let ûi be an approximation of ui. Then a Taylor series expansion of f(ui) evaluated at

ûi leads to

f(ui) = f(ûi) + f ′(ûi)(ui − ûi) +
1

2
f ′′(ûi)(ui − ûi)

2 + ...

=





1

ui − ûi

(ui − ûi)2





#

qηij + ... ,

where

qηij =





f(ûi)

f ′(ûi)

1
2f

′′(ûi)




.

By following the same logic of the probit case it is easy to show

η
start
p(yij |ui)→ui

=





⌘start0

f ′(ûi)− f ′′(ûi)ûi

1
2f

′′(ûi)




, (5.24)
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where

⌘start0 = f(ûi)− f ′(ûi)ûi +
1

2
f ′′(ûi)(ûi)

2.

The comments at the end of Section 2.2.3 are also applicable for the these starting

values.

5.3.3 Evaluation of the estimates

Implementing the quadrature and EP approaches in the R computing environment, we

now visually compare the accuracy of our likelihood approximation s̀
′() to the exact

likelihood surface `(). Figure 5.3 plots the estimates of the likelihood surface for both

methods. The data generated had 100 groups with 5 responses per group and the true

value of  = 15 and �2 = 0.25. Using the quadrature method as exact, the plot shows

that although there are some discepencies on the tails of the likelihood surface, the

approximate method follows the exact likelihood surface around the true maximum

well. Additionally, the true value of  matches well with the maximum of the exact

likelihood.
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Figure 5.3: A comparison plot of the log-likelihood surface over the parameter  for

negative binomial models calculated exactly using quadrature and approximated via EP.

The true  = 15 is represented on the log scale by the red line. The EP approximation

is shown by the dark blue line and the exact by the light blue line.

5.3.4 Computation of point estimates and confidence intervals

The maximum likelihood estimator for  via quadrature and EP are respectively given

by ̂ = argmax


`(2) and ŝ = argmax


s̀(). As before, to find their stationary points

we require the first derivative of the likelihood functions denoted by `′() and s̀
′().

Calculation of the second derivative, denoted by `′′() and s̀
′′(), facilitates calculation

of confidence intervals.

The constraints imposed on the  parameter to positive numbers mean that it is

more appropriate to work with the parameter in a transformed space,

⇠ ≡ log() = g().

Since the maximum likelihood estimator is asymptotically normally distributed and
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g′() = −1,

⇠̂ ∼ N

(
⇠true,

1

(̂)2
(
− `′′(̂)

)
)
.

Thus for a 95% confidence interval we expect that

0.95 ≈ P



⇠̂ − 1.96√
(̂)2

(
− `′′(̂)

) < ⇠true < ⇠̂ +
1.96√

(̂)2
(
− `′′(̂)

)



 .

Setting

⇠low = log(̂)− 1.96√
(̂)2

(
− `′′(̂)

) and ⇠upp = log(̂) +
1.96√

(̂)2
(
− `′′(̂)

) ,

then the lower and upper 95% confidence intervals for parameter  are given by

low = exp(⇠low) and upp = exp(⇠upp).

5.3.4.1 Derivative approximation

We consider only the quasi-Newtown solutions to the derivatives required for both point

estimates and confidence intervals. To find the maximum of the likelihood surface and

to obtain the second derivative, we use both the Nelder-Mead and BFGS algorithms

via the R function optim() in the “stats” package (R Core Team, 201956). As this is

discussed clearly in Section 2.4.2 we do not repeat it.

5.4 General negative binomial model

We now conisder the extension to more general models where any number of fixed and

random e↵ects can be specified. This general model also allows for unbalanced datasets

of m-groups with ni observations per group. The form of this model is

yi|ui

ind∼ NB
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
,; yij

)
, ui

ind∼ N
(
0dR ,Σ

)
,

1 ≤ i ≤ m, 1 ≤ j ≤ ni and  > 0,
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where the notation follows the general one level model presented in Section 1.8. The

log-likelihood can be expressed as

`(β,Σ,) =
m∑

i=1

`i(β,Σ,),

where

`i(β,Σ,) = log

∫

RdR

{ ni∏

j=1

NB
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
,; yij

)}

× |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)
dui,

and the best predictor of ui is

BP(ui) ≡

∫
RdR ui

{∏
ni
j=1NB

(
exp

(
β
#
x
F
ij
+ u

#
i
x
R
ij

)
,; yij

)}
exp

(
− 1

2u
#
i
Σ−1

ui

)
dui

∫
RdR

{∏
ni
j=1NB

(
exp

(
β#xF

ij
+ u

#
i
x
R
ij

)
,; yij

)}
exp

(
− 1

2u
#
i
Σ−1ui

)
dui

.

(5.25)

Implementation of EP follows as per the previous models, with minor alterations to the

algorithm to account for the count response variable.

We first explain likelihood approximation using EP in Subsection 5.4.1, before

explaining computation of point estimates and confidence intervals in Section 5.4.2.

Results of a simulation study are presented in Subsection 5.4.3. The same calculations

in Section 3.3 can be used for best prediction of ui. We do not repeat them again and

instead refer readers to the previous work.

5.4.1 Expectation propagation likelihood approximation

EP can be used to approximate the likelihood by updating and summing the natural

parameter updates. We wish to find the optimal natural parameters ⌘0, η1 and η2

which minimise KL(finput ‖ fUN), where fUN is defined by equation (3.4) and

finput(x) = NB
(
exp

(
c0 + c

#
1 x

)
,; c2

)
exp

((
η
input
1

)#
x+ x

#
H

input
2 x

)
, (5.26)
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where η
input
1 is a d× 1 vector, H input

2 is a d× d matrix, c0 = β
#
x
F
ij
, c2 = yij , c1 = x

R
ij

and x = ui. As such, we seek an η
∗ to solve

∫

Rd
x
⊗kNB

(
exp

(
c0 + c

#
1 x

)
,; c2

)
exp








 x

vech(xx#)




#

η
input





dx =

∫

Rd
x
⊗k exp










1

x

vech(xx#)





#

η
∗






dx (5.27)

where x
⊗k is as defined in equation (1.2). Thus to obtain the required projection, we

first obtain the optimal natural parameters η∗
1 and η

∗
2 to project onto the multivariate

normal family as is presented in Result 26. As the integrals required to do so are not

available in closed form solutions, we use the same properties as the expit and Poisson

models to express the multivariate integrals as univariate integrals. These integrals are

expressed in Section 2.1 of Kim & Wand (2018)32 as denoted by Cb(p, q, r) and solved

using quadrature in a more e�cient manner.

Result 26. Given finput follows the form of equation (5.26), the projection onto the

multivariate normal family is given by

projN [finput] = exp
(
T (x)#η∗

−1 −A(η∗
−1)

)
h(x),

where

η
∗
−1 ≡ KNB

(
η
input
−1 ; c0, c1, c2;

)
,

η
input
−1 ≡



 η
input
1

η
input
2



 , η
∗
−1 ≡



 η
∗
1

η
∗
2



 ,

KNB







 a1

a2



 ; c0, c1, c2;



 is defined in Definition 27 and T (x) and h(x) follow from

Section 1.5.2.2.
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Definition 27. For primary arguments a1 (d× 1) and a2
(
1
2d(d+ 1) × 1

)
such that

vec
−1

(
−
(
D

+
d

)#
a2

)
is symmetric and positive definite, and auxiliary arguments c0,∈ R,

c2,∈ Z≥0,  ∈ R≥0 and c1 (d× 1), the function KNB : H → H is given by

KNB







a1

a2



 ; c0, c1, c2,



 ≡



R
#
5 (a1 + r3c1)

D
#
d
vec(R#

5 A2)



 , (5.28)

where

r1 = c
#
1 A

−1
2 c1, r2 = (c#1 A

−1
2 a1 − 2c0)r7, r3 = r2 + 2 Cb,1:0(r6, r7,)r7,

r4 = 2
(
Cb,1:0(r6, r7,)2 − Cb,2:0(r6, r7,)− r1

)
r27, R5 = (A2 + r4c1c

#
1 )

−1
A2,

r6 = 1− r2, r7 = −r−1
1 , Cb,1:0(r6, r7,) =

Cb(1, r6, r7,)
Cb(0, r6, r7,)

,

Cb,2:0(r6, r7,) =
Cb(2, r6, r7,)
Cb(0, r6, r7,)

, b(x;) = (c2 + ) log
(
exp(x) + 

)

and Cb(k, r, q) follows from equation (5.42).

A proof of Definition 27 is given in Appendix 5.6.4. Using Result 26 we now obtain

the normalising natural parameter ⌘∗0 to find the projection onto unnormalised normal

family.

5.4.1.1 Projection onto the unnormalised multivariate normal family

We now obtain the projection onto the unnormalised multivariate normal family. Recall

the moment matching problem from equation (5.27) and Results 12 and 13. Then, we

require

Cf =

∫

Rd
finput(x)dx = Cb(0, r6, r7)Z0Z1,

where

Z1 = exp

(
A(η) +

d

2
log(2⇡) + log�(c2 + ) +  log − log�(c2 + 1)− log�()

)
,
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Z0 = exp
(
(r2/2)2r1 +

1
2 log(r7/⇡)

)
and r6 and r7 are given in Definition 27. Analogous

to previous arguments

η
∗
0 = log Cb(0, r6, r7) + (r2/2)

2r1 +
1

2
log(r7/⇡) +

1

4
(η∗

1)
#(H∗

2 )
−1

η
∗
1

− 1

4

(
η
input
1

)#(
H

input
2

)−1
η
input
1 +

1

2
log

(
|H∗

2 |/|H
input
2 |

)
+ log�(c2 + )

+  log − log�(c2 + 1)− log�().

To find the normalising constant of the input function, we introduce a function given in

Definition 28.

Definition 28. Consider first, primary arguments a1 and b1 and auxiliary argument c1

where all three are d×1. Next consider arguments a2 and b2 which are all
(
1
2d(d+1)×1

)

such that both vec
−1

(
−
(
D

+
d

)#
a2

)
and vec

−1
(
−
(
D

+
d

)#
b2

)
are symmetric and positive

definite. Finally note auxiliary scalar argument c0 ∈ R, c2,∈ Z≥0 and  ∈ R≥0. Then

the function CNB : H ×H → R is given by

CNB







a1

a2



 ,



b1

b2



 ; c0,c1, c2,



 ≡ log Cb(0, r6, r7,) + (r2/2)
2r1 +

1

2
log(r7/⇡)

+
1

4
b
#
1 B

−1
2 b1 −

1

4
a
#
1 A

−1
a1 +

1

2
log

(
|B2|/|A2|

)

+ log�(c2 + ) +  log − log�(c2 + 1)− log�(),

where A2 ≡ vec
−1

((
D

+
d

)#
a2

)
, B2 ≡ vec

−1
((

D
+
d

)#
b2

)
, r1, r2, r6 and r7 follow from

Definition 27.

In summary, the projection onto the unnormalised multivariate normal family is given

by Result 27.



5.4. GENERAL NEGATIVE BINOMIAL MODEL 174

Result 27. For an unnormalised input function following the form of equation (5.26),

projUN [finput] (x) = exp










1

x

vec(xx#)





# 



⌘∗0

η
∗
1

η
∗
2










,

where 

η
∗
1

η
∗
2



 = KNB







η
input
1

η
input
2



 ; c0, c1, c2,





and

⌘∗0 = CNB







η
input
1

η
input
2



 ,



η
∗
1

η
∗
2



 ; c0, c1, c2,



.

5.4.1.2 Message passing formulation

Only minor changes to Algorithm 6 are required to account for the negative binomial

case. Note the components of the sum of the log-likelihood function `i(β,Σ,) are

`i(β,Σ,) = log

∫

RdR

( ni∏

j=1

p(yij |ui;β)

)
p(ui;Σ)dui, (5.29)

where

p(yij |ui;β) ≡ NB
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
,; yij

)

and

p(ui;Σ) ≡ |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)

are the conditional density functions of each response given its random e↵ect and the

density function of that random e↵ect respectively.

As the dependence structure of the product in equation (5.14) is the same as the

probit model shown in Figure 3.1, we only need to update the messages depending on

the conditional density functions of each response given its random e↵ect. This involves
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updating messages mp(yij |ui;�)→ui
(ui) as in equation (3.12)

mp(yij |ui;�)→ui
(ui)

←
projUN

[
NB

(
exp

(
c0 + c

#
1ijui

)
,; c2ij

)
exp

{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

}]

exp
{
u
#
i
η
⊗
1 +

(
vech(uiu

#
i
)
)#

η
⊗
2

} ,

where we set the constant terms:

c0ij ← β
#
x
F
ij ; c1ij ← x

R
ij ; c2ij ← yij ; 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

Following Section 3.1.2, we see that this task reduces down to adjusting the calculation

of the optimal natural parameters ηp(yij |ui;�)→ui
in equation (3.18) for the Poisson

model, where the linear and quadratic coe�cient updates in equation (3.19) given by

Kprobit are changed to

(
ηp(yij |ui;�)→ui

)
1:2

← KNB
(
η
⊗
1:2; c0ij , c1ij , c2ij ,

)
− η

⊗
1:2 (5.30)

as per Definition 27, and where the constant coe�cient update in equation (3.20) given

by Cprobit is changed to

(
ηp(yij |ui;�)→ui

)
0
← CNB

(
η
⊗
1:2,

(
ηp(yij |ui;�)→ui

)
1:2

+ η
⊗
1:2; c0ij , c1ij , c2ij ,

)

as per Definition 28.

Barring the aforementioned changes and the initialisation of ηp(yij |ui;�)→ui
with the

ones discussed in Section 5.4.1.3, the full algorithm for the approximation of `(β,Σ)

follows Algorithm 6 exactly.

5.4.1.3 Starting values for the negative binomial case

We now derive starting values for the negative binomial case using the same principles

shown in the other cases. Let

log p(yij |ui;β) = f(aij) + log�(yij + )− log�(yij + 1)− log�() +  log ,

where aij = β
#
x
F
ij
+ u

#
i
x
R
ij

and f(x) is defined as in equation (5.23). Then

(aij − âij) = (ui − ûi)
#
x
R
ij
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where âij = β
#
x
F
ij
+ û

#
i
x
R
ij

and û is an approximation of ui. A Taylor series expansion

of f(aij) evaluated at âij leads to

f(aij) = f(âij) + f ′(âij)(ui − ûi)
#
x
R
ij +

1

2
f ′′(âij)

(
(ui − ûi)

#
x
R
ij

)2
+ ...

=





1

ui − ûi

vech
(
(ui − ûi)(ui − ûi)#

)





#

qηij + ... ,

where

qηij =





f(âij)

f ′(âij)xR
ij

1
2f

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




.

Quadratic approximation to log p(yij |ui;β) based on Taylor expansion about ûi is

log qp(yij |ui;β) as per equation (3.22). By following the same logic of previous cases it

is easy to show

η
start
p(yij |ui;�)

=





⌘start0

f ′(âij)xR
ij
− f ′′(âij)xR

ij
(xR

ij
)#ûi

1
2f

′′(âij)D#
dR

vec
(
x
R
ij
(xR

ij
)#

)




,

where

⌘start0 = f(âij)− f ′(âij)(x
R
ij )

#
ûij +

1

2
f ′′(âij)û

#
ijx

R
ij (x

R
ij )

#
ûij .

5.4.2 Computation of point estimates and confidence intervals

We denote the maximum likelihood approximation using EP as
s

β̂, Σ̂, ̂ = argmax
�,⌃,

s̀(β,Σ,).

As before, to find their stationary points, we use the Nelder-Mead and BFGS algorithms

for optimisation via the R function optim() in the package “stats” (R Core Team,

201956). As in the -only model, additional care must be taken to ensure optimisation

of the parameter  is on an unconstrained space. We do this using a log transform as in

the univariate case i.e. ⇠ = log(). For clarity we now show the changes required from

the steps given in Section 3.2:

1. Steps (a) - (b) for converting Σ to the unconstrained space θ follows from before.
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We must also now convert  to the unconstrained space ⇠.

(c) Convert  to the unconstrained space ⇠

⇠ = log().

2. A quasi-Newton optimisation method can now be used to obtain the maximum

likelihood estimate of
(
β̂, θ̂, ⇠

)
,

(
β̂, θ̂, ⇠̂

)
=
✓2Rd⌃(d⌃+1)/2

argmax `(β,θ, ⇠).

We suggest conducting an initial search via the Nelder-Mead method, with refine-

ments by BFGS algorithm. Both can be implemented via the optim() R function

in the “stats” package (R Core Team, 201956).

3. The step converting
(
β̂, θ̂

)
to

(
β̂, ω̂

)
follows from before.

4. Now obtain the Hessian matrix H`
(
β̂, ω̂, ⇠̂

)
at the maximum

(
β̂, ω̂, ⇠̂

)
using the

quasi-Newton method BFGS, which as before can be implemented via optim().

Although we need values of (β,ω, ⇠) to be returned in the Hessian, the constraints

on these parameters mean the Hessian should still be calculated on the (β,θ, ⇠)

space, which is computed as before.

