

An Interaction-based Software-
Defined Security Model and

Platform to secure cloud resources

A dissertation submitted to

Faculty of Engineering and Information Technology

University of Technology Sydney

In fulfilment of the requirements for the award of

Doctor of Philosophy

By

Sara Farahmandian

Supervised by

Professor Doan B. Hoang

2021

1 | P a g e

Dedicated To

My Divine Source

My parents, and my siblings

My primary supervisor

Thank for your great support and love

2 | P a g e

Certificate of Original
Authorship

I, Sara Farahmandian declare that this thesis is submitted in fulfilment of the

requirements for the award of Doctor of Philosophy, in the Faculty of Engineering

and Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged.

In addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Signature of Student: Sara Farahmandian

Date: <04/01/2021>

Production Note:
Signature removed prior to publication.

3 | P a g e

Acknowledgement

During my doctoral candidature, I have received a myriad of lessons, support,
and encouragement. I wish to express my sincere gratitude to my supervisor, Professor
Doan B. Hoang, for his support and for sharing this journey alongside me. I cannot
express in words how grateful I am and how much his supervision and mentorship
meant to me. He has taught me significantly valuable lessons that enlightened my
academic and personal life. He has been outstanding in providing insightful feedback
and creating the balance between working and living. Following his lessons, I
gradually become an independent researcher. I would like to thanks my co-supervisor,
Dr. Priyadarsi Nanda, for his support during my candidature.

I am thankful for all SEDE staff who supports me in every steps of my journey.
I would like to express my special thanks to all my teammates and friends in UTS
Women in Engineering and IT (WiEIT) for their remarkable help and support. I will
never forget the encouragement and assistance from all my colleagues and friends,
including Tham Nguyen, Chau Nguyen, Ngoc Le, Tuan Vinh Ha, Hasti Hayati,
Behnam Maleki, Ashish Nanda, Madhumita Abhijeet Takalkar, Deepak Puthal, Marie
Joshua Tapas, and Azita Zoughi.

Finally, I would like to show my appreciation to my Family. To my mother,
Parvin, the most incredible light in my life who taught me to be kind and strong and
supported me in every hard steps of my life, to my father who always encourage me
to overcome difficulties in my life, to my sister, Sepideh, who is my role model and
symbol of pure light and love in my life, to my wonderful brother, Ehsan, whom
talking to always keep me motivated, to my sister-in-law, Azadeh, who always kindly
supported and encouraged me during this journey, to my little niece, Elina, whom her
existence brings me pure joy and happiness, to my brother, Amin, whom always
encouraged me in every step of life. Their support and love encouraged me in every
step of my journey. This dissertation is dedicated to them. Without all of you, this
research journey would not have been possible.

4 | P a g e

Author’s Publications

Journal Article:

1. Hoang, D.B. and S. Farahmandian, “Security of Software-Defined
Infrastructures with SDN, NFV, and Cloud Computing Technologies”, in Guide to
Security in SDN and NFV. 2017. Springer. p. 3-32.

2. Farahmandian, S. and D.B. Hoang, “Policy-based Interaction Model for Cloud
Security Breaches Detection and Prediction”. Journal of Telecommunications and
the Digital Economy, 2020.

3. Farahmandian, S. and D.B. Hoang, “Software-defined Security Service Platform
for Securing Cloud Infrastructure”. IEEE Transactions on Cloud Computing
(TCC) Journal, 2021 (under-review).

Conference Papers:

4. Farahmandian, S. and D.B. Hoang. Security for software-defined (cloud, SDN
and NFV) infrastructures–issues and challenges. in Eight international conference
on network and communications security. 2016.

5. Farahmandian, S. and D.B. Hoang. SDS 2: A novel software-defined security
service for protecting cloud computing infrastructure. in 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA). 2017.
IEEE.

6. Farahmandian, S. and D.B. Hoang. A Policy-based Interaction Protocol between
Software Defined Security Controller and Virtual Security Functions. in 2020 4th
Cyber Security in Networking Conference (CSNet). 2020. IEEE.

5 | P a g e

Table of Contents

Certificate of Original Authorship .. 2

Acknowledgement ... 3
Author’s Publications ... 4

Table of Contents .. 5

Figures ... 9
Tables ... 15
Algorithms.. 15
Abbreviations and Acronyms ... 16
Abstract 18

Chapter 1 Introduction ... 20
1.1 Introduction ... 20
1.2 Brief Background .. 26

1.2.1 Software-Defined Infrastructure paradigm 27

1.2.2 Software-Defined Security (SDSec) .. 28

1.2.3 Software-Defined Security Service (SDS2) 30

1.2.4 Software-Defined Network of Virtual Security Functions 31

1.2.5 Provision of software-based security functions on-demand 31

1.2.6 Security Issues and Challenges in an Integrated Cloud/SDN/NFV
Infrastructure Platform .. 32

1.3 Research Questions ... 34
1.4 Research Aim and Objectives.. 37
1.5 Research Contributions and Significance .. 38

1.6 Research Methodology .. 40
1.7 Thesis Structure ... 42

Chapter 2 Background and Related Work ... 46
2.1 Introduction ... 46
2.2 Software-Defined Infrastructure .. 47

2.2.1 Virtualization ... 48

2.3 Cloud Computing .. 57
2.3.1 Cloud terminology – roles and boundaries 60

2.3.2 Cloud Security ... 62

2.4 Software-Defined Networking .. 67

2.4.1 SDN Interfaces ... 69

2.4.2 SDN Security Challenges .. 72

2.5 Network Function Virtualization ... 76

6 | P a g e

2.5.1 NFV Security Challenges .. 80

2.6 Policy ... 82
2.6.1 Security Policy Mechanisms .. 86

2.6.2 Access Control Policy Enforcement Methods 87

2.7 Security by Isolation .. 90
2.7.1 Isolation Classification... 91

2.7.2 Standard Network Security Solutions by Isolation 93

2.7.3 Cloud resource isolation mechanisms .. 94

2.8 Open-sources for Deploying a Cloud Security SDN/NFV platform95

2.9 Summary .. 96
Chapter 3 Software-Defined Security Service Model .. 97

3.1 Introduction ... 97
3.2 Why Programmable and automated Security Services on Demand?

 98

3.3 Software-Defined Security Service (SDS2) Model 102
3.3.1 SDS2 Security Layers ... 105

3.4 Application of SDS2 to Data Centre Security 108
3.5 SDS2 Features .. 109
3.6 Thesis Roadmap .. 113

3.7 Summary .. 115

Chapter 4 SDS2 Policy-based Interaction Model for Cloud Security Breaches
detection and Prediction ... 116

4.1 Introduction ... 116

4.2 Cloud Object Model used for Interaction Model........................... 117
4.3 Interaction Model .. 121

4.3.1 Interaction Mode .. 124

4.3.2 Interaction Positional Relationship (R) 125

4.3.3 Interaction time (t) ... 126

4.3.4 Interaction Action (A) .. 126

4.4 Security Policy-Based Interaction Model 128
4.5 Interaction Security Violation Detection and Prediction Algorithm

(ISVDP) 133
4.5.1 Interaction Security Violation Detection 136

4.5.2 Interaction Security Violation Prediction 138

4.6 Interaction scenarios and results .. 140
4.7 Summary .. 149

Chapter 5 Sec-MANAGE Protocol .. 150

5.1 Introduction ... 150
5.2 Software-Defined Security Service (SDS2) and Interaction Model

 151

5.2.1 SDS2 Security Controller ... 153

7 | P a g e

5.2.2 SDS2 Policy-based Interaction Model 154

5.3 Sec-Manage Protocol Design .. 156
5.3.1 Sec-Manage packet header .. 158

5.3.2 Message types .. 159

5.3.3 Forwarding Interaction Table Specification 162

5.3.4 Config Interaction Table Specification 164

5.4 Implementation and Performance Evaluation 166
5.4.1 Implementation Set up ... 166

5.4.2 Performance Evaluation ... 168

5.5 Summary .. 171
 Chapter 6 Software-Defined Security Service Architecture and Components
 172

6.1 Introduction ... 172
6.2 Software-Defined Security Service (SDS2) Architecture 174

6.2.1 Virtual Security Function (VSF) .. 177

6.2.2 Sec-Manage Protocol ... 178

6.2.3 Policy-based Interaction Model ... 178

6.2.4 SDS2 Security Controller ... 179

6.3 SDS2 Security controller – Functioning Mechanism 182
6.3.1 Virtual Security Function orchestration approach 182

6.3.2 VSF Configuration Approach .. 183

6.4 SDS2 Security Controller – Software Implementation 184
6.5 Results and Performance evaluation ... 186

6.5.1 Implementation Set Up .. 187

6.5.2 SDS2 Security controller - Performance Evaluation 188

6.6 Summary .. 194

Chapter 7 Software-Defined Security Service Platform 195
7.1 Introduction ... 195

7.2 Integrated Software-Defined Security architecture 197
7.3 SDS2 Platform – Procedure of provisioning on-demand Security

Services to Protect Cloud Resources ... 202
7.4 SDS2 Platform Implementation ... 206

7.4.1 Implemented Platform ... 206

7.4.2 Implementation Scenarios and Results 209

7.4.3 SDS2 Platform setup ... 222

7.5 SDS2 Platform Performance Evaluation .. 223
7.5.1 SDS2 platform capability ... 223

7.5.2 SDS2 platform – Performance .. 230

7.6 Summary .. 236

8 | P a g e

Chapter 8 Conclusion and Future Work .. 238

8.1 Research Remarks ... 238
8.2 Future Work ... 243

Bibliography .. 246

9 | P a g e

Figures

Figure 1.1 Research Phases ... 41

Figure 1.2 Research Methodology ... 42

Figure 1.3 Research Structure .. 43

Figure 2.1 Virtual Machines Virtualization ... 50

Figure 2.2 Virtualization Reference Model [35] ... 53

Figure 2.3 Classification of attacks [35] .. 54

Figure 2.4 Security Vulnerabilities and Risk in a Virtual Environment [36] .. 55

Figure 2.5 Cloud provider—three-layer service orchestration model 59

Figure 2.6 Cloud computing front and back end [41]...................................... 60

Figure 2.7 different actors in cloud infrastructure [42] 62

Figure 2.8 SDN Components ... 69

Figure 2.9 OpenFlow Switch- operation [53] .. 71

Figure 2.10 NFV architecture .. 77

Figure 2.11 NFV-MANO architectural framework [86] 78

Figure 2.12 Simple Policy {Kosiur, 2001 #163} ... 84

Figure 2.13 A comparison between different types of access control

models[117] ... 88

10 | P a g e

Figure 2.14 CCACSM architecture [119] .. 89

Figure 3.1 SDS2 overall architecture ... 105

Figure 3.2 SDS2 Security Layers ... 106

Figure 3.3 Security Control Layer ... 107

Figure 3.4 Security Data Layer .. 108

Figure 4.1 Cloud Object domain parameters ... 120

Figure 4.2 Interaction Types .. 123

Figure 4.3 Interaction Mode .. 125

Figure 4.4 Security policy and its components .. 129

Figure 4.5 Security Policy-Based Interaction Model..................................... 130

Figure 4.6 Security Isolation levels ... 132

Figure 4.7 ISVDP stages .. 134

Figure 4.8 ISVD ... 137

Figure 4.9 Implementation process .. 141

Figure 4.10 Extracting involved objects and assigning a monitoring security

function to each interaction ... 143

Figure 4.11 The controller interface according to interaction 144

Figure 4.12 Implementation results for VM-Storage interaction 146

Figure 4.13 Performance monitoring according to interaction detection

processing time .. 148

11 | P a g e

Figure 4.14 Overview of SDS2 interaction classes .. 148

Figure 5.1 SDS2 three layers .. 153

Figure 5.2 SDS2 Security controller and Sec-Manage protocol 154

Figure 5.3 Interaction and Sec-Manage Protocol .. 156

Figure 5.4 Connection establishment... 157

Figure 5.5 Sec-Manage Header and payload ... 158

Figure 5.6 Sec-Manage Protocol Header ... 159

Figure 5.7 Sec-Manage message types .. 160

Figure 5.8 Interaction Forward table structure .. 163

Figure 5.9 Interaction Config Table .. 165

Figure 5.10 Interaction configuration table class of diagram 165

Figure 5.11 The implementation of the prototype ... 167

Figure 5.12 Client sending request to the security controller 168

Figure 5.13 Current Service Table ... 169

Figure 5.14 Security controller service table after receiving an interaction .. 169

Figure 5.15 VSF Config Table before ... 170

Figure 5.16 VSF Config table after configuration ... 170

Figure 5.17 Current VSF forwarding table .. 170

Figure 5.18 VSF Forwarding table after configuration 170

12 | P a g e

Figure 5.19 SDS2 GUI interface demonstrating multiple interaction forwarding

and configuration records .. 171

Figure 6.1 SDS2 Layers ... 173

Figure 6.2 SDS2 Architecture overview .. 175

Figure 6.3 overview on SDS2 major components .. 180

Figure 6.4 Class Diagram of SDS2 Security Controller 185

Figure 6.5 Implementation Prototype .. 187

Figure 6.6 multiple interactions handled by the security controller 189

Figure 6.7 Status of VSFs .. 190

Figure 6.8 SDS2 security controller the average processing time for all types of

interactions .. 192

Figure 6.9 Provisioning On-demand security services 193

Figure 7.1 Overview of SDS2 Layers and components 196

Figure 7.2 Conceptual structure of SDS2 in an integrated Cloud/SDN/NFV 199

Figure 7.3 Overall SDS2 security platform workflow 201

Figure 7.4 Workflow of security Network structure 202

Figure 7.5 Overall process of provisioning on-demand security services via

SDS2 .. 204

Figure 7.6 Overview of SDS2 security controller workflow 205

Figure 7.7 Overview of VSF workflow ... 206

Figure 7.8 overall view of Platform structure .. 208

13 | P a g e

Figure 7.9 SDS2 service Implementation Scenario .. 210

Figure 7.10 Overall state of threat Scenario .. 211

Figure 7.11 Assigned VSF to interactions ... 212

Figure 7.12 Process time by VSFs ... 213

Figure 7.13 Violation detection of Int6 ... 213

Figure 7.14 performed tests with two sets of interaction conditions (A*, R*)

 ... 214

Figure 7.15 Processing average detection and prediction time for Case 1 and 2

 ... 215

Figure 7.16 Captured requested interaction and their policies 216

Figure 7.17 Changes of policies for ... 217

Figure 7.18 Workflow of VSF no-policy process.. 218

Figure 7.19 No-policy case- a) demonstrates VSF discovery of interaction with

no assigned P.ID, b) presents the new P.ID for interaction, c) shows process time of

orchestrating a new policy for particular interaction in two main scenarios 219

Figure 7.20 The SDS2 platform deals with policy changes during an interaction

 ... 219

Figure 7.21 Presents the experiment prototype ... 220

Figure 7.22 Presents various interaction types .. 221

Figure 7.23 Presents the assigned PID according to each entity (Src., Dst.) . 225

Figure 7.24 Dynamic changes of Policies ... 226

Figure 7.25 SDS2 automatically initiates VSFs to monitor interactions 226

14 | P a g e

Figure 7.26 demonstrates result after SDS2 runs ISVDP algorithms: a) shows

results of ISVD algorithm for various simulated interactions within the system, b)

presents results after running ISVP algorithm .. 227

Figure 7.27 SDS2 security functions .. 229

Figure 7.28 SDS2 time diagram ... 230

Figure 7.29 Orchestration time Case 1 and Case 2 .. 232

Figure 7.30 Non-Smart SDS2 service ... 233

Figure 7.31 Smart SDS2 service .. 234

Figure 7.32 SDS2 service - performance improvement 235

Figure 7.33 SDS2 service performance evaluation - in case of different simulated

interactions .. 236

15 | P a g e

Tables

Table 2.1 Security Vulnerabilities of NFV .. 81

Table 4.1 Summary of Notations ... 122

Table 4.2 Action Description ... 127

Table 4.3 Required Notations .. 132

Table 4.4 Operations Defined on an Interaction Object 134

Table 4.5 Collected data from the controller for VM-Storage interaction 145

Table 4.6 Expected results of the simulated scenarios 147

Table 6.1 Security Controller VSF Orchestration Results 191

Table 7.1 Main Implemented Components of The Platform 207

Table 7.2 Tested cases ... 214

Table 7.3 Experiment scenarios ... 220

Algorithms

Algorithm 4.1 Policy-driven interaction algorithm (PdI ()) 135

16 | P a g e

Algorithm 4.2 Interaction Security Violation Detection (ISVD ()) algorithm

 ... 138

Algorithm 4.3 Interaction Security Violation Detection (ISVD ()) algorithm

 ... 139

Algorithm 6.1 VSF Creation .. 183

Algorithm 6.2 Association Requested interaction ... 184

Abbreviations and Acronyms

NIST National Institute of Standards and Technology
IEEE Institute of Electrical and Electronics Engineers
ONF Open Networking Foundation
ETSI European Telecommunications Standards Institute
NFV Network Function Virtualization
SDN Software-Defined Networking
SDS2 Software Defined Security Service
OT Operational technology
SDSec Software-Defined Security
VNF Virtual Network Function
EM Element Management
VSF Virtual Security Function
VN Virtual Network
VM Virtual Machine
SDI Software-Defined Infrastructure
SDC Software-Defined compute
SDS Software-Defined Storage
SC Security Controller

17 | P a g e

OS Operating System
CSA Cloud Security Alliance
VLAN Virtual Local Area Network
IDS Intrusion Detection System
IPS Intrusion Prevention System
SaaS Software-as-a-Service
PaaS Platform-as-a-Service
IaaS Infrastructure-as-a-Service
CP Cloud Provider
CS Cloud Service
CSP Cloud Service Provider
ISP Infrastructure Service Provider
SLA Service Level Agreement
API Application Programming Interface
SSL Secure sockets layer
TLS Transport Layer Security
APT Advanced Persistent Threats
DoS Denial-of-service
DDoS Distributed Denial-of-service
SBI Southbound Interface
NBI Northbound Interface
OvS OpenvSwitch
NFVI NFV Infrastructure
EPC Evolved Packet Core
MANO Management and Orchestration
VNFM Virtual Network Function Manager
VSFM Virtual Security Function Manager
CC Cloud Controller
SC Security Controller
SP Security Policy
IP Internet Protocol
MAC Media Access Control
SPM Security Policy Manager
ESPM Entity security policy-driven manager
PIM Policy-based interaction manager
DPI Deep Packet Inspections
SNM Security Network Manager
ID Identification

18 | P a g e

Abstract

Cloud computing has transformed a large portion of the IT industry through its

ability to provision infrastructure resources – computing, networking, storage, and

software – as services. Transferring to such an infrastructure relies on virtualization

and its dynamic construction ability to spread over a geographical area. The challenge

is in finding effective mechanisms for isolating security issues in cloud infrastructure.

Isolation implies creating security boundaries for protecting cloud assets at different

levels of a cloud security architecture. Building security boundaries is critical not only

for recognizing security violations but also for creating security solutions. However,

it is challenging as virtual boundaries are not as clear-cut as physical boundaries in

traditional infrastructure. The difficulty rises as virtual boundaries among components

are not well defined and often undefined, and hence they are not visible/controllable

by the providers.

Additionally, defining object boundaries is extremely difficult because virtual

objects are dynamic in both characteristics and functionality. Many efforts have been

made to address security isolation challenges, but no attempt has been made to

consider an overall solution to a dynamic, intelligent, programable, and on-demand

security isolation system. Moreover, there is no platform/framework to deliver

programmable and on-demand construction of security boundaries to protect cloud

resources.

We develop a new method to protect cloud infrastructure with new intelligent

isolation mechanisms to detect and predict security breaks. This research applies

promising new technologies, including software-defined networking and network

function virtualization, in providing on-demand security services over large-scale

cloud infrastructure and overcoming challenges in constructing dynamic security

boundaries. To protect cloud resources, we propose a Policy-based Interaction Model

19 | P a g e

and develop the Software-Defined Security Service. We develop a novel intelligent

security isolation interaction algorithm to model security boundaries. To do so, we

proposed a Policy-driven Interaction Model to construct dynamic security boundaries

intelligently. A Software-Defined Security Service (SDS2) model was developed with

three novel components, including security controller, Sec-Manage protocol, and the

virtual security function. The SDS2 carries the concepts of a logically centralized

security controller to provision on-demand security services.

The research novelty lies in its innovative and intelligent security isolation

interaction model, novel approach in detecting and predicting security violations, and

constructing dynamic, programmable, and on-demand VSFs. It enables i) overall

visibility on security boundaries within the cloud infrastructure, ii) the automation of

provisioning security services on-demand, iii) a proactive security technique against

security interaction violations, iv) separation of security services for both cloud

providers and tenants.

20 | P a g e

Chapter 1

1 Introduction

1.1 Introduction

Over the last decade, cloud computing has established itself as a useful

technology for sharing and provisioning resources among tenants in a pay-as-you-go

service fashion. It has transformed a large portion of the IT industry through its ability

to provision infrastructure resources – computing, networking, storage, and software

– as services. The concept of everything-as-a-service was developed to utilize

virtualization technology that allows underlying physical resources to be virtualized

into virtual resources and services [1].

Cloud computing relies on its aggregation and centralization of virtual resources

and flexible provision and orchestration to provide services to its customers. The

cloud is a large scalable environment that consists of a vast number of physical and

virtual resources operating and communicating over the cloud network. The cloud

resources are shared in an extensive distributed infrastructure where they can be

allocated in various locations worldwide [2].

 Meanwhile, the cloud has developed as a complex and large-scale

infrastructure. It turns out to be more vulnerable to traditional and new security threats

related to its structure and components. NIST declares security, portability, and

interoperability as the main obstacles to ultimately adopting the cloud environment

21 | P a g e

[3]. Some of the traditional security issues found in the cloud infrastructure are data

access control (illegal access to confidential data), loss and data leakage, trust,

isolation.

Moreover, the ever-increasing number and gravity of cyberattacks against cloud

assets together with the introduction of new software-defined technologies such as

Network Function Virtualization (NFV), Software-Defined Networking (SDN), and

on-demand IoT devices/services have brought with them many severe cloud security

issues.

Accordingly, the standing of cybersecurity in our current society or any

organization is undeniable. With modern infrastructures that support ever-

increasingly complex and pervasive applications, such as social networks, the Internet

of everything, mobile applications, cloud services, new security models, and

innovative security technologies must be invented to match emerging applications

sophistication as well as the complexity of their attacks.

 As stated in the official AustCyber’s website, “The Internet of Things, Cloud

Computing and the convergence of IT and operational technology (OT), are some of

the current important disruptive technological trends that will contribute to the future

demand of cyber security solutions.”[4]. Exclusively the global connectivity and

drastic growth of cloud services are increasing cybersecurity risks.

The virtualized and resource sharing nature of cloud infrastructures and the

deployment of new technologies such as Software-Defined Networking (SDN) and

Network Function Virtualization (NFV) has created a surge in the number of potential

targets and the complexity of security threats and their defence mechanisms. As a

consequence, numerous major security issues have been acknowledged related to

current cloud infrastructure:

The cumulative number of virtual resources/functions and their connectivity. As

anticipated, with the growing requests for cloud services, demand for virtual resources

has drastically increased within the infrastructure. However, the major challenge is

22 | P a g e

how to manage the security complexity of the interactions of these resources via an

effective approach within the cloud infrastructure, which increases the reliability of

cloud resources.

The massive number of virtual resources and their segregation. Cloud resources

are shared among various customers in different centres all over the world. The

challenge here is how to construct security boundaries to achieve sound isolation and

how to isolate the resources on-demand and dynamically within an environment

where its resource states/characteristics dynamically change. The main challenge is in

finding effective isolation mechanisms in cloud infrastructure. Isolation implies the

creation of security boundaries for protecting cloud assets at different levels of cloud

security architecture.

Furthermore, cloud providers and tenant administrators' primary concern is to

establish security in the virtual environment where each virtual function’s workload,

resources, and internal and external communication can be securely isolated when

necessary on-demand. Nasseri et al. [5] mentioned a lack of proper consideration of

isolation related to security in the research and academic community regardless of the

fact that isolation is crucial and has a critical impact on confidentiality, integrity, and

infrastructure availability. Security issues in a virtual cloud environment are more

complex and challenging than those in traditional infrastructures since resources are

both virtualized and shared among numerous users.

As a result, virtual boundaries among components/participants are not well

defined and often undefined, and hence they are not visible/controllable by the

providers. Multi-tenancy is a specific cloud characteristic that allows the sharing of

applications, services, resources (compute, network, storage) among tenants.

Cloud multi-tenancy introduces critical security challenges related to the

concept of isolation of tenants and shared virtual resources. In multi-tenant cloud

architecture, such isolations are a crucial concept for both security and infrastructure

management, and they ought to be considered at functional entity levels and

appropriate abstraction levels of the infrastructure. In traditional environments,

23 | P a g e

physical isolation is relatively simple as the boundaries between physical elements are

well defined and visible [6, 7]. The situation is not clear cut in virtual environments

unless one can keep track of all perimeters of all virtual objects created. Defining

object boundaries is extremely difficult because virtual objects are dynamic in both

characteristics and functionality. The task is resource-expensive due to the sheer

number of virtual objects and their complexity.

A number of studies have attempted to address security issues related to security

isolation in cloud infrastructure, such as [8], [9], [10], [11], and so on. The existing

proposed isolation mechanisms are mostly focused on end-to-end isolation and are

mainly classified as network isolation, performance isolation, space isolation, domain

isolation, and tenant isolation. The current isolation mechanisms are not so useful in

a dynamic and automated infrastructure which requires a dynamic, agile, and

automatic construction of security boundaries in the provision of on-demand security

functions. Another main security challenge in current mechanisms is a lack of a
centralized security orchestrator with an overall view of underlying security

infrastructure.

A security breach occurs when a security policy is violated over an interaction.

Practically, a security breach is defined in terms of the policies that define the

interaction breaches. An event is considered a security breach either when it violates

a defined security policy or violates the Confidentiality, Integrity, and Availability of

security principles that could have been avoided if a relevant security policy has been

in place. The construction of security boundaries in a cloud system is related to the

characteristics of the interacting objects in the environment and the policies and

constraints that govern their interaction. However, to the best of our knowledge,

there is no previous work to provide isolation in relation to object interaction

which can provide dynamic and on-demand security isolation.

This research addresses these challenges by proposing an intelligent solution to

detect and predict security breaches allowed by its policy-based interaction model.

The study investigates an innovative algorithm to model the boundaries that can cause

24 | P a g e

violations and create a system to provide on-demand security service. For this

purpose, a Software-defined Security Service (SDS2) model has been presented to

provide on-demand and dynamic security services. We propose SDS2 as a Software-

Defined Security (SDSec) Service that uses virtual cloud resources and can be

deployed by a cloud provider to protect its integrated infrastructure.

The SDS2 introduces an innovative mechanism for the detection and prediction

of security breaches in cloud infrastructure. The SDS2 model fashions intelligent,

dynamic, automated, and on-demand security functions to protect cloud entities and

resources. Our design focuses on building a robust, dynamic, and automated security

boundary to protect cloud assets relying on a solid and innovative interaction model

and security policy expressions that govern the interactions.

 The construction of security boundaries in a cloud system is related to the

characteristics of the cloud entities interactions in the environments. The model will

introduce a novel policy-driven interaction model as a new security protection trend

against cloud infrastructure threats. The SDS2 proposes the policy-based interaction

model as a security defence against interaction violations in the cloud system. A

security architecture will be designed in alignment with the security model, including

three main layers: the security application layer, the security control layer, and the

security data layer. The security application layer contains security applications and

interfaces. The security control layer accommodates the security controller and its

components. The security data layer hosts virtual security functions. To the best of

our knowledge, there is a lack of an intelligent, proactive, and on-demand security

service in isolation of cloud assets regarding their interaction over a large-scale cloud

infrastructure using SDN and NFV techniques.

To realize the cloud infrastructure security model, we address a variety of facing

security challenges. We design the security service model, construct intelligent

security boundaries according to policies and constraints, build a specific interaction

virtual security function, and develop a new communication protocol between the

25 | P a g e

security controller and VSFs. We advance algorithms and mechanisms for security

violation detection and prediction.

This research contribution is the proposed software-defined security service

framework, architecture for security isolation of cloud’s assets, on-demand security

service, and a novel policy-driven interaction model to predict and detect security

breaches, orchestration provisioning the virtual security functions, and protocol for

orchestrating and managing virtual security functions. The model allows the security

service to be easily integrated into a large-scale software-defined infrastructure while

preserving the simplicity and independency of VSFs from underlying physical and

virtual functions. Most importantly, the benefits of software-defined security control,

on-demand security interaction monitoring, automation of management and

configuration of the virtual security function, dynamic programmability of virtual

security functions, and real-time interaction security violation detection and

prediction are gained through the merging software-defined networking, network

function virtualization, and cloud infrastructure.

Moreover, the significance of this research is its new vision for an efficient and

capable cloud security orchestration in the fight against security violations and its

novel solution in terms of detection and prediction of security violations. The

proposed model can be applied for both cloud providers and their tenants regardless

of their environment scale, complexity, and structural sensitivity.

The model is applicable for orchestrating automatic and on-demand virtual

security functions by globally connecting security functions via specific security

communication protocol and connectivity network by SDN technology. Furthermore,

it enables i) security developers to initiate on-demand VSFs without limitation, ii)

cloud infrastructure owners to gain more reliability in terms of security complexity,

iii) providers and their end-users to benefit from advance agile security detection and

prediction iv) cloud tenants to independently secure their organization v) provision of

more QoS options for cloud customers.

26 | P a g e

This chapter is organized as follows. Section 1.2 provides a brief description of

the terminologies involved in this thesis. Section 1.3 specifies the research problems

addressed by this study. Section 1.4 states the research aim and objectives. Section

1.5 recaps the key contributions of this dissertation. Section 1.6 defines the research

model and methodology. Section 1.7 presents the thesis structure.

1.2 Brief Background

Security has been recognized as a critical issue that must be resolved at each

domain/level of a cyber-infrastructure. Recently, the integration of new technologies

such as cloud and virtualization in modern IT infrastructures makes it more difficult

for security experts to protect their systems against numerous security threats due to

the virtual resource-sharing nature among tenants and the larger attack surface of

clouds. The virtualization and virtualized infrastructure introduce new security

challenges related to virtualized resources.

Traditional security measures and endpoint security are no longer adequate due

to invisible boundaries created among shared logical and virtual entities among

numerous users. To protect cloud resources against modern threats, there is an

absolute need for a new isolation approach that can construct dynamic, automated,

and on-demand security boundaries according to the object interaction rather than

end-point devices. To allow the construction of security boundaries, we need a model

with a centralizing overview of cloud resources and their interaction and the ability

to construct security boundaries according to the object properties and interactions.

Moreover, it can create dynamic, automated, and on-demand security functions to

monitor the interactions to detect and predict security interaction violations.

 This study focuses on the automation of security solutions for protecting cloud

infrastructure by designing and implementing a software-defined security service.

This research study's prime motivation is to provide a security software-based

27 | P a g e

platform focusing on delivering dynamic and on-demand security isolation, detecting

and predicting security violations in relation to a novel interaction model. The model

enables an efficient orchestration of security services on-demand within the cloud

infrastructure. This section presents a brief overview of the software-defined

infrastructure paradigm, software-defined security (SDSec), software-defined

security service, and provision of software-based security functions on-demand.

1.2.1 Software-Defined Infrastructure paradigm

Software-Defined Infrastructure has merged as a promising approach to transfer

the operation and control of IT infrastructure entirely as software services. According

to [12], Software-Defined refers to “providing open interfaces to manage and control

various sharing resources in different types of infrastructure for software

programmability as well as providing access to infrastructure resources like usage

data, topology, storage, and compute.” The SDI is considered an abstraction layer of

resource-sharing infrastructure, such as compute, storage, and networking, managed,

controlled, and governed using the software. The SDI provides infrastructure

capability to function as self-aware, self-scaling, and self-optimizing to enable agile

business services and processes [13]. The software-defined infrastructures are

presented to pave the way for a faster and dynamic (re)configuration and flexibility

of infrastructure resources through software-based functions [14]. The software-

defined infrastructure allows companies to deliver IT services with more dynamicity

and agility governed by everything-as-a-software concepts. The SDI provides

interoperability that enables companies to quickly implement their solutions

regardless of types and hardware and their manufacturer. Besides, The SDI

significantly improves speed and reduces the complexity of provisioning, deploying,

and maintaining resources [15].

The SDI embraces two main concepts that have been presented in the current IT

environment, the separation of the network control plane from the data plane, SDN

[16], and separation of underlying network functions through software-based virtual

28 | P a g e

functions, NFV [17]. The software-defined infrastructure requires virtual networks

from SDN, virtual network functions from NFV, and computing, storage, and

orchestration resources from the cloud, but there has not been a standard integrated

architecture for SDI, and this presents a considerable challenge in designing a sound

framework for an SDI security architecture. The software-defined infrastructure

provides an integrated software-based infrastructure consisting of software-defined

networking, network function virtualization, and cloud environment where

virtualization is adopted as a foundation technology.

The virtualization technology empowers NFV and SDN to create scalable,

dynamic, and automatically programmable virtual network functions and virtual

network infrastructures in integrated cloud platforms such as telecom clouds.

However, virtualization and creation of software-based virtual components within the

cloud introduce new security challenges and exacerbate those existing ones in each

domain. The primary security problem arises from creating numerous security

boundaries that are often hidden or invisible within virtual environments. The

proposed model is a software-based security service running on top of cloud software-

defined infrastructure. The security services are software-based virtual security

functions allocating in different locations according to triggered interaction.

1.2.2 Software-Defined Security (SDSec)

Software-defined security (SDSec) has been introduced to assist security

experts in handling automatic security enforcement in distributed environments [18].

The SDSec architecture decouples the security control plane from the security

forwarding plane (including software-based security instances like firewall, intrusion

detection systems (IDS), deep packet inspection (DPI)) in the same way SDN isolates

the control plane from the network data plane. It offers security functions as software

instances independent from traditional physical security appliances. Security

measures can be deployed effectively and rapidly based on the changing levels of

system/business requirements. SDSec has been developed as a result of the inability

29 | P a g e

of traditional security methods to cope with a mixture of virtual and physical elements

in modern infrastructures.

In [19], the authors mentioned six main outstanding features and attributes that

distinguished the SDSec approach from traditional security approaches: i) abstraction:

abstracting security policies from the underlying hardware plane which runs in an

independent software layer; ii) automation: automated programmable creation of

software-based functions and configuring security functions without the need of

manual configuration; iii) elasticity: software-based security resources can be

provisioned elastically; iv) concurrency of control: providing a higher level of security

control over the virtual environment; v) visibility; and vii) portability.

Cloud Security Alliance (CSA) introduced the idea of SDSec with Software-

Defined Perimeter (SDP) to facilitate a new security architecture that is resilient

against network attacks and achieves security with higher visibility and lower costs.

The CSA described SDP as follows: SDP is a framework of security controls that

mitigate network-based attacks on Internet-accessible applications by eliminating

connectivity to them until devices and users are authenticated and authorized. The

SDP reduced security attacks on network applications by disconnecting applications

until a proper authentication of both users and devices [20, 21]. In addition, there are

several commercial products which consider the SDSec approach like Catbird [22],

vArmor [23], vShield [24], and OneControl [25].

Catbird implements several features and attributes that distinguish the SDSec

approach from traditional security approaches. Catbird consists of two main elements:

Catbird control center and a set of virtual machine appliances (VMAs) implemented

as VMs. The system configures a mesh topology where the Catbird control center is

located at the center of the network as the policy enforcement point to manage and

distribute the security controls across the connected VMAs. There is a Linux-based

VMA (virtual memory address) implemented inside it for every virtual switch,

executing different security tasks through a hypervisor interface [22].

30 | P a g e

vArmour is another SDSec solution that exploits the benefits of virtualized

environments. The architecture of vArmour is like any software-defined system

architecture, where the control plane is decoupled from the forwarding plane. The

vArmour Distributed Security System consists of a logically centralized controller and

multiple autonomous enforcement point appliances connected by an intelligent fabric.

It constitutes a security (SDSec) service layer to enforce a security rule to a whole

data centre [23].

vShield is another solution for VMware vCloud. vShield provides the customer

the ability to build policy-based groups and establish a logical boundary between

them. vShield integrates several components: vShield App and Zones protect the

virtual data center applications by creating segmentation between enclaves or silos of

workloads. vShield Edge secures the edge of the virtual data center boundary and

defends the communication between segmentations. vShield Endpoint offloads

antivirus processing. vShieldManger provides a centralized control point to manage

all vShield components [24].

1.2.3 Software-Defined Security Service (SDS2)

The software-defined security service provides control, management,

orchestration of security services on-demand based on its specific virtual security

functions (VSFs). The SDS2 offers a security model as well as a security service that

relies on the object-oriented entities of a cloud environment, the interaction among

them, and security policies that govern the interaction.

The proposed model consists of three main layers and essential components:

security controller, interaction monitoring functions, virtual security networking, and

intelligent algorithm. The security controller is the centralized security intelligence

with overall visibility on cloud object interactions. Interaction monitoring functions

are an essential feature of the security model in detecting and predicting security

violations according to the intelligent algorithm. The virtual security networking

31 | P a g e

function is in charge of transferring policies and interaction values between security

controller-to-monitoring functions, monitoring function-to-monitoring function, and

monitoring function-security controller. The proposed model enables the dynamic

construction of security boundaries concerning the initiation of an object’s

interactions.

 The SDS2 enables automation and programmability of interaction virtual

security functions to monitor a targeted interaction. It can monitor interactions based

on two different states: 1) monitor based on a requested interaction; 2) monitor a

random interaction/event within the system.

1.2.4 Software-Defined Network of Virtual Security Functions

Software-defined networking separates the control plane from the underlying

network data plane for efficient data transport and fine-grained control of network

management and services. SDN allows network virtualization and provision of virtual

networks on-demand. SDS2 decouples security functions and security networks from

the underlying infrastructure. A communication protocol has been introduced to

transfer security messages and interaction parameters between the security controller

and VSFs.

The network connectivity inherits the fundamentals of SDN architecture using

a solid policy-based interaction protocol. It works as a bridge between the security

controller (SC) and the VSFs to transfer interaction values according to the SDS2

Interaction Model. The main aims of designing the Sec-Manage protocol are 1) to

provide direct communication between the SDS2 security controller and its VSFs and

2) to transfer the parameters pertinent to the security aspects of objects’ interaction

between a VSF and the SC to monitor parameters of interaction to detect and predict

security violations.

1.2.5 Provision of software-based security functions on-demand

32 | P a g e

Virtual network functions (VNFs) are defined as software-based functions

decoupled from underlying physical network functions. There are various types of

VNFs in various contexts. A virtual security function is a type of VNF with security

functionality rather than networking. In the proposed SDS2 model, one of the main

functions includes our specific interaction virtual security function.

 A VSF inherits some properties of VNF, which precisely emphasize detection

and prediction of security interaction violations. A VSF in our usage is created to

perform a specific security function and deployed at strategic locations in the cloud

infrastructure that requires protection. It is a software-based function constructed to

protect cloud infrastructure against any type of interaction violations. The VSF is a

simple but efficient and intelligent security function, monitoring cloud entities

interaction to detect and predict security violations. The SDS2 dynamically triggers

VSF to monitor an interaction on-demand.

1.2.6 Security Issues and Challenges in an Integrated

Cloud/SDN/NFV Infrastructure Platform

Cloud computing demonstrated how best computing and storage resources

could be virtualized and provisioned on-demand and offered as IT services. More

importantly, its effective orchestration of services provides an excellent model for

resources and service management. SDN and NFV demonstrated the most effective

way network resources and services (network infrastructures, network functions, and

connectivity services) can be created and managed. Cloud needs SDN and NFV to be

integrated seamlessly to offer truly any resource as a service. SDN and NFV need to

include cloud management infrastructure to provide network services and

functionality. For example, existing telecommunications network infrastructures and

service models are too rigid. They have to evolve into a telecom cloud to offer

emerging and flexible services to their customers. An integrated software-defined

infrastructure that seamlessly integrates cloud, SDN, and NFV will create a robust

service model that incorporates all the best features of these technologies.

33 | P a g e

Two significant issues concerning cloud, SDN, NFV, and the integrated

software-defined infrastructures are the security of the virtualization technology itself

and the complexity of the virtualized interconnecting infrastructure. Cloud and SDN

networks face an increasing intricacy of emerging social networks, applications, and

services and their associated security problems. The whole range of issues includes

scalability of cloud networks, the complexity of the way network functions

communicate to each other, the lack of a centralized infrastructure control component,

policy enforcement, dynamic workloads, multi-tenancy, isolation of tenants, services,

resources (virtual networks, virtual machines, virtual storage). SDN and NFV allow

tenants to share the underlying physical network to create their virtual networks,

network functions, and services with their policy in a cloud environment. Integrating

cloud, SDN, and NFV into a software-defined infrastructure provides a truly scalable,

dynamic, and automatic programmable platform for creating everything as a service

on demand.

All these infrastructures rely on virtualization as the core technology.