5. Form 100(1− ↵)% confidence intervals for the entries of (β,ω) using





β̂

ω̂

⇠̂




± �−1

(
1− 1

2
↵

)√
−diag

{(
H`

(
β̂, ω̂, ⇠̂

))−1}
.

6. Back transform the confidence interval limits for ω corresponding to the standard

deviation and correlation parameters as before and back transform ⇠ to  by

exponentiating it.

5.4.3 Simulation study

We now provide a simulation study repeated 1000 times comparing EP to a quadrature

approach and Laplace approximation. The simulation study in this chapter does not

assess the speed component.
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Datasets were generated with true parameter values:

�true = [0.38, 0.93]#, �2
true = 0.25 and true = 15. (5.31)

There were 100 groups generated in the data with each group containing 5 measurements

(i.e. m = 100, n = 5). The x
F
ij
and x

R
ij

vectors were of the form

x
F
ij = [1, x1ij ]

# and x
R
ij = 1,

where xk,ij was generated independently from a uniform distribution on the unit interval.

The tolerance of error for the EP scheme was set to 10−5 and 1000 iterations were

allowed for optimisation. We compare the EP approach to the Laplace approximation

and 100 point adaptive Gauss-Hermite quadrature. Both alternative approaches were

implemented via the R function glmer() from the package “lme4” (Bates, et al., 20185).

Point estimates and 95% confidence intervals for each interpretable model parameter

of the study are presented in Figure 5.4, where the number in the upper-right hand

corner of each panel are the empirical coverage values based on all 1000 replicates. Only

20 randomly chosen replicates from each method are shown in the panels for ease of

viewing. Laplace approximation and EP are shown in black, super imposed on adaptive

Gauss-Hermite quadrature approach shown in grey.

None of the three methods provided over 95% empirical coverage for the fixed

intercept. Noteably they were within 0.3% of the highest coverage, which was EP at

94.4%. Although for the fixed slope all methods had coverage above 95%, the quadrature

aproach delivered the highest coverage of 95.9%, 0.4% above the coverage of EP and

0.7% above Laplace approximations. EP provided the best estimates of 94.3% for

the random intercept parameter by some margin. Surprisingly, quadrature provided

coverage than Laplace approximation for this parameter, with 81.3% opposed to 92.8%.

Neither Laplace approximation nor Gauss-Hermite quadrature support confidence

interval calculation for the shape parameter via the R function glmer(). Di↵erences

between the point estimates of Laplace approximation and adaptive Gauss-Hermite

quadrature exist for small  values, although for larger values they are minimal. Point

estimates of EP di↵er from adaptive Gauss-Hermite quadrature across the range of

values, however match with Laplace approximation values for small values of . Although

confidence intervals via EP provides reasonable coverage of 94.4%, the large width of

intervals may not lend itself well to meaningful inference. It is left as an open topic for

future research.
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β0
Emp cover of AGHQ = 94.2%.
Emp cover of Lapl = 94.3%.
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Emp cover of AGHQ = 95.9%.
Emp cover of Lapl = 95.2%.
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Figure 5.4: Plots of confidence interval coverage for the univariate model with true

parameter values from equation (5.31) for models fit with adaptive Gauss-Hermite

quadrature, Laplace approximation and EP. The horizontal lines are the confidence

intervals for 20 randomly chosen replications of the simulation study, the solid circular

points indicate the point estimates and the vertical lines indicate true parameter values.

The Laplace and EP are shown in black, superimposed over the grey adaptive Gauss-

Hermite quadrature estimates. The percentage given in the top right-hand corner of

each panel is the empirical coverage over all 1000 replications.

5.5 Varying dispersion negative binomial model

We give an indication of how the proposed general negative binomial model can be

extended to the case of varying dispersion, where each group has its own shape parameter.

Rather than estimating a unique  for each group, we instead estimate an error term ⌫i

for each group and multiply  by the exponent of this term. The form of this model is

yij |ui

ind∼ NB
(
exp

(
β
#
x
F
ij
+ u

#
ij
x
R
ij

)
, exp(⌫i)

)
, ui

ind∼ N
(
0dR ,Σ

)
, ⌫i

ind∼ N
(
0,�2

⌫

)
,

1 ≤ i ≤ m, 1 ≤ j ≤ ni  > 0, and ⌫i ∈ R,
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where the notation follows the general one level model presented in Section 1.8. The

log-likelihood can be expressed as

`(β,Σ,,�2
⌫) =

m∑

i=1

`i(β,Σ,,�2
⌫),

where

`i(β,Σ,,�2
⌫) = log

∫

RdR

∫ ∞

−∞

{ ni∏

j=1

NB
(
exp

(
β
#
x
F
ij + u

#
i x

R
ij

)
,; yij

)}

× |2⇡Σ|−1/2 exp

(
− 1

2
u
#
i Σ

−1
ui

)
(2⇡�2

⌫)
−1/2 exp

(
− ⌫2

i

2�2
⌫

)
d⌫idui.

(5.32)

Although it seems that the extention of our methodology to this model is complicated,

the likelihood as in equation (5.32) can be obtained by message passing on the updated

factor graph in Figure 5.5 in a similar way to the general negative binomial model. We

leave further development of this model for future research.

uip(ui;⌃)

p(yi1|ui,⌫i;�)

p(yini |ui,⌫i;�)

⌫ip(⌫i;�
2
⌫)

Figure 5.5: Factor graph representation of the product structure of the integrand in

equation (5.32).



5.6. APPENDIX 181

5.6 Appendix

5.6.1 Proof of Definition 21

From this point on we represent the input parameter ηinput as η. The kth moment of
the input function in equation (5.2) is given by

Mk =

∫ ∞

−∞
xk (c0 + c1x; c2)(2⇡)

−1/2 exp






[
x

x2

]#

η −A(η)




 dx

× (2⇡)1/2 exp
(
A(η)

)
�(c2 + 1)−1,

where  (x; c) = exp
(
cx−b(x)

)
and b(x) = exp(x). Using the inverse map of the natural

parameters in equation (1.14) and implementing the change of variable x = µ+ �u,

Mk =

∫ ∞

−∞
(µ+ �u)k 

(
c0 + c1µ+ �c1u; c2

)
�(u)duZ1,

where Z1 = exp
(
A(η) + 1

2 log(2⇡)− log�(c2 + 1)
)
. Each of the required moments can

be obtained via univariate quadrature. For numerical stability we rearrange the integral
that arises in the form presented by Kim & Wand (2017),32

Cb(k, r, q) =
∫ ∞

−∞
xk exp

(
rx− qx2 − b(x)

)
dx, (5.33)

where b(x) = exp(x). Using simple algebraic manipulations, it is easy to show the
integrals required for the calculation of each moment can be expressed as

∫ ∞

−∞
uk (c0 + c1µ+ �c1u; c2)�(u)du

=

∫ ∞

−∞

(
(r2 + 2r7x)(2r7)

−1/2)k exp
(
r6x− r7x

2 − b(x)
)
dxZ0,

where
r1 = −2�2c21, r2 = 2(c0 + c1µ)r

−1
1 , r6 = c2 − r2, r7 = −r−1

1 ,

b(x) = exp(x) and Z0 = exp
(
(r2/2)

2r1 +
1

2
log(r7/⇡)

)
.

The explicit forms of the integrals required follow easily,

Z−1
0

∫ ∞

−∞
 (c0 + c1µ+ �c1u; c2)�(u)du = Cb(0, r6, r7),

Z−1
0

∫ ∞

−∞
u  (c0 + c1µ+ �c1u; c2)�(u)du

=
(
r2 Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)
(2r7)

−1/2,

Z−1
0

∫ ∞

−∞
u2  (c0 + c1µ+ �c1u; c2)�(u)du

= 2
(
r2Cb(1, r6, r7) + r7Cb(2, r6, r7)

)
− r22r1

2
Cb(0, r6, r7).
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Implementing these forms, each of the moments are

Z−1
0 Z−1

1 M0 = Cb(0, r6, r7),

Z−1
0 Z−1

1 M1 = µCb(0, r6, r7) + �
(
r2Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)
(2r7)

−1/2,

Z−1
0 Z−1

1 M2 = (µ2 + �2)Cb(0, r6, r7) + 2µc1�
2
(
r2Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)

+ �4c21
(
4r27Cb(2, r6, r7) + 4r7r2Cb(1, r6, r7) + (r22 − 2r7)Cb(0, r6, r7)

)
.

Letting Cb,1:0(r6, r7) = Cb(1,r6,r7)
Cb(0,r6,r7) and Cb,2:0(r6, r7) = Cb(2,r6,r7)

Cb(0,r6,r7) , the optimal mean param-
eter for the projection is

µ∗ = E(x) =
M1

M0
= µ+ �2c1

(
r2 + 2r7Cb,1:0(r6, r7)

)
,

and the optimal variance parameter is

(�2)
∗
=E(x2)− E(x)2 =

M2

M0
−

(
M1

M0

)2

=�2 + (2r7)
2�4c21

(
Cb,2:0(r6, r7)− Cb,1:0(r6, r7)2 + r1/2

)
.

By converting back to natural optimal and input parameters we arrive at Definition 17.

5.6.2 Proof of Definition 23

Using simple algebraic manipulations based on Lemma 2, we arrive at Lemma 5:

Lemma 5. For integrals of the forms listed below, the corresponding solutions exist:

∫

Rd
 
(
a+ b

#
x; c

)
�(x)dx =

∫ ∞

−∞
 
(
a+ ‖b‖x; c

)
�(x)dx, (5.34)

∫

Rd
x  

(
a+ b

#
x; c

)
�(x)dx =

b

‖b‖

∫ ∞

−∞
x  

(
a+ ‖b‖x; c

)
�(x)dx, (5.35)

∫

Rd
xx

#  
(
a+ b

#
x; c

)
�(x)dx = Id

∫ ∞

−∞
 
(
a+ ‖b‖x; c

)
�(x)dx (5.36)

+
bb

#

b#b

(∫ ∞

−∞
x2 

(
a+ ‖b‖x; c

)
�(x)dx−

∫ ∞

−∞
 
(
a+ ‖b‖x; c

)
�(x)dx

)
,

where a ∈ R, b is a d× 1 vector, c ∈ Z+
,  (x; c) = exp

(
cx− b(x)

)
and b(x) = exp(x).

We wish to obtain the projection of an input function following the form of equation
(5.11) onto the multivariate normal family. Note in the interest of brevity we represent
the input parameter ηinput as η. Using the x

⊗k notation as described in equation (1.2),
the kth moment of the input function is given by

Mk =

∫

Rd
x
⊗k 

(
c0 + c

#
1 x; c2

)
(2⇡)−d/2 exp






[
x

vech(xx#)

]#

η −A(η)




 dx

×(2⇡)d/2 exp
(
A(η)

)
�(c2 + 1)−1.
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Using the inverse map of the natural parameters in equation (1.14) and implementing a
change of variable, where x = µ+Σ1/2

u,

Mk =

∫

Rd

(
µ+Σ1/2

u
)⊗k

 
(
c0 + c

#
1 µ+ (Σ1/2

c1)
#
u; c2

)
�I(u)duZ1,

where Z1 = exp
(
A(η) + d

2 log(2⇡)− log�(c2 +1)
)
. We can then use Lemma 5 to obtain

each of the required moments via univariate quadrature. For numerical stability we
rearrange the integral that arises in the form presented by Kim & Wand (2017)32

Cb(k, r, q) =
∫ ∞

−∞
xk exp

(
rx− qx2 − b(x)

)
dx, (5.37)

where b(x) = exp(x). Using simple algebraic manipulations, it is easy to show

∫ ∞

−∞
uk 

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖u; c2
)
�(u)du

=

∫ ∞

−∞

(
(r2 + 2r7x)(2r7)

−1/2)k exp
(
r6x− r7x− b(x)

)
dxZ0,

where

r1 = −2c#1 Σc1, r2 = 2
(
c0 + c

#
1 µ

)
r−1
1 , r6 = c2 − r2, r7 = −r−1

1 ,

b(x) = exp(x) and Z0 = exp
(
(r2/2)

2r1 +
1

2
log(r7/⇡)

)
.

It follows,

Z−1
0

∫ ∞

−∞
 
(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖u; c2
)
�(u) du = Cb(0, r6, r7),

Z−1
0

∫ ∞

−∞
u  

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖u; c2
)
�(u) du

=
(
r2Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)
(2r7)

−1/2,

Z−1
0

∫ ∞

−∞
u2  

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖ u; c2
)
�(u) du

= 2
(
r2Cb(1, r6, r7) + r7Cb(2, r6, r7)

)
− r22r1

2
Cb(0, r6, r7).

Implementing these forms, each of the moments can be derived in a similar way to the
probit cases. For the zeroth moment where k = 0,

Z−1
0 Z−1

1 M0 = Cb(0, r6, r7),

Z−1
0 Z−1

1 M1 = µCb(0, r6, r7) +Σ1/2
(
r2Cb(0, r6, r7) + 2r7Cb(1, r6, r7)

)
(2r7)

−1/2,

Z−1
0 Z−1

1 M2 =
(
µµ

# +Σ
)
Cb(0, r6, r7)

+
(
µc

#
1 Σ+Σc1µ

#)(r2Cb(0, r6, r7) + 2r7Cb(1, r6, r7)
)

+Σc1c
#
1 Σ

(
4r27Cb(2, r6, r7) + 4r7r2Cb(1, r6, r7) + (r22 − 2r7)Cb(0, r6, r7)

)
.



5.6. APPENDIX 184

First, let Cb,1:0(r6, r7) = Cb(1,r6,r7)
Cb(0,r6,r7) and Cb,2:0(r6, r7) = Cb(2,r6,r7)

Cb(0,r6,r7) . Then the optimal mean
parameter for the projection is

µ
∗ = E(x) =

M1

M0
= µ+Σc1

(
r2 + 2r7Cb,1:0(r6, r7)

)
,

and the optimal variance parameter is

Σ∗ = E(xx#)− E(x)E(x)# =
M2

M0
− M1

M0

(
M1

M0

)#

= Σ+ (2r7)
2Σc1c

#
1 Σ

(
Cb,2:0(r6, r7)− Cb,1:0(r6, r7)2 + r1/2

)
,

where Cb,1:0(r6, r7) = Cb(1,r6,r7)
Cb(0,r6,r7) and Cb,2:0(r6, r7) = Cb(2,r6,r7)

Cb(0,r6,r7) . By converting back to
natural optimal and input parameters we arrive at Definition 17.

5.6.3 Proof of Definition 25

We wish to obtain the projection of an input function following the form of equation
(5.18) onto the univariate normal family. Note in the interest of brevity we represent
the input parameter ηinput as η. Using the xk notation as described in equation (1.2),
the kth moment of the input function is given by

Mk =

∫

R

xk⌥
(
c2; c0 + c#1 x,

)
(2⇡)−1/2 exp






[
x

x2

]#

η −A(η)




 dx

× �(c2 + )

�(c2 + 1)�()
(2⇡)1/2 exp

(
A(η)

)
,

where ⌥(c;x;) = exp
(
cx− b(x; c,)

)
and b(c;x;) = (c+ ) log

(
exp(x) + 

)
. Using

the inverse map of the natural parameters in equation (1.14) and implementing a change
of variable x = µ+ �u

Mk =

∫

R

(µ+ �u)k⌥
(
c2; c0 + c1µ+ (�c1)

#u;
)
�(u)duZ1,

where Z1 = exp
(
A(η) + 1

2 log(2⇡) + log(c2 + ) +  log − log�(c2 +1)− log�()
)
. We

can then use Lemma 6 to obtain each of the required moments via univariate quadrature.
For numerical stability we rearrange the integral that arise in the form presented by
Kim & Wand (2017)32

Cb(k, r, q) =
∫ ∞

−∞
xk exp

(
rx− qx2 − b(x; c2,)

)
dx. (5.38)

Using simple algebraic manipulations, it is easy to show
∫ ∞

−∞
uk⌥(c0 + c1µ+ �c1u; c2)�(u)du

=

∫ ∞

−∞

(
(r2 + 2r7x)(2r7)

−1/2)k exp
(
r6x− r7x− b(x)

)
dx Z0,
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where,

r1 = −2c#1 �c1, r2 = 2(c0 + c#1 µ)r
−1
1 , r6 = c2 − r2, r7 = −r−1

1 ,

b(x) = exp(x) and Z0 = exp

(
(r2/2)

2r1 +
1

2
log(r7/⇡)

)
.

Using simple algebraic manipulations analogous to the Poisson case in Section 5.6.1 it
is easy to arrive at Definition 25.