Virtualization is pervasive in almost all components of the service infrastructures:

virtual machines, virtual networks, virtual storage, virtual network functions, and

virtual services. However, virtualization brings with it new security challenges in the

way virtual elements are created and maintained. For the security of the infrastructure,

all virtual elements have to be secure for their whole lifecycle; their creators

(hypervisors) must be trusted and secure; appropriate isolation among servers, among

services, and tenants must be preserved.

Although integration of cloud, SDN, and NFV into a service infrastructure

provides benefit to both service providers and service users, the complexity of security

of each technology, of virtual components, of individual infrastructures present a

significant obstacle for comprehensive integration. One important aspect of

virtualization is that it introduces invisible boundaries to traditional security

mechanisms at various levels. To deal with this integrated software-defined

infrastructure, one should use the very virtualization technology to provide security

of the overall infrastructure; one should deploy the logically centralized paradigm of

34 | P a g e

SDN and NFV to separate security control from the functionality of security network

functions. Software-Defined Security Service (SDS2) proposed in that spirit to create

a centralized security service model for the cloud-SDN-NFV infrastructure platform.

The SDS2 provides a centralized security controller over the infrastructure. The SDS2

controller will possess the ability to create its flexible interconnecting infrastructure

for connecting its security function elements. It will have the ability to program and

manage its security function elements autonomously.

1.3 Research Questions

The major obstacle for organizations on complete migration through the cloud

is considered as a security. As described, there are numerous security challenges

pointed to the cloud infrastructure, especially on security isolations. Some of the

significant security challenges are listed as a lack of proper visibility on security

functions within a cloud infrastructure, lack of provisioning dynamic security

monitoring orchestrator, absence of an efficient security violation prediction

mechanism, and deprived efficient dynamic security isolation mechanism.

In our research, we seek answers to the following questions “How can security

services dynamically construct security boundaries?”, “How to automatically predict

the next security breach within the system?”, “How to deliver programmable virtual

security functions?”, “How to provide a centralized security controller with visibility

on underlying security functions?” and “How to integrate the virtual security functions

within the cloud infrastructure?”. Three significant challenges have been identified.

Initially, a virtual security function requires dynamic, automated, programmable, and

on-demand capabilities to be integrated into cloud infrastructure with advanced

detection and prediction techniques for providing cloud security. Secondly, it is

essential to offer a centralized orchestrator to manage, control, and configure security

functions over a large-scale distributed environment like a cloud. Lastly, an approach

should be introduced to deliver dynamic security isolations considering cost-

35 | P a g e

effectiveness and efficiency. In brief, the research question addressed in this thesis

can be specified as follows:

 “How to secure and protect cloud infrastructure against security isolation

breaches using new technologies based on SDN/NFV, and can the proposed

model be realized in a practical environment?”

To address the issue, we investigate the following research questions.

• Can SDN-NFV technologies be ported to the cloud security domain where

they demonstrate their proficiency in the programmability and automation

of on-demand security services?

• The concepts of SDN and NFV in managing and controlling network function can

be fully applied to our proposed model. However, to adapt these technologies to a

security model, there are quite formidable changes to apply since these

technologies cannot directly be applied to security. Virtual security functions are

defined for specific security activities. Unlike network functions, virtual security

functions have restricted functionalities in terms of resources and communication

techniques. They are required to communicate with the security controller and

other VSFs within the system. They do not need to handle massive volumes of

messages transferred in an SDN network. The number of security messages is

limited as well as required computational resources. The VSFs do not require

complex service life chaining and properties compared to virtual network

functions. It is challenging to apply the SDN/NFV entirely over a security

platform in practice.

• How can we discover an efficient security isolation technique to detect and

predict security breaches in virtual environment?

The research conducted in this thesis seeks to answer this question by proposing

an intelligent algorithm for detecting and predicting security violations. Security

breaches primarily result from some violation of the rule of interaction (or policy that

governs the interaction) between objects when they interact. Unless one has a formal

36 | P a g e

model of an interaction between objects, it is difficult to detect, predict or prevent

security incidents. In this research, we propose a novel policy-driven interaction

model that provides an innovative interaction structure foundation. The proposed

model responds to this question by representing the interaction model characteristics

and techniques to secure cloud objects according to their initiated interaction.

• How to deliver dynamicity, programmability, and automation in relation to

on-demand security services?

To respond to this question, we proposed a Software-Defined Security Service

(SDS2) model to secure cloud infrastructure. The proposed model contains main

components, including a logically centralized security controller, virtual security

functions, policy-driven interaction protocol. The SDS2 offers many key benefits to

enterprise cybersecurity, including simplified security management and orchestration,

visibility on logical security boundaries, dynamics and intelligent security detection

and prediction mechanism, and agile security response to security breaches.

• How to validate and evaluate a security model in a real deployment?

 The proposed model is required to be validated and evaluated in practice.

Currently, there is no open-source software-defined security simulator, emulator, or

integrated security platform to enables the implementation of our model on top of their

systems. Moreover, there are no previous works on security following our interaction

model to construct security isolation within the cloud infrastructure. To validate our

proposed model, it is essential to design and develop a software-based environment

to implement all required components, including our security controller, a virtual

security function, and communication protocol. To validate the model and its security

algorithm, we run various tests.

37 | P a g e

1.4 Research Aim and Objectives

The main aim of this thesis is to develop an intelligent security solution to

protect cloud infrastructure that enables definable security boundaries based on an

intelligent model to dynamically define realizable security boundaries aligned with

new technologies like SDN/NFV. The security solution practically models security

boundaries to detect and predict security violations by introducing a software-defined

security architecture in relation to an innovative interaction model to secure the

cloud’s resources. So, the main focus is on developing a security platform to establish

dynamic and intelligent security boundaries, new techniques to detect and predict

security breaches, and control structures for provisioning/coordinating resources for

counterattacks.

To accomplish the aim, we define following objectives and investigate practical

solutions for their achievements.

Objective 1: Detecting and establishing dynamic security boundaries in the

cloud environment. To achieve this objective, we divide it according to six sub-

objectives as follows:

• Investigating existing defined physical and virtual boundaries, their issues, and

solutions associated with providing on-demand and dynamic security boundaries

• Defining characteristics and functionality of cloud’s objects in relation to defining

security boundaries

• Inspecting policy-based structure in designing object interactions in cloud

• Proposing a Policy-based Interaction model intended for the construction of

dynamic, secure boundaries according to defined interaction parameters

• Defining an intelligent interaction algorithm for cloud security breaches detection

and prediction

• Establishing dynamic security boundaries according to the policy-based

interaction model

38 | P a g e

Objective 2: Deploying an innovative security model to secure and protect cloud

infrastructure and provision on-demand security services. The sub-objectives for this

step are explained as:

• Designing a software-defined security model that can be integrated into cloud

infrastructure to provide dynamic and agile security service to both cloud and its

customers

• Proposing a software-defined security service (SDS2) architecture to orchestrate,

manage and establish defined dynamic security boundaries which align with the

policy-based interaction model

• Creating security controller and its components with the purpose of establishing

dynamic security boundaries, detection and prediction of security breaches

• Fashioning on-demand, intelligent, and agile Virtual Security Functions (VSFs)

using Network Function Virtualization (NFV) techniques

• Realizing a policy-based interaction protocol between the software-defined

security controller and virtual security functions based on SDN technology

• delivering a dynamic and on-demand security framework that allows

orchestration, control, and management of interaction virtual security functions to

protect an extensive distributed cloud infrastructure

Objective 3: Evaluating the feasibility and proficiency of the proposed model

and its functions.

• Validating and evaluating our proposed security technique by implementing our

Software-Defined Security architecture and Services (SDS2) and demonstrating

the platform performance evaluation.

1.5 Research Contributions and Significance

This research concentrates on securing cloud infrastructure in the provision of

cloud security services on-demand. This thesis researches a novel interaction model

39 | P a g e

for detecting and predicting interaction violations to initiate a new technique in

constructing security isolation in cloud infrastructure. To our knowledge, there is no

previous study or framework that proactively secures a large-scale distributed

infrastructure like a cloud using an interaction model between resources at a high-

level. Expected outcomes in relation to the above objectives are as follows:

• Software-defined security framework introduces a new knowledge on

constructing dynamic and on-demand security boundaries in cloud infrastructure.

The construction of security boundaries in a cloud system is related to the

characteristics of the interacting objects in the environment and the policies and

constraints that govern their interaction. The novelty of this approach is that it is

a paradigm to build a robust, dynamic, and automated security boundary to protect

cloud assets relying on a solid and innovative interaction model and security

policy expressions that govern the interactions. The framework exploits four main

concepts: logical centralization of security control, virtualization of secure

connectivity, security functions virtualization, and orchestration of virtual

resources.

• The proposed interaction model represents a new technique for detecting and

predicting security breaches. The model governs the interactions among entities

in a cloud environment. The proposed model and its introduced algorithms protect

cloud resources against security threats via defined security boundaries

constructed from the model and the system security policies that govern the

interaction model.

• The proposed novel protocol opens up a new research area on communication

security protocol between the security controller and virtual security controller

using SDN/NFV technologies. The Sec-Manage protocol transfers security

messages and interaction parameters between a security controller and its VSFs.

The protocol is a novel approach in programming behaviour and configurational

management of VSFs according to the proposed interaction model.

• The proposed architecture of dynamic and programmable software-defined

security service (SDS2) will be integrated within the cloud infrastructure. The

40 | P a g e

security service creates its specific virtual security function with the capability of

agile response to security threats. SDS2 offers many critical benefits to enterprise

cybersecurity, including simplified security management and orchestration,

visibility on logical security boundaries in the physical and virtual environment,

dynamics and intelligent security configuration, and agile security response to

security breaches.

• The proposed model is implemented in a cloud/SDN/NFV integrated software

platform for practical realization. A software platform has been developed to

evaluate and validate the proposed model and its introduced components. The

innovation is a security software platform demonstrating the ability of SDS2 in

protecting cloud infrastructure using SDN/NFV concepts.

The research contributions are of Significance not only for cloud stakeholders

such as end-users, tenants, security admins, security developers but also, they provide

a significant impact on cybersecurity society.

For cloud providers, the proposed SDS2 and its novel interaction model provide

an intelligent proactive centralized security controller with a management and

orchestration mechanism for providing on-demand virtual security functions.

Moreover, the proposed security service enables cloud developers to develop their

applications without concern over security protection. Tenants of cloud can use the

SDS2 in their environment to protect against internal and external attacks

independently and without concerns on deployment cost and difficulty in

programming and controlling the virtual security functions.

1.6 Research Methodology

There are several main phases in this research approach that should be

considered in order. The selected methodology is adapted from [26]. This research is

divided into five phases, as shown in Figure 1.1.

41 | P a g e

Figure 1.1 Research Phases

The first phase is defining the scope of the research. This phase identifies the

exact scope of the research, which includes several technologies. The second phase,

is to recognize the research problem. In this phase, we study the current state-of-art

on diverse previous works according to defined research scope. It includes involved

technologies for building our model. In this phase we identify the research problem

as well as current existing solution to the issue. After this phase, we gain a knowledge

on the discovered problem, existing solution to the problem, and gaps in the proposed

42 | P a g e

solutions. We classify the hypothesis concerning security problems where we prepare

the research aim, research objectives, research questions, and significance. In the next

phase, we design our proposed service model. We propose our new approaches and

mechanisms for the research problem. In this phase, we create the model and new

approaches to achieve our research objectives. The output defines our new solution to

issue. The proposed solution requires to be validated and evaluated. In phase four, we

validate and gather the data and results to evaluate the proposed solution and

determine whether we need to refine the proposed model or not. In the last phase, we

collect all the information and write a thesis to describe our work and future work.

Figure 1.2 demonstrates all phases and their details.

Figure 1.2 Research Methodology

1.7 Thesis Structure

This research has produced several papers, including three conferences, two

journal papers, and one book chapter published in Springer. Figure 1.3 demonstrates

the structure of the thesis. This thesis is organized into eight chapters as follow:

43 | P a g e

Figure 1.3 Research Structure

• Chapter 1: Introduction

This chapter presents an overview of this research study. It introduces the

importance of a new security approach for protecting cloud infrastructure using a

novel SDS2 security platform concerning the provision of agile security services on-

44 | P a g e

demand. This chapter presents the research problem, research aim, objectives,

research contribution, research methodology, and thesis structure.

• Chapter 2: Background and Related Work

This chapter provides a background on Software-Defined Infrastructure (SDI)

and revolutions in terms of security challenges and technologies, security challenges,

enabling technologies for a software-based security platform, virtual enabling, and

resources for deployment of on-demand security services, and SDI architecture and

models. As a leading and fundamental technology, a brief explanation has been

presented in relation to virtualization and cloud infrastructure and its deployment

models and security challenges.

This chapter also provides a brief background on the involved open-sources

platform required for the practical implementation of the proposed SDS2 model. The

chapter describes SDN and NFV architecture and techniques used for this research

study. It reviews both security challenges and solutions applying in SDN and NFV.

This chapter discusses the integrated Cloud/SDN/NFV solution to the provision of a

programmable and automated security system.

• Chapter 3: SDS2: Software-Defined Security Service Model

This chapter presents a broad overview of the proposed software-defined

security service for provisioning on-demand security services. It represents the

significant contribution of the proposed model in relation to protecting cloud

infrastructure.

• Chapter 4: SDS2 Policy-based Interaction Model for Cloud Security Breaches

Detection and Prediction

This chapter presents the proposed novel, policy-driven interaction model. We

demonstrate the structure of the interaction model and its specific parameters. The

algorithms for detecting and predicting security breaches in relation to the interaction

model are presented in this chapter.

45 | P a g e

• Chapter 5: Sec-MANAGE Protocol

This chapter demonstrates the design and specification of the proposed Sec-

Manage protocol to configure and manage VSFs to provide on-demand security

services. The protocol is designed to deal with security interaction constraints in cloud

infrastructure. In this chapter, the detailed design and operation of the Sec-Manage

protocol are described. Furthermore, this chapter also presented implementation

results related to transferring the interaction parameters between VSFs and controller

and an on-demand allocation of VSFs within the system.

• Chapter 6: Policy-based Software-defined Security Service Architecture and

Components

This chapter presents an overall architecture of SDS2 in provisioning security

services on-demand. It presents the detailed structure of SDS2 components, including

the SDS2 controller, and virtual security functions.

• Chapter 7: A Software-Defined Security Platform for Cloud Infrastructure

and Evaluation

This chapter presents the developed software-defined security platform in

provisioning VSFs on-demand for detection and prediction of security violations. This

chapter demonstrates the practical implementation of the SDS2 model and discusses

the results.

• Chapter 8: Conclusion and Future Works

Chapter 8 summarizes the ideas presented in this thesis, the major research

contribution, and outlines future research work.

46 | P a g e

Chapter 2

2 Background and Related Work

2.1 Introduction

Software-defined networks, network functions, virtualization platforms, and

clouds have established themselves as modern IT service infrastructures. They rely on

virtualization technology to virtualize and aggregate physical resources into pools of

virtual resources (virtual machines, virtual networks, virtual storage, virtual functions,

and virtual services) and provision them to users on demand. Security has been

recognized as an essential and integral part of the design of systems, infrastructures,

organizations, and services; yet, the current state of security research and practice is

at best fragmented, local, or case-specific.

This chapter presents background on software-defined infrastructure and the

provision of on-demand security services within the cloud infrastructure. We explore

concepts of security isolation and related challenges in maintaining isolation in large-

scale infrastructure. We review various technologies, including virtualization,

software-defined networking, network function virtualization, and cloud computing,

while exploring security challenges entangled with these technologies.

Designing the proposed SDS2 requires in-depth knowledge of involved

technologies and their deployment models. We provide an overview of the open-

47 | P a g e

source platform to be used, such as the OpenFlow protocol [27], OpenStack [28],

CloudSimSDN-NFV framework [29], NFV platforms, and SDN controllers.

The rest of this chapter is organized as follows. Section 2.2 gives a brief

overview of software-defined infrastructure and virtualization as the primary

fundamental technology. Section 2.3 presents cloud computing and its related security

challenges. Section 2.4 provides a background of the SDN technique and presents

major security issues. Section 2.5 describes the NFV technique and its security

challenges. Section 2.6 provides an overview of policy and security policy

mechanisms in the cloud. Section 2.7 includes literature on works based on isolation

and describes security isolation in cloud computing. Section 2.8 briefly introduces

open sources for developing a cloud SDN-NFV-based security system. Section 2.9

summarizes this chapter.

2.2 Software-Defined Infrastructure

Software-Defined Infrastructure (SDI) is a resource-sharing infrastructure that

embraces the concept of separation of the network control plane from its data plane

and software realization of network functions from the underlying hardware

appliances. It established itself as an efficient approach to designing and deploying

modern IT service infrastructure by integrating Software-Defined Networks, Network

Functions Virtualization platforms, and Clouds.

The SDI combines Software-Defined compute (SDC), Software-Defined

Networking (SDN), and Software-Defined Storage (SDS) into a fully software-

defined data center for providing simplified and standardized IT consumption models,

with automatic configuration, ease of management, and centralized visibility over the

infrastructure functions and resources. The integrated SDI infrastructure adopts

virtualization as a fundamental and vital technology for its SDN, NFV, and cloud

constituents. They rely on virtualization to create virtual resources, including virtual

48 | P a g e

networks (VNs), virtual network functions, virtual storage, virtual machines (VMs),

and virtual services. This section explores virtualization as a key technology in SDI

and investigates security challenges related to this technology.

2.2.1 Virtualization

Virtualization is the technology that simulates the interface to a physical object

by multiplexing, aggregation, or emulation. With multiplexing, it creates multiple

objects from one instance of a physical object. By aggregation, it creates one virtual

object from multiple physical objects. Through emulation, it constructs a virtual object

from a different type of physical object [30]. On another level, virtualization can be

defined as the logical abstraction of assets, such as the hardware platform, operating

system (OS), storage devices, network, services, or programming interfaces.

Virtualization technology plays an essential role in the development and management

of services offered by a provider.

More commonly, virtualization is introduced as a software abstraction layer

placed between an operating system and the underlying hardware (computing,

network, and storage) in the form of a hypervisor. A hypervisor is a small and

specialized operating system that runs on a physical server (host machine), allowing

physical resources to be partitioned and provisioned as virtual resources (virtual CPU,

virtual memory, virtual storage, and virtual networks).

A hypervisor creates and manages virtual machines on computing resources,

which are isolated instances of the application software and guest OS that run like

separate computers. A virtual machine (VM) encapsulates the virtual hardware, the

virtual disks, and the application metadata. Since the hypervisor manages the

hardware resources in cloud data centers, multiple virtual machines, each with its

operating system and applications and network services, can run parallel in a single

hardware device [31]. Figure 2.1 illustrates the virtualization of virtual machines.

49 | P a g e

Virtualization technology has been deployed by enterprises in data centers

storage virtualization (NAS, SAN, database), OS virtualization (VMware, Xen),

software or application virtualization (Apache Tomcat, JBoss, Oracle App Server,

Web Sphere), and Network Virtualization [32]. Virtualization technology enables

each cloud tenant to perform its own services, applications, operating systems, and

even network configuration in a logical environment without considering underlying

physical infrastructure [33].

Virtualization is a key technology for cloud computing, SDN, and NFV. The

technology enables network functions virtualization and software-defined network to

create scalable, dynamic, and automated programmable virtual network functions and

virtual network infrastructures in integrated cloud platforms such as telecom clouds.

Virtualization is the foundation of integrated software-defined infrastructure

(cloud/SDN/NFV), which allows the abstraction of the underlying resources for

sharing with other tenants, isolation of users in the same cloud/network, and isolation

of services functions running on the same hardware.

Virtualization allows elastic and scalable resource provisioning and sharing

among multiple users. The technology allows multi-tenancy in clouds through an

isolation mechanism. It enables each cloud tenant to perform its own services,

applications, operating systems, and even network configuration in a logical

environment without concerns over the same underlying physical infrastructure.

Virtualization results in better server utilization and server/data center consolidation

(multiple VMs run within a physical server) and workload isolation (each application

on a physical server has its own separate VM).

50 | P a g e

Figure 2.1 Virtual Machines Virtualization

❖ Security Issues - Virtualization

With virtualization, the complete state of an operating system and the instances

of the application software together with their associated virtual hardware, disks, and

metadata are captured by the VM. This state can be saved in a file, and the file can be

copied and shared. Creating a VM reduces ultimately to copying a file. VM is an

essential component of the cloud, SDN, and NFV. In SDN, a virtual network is created

(virtualized) from the underlying network resources, and its virtual image can be

captured by a file. Within this file, VMs exist as network elements (switches, routers,

and communication links) of the virtual network. In NFV, a single VM or multiple

VMs capture the complete state of a VNF instance which can be recorded as a file. In

the architecture of these infrastructures, a hypervisor is a centerpiece that performs

the task of virtualizing resources.