5.6.4 Proof of Definition 27

Using simple algebraic manipulations based on Lemma 2, we arrive at Lemma 6:

Lemma 6. For integrals of the forms listed below, the corresponding solutions exist:

∫

Rd
⌥
(
c, a+ b

#
x,

)
�(x)dx =

∫ ∞

−∞
⌥
(
c, a+ ‖b‖x,

)
�(x)dx, (5.39)

∫

Rd
x⌥

(
c, a+ b

#
x,

)
�(x)dx =

b

‖b‖

∫ ∞

−∞
x ⌥

(
c, a+ ‖b‖x,

)
�(x)dx, (5.40)

∫

Rd
xx

#⌥
(
c, a+ b

#
x,

)
�(x)dx = Id

∫ ∞

−∞
⌥
(
c, a+ ‖b‖x,

)
�(x)dx

+
bb

#

b#b

(∫ ∞

−∞
x2⌥

(
c, a+ ‖b‖x,

)
�(x)dx−

∫ ∞

−∞
⌥
(
c, a+ ‖b‖x,

)
�(x)dx

)
, (5.41)

where a ∈ R, b is a d × 1 vector, c ∈ Z+
, ⌥(c, x,) = exp

(
cx − b(c, x,)

)
and

b(c, x,) = (c+ ) log
(
exp(x) + 

)
.

We wish to obtain the projection of an input function following the form of equation
(5.11) onto the multivariate normal family. Note in the interest of brevity we represent
the input parameter ηinput as η. Using the x

⊗k notation as described in equation (1.2),
the kth moment of the input function is given by

Mk =

∫

Rd
x
⊗k⌥

(
c2, c0 + c

#
1 x,

)
(2⇡)−d/2 exp






[
x

vech(xx#)

]#

η −A(η)




 dx

× �(c2 + )

�(c2 + 1)�()
(2⇡)d/2 exp

(
A(η)

)
.

Using the inverse map of the natural parameters in equation (1.14) and implementing a
change of variable where x = µ+Σ1/2

u,

Mk =

∫

Rd
(µ+Σ1/2

u)⊗k⌥
(
c2, c0 + c

#
1 µ+ (Σ1/2

c1)
#
u,

)
�I(u)duZ1,

where Z1 = exp
(
A(η) + d

2 log(2⇡) + log(c2 + ) +  log − log�(c2 +1)− log�()
)
. We

can then Lemma 6 to obtain each of the required moment via univariate quadrature.
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For numerical stability we rearrange the integral that arises in the form presented by
Kim & Wand (2017),32

Cb(k, r, q) =
∫ ∞

−∞
xk exp

(
rx− qx2 − b(x)

)
dx, (5.42)

where b(x,) = (c2 + ) log
(
exp(x) + 

)
. Using simple algebraic manipulations, it is

easy to show
∫ ∞

−∞
uk⌥

(
c0 + c

#
1 µ+ ‖Σ1/2

c1‖u, c2
)
�(u)du

=

∫ ∞

−∞

(
(r2 + 2r7x)(2r7)

−1/2)k exp
(
r6x− r7x− b(x)

)
dx Z0,

where

r1 = −2c#1 Σc1, r2 = 2
(
c0 + c

#
1 µ

)
r−1
1 , r6 = c2 − r2, r7 = −r−1

1 ,

b(x) = exp(x) and Z0 = exp

(
(r2/2)

2r1 +
1

2
log(r7/⇡)

)
.

By following the Poisson case in Section 5.6.2 it is easy to arrive at Definition 27.



Chapter 6

Expectation propagation for two
level and crossed random effects
probit models

Having explored models for both count and binary response data with one level of

nesting, we now attempt to handle models for crossed random e↵ects and two level

structures. We work with probit models since they have closed form solutions as in

Chapter 3, and show how the same key results from Chapter 3 are applicable to the

higher level models in this chapter. We start by applying our work to the crossed

random e↵ects model in Section 6.1, before explaining how it can also be implemented

for two level models in Section 6.2.

6.1 The general probit crossed mixed model

We first extend our methodology from the one level probit case to crossed random

e↵ects GLMMs. We aim to find approximations of the maximum likelihood estimates

for parameters β, Σ and Σ′ with 95% confidence intervals.

The crossed random e↵ects model specification is given in equation (6.1),

yii0j |ui,u
′
i0

ind.∼ Bernoulli

{
�
(
β
#
x
F
ii0j + u

#
i x

R
ii0j + (u′

i0)
#
x
R0
ii0j

)}
,

ui

ind.∼ N(0dR ,Σ) independently of u
′
i0

ind.∼ N(0
dR

0 ,Σ′),

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 , (6.1)

The content of this chapter is published as: Hall, P., Johnstone, I. M., Ormerod, J. T., Wand, M. P., &

Yu, J. C. F. (2020). Fast and Accurate Binary Response Mixed Model Analysis via Expectation

Propagation, Journal of the American Statistical Association, 115:532, 1902–1916, DOI:

10.1080/01621459.2019.1665529
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where the notation follows that of the crossed random e↵ects model in Section 1.8.

The form of the log-likelihood is

`(β,Σ,Σ′) = log

∫

RmdR+m0dR0

(
∏

(i,i0):nii0>0

nii0∏

j=1

p(yii0j |ui,u
′
i0 ;β)

)
p(u,u′;Σ,Σ′)d



u

u
′



 ,

(6.2)

where

p(yii0j |ui,u
′
i0 ;β) = �

{
(2yii0j − 1)

(
β
#
x
F
ii0j + u

#
i x

R
ii0j + (u′

i0)
#
x
R0
ii0j

)}
,

p(u,u′;Σ,Σ′) is N







 0mdR

0
m0dR0



 ,



 Im ⊗Σ 0
mdR×m0dR0

0
m0dR0×mdR

Im0 ⊗Σ′







,

and

u ≡
[
u
#
1 . . .u#

m

]#
, u

′ ≡
[
(u′

1)
# . . . (u′

m)#
]#

.

The joining of the random e↵ects vectors u and u
′ into one random vector from a

single density function allows a form that is more amenable to EP. For likelihood

inference with crossed random e↵ects the integrals required grow with the number of

random e↵ects as well as the number of groups, i.e. when dR = dR
0
= 1 they are

over the m+m′-dimensional space. Although it is possible to reduce the integral to

m dR-dimensional inner intergrals and outer integrals over Rm
0
d
R0

(alternatively m′

dR
0
-dimensional inner intergrals and outer integrals over Rmd

R
is also possible), the

dimension of the integral we wish to solve is still dependent on group size. Since the

current form is more amenable to EP we do not conduct such a simplification here.

In this section we first explain the schematic of likelihood approximation using EP

in Subsection 6.1.1, before exploring computation of point estimates and confidence

intervals in Subsection 6.1.2. The results of our simulation studies are presented in

Subsection 6.1.3.

6.1.1 Expectation propagation likelihood approximation

Although it seems that the extention of our methodology to crossed random e↵ects

is complicated, by expressing the likelihood as in equation (6.2) the updates for the

projection onto the multivariate normal family from the general one level model apply

to the crossed case. Specifically, EP for the crossed case centres around finding the
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optimal natural parameters ⌘0, η1 and η2 which minimise KL(finput ‖ fUN ), where

the approximating density fUN is defined to be the unnormalised multivariate normal

density in equation (3.4), and the target density finput(x) can be reparameterised to

have the same form as the one level model

finput(x) = �(c0 + c
#
1 x) exp

(
(ηinput

1 )#x+ x
#
H

input
2 x

)
, (6.3)

where η
input
1 is a d × 1 vector, H

input
2 is a d × d matrix, c0 = (2yii0j − 1)β#

x
F
ii0j ,

c1 = (2yii0j − 1)
[
(xR

ii0j)
# (xR0

ii0j)
#]# and x =

[
u
#
i
(u′

i0)
#]#. It is easy to see that the

moment matching problem required to find the optimal natural parameters to project

onto the normalised multivariate normal family can be solved analogously to the one

level probit model using Result 14, and the full projection onto the unnormalised

multivariate normal family is given in Result 15.

6.1.1.1 Message passing formulation

The message passing scheme required for crossed random e↵ects follows that of the one

level model in Section 3.1.2, with minor ammendments. We expicitly show some of the

updated messages here with the aim to clarify how the previous projection results are

reused. Note the alternate expression of the prior

p(u,u′;Σ,Σ′) ≡ exp










1

ui

u
′
i0

vech







ui

u
′
i0







ui

u
′
i0




#







#

η(⌃,⌃0)






,

where

η(⌃,⌃0) =





−md
R

2 log |2⇡Σ|− m
0
d
R0

2 log |2⇡Σ′|

0
mdR+m0dR0

−1
2D

#
m0dR0+mdR

vec







 Im ⊗Σ 0
mdR×m0dR0

0
m0dR0×mdR

Im0 ⊗Σ′




−1









. (6.4)

The structure of equation (6.2) in factor graph form is shown in Figure 6.1, where the
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circular stochastic node corresponds to the random vector
[
u
#(u′)#

]#
, the solid squares

indicate the factor nodes and the dependencies of the factor nodes on the stochastic

node are demonstrated through the edges.

2

4u

u0

3

5

p(u,u0;⌃,⌃0)

...

p (y111|u1,u
0
1;�)

p (y11n11 |u1,u
0
1;�)

...

p (y121|u1,u
0
2;�)

p (y12n12 |u1,u
0
2;�)

...

...

p (ymm01|um,u0
m;�)

p
�
ymm0nmm0 |um,u0

m;�
�

Figure 6.1: Factor graph representation of the product structure of the integrand in

equation (6.2) for crossed random e↵ects models.

Suppose that

p(yii0j |ui,u
′
i0 ;β) = exp










1

ui

u
′
i0

vech







ui

u
′
i0







ui

u
′
i0




#







#

ηii0j






, 1 ≤ j ≤ nii0 ,

are initialised to be unnormalised multivariate normal density functions in
[
u
#
i
(u′

i0)
#]#.

Then, for each j = 1, ..., nii0 , the ηii0j update of the EP algorithm involves minimisation
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of

KL

(
p(yii0j |ui,u

′
i0 ;β)

nii0∏

j0 *=j

⇠
p(yii0j0 |ui,u

′
i0 ;β)

× p(u,u′;Σ,Σ′)

∥∥∥∥
∏

(i,i0):nii0>0

nii0∏

j0=1
⇠
p(yii0j0 |ui,u

′
i0 ;β)p(u,u

′;Σ,Σ′)

)

(6.5)

as a function of (ui,u′
i0). As mentioned Result 15 can be used to update ηii0j in an

iterative procedure until convergence.

The process of minimising the KL divergence in equation (6.5) can be expressed as

a message from the factor p(yii0j |ui,u′
i0 ;β) to the stochastic node

[
u
#
i
(u′

i0)
#]# as

mp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0)

←−
projUN

[
m(ui,u

0
i0 )→p(yii0j |ui,u

0
i0 ;�)

(ui,u′
i0) p(yii0j |ui,u′

i0 ;β)
]
(ui,u′

i0)

m(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)

(ui,u′
i0)

,

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 , (6.6)

and the update of the message passed from p(ui,u′
i0 ;Σ,Σ′) to (ui,u′

i0) is

mp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )
(ui,u

′
i0)

←−
projUN

[
m(ui,u

0
i0 )→p(ui,u

0
i0 ;⌃,⌃0)(ui,u′

i0)p(ui,u′
i0 ;Σ,Σ′)

]
(ui,u′

i0)

m(ui,u
0
i0 )→p(ui,u

0
i0 ;⌃,⌃0)(ui,u′

i0)
. (6.7)

Similarly, the updates of stochastic node to factor messages are

m(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)

(ui,u
′
i0)

←− mp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )
(ui,u

′
i0)

nii0∏

j0 *=j

mp(yii0j0 |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0),

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 , (6.8)

and

m(ui,u
0
i0 )→p(ui,u

0
i0 ;⌃,⌃0)(ui,u

′
i0) ←−

nii0∏

j=1

mp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0). (6.9)

We now express the key messages in their simplest natural parameter form. Recall
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the natural parameter expression of the prior in equation (6.4) and that the unnormalised

normal density constraint is enforced on equations (6.6) and (6.7). Then

m(ui,u
0
i0 )→p(ui,u

0
i0 ;⌃,⌃0)(ui,u

′
i0)

←− exp










1

ui

u
′
i0

vech







ui

u
′
i0







ui

u
′
i0




#







#

η(ui,u
0
i0 )→p(ui,u

0
i0 ;⌃,⌃0)






. (6.10)

By substituting the above forms into equation (6.7) it is easy to show the message

mp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )
(ui,u′

i0) ←− p(ui,u′
i0 ;Σ,Σ′) is constant throughout the message

passing updates. As such, we now set

ηp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )

←− η(⌃,⌃0). (6.11)

For convenience, we denote the natural parameter vector

η
⊗ ≡ η(ui,u

0
i0 )→p(yii0j |ui,u

0
i0 ;�)

.

Following the derivation of equation (6.10) it is easy to show

m(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)

(ui,u
′
i0)

= exp










1

ui

u
′
i0

vech







ui

u
′
i0







ui

u
′
i0




#







#

η
⊗






=exp(⌘⊗0 ) exp








ui

u
′
i0




#

η
⊗
1 +





vech







ui

u
′
i0







ui

u
′
i0




#








#

η
⊗
2





.

Substituting this into equation (6.6) and following simplifications analogous to the
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general one level case leads to

mp(yij |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0)

←−projUN




�



c0ii0j + c
#
1ii0j



ui

u
′
i0









× exp








ui

u
′
i0




#

η
⊗
1 +





vech







ui

u
′
i0







ui

u
′
i0




#








#

η
⊗
2










×




exp








ui

u
′
i0




#

η
⊗
1 +





vech







ui

u
′
i0







ui

u
′
i0




#








#

η
⊗
2










−1

,

where c0ii0j = (2yii0j − 1)β#
x
F
ii0j and c1ii0j = (2yii0j − 1)

[
(xR

ii0j)
# (xR0

ii0j)
#]#. Utilising

Result 15,

mp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0)

←− exp










1

ui

u
′
i0

vech







ui

u
′
i0







ui

u
′
i0




#







#

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )






,

where the linear and quadratic coe�cient updates are

(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)

1:2
←− Kprobit

(
η
⊗
1:2; c0ii0j , c1ii0j

)
− η

⊗
1:2

and the constant coe�cient update is

(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)

0

←−Cprobit

(
η
⊗
1:2,

(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)

1:2
+ η

⊗
1:2; c0ii0j , c1ii0j

)
.
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Using the simplification of equation (6.6) and (6.7), equation (6.8) can be shown to be

m(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)

(ui,u
′
i0)

←− exp










1

ui

u
′
i0

vech







ui

u
′
i0







ui

u
′
i0




#







#

η(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)






,

where

η(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)

←− ηp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )

+
∑

j0 *=j

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
.

Once convergence is reached, the EP approximation ⇠̀(β,Σ,Σ′) is given by

⇠̀(β,Σ,Σ′) = log

∫

RmdR+m0dR0

(
∏

(i,i0)nii0>0

nii0∏

j=1

mp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0)

)

×mp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )
(ui,u

′
i0) d



ui

u
′
i0



 . (6.12)

Using natural parameters the integral arising in equation (6.12) can be approximated by

∫

RmdR+m0dR0

(
∏

(i,i0)nii0>0

nii0∏

j=1

mp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
(ui,u

′
i0)

)

×mp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )
(ui,u

′
i0) d



ui

u
′
i0





=(2⇡)(md
R+m

0
d
R0

)/2 exp






(
η(⌃,⌃0) +

∑

(i,i0)nii0>0

nii0∑

j=1

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )

)

0

+A





(
η(⌃,⌃0) +

∑

(i,i0)nii0>0

nii0∑

j=1

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )

)

1:2









.

The full algorithm for the approximation of `(β,Σ,Σ′) using EP is provided in Algorithm

7.
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Algorithm 7 Explicit form of algorithm used for the message passing approach to EP

Inputs: yii0j , xF
ii0j , x

R
ii0j , x

R0
ii0j , 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 ,

β(dF × 1), Σ(dR × dR), Σ′(dR
0 × dR

0
), are symmetric and positive definite.

Set constants: c0ii0j ←− (2yii0j − 1)β#
x
F
ii0j ; c1ii0j ←− (2yii0j − 1)

[
(xR

ii0j)
# (xR0

ii0j)
#]#,

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 ;

ηp(ui,u
0
i0 ;⌃,⌃0)→(ui,u

0
i0 )

←− η(⌃,⌃0) ≡





−md
R

2 log |2⇡Σ|− m
0
d
R0

2 log |2⇡Σ′|

0
mdR+m0dR0

−1
2D

#
m0dR0+mdR

vec







 Im ⊗Σ 0
mdR×m0dR0

0
m0dR0×mdR

Im0 ⊗Σ′




−1









,

1 ≤ i ≤ m, 1 ≤ i′ ≤ m′.

Initialise: ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )
, 1 ≤ i ≤ m, 1 ≤ i′ ≤ m′, 1 ≤ j ≤ nii0 , using Laplace

approximations.

Cycle:

SUM
(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)
←−

∑

(i,i0)nii0>0

nii0∑

j=1

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )

For (i, i′) ∈ {1, ...,m}× {1, ...,m′} :

For j = 1, ..., nii0 :

η(ui,u
0
i0 )→p(yii0j |ui,u

0
i0 ;�)

←− ηp(ui,u
0
i0 ,⌃,⌃0)→(ui,u

0
i0 )

+ SUM
(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)
− ηp(yij |ui,u

0
i0 ;�)→(ui,u

0
i0 )(

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )

)

1:2

←− Kprobit

((
ηui→p(yii0j |ui,u

0
i0 ;�)

)

1:2
; c0ii0j , c1ii0j

)

−
(
η(ui,u

0
i0 )→p(yii0j |ui,u

0
i0 ;�)

)

1:2

until convergence of all natural parameters vectors.
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Algorithm 8 Continuation of Algorithm 7 used for the message passing approach to

EP

For (i, i′) ∈ {1, ...,m}× {1, ...,m′} :

For j = 1, ..., nii0 :(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)

0
←− Cprobit

((
ηui→p(yii0j |ui,u

0
i0 ;�)

)

1:2
,

(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)

1:2
+

(
η(ui,u

0
i0 )→p(yij |ui,u

0
i0 ;�)

)

1:2
; c0ii0j , c1ii0j

)
.

SUM
(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

)
←−

∑

(i,i0)nii0>0

nii0∑

j=1

ηp(yii0j |ui,u
0
i0 ;�)→(ui,u

0
i0 )

Output: The full approximate log-likelihood is given by

`
∼
(β,Σ,Σ′) =

1

2
(mdR +m′dR

0
) log(2⇡) +

(
η(⌃,⌃0) + SUM

(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

))

0

+A

{(
η(⌃,⌃0) + SUM

(
ηp(yii0j |ui,u

0
i0 ;�)→(ui,u

0
i0 )

))

1:2

}

where, A(η) is defined as in equation (1.7) and η(⌃,⌃0) follows from equation (2.21).

6.1.2 Computation of point estimates and confidence intervals

The numerical maximisation of ` (β,Σ,Σ′) is a simple extension of the one level case.

As before, we must ensure the search for the maxima of Σ and Σ′ occur over the cone of

symmetric positive definite matrices, which we accomplished with a re-parameterisation

(Bateman & Pinheiro, 200055). For the general crossed random e↵ects case the following

procedure is recommended:

1. Convert Σ and Σ′ to the unconstrained space θ and θ
′ as follows:

(a) Obtain the spectral decomposition of Σ and Σ′,

Σ = u⌃ diag(λ⌃)u
#
⌃ and Σ′ = u

′
⌃0 diag(λ′

⌃0)(u′
⌃0)#.

(b) Used the spectral decomposition to obtain the matrix logarithm of Σ and

Σ′,

log(Σ) = u⌃ diag
(
log(λ⌃)

)
u
#
⌃ and log(Σ′) = u

′
⌃0 diag

(
log(λ′

⌃0)
)
(u′

⌃0)#.
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(c) Used log(Σ) and log(Σ′) to obtain θ and θ
′ respectively,

θ ≡ vech
(1
2
log(Σ)

)
and θ

′ ≡ vech
(1
2
log(Σ′)

)
.

2. Obtain the maximum likelihood estimate of (β̂, θ̂, θ̂′) using a quasi-Newton opti-

misation method,

(β̂, θ̂, θ̂′) = argmax `(β,θ,θ′).

We conducted an initial search via Nelder-Mead with refinements by BFGS, which

can be implemented via the “optim” R function.

3. Convert (β̂, θ̂, θ̂′) to (β̂, ω̂, ω̂′) as follows:

(a) Obtain the spectral decomposition of vech−1(θ̂) and vech−1(θ̂′):

vech−1(θ̂) = ub✓ diag(λb✓) (ub✓)
# and vech−1(θ̂′) = u

′
b✓0 diag(λ

′
b✓0) (u

′
b✓0)

#.

(b) Obtain Σ̂ = ub✓ diag
(
exp(2λb✓)

)
u
#
b✓
and Σ̂′ = u

′
b✓0 diag

(
exp(2λ′

b✓0)
)
(u′

b✓0)
#.

(c) i. If dR = 1, then ω̂ = 1
2 log(Σ̂). If dR

0
= 1, then ω̂′ = 1

2 log(Σ̂
′).

ii. If dR > 1, then

ω̂ =




1
2 log

(
diag(Σ̂)

)

tanh−1

{
vecbd(Σ̂)

/√
vecbd

(
diag(Σ̂)diag(Σ̂)#

) }



 .

If dR
0
> 1, then

ω̂′ =




1
2 log

(
diag(Σ̂′)

)

tanh−1

{
vecbd(Σ̂′)

/√
vecbd

(
diag(Σ̂′)diag(Σ̂′)#

) }



 .

4. Obtain the Hessian matrix H`(β̂, ω̂, ω̂′) at the maximum (β̂, ω̂, ω̂′) using the

quasi-Newton method BFGS, which as before can be implemented via optim().

The constraints on the parameters (β,ω,ω′) means the Hessian should still be

calculated on the (β,θ,θ′) space. The conversion can be obtained as follows:

(a) Form the symmetric matrices Σ and Σ′ as follows:

i. If dR = 1, then Σ = exp(2ω). If dR
0
= 1 then Σ′ = exp(2ω′).

ii. If dR > 1, then let ω1 denote the first dR entries of ω and ω2 denote the

remaining 1
2d

R(dR − 1) entries of ω. Set diag(Σ) = exp(2ω1). Obtain
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the below-diagonal entries of Σ so that

vecbd(Σ) = tanh(ω2)3 vecbd
(
exp(ω1) exp(ω1)

#)

holds. Obtain the above-diagonal entries of Σ such that symmetry

of Σ is enforced. If dR
0
> 1, then let ω

′
1 denote the first dR

0
entries

of ω′ and ω
′
2 denote the remaining 1

2d
R0
(dR

0 − 1) entries of ω′. Set

diag(Σ′) = exp(2ω′
1). Obtain the below-diagonal entries of Σ′ so that

vecbd(Σ′) = tanh(ω′
2)3 vecbd

(
exp(ω′

1) exp(ω
′
1)

#)

holds. Obtain the above-diagonal entries of Σ′ such that symmetry of

Σ′ is enforced.

iii. Obtain the spectral decomposition:

Σ = u⌃diag(λ⌃)u
#
⌃ and Σ′ = u

′
⌃0diag(λ′

⌃0)(u′
⌃0)#.

iv. Obtain

θ = vech
{1

2
u⌃diag

(
log(λ⌃)

)
u
#
⌃

}

and

θ
′ = vech

{1

2
u
′
⌃0diag

(
log(λ′

⌃0)
)
(u′

⌃0)#
}
.

5. Form 100(1− ↵)% confidence intervals for the entries of (β,ω,ω′) using





β̂

ω̂

ω̂′




± �−1

(
1− 1

2
↵
)√

−diag
{(

H`(β̂, ω̂, ω̂′)
)−1

}
.

6. Back transform the confidence interval limits for the ω component, to correspond

to the standard deviation and correlation parameters as follows:




√

diag(Σ)

vecbd(Σ)
/√

vecbd
(
diag(Σ)diag(Σ)#

)





and 


√
diag(Σ′)

vecbd(Σ′)
/√

vecbd
(
diag(Σ′)diag(Σ′)#

)



 .
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6.1.3 Simulation study

Three simulation studies were conducted, each for 1000 replicates on University of

Technology Sydney Interactive High Performance Computing facility Jupiter node with

eight 3.6 gigahertz processors and 32 gigabytes random access memory.

6.1.3.1 Comparison with MCMC and Laplace approximation maximum

likelihood for crossed random effects

The observations were simulated 1000 times according to equation (6.1) with true

parameter values

βtrue = [−0.58, 1.07]# ,Σtrue = �2
true = 0.32, and Σ′

true = (�2
true)

′ = 0.47. (6.13)

The number of groups in the data werem = 10, m′ = 6 with the number of measurements

in each group fixed at nii0 = 3 for all (i, i′). The x
F
ii0j , x

R
ii0j and x

R0
ii0jvectors were of the

form

x
F
ii0j = [1, xii0j ]

#, x
R
ii0j = 1 and x

R0
ii0j = 1

where xii0j was generated independently from a uniform distribution on the unit interval.

The tolerance of error values for the EP algorithm was set to 10−5 and a maximum of

100 Nelder-Mead search iterations was used. The model described was fit using each of

the following methods:

1. Laplace approximation implemented via the function glmer() in the R package

“lme4” (Bates, et al., 20185).

2. EP as described in this Section, initalised using Laplace approximations from the

function glmer() in the R package “lme4” (Bates, et al., 20185).

3. Markov Chain Monte Carlo with flat priors.

We compare point estimates and confidence intervals produced by each of the three

methods in Figure 6.2. Our studies show that the quality of results produced by each

method varied across parameters. MCMC provided the highest coverage (98.6%) for

the fixed intercept, while EP and Laplace approximations provided estimates which

were over confident (92.7% and 93.2% respectively). For the fixed slope all methods

provided approximately 95% coverage, with Laplace approximations providing the

highest empirical coverage (95.1%). No method provided good results for variance
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parameter estimates. Laplace approximations had the highest empirical coverage for the

variance parameter of the first level (69.5% compared to 63% from EP), whilst EP had

the highest empirical coverage for the variance parameter of the crossed level (89.2%

compared to 85.9% from Laplace approximations). MCMC provided the worst coverage

for the first and crossed level of (56.5% and 69.2% respectively). Overall it seems that

Laplace approximations perform marginally better than EP for this model and data

senario.

−3 −2 −1 0 1

β0
Emp cover of MCMC = 98.6%.
Emp cover of EP = 92.7%.
Emp cover of Lapl = 93.2%.

0 1 2 3

β1
Emp cover of MCMC = 94.8%.
Emp cover of EP = 94.8%.
Emp cover of Lapl = 95.1%.

0.0 0.5 1.0 1.5 2.0

σ2 Emp cover of MCMC = 56.5%.
Emp cover of EP = 63%.
Emp cover of Lapl = 69.5%.

0.0 0.5 1.0 1.5 2.0 2.5

σ2'
Emp cover of MCMC = 69.2%.
Emp cover of EP = 89.2%.
Emp cover of Lapl = 85.9%.

MCMC EP Lapl

Figure 6.2: Comparison of point estimates and 95% confidence intervals for the simula-

tion study with true parameter values given by equation (6.13). We display 10 randomly

chosen replications of the simulation study described. The vertical lines indicate true

parameter values and the percentages displayed at the top of each panel are empirical

coverages over all 1000 replications for each method involved in the comparison.

6.2 The general probit two level mixed model

We now extend our methodology for the probit case to deal with two level GLMMs,

utilising key results from Chapter 3 as in the crossed case. Our aim is to find an

approximation to the maximum likelihood estimates of the parameters β, ΣL1 and ΣL2
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with 95% confidence intervals.

The probit model with two levels of nesting is specified in equation (6.14),

yijk|uL1
i ,uL2

ij

ind.∼ Bernoulli

{
�
(
β
#
x
F
ijk

+ (uL1
i )#xR1

ijk
+ (uL2

ij )
#
x
R2
ijk

)}
,

u
L1
i

ind.∼ N(0dR1 ,ΣL1) independently of u
L2
ij

ind.∼ N(0dR2 ,ΣL2),

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij , (6.14)

where the response yijk ∈ {0, 1} and predictor vectors xF
ijk

, xR1
ijk

and x
R2
ijk

correspond

to the kth set of measurements within the jth inner group within the ith outer group.

The number of outer groups is m and the number of inner groups in the ith outer group

is ni. The sample size of the jth group in the ith outer group is oij . xR1
ijk

and x
R2
ijk

have

respective dimensions dR1 × 1 and dR2 × 1.

The form of the log-likelihood is

`(β,ΣL1,ΣL2) ≡
m∑

i=1

`i(β,Σ
L1,ΣL2),

where

`i(β,Σ
L1,ΣL2) = log

∫

RdR1+dR2

ni∏

j=1

oij∏

k=1

p(yijk|uL1
i ,uL2

ij ;β)

× p(uL1
i ,uL2

ij ;Σ
L1,ΣL2) d



u
L1
i

u
L2
ij



 , (6.15)

p(yijk|uL1
i ,uL2

ij ;β) = �

{
(2yijk − 1)

(
β
#
x
F
ijk

+ (uL1
i )#xR1

ijk
+ (uL2

ij )
#
x
R2
ijk

)}

and

p(uL1
i ,uL2

ij ;Σ
L1,ΣL2) ≡|2⇡ΣL1|−1/2|2⇡ΣL2|−1/2

× exp





−1

2



u
L1
i

u
L2
ij




# 

Σ
L1 0

0 ΣL2




−1 

u
L1
i

u
L2
ij









.

Unlike the crossed random e↵ects case, the integrals required are not dependent on the

number of groups. Subsection 6.2.1 explains the schematic of likelihood approximation

for the two level probit model using EP. It is easy to see how computation of point
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estimates and confidence intervals for (β,ΣL1,ΣL2) using optim() in R follows the

same process as the crossed model in Subsection 6.1.2, and as such we do not repeat it.

Due to time constraints we did not conduct a simulation study and as such no results

are presented.

6.2.1 Expectation propagation likelihood approximation

As in the crossed random e↵ects case, the results facilitating the projection of the target

density onto the unnormalised multivariate normal family for the general one level probit

model can be reused for the two level probit model. For the two level model EP involves

finding the optimal natural parameters ⌘0,η1 and η2 which minimise KL(finput ‖ fUN ),

where the unnormalised multivariate normal density fUN is defined by equation (3.4)

and the target density finput(x) can be written as

finput(x) = �(c0 + c
#
1 x) exp

(
(ηinput

1 )#x+ x
#
H

input
2 x

)
, (6.16)

where η
input
1 is a d × 1 vector, H

input
2 is a d × d matrix, c0 = (2yijk − 1)β#

x
F
ijk

,

c1 = (2yijk − 1)
[
(xR1

ijk
)# (xR2

ijk
)#

]#
and x =

[
(uL1

i
)# (uL2

ij
)#

]#
. It is easy to see we

require η
∗ to solve equation (3.7), where the optimal natural parameters η∗

1 and η
∗
2 to

project onto the multivariate normal family are given by Result 14, and the projection

on the unnormalised multivariate normal density is given by Result 15.

6.2.1.1 Message passing formulation

The message passing scheme required for the two level model follows that of Section 3.1.2,

with minor ammendments. For clarity we expicitly show it here. Note the alternate

matrix expression of the prior

p(uL1
i ,uL2

ij ;Σ
L1,ΣL2) ≡ exp










1

u
L1
i

u
L2
ij

vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#







#

η(⌃L1,⌃L2)






,



6.2. THE GENERAL PROBIT TWO LEVEL MIXED MODEL 203

where

η(⌃L1,⌃L2) ≡





−d
R1

2 log|2⇡ΣL1|− d
R2

2 log|2⇡ΣL2|

0dR1+dR2

−1
2D

#
dR1+dR2vec







 ΣL1 0dR1×dR2

0dR2×dR1 ΣL2




−1









. (6.17)

The structure of equation (6.2) in factor graph form is shown in Figure 6.3, where the

circular stochastic node corresponds to the random vector (uL1
i
,uL2

ij
), the solid squares

indicate the factor nodes and the dependencies of the factor nodes on the stochastic

node are demonstrated through the edges. Suppose that

�
uL1

i ,uL2
ij

�

p
�
uL1

i ,uL2
ij ;⌃L1,⌃L2

�

p
�
yij1|uL1

i ,uL2
ij ;�

�

p
�
yijoij |uL1

i ,uL2
ij ;�

�

Figure 6.3: Factor graph representation of the product structure of the integrand in

equation (6.15) for random e↵ects models with two levels of nesting.

p(yijk|uL1
i ,uL2

ij ;β) = exp










1

u
L1
i

u
L2
ij

vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#







#

ηijk






, 1 ≤ k ≤ oij ,

are initialised to be unnormalised multivariate normal density functions in (uL1
i
,uL2

ij
).

Then, for each k = 1, ..., oij , the ηijk update involves minimisation of

KL

(
p(yijk|uL1

i ,uL2
ij ;β)

ni∏

j=1

oij∏

k0 *=k

⇠
p(yijk0 |uL1

i ,uL2
ij ;β)

× p(uL1
i ,uL2

ij ;Σ
L1,ΣL2)

∥∥∥∥
ni∏

j=1

oij∏

k0=1
⇠
p(yijk0 |uL1

i u
L2
ij ;β)p(u

L1
i ,uL2

ij ;Σ
L1,ΣL2)

)

(6.18)
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as a function of (uL1
i
,uL2

ij
). We can achieve this by using Result 15 to update ηijk in

an iterative procedure until it converges.