Virtualization thus brings with it all the security concerns of the guest operating

system, along with new virtualization specific threats, including hypervisor attacks,

inter-VM attacks, inter-virtual network attacks, and inter-virtual function attacks [34].

51 | P a g e

This part describes a number of fundamental security issues pertaining to

virtualization and virtual environments.

Software Life Cycle of Virtual Image Object The traditional assumption is that

the software life cycle is sequential on a single line, so management processes

progress monotonically along the sequence. However, the virtual execution object

model maps to a tree structure rather than a line. At any point in time, multiple

instances of the virtualized entity (e.g., VM, VNF) can be created, and then each of

them can be updated, different patches installed, and so on. This problem has profound

implications for security [30].

The Indefinite Attack in a Virtual Environment Some of the infected VMs, VNs

(Virtual Network), and VNFs may be dormant at the system clean up time, and later,

they could surface and infect other systems. This scenario can repeat itself and

guarantee that infection will perpetuate indefinitely. In the non-virtual environment,

once an infection is detected, the infected systems are quarantined and then cleaned

up.

Rollback VM Attack Rollback is a feature that reverts all changes made by a user

to a virtual machine when the user logs off from the virtual machine. As the complete

state of a VM can be recorded, the feature opens the door for a new type of

vulnerability caused by events recorded in an attacker's memory. The first scenario is

that one-time passwords are transmitted in the clear, and the protection is not

guaranteed if an attacker can replay rolled-back versions and access past sniffed

passwords.

The second scenario is related to the requirement of some cryptographic

protocols regarding the freshness of the random-number source used for session keys

and nonce. When a VM is rolled back to a state where a random number has been

generated but not yet used, the door is left open for protocol hijacking [30].

Security Risks Posed by Shared Images A user of a public cloud such as Amazon

Web Service (AWS) has the option to create an image (Amazon Machine Image,

52 | P a g e

AMI) from a running system, from another image in the image store, or from the

image of a VM and copy the contents of the file system to the bundle. Three types of

security risks were identified and analyzed: (1) backdoors and leftover credentials, (2)

unsolicited connections, and (3) malware. The software vulnerability audit revealed

that 98% of the Windows AMIs and 58% of Linux AMIs had critical vulnerabilities

[30].

Hypervisor Security Another critical security issue in virtualized environments

is hypervisor vulnerabilities. A hypervisor creates virtual resources (VMs, VNs, and

VNFs) inside the SDI and has the ability to monitor each of them. This feature

introduces a high-security risk in terms of confidentially, integrity, availability,

authenticity, and accountability. It may allow an attacker to view, inject, or modify

operational state information connected with the SDI through a direct/indirect method.

As a result, the attacker is able to read/write the contents of resources such as memory,

storage, and other components of the SDI.

Hypervisor hijacking is a type of attack that allows an adversary to take control

of a hypervisor and access all VMs created by that particular hypervisor or other less

secure hypervisors in the infrastructure. In the worst case, it may even introduce

misconfigurations in SDN controllers when integrated with NFV technology.

Furthermore, existing errors or bugs inside a virtual function or a hypervisor may

allow an attacker to compromise other virtualized network functions for more serious

attacks.

A research was conducted on virtualization security issues to address the

security of virtual system models. It discusses various security issues posed by

virtualization according to a different classification. They perform a security analysis

according to a reference architecture shown in Figure 2.2. They determined the threats

affecting the architecture and analyzed the vulnerabilities and possible attacks [35].

53 | P a g e

Figure 2.2 Virtualization Reference Model [35]

The research detailed vulnerabilities in four categories with respect to the

virtualization model: VM application, the VM guest OS, the hypervisor, and the

execution environment of VMM [35].

 The VM applications are related to memory management and software

interfaces. The memory management includes runtime variable type checking, kernel

interface in user space, deallocation of memory, and development of software flows.

Software interface vulnerabilities are connected to improper operation and

configuration of access control mechanisms, code injections, and concurrency

vulnerabilities (related to improper synchronization mechanisms) [35].

VM guest OS is related to possible vulnerabilities caused by software

management and OS kernel oversight. Software management can trigger

vulnerabilities related to solving dependency, degradation of services, and

configuration issues. Each vulnerability raises the risk of sophisticated attacks in a

virtual environemnt [35].

54 | P a g e

The hypervisor is prone to different vulnerabilities related to VM-hypervisor

crosstalks, inter-VM crosstalk, and management console. The VM-hypervisor

vulnerabilities refer to resource isolation issues, resource sharing with host,

hypervisor oversight issues, and implementation issues). Inter-VM vulnerabilities are

considered to be based mainly on the isolation of resources shared among various VM

which are sharing the same hypervisor on the same hardware [35].

 The hypervisor's execution environment is mainly related to the host OS and

hardware that the hypervisor is running on. It occurs when the hypervisor depends on

running on top of an OS that inherits the vulnerabilities related to OS software and

applications [35]. Figure 2.3 shows a classification of considered threats and attacks

according to virtualization reference in the research.

Figure 2.3 Classification of attacks [35]

Currently, there are various vulnerabilities and risks that can jeopardize the

virtualization environment within a cloud infrastructure. An attacker can exploit or

penetrate any of the vulnerabilities and access sensitive data and resources. [36]

presented another classification of challenges related to virtualizations (Figure 2.4).

55 | P a g e

The research categorized the virtualization challenges into six primary classes and

different sub-classes. The major classes are consist of challenges related to

virtualization characteristics (in respect of virtualization characteristics technology in

cloud infrastructures such as mobility, isolation, and scalability); infrastructure

challenges (concerning any software and hardware components required by the virtual

environment and its components); challenges on access and communication security

(related to any types of access to virtual resources and their way of communication);

data security challenges (in respect of how to securely share sensitive data in an

insecure virtual environment); challenges related to controlling and monitoring

(related to lack of visibility and monitoring on virtual functions within the system);

security policies and rules issues (considered as a dynamic enforcement policies in a

different layer of the virtual environment, integration of dynamic and static policies).

Figure 2.4 Security Vulnerabilities and Risk in a Virtual Environment [36]

❖ Solution and Guidance

Cloud Security Alliance (CSA Security Guidance V3.0) has produced guidance

for critical areas of focus in cloud computing and has offered recommendations on the

following issues:

56 | P a g e

Virtual machine guest hardening: Proper hardening and protection of a VM

instance can be delivered via software to each guest.

Hypervisor security: The hypervisor needs to be locked and hardened using

best practices. The primary concerns should be the proper management of

configuration and operation and physical security of the server hosting the hypervisor.

Inter-VM attacks and blind spots: VMs may communicate with each other

over a hardware backplane rather than a network. As a result, standard-network based

security controls are blind to this traffic and cannot perform monitoring or in-line

blocking. In-line virtual appliances help to solve this problem.

Migration of VMs: An attack scenario could be the migration of a malicious

VM in a trusted zone, and with traditional network-based security control, its

misbehavior will not be detected. Installing a full set of security tools on each machine

is another approach to adding a layer of protection.

Performance concerns: Installing security software for physical servers onto a

virtualized server can result in severe degradation in performance. Security software

needs to be virtualization-aware.

Operational complexity from VM sprawl: The ease at which VM’s can be

provisioned has led to an increase in the number of requests for VM’s in typical

enterprises. This creates a larger attack surface and increases the odds of

misconfiguration or operator error opening a security hole. Policy-based management

and the use of a virtualization management framework are critical.

 Instant-on gaps: A VM can be started and stopped with ease, and this creates

a situation where threats can be introduced into the gap when a VM is turned off and

when it is restarted, leaving the VM vulnerable. Best practices include network-based

security and virtual patching that inspects known traffic attacks before they can get to

a newly provisioned or newly started VM.

57 | P a g e

Virtual machine encryption: VMs are vulnerable to theft or modification

when they are dormant or running. The solution to this problem is to encrypt VM

images at all times, but there are performance concerns.

Data comingling: There is concern that different classes of data (or VM’s

hosting different classes of data) may be intermixed on the same physical machine.

VLAN, firewalls, and IDS/IPS should be used to ensure VM isolation as a mechanism

for supporting mixed model deployments. Data classification and policy-based

management can also prevent this.

Virtual machine data destruction: When a VM is moved from one physical

server to another, enterprises need the assurance that no bits are left behind on the disk

that could be recovered by another user or when the disk is de-provisioned. Zeroing

memory/storage encryption of all data is a solution to this problem. Encryption keys

should be stored on a policy-based key server away from the virtual environment.

Virtual machine image tampering: Pre-configured virtual appliances and

machine images may be misconfigured or may have been tampered with before you

start them.

In-motion virtual machines: The unique ability to move VMs from one

physical server to another creates complexity for audits and security monitoring. In

many cases, VMs can be relocated to another physical server (regardless of

geographical location) without creating an alert or trackable audit trail.

2.3 Cloud Computing

Cloud computing has become an alternative IT infrastructure where users,

infrastructure providers, and service providers all share and deploy resources for their

business processes and applications. Business customers are shifting their services

and applications to cloud computing since they do not need to invest in their own

58 | P a g e

costly IT infrastructure but can delegate and deploy their services effectively to cloud

vendors and cloud service providers [37].

Cloud computing offers a low-cost effective solution to provision on-demand

cloud resources using its capability of pooling and resource virtualization. Cloud

clients can store their data, share their informations, and consume and run their

services with a low-cost and fast access over a remote and accessible server rather

than on physical resources with limited capacity [38].

The most relevant definition is probably the one provided by the National

Institute of Standards and Technology (NIST) [39]: “Cloud computing is a model for

enabling ubiquitous, convenient, on-demand, network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction.”

 This cloud model is composed of five essential characteristics, three service

models, and four deployment models. The five characteristics are on-demand self-

service, broad network access, resource pooling, rapid elasticity, and measured

service. Software as a service (SaaS), platform as a service (PaaS), and infrastructure

as a service (IaaS) constitute the three service models [40].

SaaS directly offers cloud services such as Google Docs, Google Map, and

Google Health, online to users. With PaaS, developers can order a required

development platform, which may consist of SDK (software development kit),

documentation, and test environment, to develop their own applications. IaaS is more

about packaging and provisioning underlying virtual resources to customers, who then

build, orchestrate, provision, and sell tailored infrastructure resources to organizations

to support their own businesses.

59 | P a g e

Figure 2.5 Cloud provider—three-layer service orchestration model

NIST provides a three-layer service orchestration model, as shown in Figure

2.5. The physical resource layer includes all the physical computing resources:

computers (CPU and memory), networks (routers, firewalls, switches, network links,

and interfaces), storage components (hard disks), and other physical computing

infrastructure elements.

The resource abstraction and control layer contains the system components that

cloud providers use to provide and manage access to the physical computing resources

through software abstraction (virtualization layer). The resource abstraction

components include software elements such as hypervisors, virtual machines, virtual

data storage, and other computing resource abstractions. The control aspect of this

layer refers to the software components responsible for resource allocation, access

control, and usage monitoring. The service layer contains interfaces for cloud

consumers to access the computing services.

In [41], the cloud was described according to two main ends consisting of the

front end and back end. The cloud tenants and users can communicate with the cloud

60 | P a g e

and access required and available services like OpenStack dashboard. The back end

includes underlying physical and virtual resources that are responsible for delivering

cloud services (refer to Figure 2.6).

Figure 2.6 Cloud computing front and back end [41]

2.3.1 Cloud terminology – roles and boundaries

61 | P a g e

Cloud introduced various predefined roles and classifications to each

organization migrating to cloud infrastructure. This section defines some of these

roles and how they interact with each other within the cloud system.

Cloud Provider (CP) refers to an individual, association or third party that

delivers cloud computing services via on-demand, pay-as-you-go systems as a service

to businesses. The major responsibility is to deliver reliable and available cloud

services to its tenants according to their signed Service Level Agreements (SLA). It

provides a cloud-based platform, services, infrastructure, application, and storage.

Cloud Consumer/Tenant is an individual/organization who consumes services

provided by cloud providers.

Cloud Resources Administrator is an individual or third party with higher

privilege that performs administerial tasks for cloud resources. The cloud resource

admin is considered a specific role with high accessibility to specific resources and

can configure/change the resources.

Cloud Broker is generally acting as an interface between the cloud provider and

cloud consumer. It is an application or an individual that manages the performance,

usage, and delivery of cloud resources.

Cloud-Oriented Architecture (COA) is a conceptual model encircling all

elements within the cloud infrastructure. It includes all entities and elements

networked to form a cloud environment.

Cloud Object is an individual object that can be directly or indirectly identified

via an identifier like ID number, location, name, and precisely defined characteristics

within the cloud environment. A cloud object can be defined as a static or dynamic

object according to its role. A cloud tenant has access to the static/dynamic objects

shared by cloud providers.

Additionally, [42] defined different types of actors in cloud computing,

displayed in Figure 2.7.

62 | P a g e

Figure 2.7 different actors in cloud infrastructure [42]

2.3.2 Cloud Security

Since the cloud has become a large-scale and complex infrastructural

environment, it becomes more vulnerable to traditional and new security threats

related to its structure and elements. Cloud security is a critical part of computer

security, which describes policies, technologies, control, and monitoring applications

to protect virtualized data, and shared resources (services, applications, cloud objects).

According to NIST, the major obstacle to adapting cloud environment and services in

most organizations is security, portability, and interoperability. Cloud security covers

numerous security issues and challenges. [43] considered cloud vulnerabilities and

security requirements and highlighted security challenges in related areas like NFV,

SDN, IoT, and cloud applications. It proposed appropriate countermeasures to

mitigate security threats. However, the paper lacked security issues related to cloud

data and resource isolation. [44] provided a survey on security challenges related to

cloud infrastructure. The paper covered security countermeasures related to cloud

nature and its virtualized, distributed, and resource sharing environments. It suggested

an integrated security solution. [45] provided a security service that enables cloud

tenants to protect and monitor their systems by deploying an intrusion detection

system. Their method mainly focused on the tenant level. [46] published a taxonomy

of intrusion detection and prevention literature. They analyzed various attacks related

to service platforms and presented potential attacks and mitigation strategies against

63 | P a g e

such attacks in the cloud. The main notable security issues refer to two major

concepts: virtualization and multi-tenancy.

Virtualization is defined as the conceptual process of creating virtual version

instances extracted from underlying physical resources and delivering them as

software-based virtual components. Virtualization is pervasive in almost all

components of the service infrastructures: virtual machines, virtual networks, virtual

storage, virtual network functions, and virtual services. Cloud computing relies on

virtualization technology to virtualize and aggregate physical resources into pools of

virtual resources (virtual machines, virtual networks, virtual storage, virtual functions,

and virtual services) and provision them to users on demand.

A hypervisor and virtual machines are components of a virtual environment. A

VM is an image operating system (OS) that contains memory and storage. A

hypervisor is responsible for constructing, managing, and controlling VMs within the

system. The hypervisor virtualizes the hardware resources like CPU, memory,

storage, and network and allocates them to each VM [47]. As discussed in section

2.2.1, various virtual environment vulnerabilities can be exploited by attackers and

endanger the whole system. It is worth noting that the impact of security challenges

in a virtual cloud environment is more critical than traditional infrastructures since

resources are virtualized and shared among numerous users.

Since virtualization is a crucial technology in cloud infrastructure, any

vulnerability can endanger the whole system in a high-security breach. For example,

any error and vulnerability inside the hypervisor can allow an attacker to launch VMs

attacks (shutting down VMs) or monitor other VMs and their shared resources. A

compromised VM can inform an attacker of the underlying network operation to

exploit existing network vulnerabilities. It can also enable an adversary to

compromise the hypervisor and achieve control over the whole system. Local users

and malicious codes can bypass security boundaries or even gain privileges to cause

damage to the infrastructure and its users through vulnerabilities found in

virtualization software.

64 | P a g e

Multi-tenancy is a specific cloud computing characteristic that allows sharing

applications, services, resources (compute, network, storage) among tenants. Each

virtual instance can be shared by one or more tenants. A hypervisor supports multi-

tenancy by providing access to a pool of shared resources in cloud environment. Cloud

multi-tenancy enables multiple users can access and use an application/resource in a

same infrastructure. Three methods are recognized to achieve multi-tenancy in cloud

which are physical separation, database, and using virtualization. The virtualization is

a method to enable multi-tenancy especially in infrastructure as a service (IaaS). In a

platform as a service (PaaS) provider, users can execute various applications/services

in a multi-tenancy environment using virtual platform. It is worth noting that multi-

tenancy can be exploited in co-tenancy, co-residency- and co-location attacks since

the valued tenant’s data might be placed in the same physical location or hardware.

An adversary can access side VMs, perform illegal scripts, or even run unauthorized

applications [44, 48].

Some of the traditional security issues found in the cloud infrastructure are data

access control, loss and data leakage, trust, and isolation. Cloud-specific security

issues include insecure interfaces and APIs, malicious insiders, account or service

hijacking, virtualization security, and service interruption. In the following, we

discuss these critical and significant security challenges that affect cloud security.

While there are many security concerns in cloud computing, Cloud Security

Alliance (CSA) released twelve critical security threats specifically related to the

shared, on-demand nature of cloud computing for cloud computing with the highest

impact on enterprise business [49]:

Data Breaches A data breach is an incident in which sensitive, protected, or

confidential information is released, viewed, stolen, or used by an individual who is

not authorized to do so.

Weak Identity, Credential, and Access Management Data breaches and

enabling attacks can occur because of a lack of scalable identity access management

65 | P a g e

systems, failure to use multifactor authentication, weak password use, and a lack of

continuous automated rotation of cryptographic keys, passwords, and certificates.

Insecure APIs (Application Programming Interface) Provisioning,

management, orchestration, and monitoring are all performed using a set of software

user interfaces (UIs) or application programming interfaces. These interfaces must be

designed with adequate controls to protect against accidental and malicious attempts

to circumvent policy. Cloud providers deliver services to their customers through

software interfaces mostly integrated with the web application layer. The stability of

cloud components is dependent upon the security level of these APIs within the cloud

infrastructure. Insecure cloud APIs can cause various threats related to confidentiality,

availability, integrity, and accountability.

These API functions and web applications share a number of vulnerabilities,

resulting in high-level security problems. Consequences of any malfunction in APIs

may allow malicious codes to be imported inside the cloud and expose user

confidential data. Although robust authentication methods, proper access controls,

and encryption methods may solve some of the above problems, still, there are serious

gaps especially related to the inability of massive auditing and logs. Any APIs that

will interact with sensitive data within cloud infrastructure must be protected with a

secure channel such as SSL/TLS.

System and Application Vulnerabilities System vulnerabilities are exploitable

bugs in programs that attackers can use to infiltrate a computer system to steal data,

take control of the system, or disrupt service operations.

Account Hijacking This is a significant threat, and cloud users must be aware

of and guard against all methods such as phishing, fraud, and exploitation of software

vulnerabilities to steal credentials. It is a kind of identity theft that aims to deceive

end-users to obtain their sensitive data. If an attacker gains control of a user account,

it can snoop on all customer’s activities, manipulate and steal their data, or redirect

the customer into inappropriate sites. These kinds of threats can be accomplished

66 | P a g e

through phishing email, faux pop-up windows, spoofed emails, buffer overflow

attacks, which result in the loss of control of the user’s account.

Malicious Insiders A malicious insider threat to an organization is a current or

former employee, contractor, or another business partner who has authorized access

to an organization’s network, system, or data and intentionally misuses that access in

a manner that negatively affects the CIAAA of the organization’s information system.

According to the Cloud Security Alliance (CSA) cloud security threat list, this type of

threat is one of the most serious cloud-specific security challenges. It happens when

an employee of cloud service providers (CSPs) abuses his/her level of access to gain

confidential information of cloud customers for any nefarious purposes. The worst

case is when a malicious system administrator can access client resources hosted on

virtual machines and data stores. So, detecting such indirect accesses to client data is

one of the challenging tasks in cloud infrastructure.

Advanced Persistent Threats (APTs) These are a parasitical form of cyber-

attack that infiltrates systems to establish a foothold in the computing infrastructure

of target companies from which they smuggle data and intellectual property.

Data Loss Data stored in the cloud can be lost for reasons other than malicious

attacks. Accidental deletion by the cloud service provider or a physical catastrophe

such as a fire or earthquake can lead to permanent customer data loss.

Insufficient Due Diligence An organization that rushes to adopt cloud

technologies and chooses cloud service providers (CSPs) without performing due

diligence exposes itself to a myriad of commercial, financial, technical, legal, and

compliance risks.