The process of minimising the KL divergence in equation (6.18) can be expressed as

a message from the factor p(yijk|uL1
i
,uL2

ij
;β) to the stochastic node (uL1

i
,uL2

ij
) as

m
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij )

←−
projUN

[
m(uL1

i ,u
L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)(u

L1
i
,uL2

ij
) p(yijk|uL1

i
,uL2

ij
;β)

]
(uL1

i
,uL2

ij
)

m(uL1
i ,u

L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)(u

L1
i
,uL2

ij
)

,

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij , (6.19)

and the update of the message passed from p(uL1
i
,uL2

ij
;ΣL1,ΣL2) to (uL1

i
,uL2

ij
) is

m
p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij )

←−
projUN

[
m(uL1

i ,u
L2
ij )→p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)(u

L1
i
,uL2

ij
)p(uL1

i
,uL2

ij
;ΣL1,ΣL2)

]
(uL1

i
,uL2

ij
)

m(uL1
i ,u

L2
ij )→p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)(u

L1
i
,uL2

ij
)

.

(6.20)

The updates of stochastic node to factor messages are

m(uL1
i ,u

L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)(u

L1
i ,uL2

ij )

= m
p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij )
ni∏

j=1

oij∏

k0 *=k

m
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij ),

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oijk, (6.21)

and

m(uL1
i ,u

L2
ij )→p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)(u

L1
i ,uL2

ij ) =
ni∏

j=1

oij∏

k0=1

m
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij ).

(6.22)

Recall the natural parameter expression of the prior in equation (6.17) and that

the unnormalised normal density constraint is enforced on equations (6.19) and (6.20).
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Then

m(uL1
i ,u

L2
ij )→p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)(u

L1
i ,uL2

ij )

= exp










1

u
L1
i

u
L2
ij

vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#







#

η(uL1
i ,u

L2
ij )→p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)






.

(6.23)

By substituting the above forms into equation (6.20) it is easy to show the message

m
p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)→(uL1

i ,u
L2
ij )(u

L1
i
,uL2

ij
) ←− p(uL1

i
,uL2

ij
;ΣL1,ΣL2) is constant through-

out the message passing updates. As such, we now set

η
p(uL1

i ,u
L2
ij ;⌃L1,⌃L2)→(uL1

i ,u
L2
ij ) ←− η(⌃L1,⌃L2). (6.24)

For convenience, we denote the natural parameter vector

η
⊗ ≡ η(uL1

i ,u
L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�).

Following the derivation of equation (6.23) it is easy to show

m(uL1
i ,u

L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)(u

L1
i ,uL2

ij )

= exp










1

u
L1
i

u
L2
ij

vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#







#

η
⊗






= exp(⌘⊗0 ) exp








u
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u
L2
ij




#

η
⊗
1 +





vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#








#

η
⊗
2





.

Substituting this into equation (6.19) and following simplifications analogous to the
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general one level case leads to

m
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij )

←− projUN




�



c0ijk + c
#
1ijk



u
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i

u
L2
ij









× exp








u
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i

u
L2
ij




#

η
⊗
1 +





vech







u
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i

u
L2
ij







u
L1
i

u
L2
ij




#








#

η
⊗
2










×




exp








u
L1
i

u
L2
ij




#

η
⊗
1 +





vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#








#

η
⊗
2










−1

,

where c0ijk = (2yijk − 1)β#
x
F
ijk

and c1ijk = (2yijk − 1)
[
(xR1

ijk
)#(xR2

ijk
)#

]#
. Utilising

Result 15,

m
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij )

←− exp










1

u
L1
i

u
L2
ij

vech







u
L1
i

u
L2
ij







u
L1
i

u
L2
ij




#







#

η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )






,

where the linear and quadratic coe�cient updates are

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)

1:2
←− Kprobit

(
η
⊗
1:2; c0ijk , c1ijk

)
− η

⊗
1:2

and the constant coe�cient update is

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)

0
←−Cprobit

(
η
⊗
1:2,

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)

1:2

+ η
⊗
1:2; c0ijk , c1ijk

)
.

Using the simplification of equation (6.19) and (6.20), equation (6.21) can be shown to
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be

m(uL1
i ,u

L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)(u

L1
i ,uL2

ij )

←− exp
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#







#

η(uL1
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L2
ij )→p(yijk|uL1

i ,u
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,

where

η(uL1
i ,u

L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�) ←−η

p(uL1
i ,u

L2
ij ;⌃L1,⌃L2)→(uL1

i ,u
L2
ij )

+
∑

j0 *=j

η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij ).

Once convergence is reached, the EP approximation of each ⇠̀i(β,Σ
L1,ΣL2) is given by

⇠̀i(β,Σ
L1,ΣL2) = log

∫

RdR1+dR2

ni∏

j=1

oij∏

k=1

(
m

p(yijk|uL1
i ,u

L2
ij ;�)→(uL1

i ,u
L2
ij )(u

L1
i ,uL2

ij )
)

×m
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L2
ij ;⌃L1,⌃L2)→(uL1

i ,u
L2
ij )(u

L1
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ij ) d



u
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i

u
L2
ij



 . (6.25)

Using natural parameters the integral arising in equation (6.25) can be approximated by

∫

RdR1+dR2

ni∏

j=1

oij∏

k=1

(
m
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ij )(u

L1
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=(2⇡)(d
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R2)/2 exp






(
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ni∑

j=1

oij∑
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η
p(yijk|uL1
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L2
ij ;�)→(uL1
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L2
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)

0

+A





(
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ni∑
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oij∑
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η
p(yijk|uL1

i ,u
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ij ;�)→(uL1

i ,u
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)

1:2









.

The full algorithm for the approximation of `(β,ΣL1,ΣL2) using EP is provided in
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Algorithm 9.

Algorithm 9 Explicit form of algorithm used for the message passing approach to EP

Inputs: yijk, xF
ijk

, xR1
ijk

, xR1
ijk

, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij ,

β(dF × 1),ΣL1(dR1 × dR1),ΣL2(dR2 × dR2), are symmetric and positive definite.

Set constants: c0ijk ←− (2yijk − 1)β#
x
F
ijk

; c1ijk ←− (2yijk − 1)
[
(xR1

ijk
)#(xR2

ijk
)#

]#
,

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ k ≤ oij ;

η
p(uL1

i ,u
L2
ij ;⌃,⌃0)→(uL1

i ,u
L2
ij )

←− η(⌃L1,⌃L2) ≡





−d
R1

2 log|2⇡ΣL1|− d
R2

2 log|2⇡ΣL2|

0dR1+dR2

−1
2D

#
dR1+dR2vec







 ΣL1 0dR1×dR2

0dR2×dR1 ΣL2




−1









,

1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ j ≤ oij .

For i = 1, ...,m :

Initialise: η
p(yijk|uL2

i ,u
L2
ij ;�)→(uL2

i ,u
L2
ij ), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ j ≤ oij , using

Laplace approximations.

Cycle:

SUM
(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)
←−

ni∑

j=1

oij∑

k=1

η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

For j = 1, ..., ni :

For k = 1, ..., oij :

η(uL1
i ,u

L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�) ←− η

p(uL1
i ,u

L2
ij ,⌃L1,⌃L2)→(uL1

i ,u
L2
ij )

+ SUM
(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)
− η

p(yijk|uL1
i ,u

L2
ij ;�)→(uL1

i ,u
L2
ij )

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)

1:2

←− Kprobit

((
η(uL1

i ,u
L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)

)

1:2
; c0ijk , c1ijk

)

−
(
η(uL1

i ,u
L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)

)

1:2
until convergence of all natural parameters vectors.
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Algorithm 10 Continuation of Algorithm 9 used for the message passing approach to

EP

For j = 1, ..., ni :

For k = 1, ..., oij :(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)

0
←− Cprobit

((
η(uL1

i ,u
L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)

)

1:2
,

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)

1:2
+

(
η(uL1

i ,u
L2
ij )→p(yijk|uL1

i ,u
L2
ij ;�)

)

1:2
;

c0ijk , c1ijk

)
.

SUM
(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

)
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ni∑

j=1

oij∑
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η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

Output: The full approximate log-likelihood is given by

`
∼
(β,ΣL1,ΣL2) =

m(dR1 + dR2)

2
log(2⇡)

+
m∑

i=1






(
η(⌃L1,⌃L2) + SUM

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

))

0
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{(
η(⌃L1,⌃L2) + SUM

(
η
p(yijk|uL1

i ,u
L2
ij ;�)→(uL1

i ,u
L2
ij )

))

1:2

}



,

where A(η) is defined as in equation (1.7) and η(⌃L1,⌃L2) follows from equation (2.21).
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Chapter 7

Applications of expectation
propagation for one level probit
mixed models

Regardless of the amount of care taken during data collection, real data is subject to

the laws of the environment it is collected in; that is, it is often full of subtle yet di�cult

features and traits, providing unforeseen challenges to analysts when fitting models.

The facets of real data are not easily replicated in simulations due to the stochastic

environment in which they are created. As such, each real dataset provides a unique

opportunity for rigorous testing of statistical methodology. Not only does this help to

expose unknown weaknesses which can be either acknowledged or further developed,

but can also help highlight strengths. In Section 7.1 we introduce the R package created

for implementing the methodology in the probit case as explained in Chapter 3. Section

7.2 and 7.3 this cover applications of our methodology on two real datasets, each with

unique challenges. We fit models for each dataset and compare the fits to current

methodology, and in the case of the second dataset contribute some useful findings.

7.1 R package “glmmEP”

To facilitate implementation of the methodology presented in this thesis we developed

the R package “glmmEP” (Wand & Yu, 202069). Due to computational issues with

the integrals required to solve non-probit models and time constraints, the package

is restricted to one level probit models. Although the package uses an R interface,

all computations relating to EP are conducted in Fortran77 to reduce computing
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time. The R function glmmEP() is used to fit a probit GLMM using our methodology,

where the user must supply a vector of binary responses, a matrix of fixed e↵ects,

a matrix of random e↵ects, and a vector with identification numbers for each group.

Calling summary.glmmEP() returns the maximum likelihood estimates and corresponding

confidence intervals for the fixed e↵ects parameters. Confidence levels are set using

the confLev argument in the function glmmEP.control(). Unlike other packages we

also provide confidence intervals for random e↵ects parameters. A vignette with more

details is available by calling glmmEPvignette() .

7.2 Modelling immunisation of Guatemalan children

In 1987, the National Survey of Maternal and Child Health was conducted in Guatemala

on a sample of 5160 women age 15 to 44. The study utilised a questionaire about

prenatal care and immunisation status of chidren born during the study period. Pebley,

Goldman & Rodŕıguez (1996)54 provide a thorough explaination of the 1987 study

dataset and conduct an analysis.

We used the dataset guImmun from the R package “mlmRev” (Bates, Maechler &

Bolker, 20194) which is a smaller version of the full dataset of the 1987 National Survey

of Maternal and Child Health, with only 2519 observations and 13 variables. Of the 13

we selected 8, which are summarised in Table (7.1). This dataset has a low number of

observations per grouping variable and as such is a di�cult model to estimate. Our

aim is to compare the fits of current GLMM methodology to that provided by our

methodology.

Kid K1 K2 K3 K4 K5 K6 K7 K8

Mom M1 M2 M3

Community C1 C2

Figure 7.1: A plot showing the two level multiple membership structure of the data,

specifically kids nested under mothers nested under community. The first row shows

each community, the second shows each mother in each community and the third row

shows the kids of each mother in each community.
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Table 7.1: A list of the variables in the guImmun dataset used for model fitting.

Variable
name

Description

immun A two-level factor whether or not a child has their complete set of
immunisations.

pcInd81 A continuous variable of indigenous population percentage in the com-
munity child lived in during 1981 census.

kid2p A two-level factor specifying if the child was two years or older.

momEd A three-level factor with the mother’s level of school education. The levels
are not finished primary school, finished primary school, and finished
secondary school.

husEd A four-level factor variable with the husband’s level of school education.
The levels are not finished primary school, finished primary school,
finished secondary school, and unknown.

momWork A two-level factor variable whether the child’s mother had ever worked
outside the home.

rural A two-level factor variable indicating whether or not the child’s location
is rural or urban.

mom A multilevel factor variable that codes the children’s mothers.

The random intercepts and slopes probit mixed model we fit follows in equation

(7.1),

I(immunij = Y )|u0i, u1i
ind.∼ Bernoulli

{
�
(
�0 + u0i + (�1 + u1i)pcInd81ij

+�2I(kid2pij = Y ) + �3I(momEdij = S) + �4I(husEdij = S)

+�5I(momWorkij = Y ) + �6I(ruralij = Y )
)}

, (7.1)

where I(P) = 1 when P is true and 0 otherwise, and immunij is the immunity value for

the jth child of the ith mother for 1 ≤ i ≤ 1596, 1 ≤ j ≤ ni and ni ∈ {1, 2, 3}. Other

variables in the model are defined analogously. We assume our bivariate random e↵ects

vectors satisfy



u0i

u1i



 ind.∼ N







0

0



 ,



 �2
1 ⇢�1�2

⇢�1�2 �2
2







. (7.2)

Note that although the data does have an additional level of nesting we do not consider

it given the limitations in methodology as discussed in Chapter 6. Also we note that

although Pebley, Goldman & Rodŕıguez (1996)54 suggest use of a logistic model, the

speed issues discussed in Chapter 4 limit us to a probit link.
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Kid K1 K2 K3 K4 K5 K6 K7 K8 K9

Mom M1 M2 M3

Figure 7.2: A plot showing the two level structure of the data, specifically kids nested

under mothers. The first row shows each mother, the second shows each kid of each

mother.

The fixed e↵ects included in our model were selected using a generalised additive

model selection scheme implemented via the R package “gamsel” (Chouldechova, Hastie

& Spinu, 201815) using an overlap grouped least absolute shrinkage selection operator (

Jacob, et al., 200930), where the most parisimonious model within one standard error

from the minimum was chosen (Hastie, Tibshirani & Friedman, 200928). The package

allows including terms as non-linear splines in the model. Error estimates determined

using 10 fold cross-validation suggest a good choice for the penalty parameter of a

model fitted with least absolute shrinkage selection operator is � = 2.227. Although the

selected model suggests including primary parental education as a binary variable, given

the ordinal nature of education we instead include whether or not the parents finished

secondary school for interpretation sake. Linearity between indigenous population

percentage in the child’s community and their immunisation status was also confirmed

visually using spline fits in the aforementioned package.

We fit the model specfied in equation (7.1) with the four following methods and

compare the results:

1. Markov Chain Monte Carlo via the function stan() from the R package

“rstan” (Stan Development Team, 201859), using a Bayesian version of the model

specified in equation (7.1) with independent N(0, 1010) distributed di↵use priors

for �0, ... , �6, and a member of the marginally noninformative family of covariance

matrix priors described in Huang & Wand (2013)29 for the 2× 2 covariance matrix

in equation (7.2). In the notation of the same paper, the hyperparameters were

set to ⌫ = 2 and A1 = A2 = 105. A warm-up of 200000 was used followed by

samples of 10000 retained for inference.

2. Laplace approximation via the function glmer() in the R package “lme4”

(Bates, et al., 20185).
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3. Expectation propagation as described in Chapter 3 via our function glmmEP()

in the R package “glmmEP” (Wand & Yu, 202069).

4. Data cloning via the function dclone() in the R package “dclone” (Solymos,

201061), with 10 clones.

We assume that the Markov Chain Monte Carlo approach gives close to exact results

since a quadrature approach is not suitable for more than one random e↵ect. Although

other approaches exist, we include a comparison to the data cloning approach since

it provides a reliable frequentist inference. The EP point estimates and approximate

95% confidence intervals are given in Table 7.2. With the exception of those involving

parental education, each of the parameters is seen to be statistically significantly

di↵erent from zero. As examples, the EP 95% confidence interval for �1 of (-1.08, -0.454)

indicates a lower prevalence of immunization in communities with higher percentages

of indigenous people and the 95% confidence interval for �2 of (1.54, 4.35) shows that

there is significant heterogeneity in the indigenous percentage e↵ect across the 1595

families.

Figure 7.3 shows comparision of the fixed e↵ects point estimates and approximate

95% confidence intervals of the four methods. Here we use Markov chain Monte Carlo

as the gold standard method and apply the assumption that Markov chain Monte

Carlo based 95% credible intervals are close to the 95% confidence intervals based on

exact maximum likelihood. Although each method provided similar answers regarding

significance of parameters, their point estimates and confidence interval coverage were

notably di↵erent. Only Markov chain Monte Carlo produced a confidence interval for

the intercept parameter which was significant. The other methods produced confidence

intervals for the intercept parameter with a high proximity to 0, suggesting a lack of

evidence to include it. Fixed e↵ect estimates provided by data cloning show considerable

bias and reduced standard errors, most notably for indigenous population percentage in

the child’s community and age of the child, where point estimates for each parameter

were outside the credible interval of the Markov chain Monte Carlo approach. Using data

cloning to fit this model took approximately 3hrs on a contempary laptop, considerably

slower than the 12 seconds taken by EP. We also note data cloning has quite a few

tuning parameters such as the number of clones and prior hyperparameter values. Given

the slow speed of data cloning, it was di�cult to assess the sensitivity of parameter

choice.

Laplace approximation of the model performed slightly better than the data cloning

approach, however was still poor. Given the multilevel model we fit has a low number of
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husEd a four-level factor variable indicating the husband’s
level of education, with levels N for not finished primary
school, P for finished primary school, S for finished sec-
ondary school and U for unknown,

momWork a two-level factor variable indicating whether or not
the child’s mother had ever worked outside the home, with
levels Y for worked outside of the home and N for never
worked outside of the home,

rural a two-level factor variable indicatingwhether or not the
child’s location is considered rural or urban, with levels Y for
rural and N for urban,

mom a multilevel factor variable that codes the children’s moth-
ers, out of 1,595 mothers in total.

A random intercepts and slopes probit mixed model for these
data is

I(immunij = Y)|u0i, u1i
ind.∼

Bernoulli
(
!

(
β0 + u0i + (β1 + u1i)pcInd81ij

+ β2 I(kid2pij = Y) + β3 I(momEdij = S)

+ β4 I(husEdij = S) + β5 I(momWorkij = Y)
)

+ β6 I(ruralij = Y)
))

(22)

where I(P) = 1 if P is true and 0 otherwise. Also, immunij
denotes the value of immun for the jth child of the ith mother,
1 ≤ i ≤ 1, 595, with the other variables defined analogously.
The bivariate random effects vectors are assumed to satisfy

[
u0i
u1i

]
ind.∼ N

([
0
0

]
,
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

])
. (23)

The variables in Equation (22) were selected using a least abso-
lute shrinkage selection operator (Tibshirani 1996) approach.

We fitted this model using our expectation propagation
approximate likelihood inference scheme. It took about 10

Table 2. Expectationpropagation approximatemaximum likelihood estimates and
corresponding 95% confidence interval (C.I.) lower and upper limits for the param-
eters in model (22) and (23).

Parameter 95% C.I. low. Estimate 95% C.I. upp.

β0 −0.6711 −0.3373 −0.0035
β1 −1.0783 −0.7663 −0.4543
β2 0.7018 0.9291 1.1565
β3 −0.4090 0.0653 0.5396
β4 −0.3388 0.0523 0.4434
β5 0.0531 0.2591 0.4650
β6 −0.7895 −0.5345 −0.2795
σ1 1.1622 1.5370 2.0328
σ2 1.5407 2.5887 4.3494
ρ −0.9486 −0.7821 −0.2766

seconds on the fourth author’s MacBook Air laptop (2.2
gigahertz processor and 8 gigabytes of random access memory)
to produce the inferential summary given in Table 2.

With the exception of those involving parental education,
each of the parameters is seen to be statistically significantly
different from zero. As examples, the 95% confidence interval
for β1 of (−1.08,−0.454) indicates a lower prevalence of immu-
nization in communities with higher percentages of indigenous
people and the 95% confidence interval for σ2 of (1.54, 4.35)
shows that there is significant heterogeneity in the indigenous
percentage effect across the 1, 595 families.

Figure 5 provides a visual display of the fixed effects esti-
mates and approximate 95% confidence intervals in Table 2.
For comparison, we also include the results obtained from the
default call to the glmer() function in the package lme4
(Bates et al. 2015), in which a Laplace approximation is used,
data cloning via the package dclone (Sólymos 2010) with 10
clones and a Markov chain Monte Carlo fitting via the function
stan() in the R language package rstan (Stan Development
Team 2018). The last of these involves a Bayesian version of
(22)with diffuse priors and therefore is close to likelihood-based

Figure 5. Visual comparison of approximate 95% confidence/credible intervals forβ0, . . . ,β6 for three approaches to fitting the probitmixedmodel (22) to the Guatemala
immunization data. The approaches are Laplace approximation, expectation propagation and Markov chain Monte Carlo (MCMC) with details given in the text.
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Figure 7.3: Visual comparison of approximate 95% confidence/credible intervals for

�0, ...,�6 for three approaches to fitting the probit mixed model equation (7.1) to the

Guatemala immunization data. The approaches are Laplace approximation, data cloning,

EP and Markov chain Monte Carlo (MCMC) with details given in the text.

observations per group, the breakdown of Laplace approximation’s asymptotic properties

and a subsequent drop in performance is expected and consistent with literature, as

documented in Vonesh (1996).65 Additionally, we note that unlike our R function

glmmEP(), the R function glmer() does not produce confidence intervals for random

e↵ect parameters. As such, although it took 6 seconds (less than half the time of EP)

to fit the model with confidence intervals for the fixed e↵ects only, to include confidence

intervals for random e↵ects as well took 124 seconds.

Expectation propagation provided consistent point estimates and confidence interval

converage close to Markov chain Monte Carlo estimates whilst being considerably

cheaper to compute. For this application, it was clearly the standout method.
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Table 7.2: A table of approximate maximum likelihood estimates and corresponding upper

and lower 95% confidence intervals given by the EP methodology for the parameters in

model equations (7.1) and (7.2).

Parameter 95%C.I. low Estimate 95%C.I. upp

�0 -0.6711 -0.3373 -0.0035

�1 -1.0783 -0.7663 -0.4543

�2 0.7018 0.9291 1.1565

�3 -0.4090 0.0653 0.5396

�4 -0.3388 0.0523 0.4434

�5 0.0531 0.2591 0.4650

�6 -0.7895 -0.5345 -0.2795

�1 1.1622 1.5370 2.0328

�2 1.5407 2.5887 4.3494

⇢ -0.9486 -0.7821 -0.2766

7.3 Modelling donor attendance of the Australian Red

Cross Blood Service

Blood donation is currently one of the only ways to collect blood for therapeutic use and

as such is vital for healthcare in all nations. Given the often voluntary nature of blood

donations, the rate of donor attendance can be quite variable. Such variations have

implications for both financial and human resources of the health care system (Boksmati,

et al., 2016).9 As such, blood collection services seek to understand the factors involved

in donor attendance.Although an abundance of work exists in understanding how to

maintain steady donations, such as Charbonneau, et al. (2015),13 Bagot, et al. (2013)2

and Gemelli, et al. (2017),20 most have small datasets and fail to provide an analysis

using modern statistical tools.

Our dataset provided by the Australian Red Cross Blood Service has has over 3

million donation records collected in Queensland from 2015 to 2017. Table 7.3 provides

a description of each of the 43 variables recorded. We aim to identify key factors that

contribute to blood donors’ appointment results (i.e. whether or not the donor will

attend their scheduled donation), whilst also including more factors and a larger sample

size than other studies. Given the size of the data, computationally e�cient methods

are required. As such, we compare GLMM fitting using our methodology to Laplace

approximation. Furthermore, since the starting values of our EP algorithm depended

on estimates from Laplace approximation, fitting this model allows an insight into the
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feasibility of the new methodology.

Table 7.3: A table that shows each of the variables in the analysis, explains what they

mean, and lists the type of data they are.

Variable name Description

ID A multilevel factor variable with each donors’ ID number.

attendance A two-level factor whether the donors either attended or

absent their appointment. Didn’t attend is the reference.

age A continuous variable with the donor’s age in years.

sex A two-level factor variable with the donor’s gender. Female

is the reference.

bloodType A nine-level factor variable with donor’s the blood type.

It can be A+, A−, AB−, AB+, B−, B+, O−, O+ or

Unknown.

pltDon A count variable with the number of platelet donations the

donor has had.

WBDon A count variable with the number of whole blood donations

the donor has had.

plsDon A count variable with the number of plasma donations the

donor has had.

apptTime A continuous positive variable with time of the appointment,

measured from midnight.

apptWkday A six-level factor varible with weekday of the appointment

from 2 to 7, where 2,3,4,5,6,7 are weekdays Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday respectively.

apptMth A 12-level factor variable with the month of the appointment.

apptSeas A four-level factor variable with season of the appointment.

apptYear A three-level factor variable with the year of the appointment.

apptPubHolRad A five-level factor variable with the number of days either

before or after the appointment to the nearest public holiday.

If a public holiday is not within seven days of an appointment,

this is 0. If an appointment is one day from a public holiday,

this is 1. If an appointment is two days from a public holiday,

this is 2. If an appointment is three day from a public holiday,

this is 3, etc.
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apptCreDelta A continuous variable with the di↵erence between date of

creating the booking and actual donation date.

apptBookType A seven-level factor with the type of booking made.

In centre bookings are those made after the previous do-

nation. MCC inbound is where the donor calls the cen-

tre. MCC inbound is where the centre calls the donor.

MCC unknown is a booking made over the phone, but it is

unsure who called who. Community relations are bookings

made through community outreach. Portal are bookings

made using the portal software and Webbooking are those

made over the web.

colTypeSched A four-level factor variable with the type of blood collec-

tion procedure scheduled to be conducted. It can be either

plasmapheresis, plateletpheresis, whole blood or no blood.

colTypeTaken A four-level factor variable with the type of blood collec-

tion procedure conducted. It can be either plasmapheresis,

plateletpheresis, whole blood or no blood taken during ap-

pointment.

centreID A multilevel factor variable with the centre where blood

collection was scheduled. There are 25 centres represented

by unique codes.

centreType A two-level factor with the type of centre where the collection

of blood was scheduled, i.e. whether it was a static collection

room or a mobile blood van.

centreLoc A two level factor whether the scheduled collection centre was

regional or metro. Here regional is the reference category.

lastDefType A 354 level factor with the donor’s last deferral type code.

lastDefLen A continuous variable with length of time in weeks since the

donor last deferred an appointment. This is set to 0 for when

the donor has not had a previous deferral.

lastDefEndLen A continuous variable with the length of time in weeks since

the donors last deferral ended. This is set to 0 for when the

donor has not had a previous deferral.

inbndSMS A count variable with the number of SMS to the Red Cross

sent by the donor.
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inbndPhone A count variable with the number of phone calls to the Red

Cross by the donor.

inbndEmail A count variable with the number of emails sent to the Red

Cross by the donor.

inbndUnknown A count variable with the number of unknown communica-

tions sent to the Red Cross by the donor.

inbndInternet A count variable with the number of internet communications

to the Red Cross by the donor.

outbndPhone A count variable with the number of phone calls to the donor

by the Red Cross.

outbndSMS A count variable with the number of SMS to the donor sent

by the Red Cross.

outbndEmail A count variable with the number of emails sent to the donor

by the Red Cross.

outbndUnknown A count variable with the number of unknown communica-

tions sent to the donor by the Red Cross.

outbndInternet A count variable with the number of internet communications

to the donor by the Red Cross.

lastTTC A continuous variable with the time it took in the last ap-

pointment before the donor was on the couch ready for the

phlebotomist to take blood.

lastBleedTime A continuous variable with the time it took in the last ap-

pointment from needle in to needle out. This is linked to

collection type.

lastDonTime A continuous variable the total time it took from when the

donor entered the Red Cross to when they finished giving

blood, i.e. sum of lastTTC and lastDonTime.

lastDonMultiArm A two-level factor variable whether or not the donor was

punctured in one or both arms. True if one arm and False

if both.

lastDAEVVR A two-level factor variable with the last donor adverse event,

specifically whether a vasovagal reaction took place. True if

one did happen and False if one did not.
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lastDAEnonVVR A two-level factor variable with the last donor adverse event,

specifically whether a non-vasovagal reaction took place.

True if one did happen and False if one did not.

7.3.1 Data cleaning

The dataset was pooled from many di↵erent sources and required cleaning. Donors were

free to attend any room as many times as they wished in any location in Queensland, and

as such, many donors attended di↵erent rooms for their appointments. The underlying

structure of the data is quite complicated, involving donations nested in donors, crossed

with rooms, where rooms are nested under area (see Figure 7.4). Additionally there is

a time e↵ect to the true structure of the data. However, given the limitations of the

methodology presented in this thesis, we restrict the data to have one level of nesting;

donations nested in donors (see Figure 7.5). We acheive this by filtering the donors so

that only visits to their most popular room were retained.

Donation d1 d2 d3 d4 d5 d6 d7 d8

Donors D1 D2 D3

Rooms R1 R2 R3

Area A1 A2

Figure 7.4: A plot showing the two level multiple membership structure of the data,

specifically donations nested under donors crossed with rooms, which are nested under

area. The first row shows each donor, the second shows each donation of each donor,

the third shows which room each donation was done in, and the fourth shows the area

of each room. Note the time aspect of the data is not included in this graph.

Some variables were reported as they were used in the collection rooms and as such

were not in a format that lent themselves to statistical analysis. apptTime, which was

in a date time format, was converted to seconds from midnight. The date component

was also separated into years.
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Donation d1 d2 d3 d4 d5 d6 d7 d8

Donor D1 D2 D3

Figure 7.5: A plot showing the one level structure of the data, specifically donations

nested under donors. The first row shows each donor, the second shows each donation

of each donor.

Patient appointment result was recorded as a six-level factor with outcomes being;

attended, blood was taken, cancelled, rescheduled, active or unknown. We converted it

to a two-level factor called attendance, where donors either attended or were absent,

with absent as the reference category.

Negative values for apptCreDelta were present in the dataset for patients that

attended without booking in advance. These negative values were created as the donor’s

appointment time was recorded after their blood was taken by sta↵. Since it is not

useful for prediction of donors attendance rate, we remove them from the dataset.

There are also a number of missing values present in the data. For the cases of WBDon,

pltDon, plsDon and lastDefLen missing values may be indicative of first time donors.

Given that the analysis provided is primarily a demonstration of methodology, we do

not explore this and instead conduct a complete case analysis. A spurious observation

where donor’s age meant their last deferral length was not possible was also removed

from the data.

The counts of contact for each communication method between the Red Cross

and the donor were dichotomised from count variables that indicated how many times

each form of communication had been conducted on each donor, to a binary variable

recording whether there was no communication or at least 1 communication.

Finally there were a number of donors with an extremely high number of observations

in the dataset (the highest donor had 2247 bookings). It is speculated that these were

automated bookings based on various information flags, that were either not attended or

cancelled. Since donors with extremely high numbers of bookings were not uncommon

we did not remove them from our dataset.
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Table 7.4: A table reporting the shapes and recommended fits of each continuous variable

from the R package “gamsel” (Chouldechova, Hastie & Spinu, 2018
15
)

Variable name Form selected

age Linear

WBDon Bend point at 16.

log(plsDon + 1) Bend points at 1.5, 2.5 and 3.5.

log(pltDon + 1) Indicator of equalling zero and for positive, bend points
at 1.5, 2 and 3.

apptTime Bend points at 0.45 and 0.53.

apptCreDelta Bend points at 25 and 50.

log(lastDefLen + 1) Bend point at 1.2.

log(lastDefEndLen+1) Bend points at 1.6, 2.7 and 4.

log(lastTTC + 1) Indicator of equalling zero and, for positive, bend
points at 2, 2.5 and 3.

lastBleedTime Bend points at 40 and 60.

7.3.2 Modelling continuous variables

We used the R package “gamsel” (Chouldechova, Hastie & Spinu, 201815) to explore

the relationship between each continuous covariate in the dataset and the response

variable. Specifically, the R function gamsel() was used to automatically select whether

variables were linear or non-linear using an overlap grouped least absolute shrinkage

selection operator (Tibshirani, 199664) via the R package “gamsel” (Chouldechova,

Hastie & Spinu, 201815) as in Section 7.2. This showed plsDon, pltDon, lastDefLen,

lastDefEndLen and lastTTC had skewed non-linear relationships with attendance. As

such we implemented a transform of log(x + 1) and re-ran the gamsel() routine. To

account for the non-linearity of some variables we decided to use a broken stick model

where the break points were decided by visual inspection of the plots generated by

gamsel() in conjunction with histograms. The results of this exploration are given in

Table 7.4.

Categorical variables were broken into several binary variables each. The reference

level of each variable is given in Table 7.3. All continuous variables were also scaled to

have mean 0. After cleaning 2430370 observations remained.
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7.3.3 Initial model

We first attempted to fit an exploratory model via Laplace approximation. This model

included all variables as fixed e↵ects, a random intercept, and random slopes for age.

The probit mixed model we fit follows in equation (7.3), where I(P) = 1 when the

logical statement P is true, B(P ;x) = 0 when the logical statement is false, B(P ;x) = x

when the logical statement is true, and attendanceij is the attendance value for the

ith donation of the jth donor for 1 ≤ i ≤ 55657, 1 ≤ j ≤ ni and ni ∈ {1, ..., 2247}.
Other variables are defined analogously to attendanceij . We assume our bivariate

random e↵ects vectors satisfy
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Given both the data size and number of fixed e↵ect parameter estimates in the

model, the R function glmer() in the package “lme4” (Bates, et al., 20185) was unable

fit the model. As such, we turned to the function glmmTMB() (Magnusson, et al.,

201939) from the package “glmmTMB”, which utilises the R package “Template Model

Builder” (Kristensen, 201833) as a backend for model fitting and as such provides a

speed advantage for GLMMs with high numbers of fixed and random e↵ects (Bolker,

20197).