Abuse and Nefarious Use of Cloud Services Poorly secured cloud service

deployments, free cloud service trials, and fraudulent account sign-ups via payment

instrument fraud expose cloud computing models such as IaaS, PaaS, and SaaS to

malicious attacks. Malicious actors may leverage cloud computing resources to target

users, organizations, or other cloud providers.

67 | P a g e

Denial of Service (DoS) Denial-of-service attacks are attacks meant to prevent

users of a service from accessing their data or their applications by forcing the targeted

cloud service to consume inordinate amounts of finite system resources so that the

service cannot respond to legitimate users. Service interruption caused by DoS/DDoS

attacks are usually attempted against Internet services with a large population of users,

and it is more so against the cloud as a center of a high number of cloud services and

users. These attacks may render services and computing resources unavailable. A

DDoS attack may occur when an attacker gains access to a tenant’s VMs credentials

due to their vulnerabilities.

Shared Technology Issues Cloud service providers deliver their services by

sharing infrastructure, platforms, or applications. The infrastructure supporting cloud

services deployment may not have been designed to offer strong isolation properties

for a multi-tenant architecture (IaaS), re-deployable platforms (PaaS), or multi-

customer applications (SaaS). This can lead to shared technology vulnerabilities that

can potentially be exploited in all delivery models.

2.4 Software-Defined Networking

Referring to research conducted by [50], the Software-Defined Networking

(SDN) term was initially made to express the OpenFlow protocol idea and

functionality at Standford University, CA, USA. The new technology emerged as a

networking paradigm that separates the data forwarding plane from the control plane.

It centralizes the network state and the decision-making capability in the control plane

(SDN controller), leaving simple forwarding operation at the data plane (SDN

network devices) and abstracting the application plane underlying network

infrastructure. The separation of the control plane and the data forwarding plane is

through a programming interface between the SDN network devices and the SDN

controller [51].

68 | P a g e

The Open Networking Foundation (ONF) defines a high-level architecture for

SDN [52], with three main layers as shown in Figure 2.8: the application layer for

expressing and orchestrating application and network service requirements; the

control layer for network control, services provisioning, and management; and the

infrastructure layer for the abstraction of physical network resources. The

infrastructure layer can be expanded into two planes: the physical plane and the virtual

plane. The physical resources plane consists of the underlying physical infrastructure,

and the virtual resources plane which represents the virtual resources abstracted from

the physical resources through virtualization [53, 54].

SDN network devices are all placed at the infrastructure layer. According to

instructions programmed by their SDN controller, the SDN network devices make a

simple decision of what to do with incoming traffic (frames or packets). The SDN

controller (or group of controllers) is located in the control layer. The technology

programs and controls the forwarding behavior of the network devices and presents

an abstraction of the underlying network infrastructure to the SDN applications.

Applications and network services are on the application layer. The controller allows

applications to define traffic flows and paths, with the support of a comprehensive

information database of all underlying network infrastructure operations, in terms of

common characteristics of packets to satisfy the needs of the applications and to

respond to dynamic requirements by users and traffic/network conditions [53].

The SDN controller uses interfaces for communicating with other layers. To

communicate with the data/infrastructure layer, a southbound interface (SBI) is used

for programming and configuring network devices. A northbound interface (NBI) is

provided for the interaction between the SDN controller and applications to

communicate with the application layer. The NBI is to describe the application needs

and pass along the commands to orchestrate the network. East/west interfaces are for

information exchange between multiple or federated controllers. The OpenFlow

protocol has been developed and widely adopted as one of the SBIs between SDN

controllers and SDN switches. OpenFlow uses a secure channel for message

transmission over the Transport Layer Security (TLS) connection.

69 | P a g e

Figure 2.8 SDN Components

A centralized SDN controller dictates the network policies for underlying

network fuctions[55]. There are varieties of SDN controller platforms such as

FloodLight [56] , OpenDayLight [57], ONOS [52], POX [58], and Ryu [59].

2.4.1 SDN Interfaces

The crucial components of SDN are communicating through Application

Programming interfaces (APIs). The APIs are considered as architectural components

of SDN that push configuration, rules, and information to underlying forwarding

function [60]. The SDN network is surrounded by three main APIs: Southbound API,

Northbound API, and East and westbound API.

❖ Southbound API

The Southbound API acts as a connecting bridge between the SDN controller

and underlying forwarding functions, which plays a crucial role in separating

functionality between control and data plane. The required configurations and

information between controller and forwarding elements travel through this API [61].

This interface's main objective is to transfer the SDN controller decisions/rules to

70 | P a g e

underlying SDN devices and provide information related to SDN devices back to the

SDN controller. The OpenFlow is one of the most widely accepted and deployed

southbound standards for SDN. However, it is not the only one, there are other

southbound API like ForCES [62], Open vSwitch Database (OVSDB) [63], POF [64],

OpFlex [65], and OpenState [66].

IETF proposed forwarding and Control Element Separation (ForCES). Like

OpenFlow, it decouples the control plane from the data plane but can still be kept in

the same network function. The OVSDB is considered to offer advanced management

capability for OVSs. The OVSDB is a complementary protocol to OpenFlow and can

allow the SDN control functions to create multiple virtual switches.

▪ OpenFlow

OpenFlow is a standardized and well-known southbound protocol that defines

the communication between SDN controller and OpenFlow switches. The messages

are transmitted over a secure channel implemented via a Transport Layer Security

(TLS) connection over TCP. The SDN controller defines and programs the underlying

OpenFlow switches packet forwarding behavior using the exchanged messages.

According to SDN controller rules, OpenFlow switches perform packet forwarding

and report back its configuration status and traffic conditions to the SDN controller

over exchanged messages [53]. The main functionality of OpenFlow switches is to

support the SDN controller and forward packets through the SDN network [67]. The

SDN switches are mainly responsible for forwarding and handling traffic according

to rules set by SDN controller rules, gathering network states, and transferring them

to the SDN controller through the southbound interface [68-70]. The SDN switches

are required to understand the OpenFlow header for forwarding the packets. The

OpenFlow protocol has advanced through different versions: version 1.0 consisting

12 fixed matching fields and one single flow to version 1.5, including 41 matching

fields and quite a few new functionalities [60, 71].

The OpenFlow devices must include three essential components: one/multiple

flow tables, secure channel, and OpenFlow protocol. The OpenFlow is recognized as

71 | P a g e

a flow-oriented protocol that contains switches and port abstractions to handle and

control the SDN network's traffic flows [72-74]. Each OpenFlow device may consist

of one or more flow table, a protocol for communication between devices and the

external controller, and a secure channel that connect them to the SDN controller. The

table/s in OpenFlow switches consist of flow entries in a match, actions, and statistics

format. Each packet should match with one of the matching fields presented by the

OpenFlow protocol. According to [53, 75], “a flow is a set of packets transferred from

one endpoint to another endpoint.” So, a flow table in each OpenFlow device consists

of various flow entries. Figure 2.9 shows an OpenFlow essential operation, its flow

table, and entries.

The transferred messages between SDN controller and OpenFlow switches are

categorized into three types: controller-to-switch messages, asynchronous messages,

and symmetric messages. The controller-to-switch messages are referred to types of

messages that manage and program the OpenFlow switches. The asynchronous

messages are used to notify the security controller of any changes on the state of

OpenFlow switches. The last type of message is considered as a hello message for

both SDN controller and devices to ascertaining the liveness of the connection [53]

Figure 2.9 OpenFlow Switch- operation [53]

72 | P a g e

❖ Northbound API

The northbound interface is still an open issue compared to the southbound

interface and does not follow a common standard like OpenFlow. The northbound

interface is a software ecosystem and plays a critical role for application developers.

It connects the control plane to the application plane and provides information on

underlying SDN devices to application developers. Regarding northbound interfaces,

each existing SDN controller such as OpenDaylight, Floodlight, and NOX proposed

and defined its interface according to their specific definitions [76] [77] [16]. SDN

controller has chosen different programming languages to provide an abstraction of

SDN controller functions and underlying forwarding behavior from the application

developers.

❖ East and westbound API

Centralized control over the large scale of networks is the main feature

presented by SDN, but the number of switches controlled by a single SDN controller

is limited. The east/westbound interfaces are required in the case of distributed SDN

controllers. The interface requires the functional ability to import/export data between

distributed SDN controllers. Currently, each SDN controller introduces its version of

the east/westbound interface. There are various proposal of that proposed interfaces

between SDN controllers such as Onix data import/export functions [78], ForCES

CE–CE interface [62], [79], and distributed data stores [80].

2.4.2 SDN Security Challenges

SDN introduces a new networking paradigm, and its impact is in the form of a

new framework, new components, structural layers, and interfaces. SDN brings with

it new security challenges beyond those that existed in traditional networks.

As SDN decouples the control plane from the data plane, the technology brings

with it new sets of components, interfaces, as well as many new security issues.

Security challenges in SDN can be divided based on its three layers: the data plane,

73 | P a g e

the control plane, and the application plane. The data plane can suffer from various

security threats such as malicious OpenFlow switches, flow rule discovery, flooding

attacks (e.g., switch flow table flooding), forged or faked traffic flows, credential

management, and insider malicious host. The application plane inherits security

challenges such as unauthorized or unauthenticated applications, fraudulent role

insertion, lack of authentication methods, and lack of secure provisioning.

The control plane faces several security issues related to the centralized SDN

controller, communication interfaces, policy enforcement, flow rule modification for

modifying packets, controller-switch communication flood, system-level SDN

security challenges (related to lack of auditing accountability mechanisms), and lack

of trust between the SDN controller and third-party applications [81]. Since the

control plane in the SDN architecture acts as the heart of this virtual network

infrastructure, security vulnerabilities on this layer can cause failure to the entire

virtual network architecture.

According to a study published by [82], various SDN security challenges have

been analyzed and classified in relation to SDN structure. Security challenges

associated with the SDN framework by the affected layer/interface are categorized as

follows:

• Application Layer Unauthorized access is through the unauthenticated

application. Malicious applications may introduce fraudulent rule insertion.

Configuration issues arise from a lack of policy enforcement.

• Control Layer Unauthorized access can be introduced through unauthorized

controller access and unauthenticated application. Data modification is presented

in the form of flow rule modification to modify packets. Malicious applications

can introduce fraudulent rule insertion and controller hijacking. Denial of service

(DoS) may occur due to controller-switch communication flood. Configuration

issues may arise because of the lack of TLS (or other authentication techniques)

adoption or lack of policy enforcement.

74 | P a g e

• Data Layer Unauthorized access may occur with unauthorized controller access.

Data leakage may result from flow rule discovery (side-channel attack on input

buffer) or forwarding policy discovery (packet processing timing analysis). Data

modification is a result of flow rule modifications. Malicious applications may

introduce controller hijacking. Denial of service may occur due to controller

switch communication flood or switch flow table flooding. Configuration issues

may arise from lack of TLS (or other authentication techniques) adoption.

• Application-Control Interface (NBI—Northbound Interface) Unauthorized access

may occur because of unauthenticated applications. The malicious application

may introduce fraudulent rule insertion. Configuration issues may occur due to

lack of policy enforcement.

• Control-Data Interface (SBI—Southbound Interface) Unauthorized access can be

introduced through unauthorized controller access. Data modification is presented

in the form of flow rule modifications. Malicious applications can introduce

controller hijacking. Denial of service may occur due to controller switch

communication flood. Configuration issues may arise from lack of TLS (or other

authentication techniques) adoption.

Besides, since SDN uses virtualization technology to virtualize networks (VNs),

it inherits traditional security problems related to the virtualization of virtual machines

and new security issues related to the virtualization of network hypervisors and their

isolation. It also suffers threats such as Dos/DDoS attacks, with higher impact because

of SDN control centralized architecture. In another classification, the SDN introduces

critical security challenges, including unauthorized access (control plane, data plane,

application plane), routing policy collision, fraudulent flow rules insertion or

tampering in switching level, insecure interfaces, and system-level SDN security

challenges.

SDN Controller. Since SDN decouples the data plane from the control plane,

it is the responsibility of the centralized controller to deal with all incoming network

flows. As a consequence, the controller itself is a key bottleneck and is the target for

various attacks such as flooding and DDoS attacks. An SDN controller can be

75 | P a g e

implemented in a virtual or physical server with associated resources. An attacker can

launch a kind of resource consumption attack on the controller to render it unavailable

in response to flow rules coming from underlying switches and force it to respond

extremely slowly to packet-in events or sending packet-out messages. A DoS/DDoS

attack is one of the most serious security threats against the SDN controller when an

attacker endlessly sends IP packets with different headers to the controller to put it in

a nonresponsive state.

Routing policy collision. Policy collision is another specific security challenge

in SDN architecture when various vendors and third-party applications use different

configurations and programming models. This is critical since a malicious component

can delete, insert, or modify existing and predefined policies of flows inside the SDN

controller. Separate servers or applications with different policy rules may result in

policy conflicts with each other.

Fraudulent flow rules insertion or tampering in switching level. A

compromised or malicious application can generate fraudulent flow rules while

communicating with the controller. An attacker can inject fake flow rules through the

switches by exploiting vulnerabilities of southbound interfaces. It is possible for an

attacker to tamper with network information by modifying flows in flow tables. These

malicious flow rules can cause a network to behave abnormally. For instance, [83]

introduced an attack in which an attacker generates forged link layer discovery

protocol (LLDP) packets through an OpenFlow network to create vulnerabilities on

internal links between two switches. An adversary can also insert malicious flow rules

by monitoring the traffic from OpenFlow Switches.

Insecure interfaces. Another critical security challenge in SDN infrastructure

is related to insecure Application Programming Interfaces (APIs): Northbound,

Southbound, and East and West Interfaces. This security issue is critical since all

communications between the SDN controller, the application layer, the underlying

forwarding layer, or even the communication between multiple controllers go through

these interfaces. For instance, vulnerabilities and the lack of standard protocol in the

76 | P a g e

northbound interface may enable attackers to interfere with both the application and

the controller's operation and send a malicious request through the controller or

network elements or even generate flooding attacks with the purpose of disrupting its

operation. An adversary is also capable of sending a large number of requests through

the northbound interface to occupy the interface bandwidth. In a multi-domain multi-

controller environment, the controller’s communication goes through the East/West

APIs. These SDN controllers may be from different vendors and do not have a

common secure channel between them. Messages among them may be sniffed by an

attacker through vulnerabilities of East-West APIs, and sensitive information may be

exposed.

System-level SDN security challenges. A specific SDN system-level security

concerns auditing processes. As it is essential to keep comprehensive state

information of network devices in the infrastructure to prevent unauthorized access,

providing an auditing and accountability mechanism in SDN is a critical security

challenge [84].

2.5 Network Function Virtualization

Network functions virtualization (NFV) is proposed aiming to virtualize an

entire class of network component functions using virtualization technologies. The

objective is to decouple the network functions from the network equipment. The NFV

is proposed to pave the way for a new way to provision network services in

comparison to current existing practices. According to [85], the NFV introduces three

main differences: decoupling software from hardware as network functions are

defined as software-based virtual network functions; flexibility on deploying network

functions where enables faster creation of virtual network functions and their

placement over any NFV-enables devices; dynamic scaling which allows flexibility

in deploying VNFs over larger-scale infrastructure.

77 | P a g e

ETSI provides an NFV reference architecture for a virtualized infrastructure and

points of reference to interconnect the different components of architecture. The NFV

architecture has three critical components for building a practical network service:

network functions virtualization infrastructure (NFVI), VNFs, and NFV management

and orchestration (MANO) [85]. Figure 2.10 shows an overall view of NFV

architecture adapted from the ETSI NFV model.

Figure 2.10 NFV architecture

• NFV Infrastructure (NFVI)

The NFVI includes hardware and a hypervisor that virtualizes and abstracts the

underlying resources. The NFVI encompasses all underlying physical and software

resources which are used to host the VNF. The physical resources consist of

computing, storage, and network functions that provide required storage, compute,

and connectivity for each VNF through a virtualization layer. The virtualization layer

78 | P a g e

includes a hypervisor that enables the abstraction of physical resources for initiated

VNFs.

• NFV-MANO

The NFV MANO is responsible for configuring, deploying, and managing the

life cycle of VNFs. The NFV-MANO includes different functional blocks like

Network Functions Virtualization Orchestrator (NFVO) which provides both resource

and service orchestration; Virtualized Network Function Manager (VNFM) which

manages the life cycle of single/multiple VNFs; Virtualized Infrastructure Manager

(VIM) which provides management and control over NFVI hardware and software

resources. An NFV-MANO architectural framework is shown in Figure 2.11

according to the ETSI description [86, 87].

Figure 2.11 NFV-MANO architectural framework [86]

79 | P a g e

The main focus of NFV-MANO is its involvement in most virtualized-specific

management tasks that are essential within the NFV architecture. It defines interfaces

to provide communication between its different components. The NFV-MANO also

coordinates with a traditional network management system, Operations Support

System (OSS) and Business Support Systems (BSS), to enable management of both

VNFs as well as functions running on legacy devices [17].

• VNF

A network function is now a virtual instance of a customized software program

called a virtual network function (VNF). The VNF is the software implementation of

a network function that runs over the NFVI. This object can be created on-demand,

launched into operation wherever needed, without installing new equipment (on any

virtual or physical servers at data centers, gateways, routers). It can be moved at will

and terminated when its function is no longer needed [88].

The NFV enables network functions to be executed as software instances in a

virtual machine (VM) on single or multiple hosts instead of customized hardware

equipment. Network functions virtualization can be applied to both data and control

planes in fixed or mobile infrastructures. The NFV allows operators to combine

numerous network equipment types into high-volume switches, servers, and storage

inside data centers, network nodes, and end-user premises. It offers a new means for

creating, deploying, and managing networking services.

Examples of these classes of functions include switching elements; tunnel

gateway elements: IPSec/SSL (secure sockets layer), VPN (a virtual private network)

gateways; security functions: firewalls, virus scanner, and intrusion detection systems;

traffic analysis services: load balancers, network monitoring, and deep packet

inspection tools; service assurance: SLA (service-level agreement) monitoring, test,

and diagnostics; mobile network elements: multifunction home router, set-top boxes,

base stations, and the evolved packet core (EPC) network [89].

80 | P a g e

An essential key principle of NFV is service chaining: as each VNF provides

limited functionality on its own, service chaining allows combining multiple VNFs to

create useful new network functions and services.

2.5.1 NFV Security Challenges

In this section, we present security challenges related to NFV architecture. As

network components are virtualized, NFV networks contain a level of abstraction that

does not appear in traditional networks. Securing this complex and dynamic

environment, that encompasses the virtual/physical resources, the controls/protocols,

and the boundaries between the virtual and physical networks, is challenging for many

reasons according to CSA[90]:

Hypervisor dependencies Hypervisors are available from many vendors. They

must address security vulnerabilities in their software. Understanding the underlying

architecture, deploying appropriate types of encryption, and applying patching

diligently are all critical for the security of the hypervisors.

Elastic network boundaries In NFV, the network fabric accommodates multiple

functions. Physical and virtual boundaries are blurred or non-existent in NFV

architecture, making it challenging to design security systems.

Dynamic workloads The NFV is about agility and dynamic capabilities, but

traditional security models are static and unable to evolve as network topology

changes in response to demand.

Service insertion NFV promises elastic, transparent networks since the fabric

intelligently routes packets that meet configurable criteria. Traditional security

controls are deployed logically and physically in-line. With NFV, there is often no

simple insertion point for security services that are not already layered into the

hypervisor.

81 | P a g e

Stateful versus stateless inspection Security operations during the last decade

have been based on the premise that stateful inspection is more advanced and superior

to stateless access controls. NFV may add complexity where security controls cannot

deal with the asymmetry flows created by multiple, redundant network paths and

devices.

 Scalability of available resources Deeper inspection technologies- next

generation firewalls and Transport Layer Security decryption, for example- are

resource-intensive and do not always scale without offload capability.

The ETSI Security Expert Group focuses on the security of the software

architecture. It identifies potential security vulnerabilities of NFV and establishes

whether they are new problems or just existing problems in different guises [91]. The

identified new security concerns resulting from NFV are as shown in Table 2.1.

Table 2.1 Security Vulnerabilities of NFV

The ETSI confirmed that NFV and its components certainly create new security

concerns as presented in table 2.1. However, they have only provided security

guidance specifically for NFV development and its architecture [91], but this does not

consist of any specific implementation details

Another study revealed,[92], the NFV architecture can be prone to various

security risks as VNF mostly runs over virtual resources. The study listed several

potential security risks related to NFVI according to different attack scenarios such as

82 | P a g e

isolation failure risk, mainly focused on improper isolation methods related to VNF

and hypervisors; network topology validation and implementation failure, which

introduced new attacks in relation to dynamicity and automation of network

implementations within NFV framework and improper network implementations

between VNFs; regular compliance failure; this focuses on violation of security

policies and laws related to VNF especially in terms of migration and location

changes; denial of service protection failure, which introduces the possibility of

resource exhaustion caused by compromised VNFs; malicious insider which points to

internal security risks that arise from NFV framework and its components, and

security logs troubleshooting failure, which highlights the security risks related to a

considerable number of records on hypervisor due to a compromised VNF which

causes hypervisor failure.