Fitting our model using glmmTMB() with all 2430370 observations that remained

after cleaning on a high performance computing cluser took approximately 27hrs and

used up to 50gb random access memory. We then attempted to fit the same model

using our EP approach via a modified version of our R function glmmEP() (as in the R

package “glmmEP”), with starting values given by the Laplace approximations from

glmmTMB(). To find the maximum likelihood estimates for the parameters, we first tried

using the R function optim() to compute a Nelder Mead algorithm with refinements via

Broyden Fletcher Goldfarb Shanno algorithm as discussed in Section 3.2. After 2 days of

continuous computing time on a high performance computing cluster the Nelder Mead

phase of the routine had not completed, and it was decided to try a di↵erent method.

In particular the unconstrained optimisation by quadratic approximation algorithm was

selected for implementation via the function uobyqa() in the package “minqa” (Bates,

et al., 20156). The uobyqa() approach was significantly faster than the scheme using

optim() approach, completing in approximately 1 day, and as such we use uobyqa()

for further investigations.
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We tried two methods to calculate the hessian matrix to calculate the confidence

intervals for EP. The first method was using Broyden Fletcher Goldfarb Shanno algorithm

via the R function optim() with hessian = TRUE, and the second was using the

function hessian() from the R package “numDeriv” (Gilbert & Varadhan, 201922).

Both methods failed due to singularities. As such we were not able to obtain confidence

intervals for EP. We did not make further attempts to obtain the hessian required since

the initial fit was simply exploratory.

Except for the random e↵ects components the di↵erence between point estimates

provided by Laplace approximation and EP were minimal. This is most likely due to

the high number of donations per donor, which vary between 1 and 2247. The di↵erence

in random e↵ects estimates are shown in Table 7.5. Finally we note that majority of

the parameter estimates given by Laplace approximation were highly significant, which

can be attributed to the large size of the dataset used in the study.

Table 7.5: Table comparing the random e↵ects point estimates obtained by Laplace

approximations and by EP.

Parameter Laplace approx. EP approx.

�1 0.4547 0.4544

�2 0.2263 0.2261

⇢ 0.0538 0.0248
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I(attendanceij = attended)|u0i, u1i
ind.∼ Bernoulli

{
�
{
�0 + u0i + (�1 + u1i)ageij

+�2 I(sexij = male) + �3 I(bloodType
ij
= A+) + �4 I(bloodType

ij
= A−)

+�5 I(bloodType
ij
= AB−) + �6 I(bloodType

ij
= AB+) + �7 I(bloodType

ij
= B+)

+�8 I(bloodType
ij
= B−) + �9 I(bloodType

ij
= O+) + �10 I(bloodType

ij
= O−)

+�11 WBDonij + �12 B(WBDonij > 16) + �13 log(plsDon + 1)

+�14 B(log(plsDon + 1) > 1.5) + �15 B(log(plsDon + 1) > 2.5)

+�16 B(log(plsDon + 1) > 3.5) + �17 log(pltDon + 1)

+�18 I(log(pltDon + 1) = 0) + �19 B(log(pltDon + 1) > 1.5)

+�20 B(log(pltDon + 1) > 2) + �21 B(log(pltDon + 1) > 3) + �22 apptTime

+�23 B(apptTime > 0.45) + �24 B(apptTime > 0.53) + �25 I(apptWkday = 3)

+�26 I(apptWkday = 4) + �27 I(apptWkday = 5) + �28 I(apptWkday = 6)

+�29 I(apptWkday = 7) + �30 I(apptMth = 2) + �31 I(apptMth = 3)

+�32 I(apptMth = 4) + �33 I(apptMth = 5) + �34 I(apptMth = 6)

+�35 I(apptMth = 7) + �36 I(apptMth = 8) + �37 I(apptMth = 9)

+�38 I(apptMth = 10) + �39 I(apptMth = 11) + �40 I(apptMth = 12)

+�41 I(apptYear = 2016) + �42 I(apptYear = 2017) + �43 I(apptPubHolRad = 1)

+�44 I(apptPubHolRad = 2) + �45 I(apptPubHolRad = 3) + �46 I(apptPubHolRad = 4)

+�47 apptCreDelta + �48 B(apptCreDelta > 25) + �49 B(apptCreDelta > 50)

+�50 I(apptBookType = community relations) + �51 I(apptBookType = in centre)

+�52 I(apptBookType = NCC inbound) + �53 I(apptBookType = NCC outbound)

+�54 I(apptBookType = portal) + �55 I(apptBookType = web booking)

+�56 I(colTypeSched = no blood) + �57 I(colTypeSched = plasmapheresis)

+�58 I(colTypeSched = plateletpheresis) + �59 I(colTypeTaken = no blood)

+�60 I(colTypeTaken = plasmapheresis) + �61 I(colTypeTaken = plateletpheresis)

+�62 I(centreType = static) + �63 I(centreType = metro) + �64 log(lastDefLen + 1)

+�65 B(log(lastDefLen + 1) > 1.2) + �66 log(lastDefEndLen + 1)

+�67 B(log(lastDefEndLen + 1) > 1.6) + �68 B(log(lastDefEndLen + 1) > 2.7)

+�69 B(log(lastDefEndLen + 1) > 4) + �70 I(inbndPhone ≤ 1) + �71 I(inbndSMS ≤ 1)

+�72 I(inbndEmail ≤ 1) + �73 I(inbndInternet ≤ 1) + �74 I(outbndPhone ≤ 1)

+�75 I(outbndSMS ≤ 1) + �76 I(outbndEmail ≤ 1) + �77 I(outbndInternet ≤ 1)

+�78 I(outbndLetter ≤ 1) + �79 log(lastTTC + 1) + �80 I(log(lastTTC + 1) = 0)

+�81 B(log(lastTTC + 1) > 2) + �82 B(log(lastTTC + 1) > 2.5)

+�83 B(log(lastTTC + 1) > 3) + �84 lastBleedTime + �85 B(lastBleedTime > 40)

+�86 B(lastBleedTime > 60) + �87 I(lastDonMultiArm = True)

+�88 I(lastDAEVVRij = True) + �89 I(lastDAEnonVVRij = True)
}}

, (7.3)
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7.3.4 Second model

With insights from the previous model, we aimed to improve model fit and obtain

confidence intervals for the EP approach. We conducted variable reduction of the fixed

e↵ects using least absolute shrinkage selection operator (Tibshirani, 199664) via the R

package “glmnet” (Friedman, J., et al., 202017). A plot of the error estimates given

the penalty parameter � determined via 10 fold cross-validation is shown in Figure

7.8. Although grounds for using the “one-standard-error” rule are established (Hastie,

Tibshirani & Friedman, 200928) we instead used � = exp(−6) as suggested by Figure

7.8, since it provides a simpler model without an excessive increase in the standard error.

Again we included a random intercept and slope for age. The probit mixed model we

fit follows in equation (7.5), where attendanceij , B(P;x) and I(P) are as previously

I(attendanceij = attended)|u0i, u1i
ind.∼ Bernoulli

{
�
{
�0 + u0i + (�1 + u1i)ageij

+�2 I(sexij = male) + �3 I(bloodType
ij
= A+) + �4 I(bloodType

ij
= B+)

+�5 WBDonij + �6 B(WBDonij > 16) + �7 log
(
plsDon + 1

)

+�8 B
(
log(plsDon + 1) > 1.5 log) + �9 B

(
log(plsDon + 1) > 2.5

)

+�10 B
(
log(plsDon + 1) > 3.5

)
+ �11 I

(
log(pltDon

ij
+ 1) = 0

)

+�12 apptTime + �13 B(apptTime > 0.45) + �14 B(apptTime > 0.53)

+�15 I(apptWkday
ij
= 3) + �16 I(apptWkday

ij
= 7)

+�17 I(apptMth
ij
= 11) + �18 I(apptMth

ij
= 12)

+�19 I(apptYear
ij
= 2017) + �20 apptCreDelta

+�21 B(apptCreDelta > 25) + �22 B(apptCreDelta > 50)

+�23 I(apptBookType
ij
= MCC unknown)

+�24 I(colTypeSched
ij
= plasmapheresis collection)

+�25 I(colTypeTaken
ij
= plasmapheresis collection)

+�26 log(lastDefLen + 1) + �27 B
(
log(lastDefLen + 1) > 1.2

)

+�28 log(lastDefEndLen + 1) + �29 I(inbndPhone > 1)

+�30 I(outbndPhone > 1) + �31 I(outbndSMS > 1)

+�32 I(outbndEmail ≥ 1) + �33 I(outbndLetter ≥ 1)
}}

, (7.5)

defined. Other variables are defined analogously to attendanceij . We assumed our

bivariate random e↵ects vectors satisfy equation (7.4).

As before we first obtained fits using Laplace approximation via glmmTMB() and used
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them as starting values for the EP algorithm. Again both models were extremely heavy

computationally, with each method taking approximately one day to fit. A di↵erence is

noticable between the estimates of �20, where Laplace approximation provided much

tighter confidence intervals than EP. This is a trend that is consistent across almost all

parameters estimated, however much like the first fit, the fixed e↵ect confidence intervals

and point estimates for Laplace approximations are extremely close to those provided

by EP. Figure 7.7 shows a comparison between Laplace approximation and EP. The

random e↵ects estimates were also extremely close between the two methods, as shown

in Table 7.6. Di↵erences between the models random e↵ects predictions are somewhat

visible in Figure 7.6, which shows best predictions of the random intercepts plotted

against best predictions of slopes for 24 randomly chosen donors. While these di↵erences

are quite small, they are certainly notable for certain donors, such as donor 10, 18 and

29. As a whole however, there is not much separating the fit of each model. We present

the point estimates with upper and lower confidence intervals for each parameter in

Table 7.7.

7.3.4.1 Results of model fit

All of the parameters estimated in the model were statisically di↵erent from zero, except

the parameter �10 (95% confidence intervals of (−0.004, 0.0448)) which was included to

account for the nonlinear relationship of the number of plasma donations and attendance.

Due to the large dataset, all the fixed e↵ects parameters estimated have extremely tight

confidence intervals, with the distance between upper and lower intervals ranging from

0.0035 to 0.0780. However, many variables have coe�cients that are small in magnitude

and as such although they are significant statistically their impact is minimal in reality.

Age (�1 with 95% confidence interval (0.0139, 0.0148)) increased the probability of

donation attendance, as did being male (�2 with 95% confidence interval (0.0626, 0.074))

over being female. Blood types A+ andB+ (�3 with 95% confidence interval (0.0068, 0.0187)

and �4 with 95% confidence interval (0.0159, 0.0293) respectively) increased the proba-

bility of donation attendance compared to all other blood types, although B+ had a

larger e↵ect on donation attendance than A+.

The number of whole blood donations per donor had a varying e↵ect on donor

attendance, in both magnitude and direction. For low values it decreased donation atten-

dance (�5 with 95% confidence interval (−0.0046,−0.0023)), however began increasing it

after 16 donations (�6 with 95% confidence interval (0.0128, 0.0177)). The relationship

between the number of plasma donations per donor and attendance also varies in
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magnitude, but is always negative (�7 with 95% confidence interval (−0.0849,−0.0676)).

It weakens between three (�8 with 95% confidence interval (0.0561, 0.0919)) and 11

plasma donations (�9 with 95% confidence interval (−0.0575,−0.0158)), before return-

ing beyond original levels after 32 plasma donations (�10 with 95% confidence interval

(−0.004, 0.0448)). Donors with no platelet donations (�11 with 95% confidence interval

(0.0017, 0.013)) had increased attendance compared to those with platelet donations.

Donor last deferal length has a non-linear relationship with attendance, initially

decreasing attendance up to approximately 2.5 days (�26 with 95% confidence interval

(−0.0243,−0.012)), then increasing after this point (�27 with 95% confidence interval

(0.0684, 0.0869)). Time since the last deferal ended was positively linked with donation

attendance probability (�28 with 95% confidence interval (0.0005, 0.0041)).

Both scheduled and collected plasmapheresis donations (�24 with 95% confidence in-

terval (0.0276, 0.0331) and �25 with 95% confidence interval (0.0052, 0.0103) respectively)

were linked with increasing donation attendance.

Appointment time (�12 with 95% confidence interval (−0.8924,−0.7444)) was linked

with decreasing attendance. Much like previous parameters, it has a non-linear re-

lationship with attendance. After appointment time becomes greater than 0.45 (i.e.

after approximately 10:45am) (�13 with 95% confidence interval (0.3564, 0.6778)) the

negative e↵ect on probability of attendance decreases, with a further decrease occuring

for appointment times greater than 0.53 (i.e. after approximately 12:45am) (�14 with

95% confidence interval (0.5093, 0.7761)). Note there is an even spread of attendance

times between .3 and 0.8 (i.e., 7:12am to 7:12pm), even though it can range from 0 to 1

for all patients, where 0 is 0hrs from midnight and 1 is 24hrs from midnight (i.e., each

hour of the day adds 1/24).

Both the appointment month and day a↵ect attendance probability. Appointments

on Wednesdays and Saturdays (�15 with 95% confidence interval (0.0139, 0.0184) and

�16 with 95% confidence interval (0.0059, 0.0116) respectively) were positively linked

with donation attendance compared to other days in the week, although the e↵ect size

of appointments on Saturdays is half that on Wednesdays. The same trend is true for

November and December appointments (�17 with 95% confidence interval (0.008, 0.0115)

and �18 with 95% confidence interval (0.019, 0.0225) respectively), where both months

were positively linked with donation attendance compared to other months. We also

note donors in 2017 had an increased probability of attending appointments (�19 with

95% confidence interval (0.1095, 0.1142)).
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The length of time between booking and attending the appointment (�20 with 95%

confidence interval (−0.0298,−0.0292)) was negatively linked with donation attendance.

As the length of time between booking and attending the appointment becomes greater

than 25 days length (�21 with 95% confidence interval (0.0266, 0.0276)) negative e↵ect

becomes minimised, before increasing again as the length of time between booking

and attending the appointment becomes greater than 50 days length (�22 with 95%

confidence interval (−0.0019,−0.001)).

Appointments with booking type MCC unknown (�23 with 95% confidence interval

(0.2577, 0.2619)) were the most positively linked variable with probability of donation

attendance.

We found more than one text message from the Red Cross to the donor (�31 with

95% confidence interval (0.0846, 0.0887)) led to the largest increase in probability of

donation attendance of any communication method. Letters and emails sent from the

Red Cross to the donor lead to smaller increases in attendance probability (�33 with 95%

confidence interval (0.0123, 0.0162) and �32 with 95% confidence interval (0.0065, 0.0106)

respectively). Phone calls from the Red Cross to the donor and from the donor to the

Red Cross were both linked to a decrease in the probability of appointment attendance

(�30 with 95% confidence interval (−0.0355,−0.0313) and �29 with 95% confidence

interval (−0.0137,−0.0096) respectively).

The random intercept parameter (�1 with 95% confidence interval (0.4826, 0.4952))

shows attendance probability of donors varies, while the random slope (�2 with 95%

confidence interval (0.2352, 0.2573)) suggests the e↵ect of age varies even less between

patients. The correlations of the random intercept and slope (⇢ with 95% confidence

interval (0.0017, 0.0591)) are minimal and are likely to be negligible in reality.

In summary, from our model we are able to identify the following useful trends:

• The e↵ect of age is dependent on the donor although in general older patients are

more likely to attend their appointments, as are males compared to females. These

results are supported by Gemelli, et al. (2017)20 and Charbonneau, et al. (2015)13

who shows older patients and males are more frequent donors. The variability of

the e↵ect of age may be caused by older patients being more experienced donors,

in addition to other behavioural e↵ects that occur with aging. Charbonneau, et

al. (2015)13 suggest females may stop attending due pregnancy, or may stop miss

donations based on their menstrual cycle.

• Donors with blood type B+ are associated with attendance more than other blood
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groups. This contradicts Gemelli, et al. (2017)20 who found negative blood groups

more common than positive groups.

• High numbers of previous plasma donations are linked to decreasing attendance,

while the number of platelet and whole blood donations have negligible e↵ect.

Charbonneau, et al. (2015)13 also supports the idea that the number of plasma

donations has an a↵ect on donation attendance. This may be because there is a

large gap required between whole blood donations (nearly two months), where

as plasma donations can be once a month. Although platelet donations can be

once every seven days, donations can take up to 3 hours which may deter patients

from returning.

• A long last deferral length is favourable for attendance, while time since the

last deferral does not have any e↵ect. Although the reasoning behind this is not

entirely clear the result aligns with the findings in Spekman, et. al. (2019).40

• Donors with scheduled plasmapheresis donations are most likely to attend com-

pared to other appointments. This might be because the minimum time between

appointments is the shortest of all the appointment types.

• Early and late appointment times seem to have opposite e↵ects on attendance,

where early appointments decrease attendance and late appointments increase

attendance. This may be due to patients work commitments, or having greater

confidence to donate in later parts of the day after eating several meals.

• Wednesday and December are associated more with attendance than other week-

days and months respectively. Although it is di�cult to intuit why Wednesday is

associated in increasing donor attendance, it does make sense that people may

have spare time over the holiday period during December, or may be influenced

by the festive season.