2.6 Policy

Considering today's technologies, security systems are required for more

advanced mechanisms to protect resources against complicated daily threats.

Complex connectivity of resources within the virtual infrastructure is very challenging

to be managed efficiently against security violations. The policy is defined as rules

that govern the system behaving. Policies can be driven from service level agreements

(SLA), business goals, and enterprises relationships. However, refining these high-

level policies into policies involving a specific service and then into understandable

low-level policies to be implemented by specific devices to support the service is not

an easy task to behold [93].

Enforcing security policies is more complicated and critical in the current state

of systems and organizations caused by a massive number of constructed virtual

network functions and their complicated structure. The difficulty rises as each security

component follows its own policy and enforcement mechanism, where security

policies have different types and are mostly hard to extract[94]. Despite the fact that

83 | P a g e

massive benefits are introduced by cloud technologies in various studies, there are still

critical concerns regarding information policies such as security, privacy and access

control rules in dynamic and large-scale cloud environments.

In any system, an event is considered a security breach either when it violates a

defined security policy or violates the Confidentiality, Integrity, and Availability of

security principles that could have been avoided if a relevant security policy has been

in place. According to Dave [95], a policy (or policy rule) is a simple declarative

statement linking a policy object with a value and a policy rule. In general, a policy is

not easy to work with, as at one extreme it applies to the overall behavior of a complex

organization (or entity). At the other extreme, it applies to a particular action on an

element of the organization or specific firewall rules on a network connection. [96]

stressed that managing access control rules are quite a difficult task to be handled and

requires organizational security policies to be unfolded to attain access control rules

packages. According to the study, subjects acquire rules and permissions according to

their role in each level of their organizations.

 [97] defined the policy as a “set of rules that contains conditions or criteria

with proper validate action were defined the system's behavior if the represented

condition is satisfying or successful.” The conditions depend on the nature and

characteristics of the system resources. The actions are defined as tasks that require to

be enforced or controlled by the system. In other words, each policy definite how the

system resources should be properly accessed or used if their conditions are fulfilled.

Policy rules are associated with a value to an object. According to [95], “policy rules

are defined either based on conditions or actions.” Each policy might consist of one

or more conditions or actions.

Policy Conditions A policy condition is defined if the policy rule is applicable

for any object within the system. The object can be consisting of any items like user,

organization, a user in an organization, application, a network/subnet, time,

Policy Action A policy action describes what are the validated behavior/actions

of an object like a network, device, and other similar entities in any system.

84 | P a g e

Policies in nature could be classified into two fundamental categories: complex

or simple. Simple policies include a set of clear conditions and validated actions

(Figure 2.12). Complex policies are constructed from simple policies but include more

sophisticated interaction between objects. A nested policy can be considered a

combination of various simple policies that create more complicated policies

containing nested conditions and actions. Policies can be defined as a group of policies

assigned to one/multiple entities/subjects. According to [98], a group policy consists

of five types of policies authentication, authorization, filtering, channel protection,

and operational. The authorization policies are defining rules to authenticate a subject

in a network element. The mechanisms to be considered for authentication can be

varied, such as biometrics, primary authentication method, Kerberos, certificates,

physical credentials, and shared secrets. The authorization policies are referred to

policies that specify privileges for each authenticated subject. The privileges are

considered activities that grant/deny an action. The filtering policies are referred to as

policies that create rules to define each network element filtering criteria. The channel

protection policies are determined to provide channel protection requirements

according to associated security such as IPSec, SSL/TLS, and SA. The operational

policies described the behavior of a network in the face of any triggered event.

Figure 2.12 Simple Policy [95]

85 | P a g e

Policies can be divided into two main categories: management policies (using

policies for managing resources) and security policies (using policies for security

purposes like controlling traffic). [95] classified policies into five main policy types

based on their intent:

Motivational Policies These types of policies focus on whether and how a

policy goal is accomplished. The two specific related policies in this category are

known as Configuration and Usage policies.

Installation Policies These policies represent specific administrative

permissions as well as dependencies among different components. In other words,

they define what can and cannot be put on a component and configuration of

mechanisms on component installation.

Error and Event Policies These policies define what action should be taken in

case of a component failure or malfunction.

Security Policies These are essential policies that deal with the security of the

components and the whole system. Security policies define the desired behavior of

the heterogenous application, systems, networks, and any type of object within the

system. They mainly deal with accessibility, authorization, authentication,

accountability, and auditing rules to system resources/components. They determine

the validated actions to be performed on any resources within the system.

Service Policies These types of policies described available services in the

network. Service policies characterize the network and other services within the

system.

A security policy mostly includes two parts, the targeted traffic, and the

matching action. Security devices determine the targeted traffic using a existing fields

of a packet header like IP address, port, and protocol. The action can be considered

any possible action within the system like a drop, or a forward. Each security

mechanism enforces the policies according to its method and criteria [99].

86 | P a g e

2.6.1 Security Policy Mechanisms

In this section, we explore various security policy mechanisms.

The principal aim of security mechanisms is to analyze and enforce the policies.

The existing mechanisms can be divided into two parts based on their operations:

statically or dynamically. Static mechanisms enable security devices to analyze the

program source code or binary code before the execution step to catch the security

violations before allowing the program to be run. These methods are not efficient for

large-scale virtual environments such as the cloud with many VNFs and services. On

the other hand, dynamic mechanisms monitor the programs and services during their

running time and interven as necessary. [100] enforce the security policies according

to program/application code. The study presents a taxonomy of security policies based

on the granularity of the code.

The multi-tenancy allows resources to be shared among multiple users and

services. However, the challenge is on how to enforce the policies in such an

environment. New technologies like virtualization, cloud, SDN, and NFV have

revealed new challenges to enforce security policies. [101] demonstrated a security

architecture based on virtualization and Trusted Computing technologies. The model

addressed customer isolation in which isolation policies specified by customer

policies that are automatically enforced. The model solution was presented according

to Trusted Virtual Domain (TVD). [102] introduced CloudFlow as cloud-wide policy

enforcement to deploy the policies on the cloud. The model enforced the information

flow policies. The model is initially designed for an openstack cloud environment.

Another study presented by [103] proposed a middleware to enforce security policies

in the OpenStack cloud environment. It is a pluggable module within the OpenStack

nova service. The model decides on user requests according to given security policies.

The model is limited to the OpenStack environment. [104] proposed a policy-based

security architecture to secure SDN domains. They defined different modules within

their application to determine security policies related to packets and match for

conflict discovery. It only detected policy conflicts concerning a request. The

87 | P a g e

mechanism did not include prediction on security policy violations. A monitoring

approach was presented by [105] as a security solution to detect malicious or

compromised services according to their agent monitoring with the capability of

enforcing policies. The policy enforcement mechanism supports service interaction

authorization policies. The model used interaction authorization policies to enforce

one/more policies. The model is limited to end-to-end service monitoring in a cloud-

based environment. [106] introduced a policy space analysis and focused on

addressing issues related to network security policy enforcement on middleboxes.

Using software-defined networks, [107] proposed a policy-based security

architecture to secure inter and intra domain communication between different hosts

across multiple domains with their Policy-based Security Application. A policy

language was presented which specifies attributes associated with entities and flows

in SDN. [108] introduced an approach for automatic enforcement of security policies

in network function virtualization according to dynamic network changes. It deployed

virtual security functions (VSFs) for security policy reinforcement and introduced a

security awareness manager in the orchestrator. A cyberspace-oriented access control

model (CoAC) was proposed to provide access to sensitive data [109]. The method

considered operations a combination of many atomic processes and defined a CoAC

policy that permits access only if a particular operation's security risk is below a

specified threshold.

2.6.2 Access Control Policy Enforcement Methods

The major responsibility of access control policies is to restrict access between

a subject (initiator who wants to access a resource) and an object (reactor which is the

resource to be accessed by subject). Access controls are described as a significant part

of security analysis on cloud computing. The majority of security mechanisms studies

have focused their research on proposing various access control policy enforcement

methods such as [110], [111], [112], [113], [114], [115], [116].

88 | P a g e

 In this section, we describe access control mechanisms. [117] reviewed existing

access models and policies along different application scenarios focusing on cloud

and user requirements. The major components of an access model are described as

subject, object, and access control policy. The research reviewed four types of access

control: task-based access control, action-based access control, attribute-based access

control, and usage-based access control. They described a comparison between

different types of access controls shown in Figure 2.13.

Figure 2.13 A comparison between different types of access control models[117]

The authors in [118] proposed a geographical Role-Based Access Control. It

relied on role-based mechanisms and defined constraints according to user location

and position. It relied on role-based mechanisms and described conditions according

to user location and position. The method mostly focuses on determining an

authorization control function according to users' role schema and position.

A cloud access control security model (CCACSM) was proposed considering

different policy levels: authority level, action level, and behavior level. The model is

89 | P a g e

categorized under the action-based access control model. The CCACSM architecture

described the relation among the main component of an access control model (Figure

2.14) [119]. [120] proposed POSTER for enhancing administrative role-based access

control. It has integrated obligations via an executive model by defining three main

obligatory actions. However, the model only focused on administrative actions within

the system. Although the model reduced potential security administrative risk, it

mainly concentrated on a decentralized system rather than centralized mechanisms.

[121]addressed the access control difficulties related to objects and linked object

states.

Figure 2.14 CCACSM architecture [119]

90 | P a g e

2.7 Security by Isolation

Isolation is the most critical part of every shared and multitasking computing

system, which provides resilience against different forms of violation/attacks and is

an essential measure in our design. Isolation is a technique for separating or

partitioning different concerns that can be used for both resource management and

security purposes. For example, process isolation in the time-sharing operating system

is realized with virtual address space, and network isolation in the early network

operating system is realized with a firewall. In network management, system

management, and service management, isolation is used to identify, detect, and isolate

faults, misconfiguration, and performance issues. Security isolation has been a critical

approach to system and network security. The systems community has adopted

virtualization as the technique of choice for providing isolation. [8] identifies some

challenges related to virtualization, mainly focusing on Side-channel attacks (SCAs)

vulnerabilities causing isolation violation.

The responsibility of the infrastructure service provider (ISP) is to provide a

secure infrastructure that ensures tenant’s virtual machines are isolated in a

multitenancy environment, and the various networks within the infrastructure are

isolated from one another. Virtual networks can be one or many networks over which

virtual machine traffic flows. Isolation of virtual machines within this network can be

enhanced using virtual firewall solutions that set firewall rules at the virtual network

controller. Although virtual machines are often marketed as the ultimate security

isolation tool, it has been shown that many existing hypervisors contain vulnerabilities

that can be exploited.

 In a multi-tenant environment, traffic isolation, address space isolation,

performance isolation, and control isolation are often required for different purposes.

Traffic isolation prevents any data packets from leaking between tenants. Address

space isolation allows the tenants to isolate their network by choosing their end-host

IP and media access control (MACs) addresses independently from each other.

91 | P a g e

Control isolation enables the tenants to control and configure their network without

affecting other tenants [122].

The design of classical security devices cannot protect the components of

virtualized environments since traditional security depends on physical network

devices. These devices cannot see the significant security activities inside virtualized

environments [123]. Isolation will become an essential technique for monitoring

virtual security boundaries.

2.7.1 Isolation Classification

In this section, we classify different types of isolations and their potential usage:

Tenant Isolation In a cloud configuration, tenants share the same underlying

physical infrastructure. Without network isolation, tenants could intentionally or

unintentionally consume a large part of the network, intrusively see data on the

network that does not belong to them or invoke breaches such as unauthorized

connection monitoring, unmonitored application login attempts, malware

propagation, and various man-in-the-middle attacks.

Domain Isolation In order to label packets and enforce the isolation policies, it

is necessary to determine the domain for each data flow. Each domain is associated

with a set of input ports of the edge switches. Since the architecture distinguishes

intra-tenant, inter-tenant, and external communications, the controller needs to check

to which IP range the destination IP address belongs. There is a separate database

table for mapping public IP addresses to the tenants who have been allocated such

addresses.

Data Isolation Customers in fields such as banking or medical records

management often have extreme data isolation requirements and may not even

consider an application that does not supply each tenant with its own individual

database. VM Isolation A hypervisor divides the host hardware resources among

92 | P a g e

multiple VMs. It coordinates all accesses by VMs to the underlying hardware

resources and thus provides the necessary isolation between the virtual machines. In

other words, VMs can share the physical resources of a single computer and remain

completely isolated from each other as if they were in separated physical machines

[124].

VM Isolation A hypervisor divides the host hardware resources among multiple

VMs. It coordinates all accesses by VMs to the underlying hardware resources and

thus provides the necessary isolation between the virtual machines. In other words,

VMs can share the physical resources of a single computer and remain completely

isolated from each other as if they were in separated physical machines [124].

Traffic Isolation in Hypervisor-Based Environments Network traffic isolation is

through the creation of segmented networks. In physical network isolation, network

interface cards will be dedicated to a specific application or group of applications, and

thus physical segmentation is provided between networks. In logical/virtual network

isolation, software such as VLAN or network interface virtualization is used. Each

interface is assigned a unique IP and MAC address; thus, each is logically distinct.

The VLAN tagging can be defined in the host server to isolate network traffic further.

Traffic for multiple applications share the same physical interfaces, but each

application sees only the network traffic and resources assigned to it and cannot see

traffic or resources assigned to other applications.

Traffic Isolation in Zones-Based Environments Similar to hypervisor-based

virtualization, when a zone is provisioned, one or more network interfaces are

presented, and the IP stack is enabled. The IP and MAC addresses are configured on

the logical interface. Routing policies and network security can be hardened in these

zones when the zones are provisioned.

Network Isolation Any isolated virtual network can be made up of workloads

distributed anywhere in the data center. Workloads in the same virtual network can

reside on the same or separate hypervisors. Additionally, workloads in several

multiple isolated virtual networks can reside on the same hypervisor. Virtual networks

93 | P a g e

are also isolated from the underlying physical infrastructure. Because traffic between

hypervisors is encapsulated, physical network devices operate in an entirely different

address space than the workloads connected to the virtual networks.

Network Segmentation Network isolation is between discrete entities. Network

segmentation applies to homogeneous entities, e.g., protection within a group.

Traditionally, network segmentation is a function of a physical firewall or router

designed to allow or deny traffic between network segments or tiers. For example,

segmenting traffic between a web tier, application tier, and database tier. In a virtual

network, network services that are provisioned with a workload are programmatically

created and distributed to the hypervisor vSwitch. Network services, including L3

segmentation and firewalling, are enforced at the virtual interface.

2.7.2 Standard Network Security Solutions by Isolation

With compliance and regulatory requirements, network isolation and network

security have become essential elements of any service infrastructure deployment.

The technology used for network traffic isolation does not always cover issues with

security breaches that stem from external networks, side-channel attacks, or

regulatory concerns between tenants. Network security is built on top of network

isolated traffic. Standard security solutions include:

Network Firewalls Firewalls are often situated at the edges of networks to filter

potential security threats coming from untrusted sources. Network firewalls may be

hardware devices, software such as soft switches, or a combination of both.

LAN Tagging Tagging allows multiple logically separated networks (VLANs)

to use the same physical medium. Thus, two separate VLANs cannot communicate

with each other. VLAN configurations are performed at the switch and define the

mapping between VLANs and ports. Packets sent by a virtual network interface on a

VLAN cannot be seen by virtual interfaces on other VLANs, and broadcast and

94 | P a g e

multicast packets sent from a virtual network interface on a VLAN will be distributed

only to the network interfaces on the same VLAN.

Role-Based Security On the client-side, the user devices must have hardened

user authentication. On the database server side, role-based security, or role-based

access control (RBAC), needs to be employed.

2.7.3 Cloud resource isolation mechanisms

In this section, we explore several existing isolation mechanisms in cloud

computing. Researches focus on a various level to provide isolation within the system.

Security isolation analysis in the cloud is comparatively a domain with less

work. [125] proposed a multi-tenant isolation solution using VMs as the boundary of

security whereby applications run within containers on top of these virtual machines.

To improve the security of running applications as a container in the cloud, it was

suggested to run one container per VM. However, the drawback of such a system is

recognized as its efficiency in performance. Silverline was proposed by [126] for

enhancing data and network isolation for cloud tenant’s services. The model

concentrated on providing isolation via OS-level and virtual instances. It used labeling

and information-flow tracking services. The method only focused on providing data

and network isolation at the tenant level.

 A mechanism known as SLIM (Secure Logical Isolation for Multi-tenancy)

was introduced in [127] as an end-to-end approach to providing isolation among

tenant’s resources in a multi-tenant cloud storage environment. SLIM consisted of

five privilege processes: security gateway, gatekeeper, guard and proxy, tenant

authenticator, and request. The model only considered tenant-level isolation and two

types of attacks: within and across the tenant. [128] proposed a method for strong

tenant separation in cloud platforms by isolating components at the network level. It

focused mainly on tenant separation via physical and cryptographic separation for

large infrastructures. [129] conducted a research survey on network isolation solutions

95 | P a g e

for multi-tenant data centers for isolating cloud services. It emphasized the main

challenges of isolation in a multitenant environment and pointed out appropriate

existing isolation solutions. [130]proposed a Highly Scalable Isolation Architecture

for Virtualized Layer-2 Data Center Networks (SVDC). It used SDN technology to

provide isolation for a layer-2 data center at the network level. The method separated

global identifiers for virtual networks and enhances MAC-in-MAC encapsulation.

The SVDC only provided isolation at the network level by decoupling identifiers

while using the server-local identifier to differentiate virtual networks within a

physical server.

2.8 Open-sources for Deploying a Cloud Security SDN/NFV

platform

CloudSimSDN-NFV: It is a new simulation framework consisting of NFV,

cloud, and SDN features. It is an extended version of CloudSim, a novel framework

for modeling cloud computing. The framework supports NFV functionalities and is

based on mapping the architecture and components of ETSI NFV Management and

Orchestration (MANO), including NFV Orchestrator (NFVO), VNF Manager

(VNFM), and Virtual Infrastructure Manager (VIM) [29].

OpenStack: OpenStack is an IaaS cloud platform based on shared storage,

compute, and network resources. OpenStack is a collection of open-source technology

projects with various functional components. OpenStack is an example of an

integrated software-defined infrastructure involving ETSI NFV architecture

framework, SDN network infrastructure, and cloud IaaS. It provides an automated

infrastructure for cloud users. The OpenStack uses SDN technology to generate

automated network infrastructure, NFV to create VNFs, and cloud to orchestrate and

manage services. It is an IaaS cloud solution based on the integration of numerous

benefits that interact through a set of OpenStack APIs, which is available to all cloud

users.

96 | P a g e

OpenFlow: The protocol is considered as the first SDN communication

standard protocol. The OpenFlow defines the southbound communication between

SDN controller and OpenFlow Switch. It allows remote programmability and

management of network devices through a network controller. The protocol provides

a dynamic configuration of network functions via its controller.

Mininet: It enables constructing a realistic virtual-based network, switches, and

application code on a single virtual machine. It can connect to various types of

commercial SDN controllers like OpenDaylight, FloodLight, Pox, and so on. It

provides an experimental testbed environment which consists of OpenFlow and SDN

system.

OpenFlow Switches: It is an OpenFlow-based data switch that communicates

over an OpenFlow channel to an SDN controller. It contains one or more flow tables

and a group table that perform packet forwarding and lookup. It enables massive

network automation and supports standard management, interfaces, and protocols.

2.9 Summary

This chapter provided an overview of software-defined infrastructure and its

core technologies, including virtualization, cloud computing, software-defined

networking, and network function virtualization. Moreover, this chapter discussed

security challenges related to each technology as well as security isolation challenges.

We provided a brief overview of various related topics utilized in software-defined

security architecture, including policies and their current approaches. A brief

introduction to open-source technologies used for developing and deploying the SDS2

platform was given.

97 | P a g e

Chapter 3

3 Software-Defined Security
Service Model

3.1 Introduction

Over the last decade, cloud computing has established itself as an effective

technology for sharing and provisioning resources among tenants in a pay-as-you-go

service fashion. The concept of everything-as-a-service was developed to utilize

virtualization technology that allows underlying physical resources to be virtualized

into virtual resources and services.

 In parallel to cloud computing, the software-defined networking (SDN)

paradigm has enabled the automation of virtual networks and network management

with centralized control. Network function virtualization (NFV) pushes the concept

even further by allowing virtualization (software implementation) of network

functions, traditionally realized by hardware, and deploying them on computing

devices.

Naturally, the concept of Cloud SDN/NFV integrated platform has been realized

to take advantage of resource pooling and virtualization of cloud computing,

programmability and automation of SDN, and network function virtualization

performance, programmable, and dynamic systems and services. Along with these

98 | P a g e

advances in resource and service virtualization, security issues have been explored as

well. Security controls have to be developed to safeguard these platforms.

Many attempts have been made to address integrated resource-infrastructure

platform security, providing security mechanisms and virtual security functions to

counter numerous emerging security threats [43]. However, the challenge remains due

to the scale and complexity of the virtual resource infrastructure and the difficulties

in developing a matching security architecture that provides security and isolation of

resources in a multi-tenant environment as well as provisioning dynamic security

functions for security services on demand.

This thesis addresses those issues by proposing a logically centralized Software-

Defined Security Service (SDS2) Model for provisioning on-demand security

functions capable of protecting cloud resources with the help of Software-defined

Networking and Network Function Virtualization technologies.

The remainder of this chapter is organized into four sections. Section 3.2

justifies the proposed SDS2 model. Section 3.3 presents SDS2 security model. Section

3.4 describes the application of SDS2 in a data centre. Section 3.5 discusses the

features of the SDS2 model. Section 3.6 provides a roadmap of this dissertation.

Section 3.7 summarizes this chapter.

3.2 Why Programmable and automated Security Services

on Demand?

Cloud computing has evolved into a key structure for IT industries for providing

users on-demand services. Cloud architecture enables users to access cloud services

over the Internet at any time regardless of their location through application software

like web browsers. Cloud computing resources such as virtual servers, virtual storage,

virtual networks, and virtual services are made available using virtualization

technologies. In the current world, cloud computing has enabled many emerging

99 | P a g e

technologies, resources, and services crucial to the current state of our lives in various

areas, from industrial infrastructures and services to personal healthcare.

However, a broad movement to cloud infrastructure is limited by security

challenges questioning cloud services reliability regarding protecting organizations'

sensitive data and resources over intelligent security threats, especially over an

integrated Cloud/SDN/NFV infrastructure. We have identified a number of significant

issues of currently integrated cloud security platforms:

The vast numbers of virtual functions and their connectivity-service

infrastructure. As anticipated, with billions of virtual functions within the

infrastructure and their connectivity, the challenge here is how to manage the security

and complexity of these functions and their connectivity over the broad area of cloud

infrastructure while harnessing their main capability to protect cloud resources. The

vast number of virtual connections among virtual functions makes it even more

difficult.

The enormous number of virtual functions and their provisioning framework.

The virtual functions are capable of interacting with others functions and performing

their designated functions. However, the challenge lies in automating secure

orchestration and provisioning these functions in critical areas as needed dynamically.

The massive number of virtual resources and their security isolation

mechanism. As projected, with billions of virtual resources within the cloud

infrastructure, the challenge is to provide an effective mechanism to provide inclusive

visibility on undefined/invisible boundaries caused by the virtual functionality of

resources within the cloud.

The vast number of virtual resources and their massive vector attacks. The

augmented number of virtual functions and the complexity of their interaction within

the virtual environment opens up massive security threats. The challenge is to provide

proactive security mechanisms that dynamically predict security threats regardless of

the number of virtual resources and functions within the infrastructure.

100 | P a g e

To address the challenging issues, we investigate various security models,

isolation technologies, security function capabilities, protocols, and programmable

security mechanisms for efficiently protecting the cloud and dynamic orchestration of

virtual security functions.

On security orchestration and programmability of on-demand virtual

functions. We explore security models and mechanisms for security service

orchestration. We investigate a software-defined security architecture with a

centralized security controller with overall visibility on the security functionality of

underlying virtual functions to orchestrate a massive number of virtual security

functions.

On automated secure connectivity and secure network architecture. The

Software-Defined Networking (SDN) plays a critical role in SDI architecture by

creating programmable virtual connectivity between components. Software-Defined

Networking is developed as a technology to remove the current black box network

infrastructure restrictions. SDN decouples the decision-making (control) plane from

the data forwarding plane for adequate data transportation and fine-grained control of

network management and services.

The SDN controller can configure networking devices automatically to deal

with dynamic networks [131]. The SDN programmability network in security is still

not so common and is still developing. We aim to adopt SDN to deploy our security

network within our security architecture for efficient programmability of network

security between our virtual security components.

On virtual security function. Network Function Virtualization (NFV) offers a

new method for creating, deploying, and managing networking services by separating

network/security functions from underlying hardware equipment. The technology

introduces Virtual Network Functions (VNFs) as software-based virtual functions that

can be created on-demand and launched into the system wherever required without

installing new equipment [132]. NFV is a new emerging technology and did not

completely develop within the infrastructure due to its architecture limitations and

101 | P a g e

incomplete standards and protocols. However, we aimed to adopt the concept of VNFs

to create specific programmable and dynamic Virtual Security Functions within our

security architecture according to its designated functionalities.

On communication, control, and management protocol. Virtual security

functions are not network routing devices, so heavy protocols for program network

flows in network functions are not applicable to configure and manage VSFs in

dynamic and programmable security infrastructure. No specific efforts have been

made to address this issue within cloud security architectures. We decided to

investigate the deployment of a new and simple protocol for transferring specific

security parameters among components of our security model.

On visibility of security boundaries and construction of dynamic security

boundaries. Security issues in a virtual cloud environment are more complex and

challenging than those in traditional infrastructures since resources are both

virtualized and shared among numerous users. As a result, virtual boundaries among

components/participants are not well defined and often undefined, and hence they are

not visible/controllable by the providers.

Isolation implies creating security boundaries for protecting cloud assets at

different levels of a cloud security architecture. The main challenge is finding

effective mechanisms for constructing dynamic security boundaries in cloud

infrastructure. We investigate various security isolation mechanisms in different

levels to provide an operative, intelligent and innovative technique to create security

boundaries for protecting cloud resources.

On proactive security violation mechanism. A dynamic virtual environment

of cloud infrastructure with a massive number of interactions among its virtual

resources cannot rely only on traditional security mechanisms with limited

capabilities to prevent and predict real-time security violations. We investigated

mechanisms and algorithms to enable dynamic, intelligent, and effective proactive

mechanisms to protect cloud resources regardless of their complexity.

102 | P a g e

This thesis addresses these significant challenges by introducing a logically

centralized Software-Defined Security Service (SDS2) Model. It provides a

distributed architecture for orchestrating, managing a specific Interaction-based

Virtual Security function to monitor cloud entities interactions. It proposed an

innovative and intelligent Policy-based Interaction Model to manage, detect, and

predict security violations in cloud infrastructure.

This chapter discusses the significance of the proposed Software-Defined

Security Service (SDS2) Model for provisioning on-demand virtual security functions

and dynamic construction of security boundaries within a cloud infrastructure. We

represent an overview of the proposed SDS2 Model and its indispensable components.

A roadmap of this research is sketched.

3.3 Software-Defined Security Service (SDS2) Model

The ever-increasing number and gravity of cyberattacks against cloud assets,

together with the introduction of new technologies, have brought many serious cloud

security issues. Security issues in a virtual cloud environment are more complex and

challenging than those in traditional infrastructures since resources are both

virtualized and shared among numerous users. Traditional security mechanisms are

not able to deal with virtualized environments.

 The design of classical security devices cannot entirely protect the components

of virtualized environments since traditional security depends on physical network

devices. These devices cannot see the significant security activities inside virtualized

environments [123]. To combat security attacks where attackers use software to

exploit infrastructure vulnerabilities and virtualized agents to attack from anywhere

and on multiple fronts instantaneously, we need to deploy the same tools and

technologies of the attackers.

103 | P a g e

The concept of Software-Defined Security (SDSec) is a new approach in

designing, deploying, and managing security by separating the forwarding and

processing plane from the security control plane, similar to how SDN abstracts the

forwarding plane from the control and management plane. Such separation provides

a distributed security solution, which scales as VMs by virtualizing the security

functions, and provides the ability to manage it as a logical, single system [133].

We propose the SDS2 model as an SDSec Service that uses virtual cloud

resources and can be deployed by the cloud provider to protect its integrated

infrastructure. SDS2 model exploits six main concepts: logical centralization of

security control, virtualization of secure connectivity, security functions

virtualization, and orchestration of virtual resources, dynamic construction of security

boundaries, proactive technique encountering security violations according to cloud

resource interactions.

This chapter describes our proposed Software-Defined Security Service model.

The model integrates Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) techniques to enable dynamic programmability of virtual

security functions within the introduced SDSec system. The system entails a novel

model of a Software-based Virtual Security Function (VSF), a streamlined SDS2

Security Controller (SC), an innovative Interaction model and practical Policy-based

Interaction Model, and a novel and efficient protocol (Sec-Manage) between SC and

VSFs for both management and communication.

The proposed model permits the programmability of heterogeneous virtual

security functions for provisioning on-demand security services and their efficient

management. A prototype is implemented with configurable virtual security functions

representing specific interaction-based security functions, operating Sec-Manage. The

implementation results demonstrate the feasibility and efficiency of the proposed

model.

In the context of, we consider two main concepts: i) an underlying security

device refers to specific virtual interaction monitoring known as VSFs in relation to

104 | P a g e

the interaction model and its parameters; ii) an underlying virtual resource refers to

virtual cloud resources such as Network, APP, Users, VMs, and Storage.

The SDS2 deploys the very virtual resources of the cloud to provide its

protection service. It behaves like a trusted tenant overseeing and providing the

security service for the cloud infrastructure. SDS2 belongs to the new software-

defined approach that manages security by separating the security forwarding and

processing plane from the security control plane. SDS2 utilizes concepts and

techniques of cloud, SDN, and NFV.

Applying the NFV concepts for security, virtualization technologies are used to

implement virtual security functions (VSFs) on a VM or industry-standard commodity

hardware. These virtual security functions can be created on-demand and moved to or

instantiated in strategic locations in a software-defined dynamic virtual network

environment.

Applying the SDN concepts for security, network virtualization is deployed to

provision virtual security networks (VSNs) connecting virtual security functions. The

SDN enables the SDS2 model to create an automatic and dynamic specific

communication link among VSFs and their connected security controller within the

system.

A logically centralized SDS2 controller forms a domain-wide view of the

underlying network of virtual security functions. The SDS2 controller can program,

configure, and control the VSFs autonomously through a new and efficient proposed

protocol known as the Sec-Manage protocol. The proposed SDS2 model is shown in

figure 3.1. It consists of three separate planes: the security application plane, the

security control plane, and the security infrastructure plane or data plane.

105 | P a g e

Figure 3.1 SDS2 overall architecture

The SDS2 security control plane, which includes one or more security

controllers, provides an abstraction to build security services over virtual security

elements. It is considered an SDSec network operating system that provides essential

security services via interfaces: the southbound interface (SBI) to network devices

and the northbound interface (NBI) to security applications.

3.3.1 SDS2 Security Layers

The high-level architecture of the Software-Defined Security Service (SDS2)

model with three principal layers, comprising the security application layer, the

security control layer, and the security data layer, is shown in figure 3.2.

106 | P a g e

Figure 3.2 SDS2 Security Layers

• The Security Application Layer

The security application layer contains security applications and interfaces. The

developers can deploy their security policies and applications regardless of the

knowledge about the underlying security functions through a Northbound API.

• The Security Controller Layer

The security control layer accommodates the security controller and its

components (Figure 3.3). The main component of this layer refers as SDS2 Security

Controller. Various components have been deployed within the security controller

from analyzing interactions, interpreting security policies to defined modules to detect

and predict security interaction violations. Security controller functions interpret

security requirements, like security policies, and analyze interaction parameters based

on the interaction model. The security controller directs security policy rules,

interaction parameters, and instructions to VSFs through the Sec-Manage protocol.

107 | P a g e

The SDS2 security controller is a software element written in java with

additional components to protect cloud resources. These components allow the

security controller to i) process the requested interaction from inside/outside, ii)

control, orchestrate, and manage virtual security functions to monitor interactions, iii)

intelligently detect and predict security violation according to interaction parameters.

Details of the security controller are described in Chapter 6.

Figure 3.3 Security Control Layer

• The Security Data Layer

This layer is composed of virtual security functions and Sec-Manage protocol

(Figure 3.4). The VSFs can form an individual or a cluster to monitor a specific or

group of interactions triggered within the system. The interaction can be categorized

into three classes: i) user request, ii) interaction triggered by security controller, iii)

triggered interaction within the system between resources. VSF is a simple but

efficient and intelligent security function, monitoring cloud entities interactions to

detect and predict security violations. It should be noted that VSFs are not switches

or routers; they only perform their defined security functions and relay their

data/status to their controller and other VSFs when directed, such as in chaining

operations.

108 | P a g e

The Sec-Manage protocol is a simple protocol designed to program, configure,

and manage VSFs according to the interaction model and allow them to report their

operational status to the controller.

Figure 3.4 Security Data Layer

3.4 Application of SDS2 to Data Centre Security

With the SDS2 approach, we can design, implement, and modify the individual

subsystems independently. A data center is an integrated cloud-SDNNFV

infrastructure where entities include physical resources (physical servers, routers,

links, storage, and their interfaces), tenants, and their virtual resources (virtual

networks, virtual machines, virtual storage, virtual services, and their virtual

interfaces).

A common approach to managing system complexity is identifying a set of

layers with well-defined interfaces among them. Layering minimizes the interactions

among the subsystems and simplifies the description of the subsystems. Security of a

system is often achieved by ensuring its subsystem's integrity and authorized access

109 | P a g e

to the system (subsystems) at their interfaces. The security isolation approach can

identify not only physical but also virtual boundaries that are missing in traditional

security mechanisms. Furthermore, security isolation effectively localizes security

issues and can be tailored to deal with appropriate concerns.

With this in mind, SDS2 can be implemented and offered as a security service

to protect a data center. Depending on the data center, different numbers and types of

virtual security functions can be instantiated, dynamic virtual security networks can

be provisioned to interconnect those VSFs, and a logically centralized SDS2 controller

can be created on-demand to serve the required security service.

The provisioned SDS2 configuration can be attached/imposed on the specified

data center as dictated by its policies and architecture. The SDS2 will enable security

isolation through its interaction model and its software-based security functions

located at critical locations in both physical and virtual layers within the infrastructure

under the controller's control.

3.5 SDS2 Features

This section describes the main feature of the proposed SDS2 security model

regarding the provision of on-demand security services in cloud infrastructure.

• Logically centralized security controller

A logically centralized security controller (SDS2 security controller) located in

the control plane has a global view of all the tenants, data, physical/virtual resources,

and interconnections. It possesses all security policies concerning the accesses and

interactions of these components. Armed with such global knowledge, SDS2 can

comprehensively provision a security service to monitor, detect, and protect the

infrastructure. The security controller directly controls and manages virtual security

functions.

110 | P a g e

• Provision on-demand virtual security functions

The feature represents the ability of the SDS2 model to provide on-demand

security functions to instantly respond to security threats at any time. Therefore,

virtual security functions require to be automatically orchestrated to provision on-

demand virtual security functions and at any place within a cloud infrastructure—

these specific virtual security functions are designed to provide on-demand

monitoring relying on an interaction model.

The SDS2 enables the flexible and dynamic provision of on-demand virtual

security functions in scalable cloud infrastructure. A security service can be

established by individual/chaining virtual security functions, placed in a critical

position within the cloud concerning interaction among cloud resources. According

to on-demand security protection requirements, the SDS2 orchestrates its specific

underlying virtual security functions to achieve both security detection and prediction

required by cloud resources.

• Virtual security functions automatic programmability

The SDS2 enables the programmability of virtual security functions over

interaction parameters through an innovative protocol. The security controller can

program the data flows over the core network to deliver required security data,

including interaction parameters from the security controller to VSF or vice versa. It

dynamically programs the virtual security function according to interaction parameter

changes.

• Dynamic Security Isolation

 In multi-tenant cloud architecture, isolations are a crucial concept for both

security and infrastructure management, and they ought to be considered at functional

entity levels and appropriate abstraction levels of the infrastructure. Defining object

boundaries is extremely difficult because virtual objects are dynamic in both

characteristics and functionality. The construction of security boundaries in a cloud

111 | P a g e

system is related to the characteristics of the interacting entities in the environment

and the policies and constraints that govern their interaction.

 In the SDS2 security model, security policies are used to construct security

boundaries between cloud objects at their interaction level. A novel policy-based

interaction model is deployed to build security boundaries according to proposed

interaction parameters dynamically. The model is governed by cloud system security

policies and constrained by cloud interacting entities locations and levels. Security

policies are used to construct security boundaries between cloud objects at their

interaction level.

The SDS2 constructs security boundaries dynamically at the interaction level.

The SDS2 uses the security policies/rules over the proposed interaction parameters

model and the constraints imposed on the interacting entities. The security model

builds a robust, dynamic, and automated security boundary to protect cloud assets

relying on a solid and innovative interaction model and security policy expressions

that govern the interactions.

• Intelligent security detection and prediction mechanisms

The SDS2 security model proposes a proactive mechanism against security

threats within a cloud infrastructure. The security model introduces a novel policy-

driven interaction model that governs the relationship among entities in the cloud

environment and develops intelligent algorithms for security breach detection and

prediction.

The Policy-based interaction model proposes to securly construct dynamic

security boundaries formed by authentic interaction parameters based on security

rules extracted from the governing security policies. The model provides a framework

for incorporating system security policies and entity constraints in constructing

interaction boundaries and defining a security dictionary of expected/unexpected

behaviour of cloud entities while they access resources in the cloud environment. The

model concentrates on new dynamic security policy approach at the interaction level

112 | P a g e

between cloud entities through a set of interaction parameters. The SDS2 model

focuses on detecting and predicting interaction security violations at the interaction

level over violation of interaction parameters.

The interaction model is defined by parameters that control activities among

components/entities in a cloud system. The model relies on an object model of

interactions defined by four major parameters as Mode (M), Positional Relationship

(R), Action (A), and time (t). Each parameter consists of different values. The M refers

to possible mode and direction between entities during an interaction. The R

represents all possible relation between entities considering their role at the time of an

interaction. The A signifies possible actions between entities during an interaction.

The t refers to valid time of an interaction.

According to the proposed policy-based interaction model, the SDS2 model

deploys automatic detection and prediction algorithms called ISVDP to identify

security breaches related to interaction parameters. The algorithm also maps out

possible future attacks based on expected violations of the currently defined

interaction parameters. The algorithm automatically detects and predicts security

boundary violations against interaction parameters related to requested interaction to

validate/invalidate the requested interaction parameters.

• Virtualization with SDN and NFV technologies

SDN: by leveraging the SDN paradigm, the SDS2 is able to provide an automatic

and programmable security network between itself and its virtual security functions.

It enables the security controller to dynamically create a connection between the

security controller and VSFs at the required time. The principal of SDN and its

protocol inspired the developing of an innovative Policy-based interaction protocol to

control and manage virtual security functions.

NFV: The SDS2 is inspired by NFV technology and virtual network function

concepts to construct its unique virtual security function based on the interaction

model. The VSF in our usage is created to perform a specific security function and is

113 | P a g e

deployed at strategic locations in the cloud infrastructure that require protection. It is

a software-based function constructed to protect cloud infrastructure against any type

of interaction violations. VSF is a simple but efficient and intelligent security

function, monitoring cloud entities interaction to detect and predict security

violations.

In summary, the proposed SDS2 delivers security as a service over a cloud

infrastructure through defining security boundaries for cloud infrastructure with a

novel interaction-based security isolation technique. It inherits the concepts of

centralized controlling and separation of decision-making from security functions to

build an intelligent and automated programmable security model.

3.6 Thesis Roadmap

It is worth noting that this chapter presents an overview of our software-defined

security service model for provisioning on-demand security services and the

construction of dynamic security boundaries. To build a robust security service model

to provide security isolation for protecting cloud resources efficiently, the security

service model requires the capability to orchestrate, manage and control on-demand

security functions. This research leverages the SDN and NFV technologies.

Although SDN and NFV technologies are capable of meeting demands in

relation to automation, programmability, and dynamic creation of network functions,

there are significant challenges in applying these techniques to security architecture,

mostly to protect cloud resources. In this research study, we propose the SDS2 model

to overcome challenges in adopting these technologies in constructing dynamic

security boundaries.

We propose a software-defined security architecture to provide programmable,

automated, and dynamic orchestration and management of on-demand security

functions. We propose an intelligent security policy-based interaction model

114 | P a g e

consisting of Interaction Security Violation Detection/prediction mechanisms to

construct security boundaries. We present a dynamic and intelligent Virtual Security

Function (VSF) to monitor interaction among cloud entities to enrich the limited

functionality of security functions. To control and manage VSFs, we propose a policy-

based interaction manage and control protocol, termed Sec-Manage. We design a

security controller (SC) to control and manage VSFs and construct security

boundaries within a cloud infrastructure.