• The booking type MCC unknown seems to give the largest improvement in donor

attendance, however there is not much intuition behind this.

• More than one outbound text message led to the largest increase in attendance

of the communication methods, followed by outbound letters. Gemelli et. al.

(2018)21 supports that SMS increased the odds of donors attendance. Outbound

and inbound phone calls decreased attendance, possibly due to the large number

of cancellation calls, deferrals or missing patient calls.
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Table 7.6: Table comparing the random e↵ects point estimates obtained by Laplace

approximations and by EP for the model specified in Equation (7.5).

Parameter Laplace approx. EP approx.

�1 0.4876 0.4889

�2 0.2441 0.2460

⇢ 0.0300 0.0304
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Figure 7.6: Comparison plot for best predictions of the random intercepts and slopes for

24 donors between Laplace approximation and EP.
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Figure 7.7: Comparison plot of the confidence intervals and point estimates obtained

with Laplace approximations and EP for the fixed e↵ect parameters corresponding to the

model specified in equation (7.5).
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Figure 7.8: Plot of error estimates given the penalty parameter � determined via 10 fold

cross-validation. The values shown horizontally on top of the plot are the number of

variables included in the model.

Table 7.7: Table listing the fixed e↵ects point estimates obtained by EP according to

Equation (7.5). Note that they are the same as those by EP.

Parameter 95% C.I. low Estimate 95% C.I. high

�0 -0.6045 -0.5816 -0.5588

�1 0.0139 0.0144 0.0148

�2 0.0626 0.0683 0.074

�3 0.0068 0.0128 0.0187

�4 0.0159 0.0226 0.0293

�5 -0.0046 -0.0034 -0.0023

�6 0.0128 0.0152 0.0177

�7 -0.0849 -0.0762 -0.0676

�8 0.0561 0.074 0.0919

�9 -0.0575 -0.0366 -0.0158

�10 -0.004 0.0204 0.0448

�11 0.0017 0.0074 0.013
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Parameter 95% C.I. low Estimate 95% C.I. high

�12 -0.8924 -0.8184 -0.7444

�13 0.3564 0.5171 0.6778

�14 0.5093 0.6427 0.7761

�15 0.0139 0.0162 0.0184

�16 0.0059 0.0087 0.0116

�17 0.008 0.0098 0.0115

�18 0.019 0.0207 0.0225

�19 0.1095 0.1119 0.1142

�20 -0.0298 -0.0295 -0.0292

�21 0.0266 0.0271 0.0276

�22 -0.0019 -0.0014 -0.001

�23 0.2577 0.2598 0.2619

�24 0.0276 0.0303 0.0331

�25 0.0052 0.0077 0.0103

�26 -0.0243 -0.0182 -0.012

�27 0.0684 0.0777 0.0869

�28 5e-04 0.0023 0.0041

�29 -0.0137 -0.0116 -0.0096

�30 -0.0355 -0.0334 -0.0313

�31 0.0846 0.0867 0.0887

�32 0.0065 0.0085 0.0106

�33 0.0123 0.0143 0.0162

�1 0.4826 0.4889 0.4952

�2 0.2352 0.246 0.2573

⇢12 0.0017 0.0304 0.0591
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Chapter 8

Discussion and conclusion

This thesis aimed to add to the body of methodology used for frequentist inference

of GLMMs by using the typically Bayesian idea of EP. We begun developing our

methodology in Chapter 2 on a random intercept only probit model, as well as exploring

possible solutions for computing confidence intervals. We explained how EP is used

in our model, how we obtained starting values for the EP algorithm, and that the EP

approximation of the likelihood surface is very similar around the maximum to the exact

likelihood. Three possible solutions for obtaining confidence intervals were explored and

we considered how they performed via a simulation study. For this study, approach II of

EP su↵ered significantly in terms of computational performance. Keeping in mind the

eventual extension to higher dimensional random e↵ects, it was most practical to use a

quasi-Newtown optimisation approach due to the algebraic cost of implementing the

other approaches. However, assuming the random e↵ects dimension remains constant,

approach I is note worthy for its potential computational speed given it requires only a

bisection search. Best prediction theory for the univariate model was also covered.

The generalised case of the probit model from Chapter 2 is explored in Chapter 3.

Specifically, in this chapter we developed methodology to handle any number of fixed and

random e↵ects for one level models. We first explained how to obtain the EP likelihood

approximation and the starting values required for the algorithm, before covering how

to compute point estimates and confidence intervals using the quasi-Newton method

selected in Chapter 2, as well as best predictors of the random e↵ects. Our simulation

study comparing the main approaches (Laplace approximation and Gauss-Hermite

quadrature) and as well as a Markov chain Monte Carlo based method proved our

EP approach is more consistent and accurate than other approaches in a variety of

settings. In practice our methodology is hindered computationally given it is dependent



236

on Laplace approximations for starting values. Additional computational performance

may be found by implementing more advanced optimisation algorithms over a limited

search area. Although Greene (2012)23 suggests against the use of BFGS optimisation,

simulation studies throughout the thesis provide evidence that it is suitable, with good

emperical coverage provided for maximum likelihood estimates.

We next explored methods for handling logistic models with one level of nesting in

Chapter 4. The projections for the logistic model were di�cult to solve since closed

form solutions do not exist for them. In the univariate case we considered the use

of a piecewise approximation, which compared well to the exact likelihood. However,

the piecewise approximation did not extend well to the multivariate setting, and as

such we explored solving the projections using quadrature. We proved a series of

results which allowed the expression of the required multivariate integrals as univariate

integrals. Additionally we showed how to express these integrals in a stable manner for

computation. The quadrature method compared well to Laplace approximation with

regards to accuracy, however had poor computational speed. This speed problem was

caused by the use of trapisoidal quadrature. Although it was possible to solve these

integrals using Gauss-Hermite quadrature, it was not possible to gauge the level of

accuracy the quadrature provided. To our knowledge there is not a quadrature rule that

allows approximation of the integral occuring in this chapter within an error bound. We

left this as an open problem for future research.

Following the work of Chapter 4, in Chapter 5 we explored Poisson and negative-

binomial models for count data. As with the logistic model, the projections required

for both count models were not available with closed form solutions. As such we

utilised similar results to express the integrals required in a stable and computationally

e�cient form. In the Poisson model we showed that for the settings of the simulation

study, EP provided marginally superior coverage to Laplace approximations, however

Gauss-Hermite quadrature appeared the closest to 95% empirical coverage. Similar

findings were presented in the negative binomial model, where our EP method provided

marginally better results than Laplace approximations and Gauss-Hermite quadrature.

We provided confidence intervals for the shape parameter in the negative binomial

model, which to our knowledge is not available elsewhere in literature. Given the time

limitations of the thesis and complexity of the coding involved we did not present results

of multivariate studies for count data. Additionally, we note that although were are able

to give confidence intervals for the shape parameter for the negative binomial model,

further research into the implications of doing so are required. Finally a careful analysis

of the negative binomial model implementation provided in this thesis may be benefitial

to providing better numerical stability as the shape parameter approaches infinity.
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We investigated the extensions to higher level models in Chapter 6. We explained

how crossed random e↵ects and two level models can be framed and implemented

using the message passing framework shown in the previous chapters, with only minor

revisions to the algebra. Additionally we showed the simple alterations for calculation

of confidence intervals. Simulation results showed the performance of the EP approach

was similar to that of Laplace approximations, although given the challenging dataset

no method performed particularly well. Due to time limitations, we were not able to

conduct a more indepth exploration of EP in these models, and leave this as an open

problem. Although we did not explicitly show it, the extensions shown in Chapters 3-4

should help give an idea of the steps required to accomodate for crossed random e↵ects

models with di↵erent link functions and responses types.

In Chapter 7 we applied methodology developed in Chapter 3 to two datasets. In the

first dataset, we showed how EP is useful for data that is di�cult to model with current

methods. Specifically, we showed that for data with a low number of observations per

grouping variable, EP is not only as accurate as MCMC, but also provides a good

compromise in terms of speed. In the second dataset, where the number of observations

per grouping variable was high, we showed that there is only a very minor di↵erence

between EP and Laplace approximation. Given the computational cost of implementing

EP for this dataset, Laplace approximation was favourable. In this second analysis we

also provided useful information on the practicalities of fitting large GLMMs particularly

from the software standpoint, where not only do we suggest useful alternatives in the

case where the ubiquitous “lme4” package breaks, but also contribute our own software

package “glmmEP” (Wand & Yu, 202069). Although we provide some interesting and

novel findings from our analysis, a further exploration of the dataset considering things

such as missing values and the spacio-temporal structure of the data could be useful for

further inference. Additionally, it is possible to obtain starting values for EP by using a

sample of the whole dataset, which may lead to computational savings. Further research

into this may be of great use for applications of the EP methodology to large datasets.

Finally, the large number of events for some patients is relevant to the underlying

nature of the dataset and should not be ommited. In no major way would Figure 7.6 be

e↵ected by these observations other than both EP and Laplace approximation having

similar estimates of fixed and random e↵ects for those patients. The author notes that

covergence issues experienced in the first model fit for the Australian Red Cross blood

data was caused by highly correlated fixed e↵ects.

In conclusion, this thesis has led to the development of novel methodology for one

level binary and count GLMMs, as well as binary crossed random e↵ects GLMMs. We

created an e�cient message passing framework for researchers to expand and develop
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upon, allowing EP, an idea typically implemented in Bayesian settings, to be used for

frequentist inference. Additionally we contributed the R package “glmmEP” (Wand

& Yu, 202069) and showed our method provides consistent and accurate parameter

estimates for GLMMs, often with a clear improvements in empirical coverage variance

parameters. Our work contributes to the underdeveloped frequentist setting for datasets

with low numbers of observations per group.
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[54] Pebley, A., Goldman, N.,& Rodŕıguez, G. (1996). Prenatal and delivery care and childhood
immunization in Guatemala: Do family and community matter? Demography, 33(2),
231–247.

[55] Pinheiro, J. C., & Bates, D. M. (2000). Mixed-E↵ects Models in S and S-PLUS, New York,
Springer.

[56] R Core Team (2019). R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[57] Raudenbush, S. W. (1993). A Crossed Random E↵ects Model for Unbalanced Data with
Applications in Cross-Sectional and Longitudinal Research. Journal of Educational Statistics.
18(4), 321–349.

[58] Rohde, D. & Wand, M. P. (2015). Semiparametric Mean Field Variational Bayes: General
Principles and Numerical Issues. Journal of Machine Learning Research, 17(172), 1–47.

[59] Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.
http://mc-stan.org/.

[60] Scott, M. A., Simono↵, J. S., & Marx, B. D. (2013). The SAGE Handbook of Multilevel
Modeling.

[61] Solymos, P. (2010). dclone:Data Cloning in R. The R Journal, 2(2), 29–37.

[62] Steenbergen, M. R., & Jones, B. S. (2002). Modeling Multilevel Data Structures. American
Journal of Political Science, 46(1), 218–237.



BIBLIOGRAPHY 243

[63] Teunissen, P. J. G. (2007). Best prediction in linear models with mixed integer/real
unknowns: theory and application. Journal of Geodesy 81, 759–780.

[64] Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1), 267–288.

[65] Vonesh, E. F. (1996). A note on the use of Laplace’s approximation for nonlinear mixed-
e↵ects models. Biometrika, 83(2), 447–452.

[66] Wainwright, M. J. & Jordan, M. I. (2008). Graphical Models, Exponential Families, and
Variational Inference. Foundations and Trends in Machine Learning, 1.

[67] Wand, M. P & Jones, M. C. (1994). Kernel Smoothing. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability (60). Boca Raton, Chapman & Hall.

[68] Wand, M. P. (2017). Fast Approximate Inference for Arbitrarily Large Semiparametric
Regression Models via Message Passing. Journal of the American Statistical Association,
112(517), 137–168.

[69] Wand, M. P. & Yu, J. C. F. (2020). glmmEP: Generalized Linear Mixed Model Analysis via
Expectation Propagation (Version 1.0-3.1). Comprehensive R Archive Network. Retrieved
from https://cran.r-project.org/web/packages/glmmEP/index.html

[70] Winn, J. & Bishop, C. (2005). Variational Message Passing. Journal of Machine Learning
Research, 6, 661–694

[71] Wolfinger, R., & O’connell, M. (1993). Generalized linear mixed models a pseudo-likelihood
approach. Journal of Statistical Computation and Simulation, 48, 233–243.


	Title Page
	Certificate of original authorship
	Acknowledgements
	List of papers/publications
	Notation
	Contents
	Abstract
	Introduction and background
	Introduction
	Thesis aim
	Matrix storage and notation
	Notation for spaces
	Exponential family theory and distributions 
	Exponential family theory
	Probability distribution
	Univariate normal distribution
	Multivariate normal distribution
	Bernoulli distribution
	Poisson distribution
	Negative binomial distribution


	Graph theory
	Directed acyclic graphs
	Factor graphs

	Multilevel datasets
	Generalised linear mixed models
	Binary response models
	Count response models

	Maximum likelihood
	Likelihood functions
	Maximum likelihood

	Best prediction
	Current approximation methods
	Laplace approximation
	Gauss Hermite quadrature
	Other methods

	Expectation propagation
	Kullback Leiber divergence and projection
	Mean field approximations
	Expectation propagation
	Message passing

	Thesis structure

	Expectation propagation for the simplest one level probit mixed model
	Traditional quadrature likelihood approximation
	Expectation propagation likelihood approximation
	Projection onto the unnormalised normal family
	Message passing formulation
	Starting values for Algorithm 3

	Evaluation of the estimates
	Computing point estimates and confidence intervals
	Confidence interval estimation
	Derivative approximation
	Expectation propagation analytical approach I
	Expectation propagation analytical approach II


	Best predictor
	Simulation Study
	Appendix
	Proof of Result 3
	Proof of Result 5
	Proof of Lemma 1

	Proof of Result 7
	Details on finding the inverse function gradient map log-partition function for each s
	The s=0 case
	The s = 2 case
	The s =4 case



	Expectation propagation for general one level probit mixed models
	Expectation propagation likelihood approximation
	Projection onto the unnormalised multivariate normal family
	Message passing formulation
	Starting values for Algorithm 6

	Computation of point estimates and confidence intervals
	Best predictor
	Simulation study
	Comparison of maximum likelihood estimates for univariate random effects
	Maximum likelihood estimates for bivariate random effects
	Maximum likelihood estimates for trivariate random effects

	Appendix
	Proof of Definition 13
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Result 12


	Expectation propagation for one level logistic mixed models
	The simplest logistic mixed model
	Traditional quadrature likelihood approximation
	Expectation propagation likelihood approximation
	Projection onto the unnormalised normal family
	Message passing formulation
	Starting values for the univariate logistic case

	Evaluation of the estimates
	Best predictor

	General logistic mixed models
	Expectation propagation likelihood approximation
	Projection onto the unnormalised multivariate normal family
	Message passing formulation
	Starting values for the multivariate logistic case

	Simulation study
	Comparison of maximum likelihood estimates for univariate random effects
	Maximum likelihood estimates for bivariate random effects


	Appendix
	Proof of Result 16
	Proof of Definition 17
	Proof of Definition 18


	Expectation propagation for one level count response mixed models
	The simplest Poisson mixed model
	Traditional quadrature likelihood approximation
	Expectation propagation likelihood approximation
	Projection onto the unnormalised normal family
	Message passing formulation
	Starting values for the Poisson case

	Evaluation of the estimates
	Best predictor

	General Poisson mixed models
	Expectation propagation likelihood approximation
	Projection onto the unnormalised multivariate normal family
	Message passing formulation
	Starting values for the Poisson case

	Simulation study

	The simplest negative binomial models
	Traditional quadrature likelihood approximation
	Expectation propagation likelihood approximation
	Projection onto the unnormalised normal family
	Message passing formulation
	Starting values for the negative binomial case

	Evaluation of the estimates
	Computation of point estimates and confidence intervals
	Derivative approximation


	General negative binomial model
	Expectation propagation likelihood approximation
	Projection onto the unnormalised multivariate normal family
	Message passing formulation
	Starting values for the negative binomial case

	Computation of point estimates and confidence intervals
	Simulation study

	Varying dispersion negative binomial model
	Appendix
	Proof of Definition 21
	Proof of Definition 23
	Proof of Definition 25
	Proof of Definition 27


	Expectation propagation for two level and crossed random effects probit models
	The general probit crossed mixed model
	Expectation propagation likelihood approximation
	Message passing formulation

	Computation of point estimates and confidence intervals
	Simulation study
	Comparison with MCMC and Laplace approximation maximum likelihood for crossed random effects


	The general probit two level mixed model
	Expectation propagation likelihood approximation
	Message passing formulation



	Applications of expectation propagation for one level probit mixed models
	R package "glmmEP"
	Modelling immunisation of Guatemalan children
	Modelling donor attendance of the Australian Red Cross Blood Service
	Data cleaning 
	Modelling continuous variables
	Initial model
	Second model
	Results of model fit


	Appendix

	Discussion and conclusion
	References