To pave the way for designing and deploying an innovative integrated software-

defined security platform, a roadmap for the rest of this thesis has been planned as

follow.

Chapters 4, 5, and 6 describe the design and operation of the proposed

Interaction Model, Sec-Manage protocol, and SDS2 architecture together with novel

components, including SDS2 Security controller, Sec-Manage Protocol, and VSFs.

Chapter 4 describes an innovative policy-based interaction model, including its

components and essential algorithms to detect and predict security violations. We

propose a novel policy-driven interaction model that governs the interactions among

entities in a cloud environment. According to our best knowledge, this is the first

approach to use interaction parameters for building dynamic and automated security

boundaries.

Chapter 5 describes the design and the implementation of the Sec-Manage

protocol. The significant contributions of this chapter include: 1) Design and develop

a novel Sec-Manage protocol that governs communication between the security

controller and its VSFs. The Sec-Manage protocol focuses on transferring interaction

security messages and required parameters between the security controller and VSFs.

2) A novel approach in programming behavior and configurational management of

VSFs according to the proposed interaction model.

Chapter 6 describes the SDS2 architecture and its main component, the security

controller. It provides the overall design of the security architecture. The architecture

115 | P a g e

proposed a novel security architecture that enables automation, programmability, and

provision of on-demand security services to protect cloud resources against

interaction security violations.

Chapter 7 describes the implementation of the SDS2 platform with implemented

elements SC, VSF, Sec-Manage, and policy-based interaction function. We also

evaluate the performance of the platform in the provision of on-demand VSFs.

Chapter 8 concludes this dissertation by summarizing this study and suggesting

future work.

3.7 Summary

This chapter presented the overall picture of our proposed software-defined

security service model to provide on-demand security services and outlined the

roadmap of this thesis. Firstly, we discussed the need for as well as the challenges to

effectively construct security isolations within interaction level in cloud infrastructure

to protect cloud resources. We then provided a high-level description of the proposed

SDS2 model. We discussed the main features of the SDS2 model in relation to the

provision of on-demand security services. Finally, we presented the Thesis.

116 | P a g e

Chapter 4

4 SDS2 Policy-based Interaction
Model for Cloud Security

Breaches detection and
Prediction

4.1 Introduction

Security breaches primarily result from some violation of the rules of interaction

(or policy that governs the interaction) between objects when they interact. Unless

one has a formal model of an interaction between objects, it is difficult to detect,

predict or prevent security incidents. It has been recognized that security policies play

a crucial role in all secured systems because they define what constitutes a security

breach. In other words, security policies define the rules for secure interaction between

objects in an environment.

This chapter introduces a policy-driven entity interaction model and algorithms

to detect and predict security violations in cloud infrastructure. The focus is on object

interaction and constraints, security policy, and security boundary isolation. We

introduce a policy-driven interaction model that governs the relationship among

entities in the cloud environment and develop algorithms for security violation

detection and prediction.

117 | P a g e

The interaction model is defined by parameters that control activities among

components/entities in a cloud system. The model provides a framework for

incorporating system security policies and entity constraints in constructing

interaction boundaries and defining the security dictionary of expected/unexpected

behavior of cloud entities to access resources in the cloud environment.

This chapter is organized as follows. Section 4.2 describes the cloud object

model to be used by the interaction model. Section 4.3 describes the proposed

interaction model and its parameters. Section 4.4 discusses the proposed security

policy-based interaction model. Section 4.5 describes ISVDP algorithms. Section 4.6

presents an evaluation of the proposed algorithms by simulating various interaction

scenarios. Section 4.7 concludes this chapter.

4.2 Cloud Object Model used for Interaction Model

This section described the cloud object model and required components to be

used in our interaction model.

A cloud is built by cloud providers with a multitenant architecture for sharing

resources and delivering services. A cloud platform can be deployed as a public cloud,

a private cloud, a community cloud, or a hybrid cloud. It is entirely service-oriented,

which means everything is delivered as a service to cloud clients. Cloud virtualization

technology provides a flexible and scalable on-demand computing and sharing

resources to its clients. Virtualization also provides some degree of isolation among

cloud tenants regarding services, applications, tenant networks, operating systems,

and other resources. However, these isolation and virtual boundaries are not often

visible to the relevant security controller and hence, securing the cloud, and its

services is challenging. Virtual data centers are relying on their virtual technologies

for provisioning and sharing their resources.

118 | P a g e

Traditional physical security mechanisms are not effective in dealing with

threats and activities from virtual systems and virtual resource components, [123] as

virtual boundaries between virtual components are not often well defined.

Additionally, scalability of resource sharing in a multitenant cloud architecture

introduced a new research area in academia and industry to build centralized security

controllers capable of provisioning, monitoring and isolating physical and virtual

resources in large-scale cloud data centers.

 The infrastructure desires a logically centralized security controller with

visibility on security boundaries within different layers. For this purpose, a security

model was proposed as a dynamic, intelligent, and automated security service/model

to tackle mentioned challenges in a multi-tenant cloud infrastructure [134]. It provides

a security model as well as a security service called SDS2 that applies on the object-

oriented entities of a cloud environment, the interaction among them, and security

policies that govern the interaction. The SDS2 provides a security architecture to

protect cloud assets with policies mapped to the cloud, tenant, and resource security

policy levels.

The main idea of our centralized model centers around the interaction between

constrained entities and is governed by system security policies for the detection and

prediction of security breaches. An interaction can be defined as a “relation” between

the different objects during a specific time slot. So, to define the security boundaries

in terms of interaction, the system requires a sustainable object model. In our security

architecture, we define an object as “a component or a sub-component, both virtual

and physical, that participates in a cloud environment and that can access/be

accessed by other objects according to their properties, security constraints, and

system policies.”

An object has a number of attributes, some are common among all objects

(generic), and some represent specific constraints and characteristics of the object

(specific). Each attribute defines some properties and hence together constitute a

boundary for an object relative to other objects in its environment.

119 | P a g e

Generic parameters are pointing to common parameters required by all objects.

These parameters are mandatory and identify the object (ID), the type of object in

terms of its security policy level, which can be Cloud, Tenant, and Resource levels as

defined hierarchically by our system. The Resource policy level identifies five sets of

resources at the same level: Compute_Resource, Storage_Resource,

Network_Resource, Application_Resource, and User_Resource.

 Specific parameters refer to parameters that specify specific

features/attributes of an object concerning its hierarchical position within the

architecture identified by the role of the object and the object location that identifies

its logical zone within the system. It should be noted that the policy level is related to

the role of an object, and the location is related to the logical/physical location of an

object. Each specific parameter carries explicit characteristics pertaining to that

particular object.

An object can be simple or complex. A complex object includes nested

attributes and may consist of a set of sub-objects. An object can be internal or external

to a cloud, depending on its role/interaction. It should be noted that the policy level is

related to the role of an object, and the location is related to the logical/physical

location of an object.

The security model defines three main objects associated with the cloud, tenant,

and resource security domains. Corresponding objects to these are Cloud Object,

Tenant Object, and Resource Objects which include Compute Object, Storage Object,

Network Object, App Object, and User Object.

The cloud domain, where cloud objects reside, classifies all the data, resources,

and interactions at the cloud level while ignoring information related to lower domains

like Tenant and Resource. At this level, the main parameters include cloud security

policies (SP), which govern interactions policies among objects at the cloud level;

data and resources policies, which only concentrate on cloud resource level (tenant,

cloud-compute, -net, -storage resources) (Figure 4.1).

120 | P a g e

Figure 4.1 Cloud Object domain parameters

 The tenant domain only reflects attributes and parameters related to the tenant

objects in the cloud domain. The focus is only on the tenants’ structure and their

parameters and resources.

The resource domain concentrates on the base underlying physical/virtual

resources within the cloud system as distinct from resources at the cloud and the tenant

domains. They provide detailed information related to each resource-object. Resource

objects are defined similarly to cloud objects but for objects in the resource domain.

A role (Rl) assigns some responsibility to an object and necessary

authorities/privileges to discharge its duty. The role is often not static and may change

as circumstances demand. A role may be simple/complex assigned to an individual or

a group of objects. A role is often associated with different layers of the architecture

of a cloud system. It should be noted that ‘role’ is best defined using formal logic that

entails complex rules to deal with dynamicity and multiple inheritances.

In our design, we avoid the complexity by equating a role with a hierarchical

level in our defined cloud security architecture, where its attributes are defined

explicitly when the role is assigned to a cloud object. We define an entity (E) as an

integrated object consisting of the object’s role and its object structure. The entity is

121 | P a g e

a key concept in our structure to detect and predict security breaches in cloud

infrastructure. The role assigned to the object will be considered based on object level

and position within the system extracted from defined object parameters. An object

may be assigned to a role/group of roles activated at a different system level. Objects

may assume more than one role with different levels of authority in different domains.

We use the entity as the main component within the interaction model.

4.3 Interaction Model

In the following section, we introduce our interaction model and its parameters.

Security will always be a concern when entities start interacting with each other and

with the infrastructure. In general, interaction is the act of performing an action by an

object on another. A natural disaster can also be considered a special interaction

between an external object on a set of objects. An action always entails some effects

or consequences. Potential security violations may occur when an interaction takes

place against policies governing the relationship between two/more parties.

Consequently, interactions play a central role in security incidents in a system.

The main focus of SDS2 is on the protection of a cloud system by anticipating

possible security breaches and preventing them from happening. The SDS2 proposes

a novel interaction model that defines exceptional interaction parameters to detect and

predict security violations. The following subsections describe the detailed structure

of each parameter. The scheme centers around a new interaction model, entities

connected to a cloud system, and security policies governing the system.

122 | P a g e

Table 4.1 Summary of Notations

Notation Description
𝑬𝒊 E denotes entity i
𝑴 Denotes the interaction mode
𝒎𝒊 A set of mode relation values of the interaction mode
𝒅𝒏 A set of action direction values of the interaction mode
R R denotes the interaction positional relationship
Rl Refers to set of roles on object
𝒓𝒏 A set of positional relation values of R

T Refers to interaction time consisting of 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒),
𝑡𝑒(𝑒𝑛𝑑 𝑡𝑖𝑚𝑒), 𝑡𝑑(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒), and 𝛼 (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒)

𝑨 Represent a set of all possible actions
P Refers to system security policy
C Refers to entities constraints
𝐒𝐤 Refers to set of security policies on k
𝑳𝒌 Refers to the location-based security policy of k interaction
𝒕𝒌 Refers to validate time for an interaction k
M Set of permissible parameter values for interaction 𝐼𝑝,𝑐

𝑘
V Set of non-permissible parameter values for 𝐼𝑝,𝑐

𝑘

In its general sense, an interaction takes place between simple or complex

entities in a defined environment such as a cloud system. Figure 4.2 shows a

simple/complex interaction between simple/complex entities. We proposed an

interaction model for characterizing a relationship between objects.

The interaction model describes how objects interact with one another; it characterizes

the modes of interaction, the roles of interacting entities, the actions one can perform

against others, and the time of the interaction. In order to capture the essentials of

interaction, we define an object model of interaction with four parameters or variables:

mode (M), positional relationship (R), action (A), and time (t). Each parameter may

take on a range of values. The range is determined or constrained by a) the interaction

environment such as organizational policies, b) participating entities of the interaction

in terms of their nature, properties, capabilities, and constraints, c) roles of the

participating entities such as their relative positional relationship, and d) the time of

the interaction.

123 | P a g e

These parameters will be defined later in this section. With these descriptions

of the interaction object, we will be interested in the following operations:

1. We want to initialize an interaction, allowing default values for all parameters

without any constraints.

2. We want to know what actions are possible and what are not, due to the

constrained nature of the entities involved in the interaction.

3. We want to know if the interaction is permissible under a set of governing system

policies.

Figure 4.2 Interaction Types

Specifically, we can define a number of base operations on an interaction

between entities:

• Initialize (I): Initialize I with default parameters M, R, A and t

• Mode (𝐼𝐸𝑖𝐸𝑗

𝑘): Return all the possible modes between Ei and Ej for interaction k

• Relate (𝐼𝐸𝑖𝐸𝑗

𝑘) : Return all possible positional relations between Ei and Ej for

interaction k

• Action (𝐼𝐸𝑖𝐸𝑗

𝑘): Return all possible actions between Ei and Ej for interaction k

124 | P a g e

• State (𝐼𝐸𝑖𝐸𝑗

𝑘 Sk): Return all allowed M, R, A, and t once the constraints for

participating entities and security policies (Sk) have been applied to the

interaction.

Additional operations involving entities, their constraints, and system policies

relevant to security violation and detection will be described in Section 4.5.

4.3.1 Interaction Mode

Interaction mode (M) determines both the mode relationship (m) between

objects such as one to one, one to many, and the action direction (d) from one object

to another such as one way, both ways, of the interaction. Figure 4.3 illustrates all

possible interaction modes of interaction. M consists of two parts: the first part refers

to the mode relation (mi), and the second refers to the action direction (dn). So, the M

is defined as a set of pairs consisting of mi and dn:

 𝑀 = 𝑚𝑖 × 𝑑𝑛

where 𝑚𝑖 refers to a set of possible relations between entities 𝑚𝑖 = { 𝑚1 ,

𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6}; i= 1,2,3,4,5,6.

Each of the modes m signifies the following:

𝑚1 ∶= 1: 1(𝑜𝑛𝑒: 𝑜𝑛𝑒), 𝑚2 ∶= 1: 𝑚 (𝑜𝑛𝑒: 𝑚𝑎𝑛𝑦), 𝑚3 ∶= 𝑚: 1(𝑚𝑎𝑛𝑦: 1),

𝑚4 ∶= 𝑚: 𝑚 (𝑚𝑎𝑛𝑦: 𝑚𝑎𝑛𝑦),

𝑚5 ∶= 1: 0 (𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑), 𝑚6 ∶= 0: 0 (𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)

An interaction's action direction may take on one of three possible values d1 d2,

and d3. Specifically, 𝑑𝑛 = {𝑑1, 𝑑2, 𝑑3} where n =1, 2, 3.

dn may take on values and meaning as defined below.

 𝑑1 = 1 ∶=→ (𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡), 𝑑2 = 2 ∶=← (𝑟𝑖𝑔ℎ𝑡 𝑡𝑜 𝑙𝑒𝑓𝑡), 𝑑3 = 3 ∶=↔ (𝑡𝑤𝑜 𝑤𝑎𝑦)

125 | P a g e

Figure 4.3 Interaction Mode

4.3.2 Interaction Positional Relationship (R)

An object within a system or an organization exists at a position either defined

by its role within the organization or the layer or the domain within the system

architecture. In an interaction, not only the role of an entity but its standing relative to

the role of the other entities is essential as this may dictate whether the interaction is

legitimate. For this reason, we consider an interaction positional relationship (R) as

the relative positional relationship between the entities of an interaction.

The positional relationship determines an interaction action validity through

defined rules, roles, layers, and policies associated with an interaction entities. For

example, a security policy may specify that only objects at the same domain/level may

interact. Interaction level is entangles with the role-based level assigned to each

domain in the design. Each level entails classified security policies associated with

126 | P a g e

object roles that determine a set of authorized actions. As “roles” may be of a complex

nature with inheritance and may change during an entity's lifetime, we restrict and

associate roles with three interaction positional relationships in any interaction

between objects to three different security isolation layers of the security architecture:

Cloud, Tenant, and Resource.

In this design, R denotes the interaction positional relationship according to

entities relation during an active interaction.

R = {r1, r2, r3} where r1 is mapped to down, representing the interaction between

objects from a high layer to a lower layer. r2 is mapped to up, representing interaction

from a low layer to a higher layer. r3 is mapped to equal, representing the interaction

between objects in the same layer. Knowledge about positional relationships among

objects helps define the nature of the interaction and the security policy decision.

4.3.3 Interaction time (t)

Interaction time refers to the valid time for an interaction to take place in the

system. The interaction time can be specified either by its start time and its end time

(𝑡𝑠, 𝑡𝑒) or start time and duration (𝑡𝑠, 𝑡𝑑). There may be cases where the start time of

an interaction is known, but its end time may be indeterminate depending on some

environmental conditions. For such cases 𝑡𝑑 is replaced by the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 (𝛼)

to indicate if the interaction is still on-going (on) or has stopped (off). Interaction time

can thus be specified by:

 𝑡 = {(𝑡𝑠, 𝑡𝑒) 𝑜𝑟 (𝑡𝑠, 𝑡𝑑) 𝑜𝑟 (𝑡𝑠, 𝛼)}

4.3.4 Interaction Action (A)

An interaction is meaningful if it conveys a particular set of actions. A security

breach occurs when objects perform an action that violates their permissible

interactions. An action is defined as a possible set of actions over an interaction

127 | P a g e

between system objects by virtue of their specific relationship connected to the

system.

An action is a set of possible activities that may be triggered by an event;

however, the set of possible actions is often limited by nature and constraints on

object/entities involved and security policy rules governing them and their interaction.

Let A represent a set of possible actions that are chosen based on the types of objects

found in a cloud environment. For our cloud security model, we studied cloud objects

and established the set A of actions as follows:

𝐴 = {‘read’, ‘write’, ‘modify’, ’create’, ’delete’, ’execute’, ’migrate’,

 ’suspend’, ’enable’, ‘disable’,′ reset′,′ l𝐨𝐜𝐤′, ′activation′, ′𝑢nlock′, ′clear′}

Clearly, not all actions can be performed by an object as they are subject to

system policies and object constraints. Table 4.2 describes the meaning of actions A.

Table 4.2 Action Description

Action Description
Read (Re) Permission to read the data on another Object
Write (W) Permission to write data onto another Object

Modify (Md) Permission to change (Write and Delete) existing data on
another Object

Create (Cr) The right to create instances of another Object
Delete (D) The right to remove instances of another Object

Execute (Ex) The rights to run an instance of another Object
Migrate (Mi) The rights to re-map an instance of another Object
Suspend (Sp) The rights to pause an instance of another Object
Enable (En) The rights to run power up another Object
Disable (Di) The rights to run power down another Object

Reset (Rt) The rights to delete metadata and reboot instances of another
Object

Lock (Lk) The rights deny user access to another Object
Unlock (U) The rights permit user access to another Object

Activate (Av) The rights to make another Object available to a User
Clear (Cl) The rights remove user data from another Object

128 | P a g e

4.4 Security Policy-Based Interaction Model

This section describes our policy-based interaction model and how we use

security policies to detect and predict the security breaches at the interaction level.

Security policies are fundamental for any effective solutions that secure an

organization, a system, an infrastructure, a cyberspace, or a service because they

provide a directive and scalable approach for handling a class of security issues with

a single policy.

In our design, security policies are mapped to rules that determine the

interaction parameters between entities. The proposed policy-based interaction model

constructs dynamic security boundaries formed by legitimate interaction parameters

according to security rules extracted from the governing security policies.

Our model focuses on security policies at the interaction level between entities

through a set of interaction parameters. The complex structure of cloud infrastructure

and the shared and dynamic nature of their resources demand robust security policy

enforcement. So, it requires a clear definition of a boundary between violated and non-

violated policies. Applying security policies at the interaction level allows a system

to make visible previously undefined virtual boundaries between engaged entities

through their interaction parameters.

In the following, we describe our policy-based interaction model and its

required components. A policy can be defined as “an aggregation of policy rules”

where policy rules are used to construct sets of conditions consistent with the set

permissible actions [135]. Policy rules are often derived from human language

statements extracted from service level agreements (SLAs) between users and service

providers. NIST (2006) defines security policies as “Aggregate of directives,

regulations, rules, and practices that prescribe how an organization manages,

protects, and distributes information.”

129 | P a g e

 Our design security policies address rules and conditions that establish valid

interactions between entities in a cloud environment. In SDS2 architecture, we define

a security policy (SP) as “a directive that governs the interaction among

simple/complex entities through specific constraints applied to the entities, their

location, and their interaction parameters.” Security constraints extracted from

security policies determine the validity of a set of actions taking place during an

interaction. Figure 4.4 illustrates the relationship among these components.

Figure 4.4 Security policy and its components

As discussed, system security policies, when applied to an interaction between

the initiator/s (𝐸𝑖), and the target entity/s (𝐸𝑗), determine sets of parameters (described

in section 4.2) that are secure (valid, or permissible) for the interaction. We define a

Security Policy-Based Interaction model as shown in Figure 4.5.

130 | P a g e

Figure 4.5 Security Policy-Based Interaction Model

Security policies govern the validity of the parameters of the interaction.

Together with the system security policies (P), security constraints (C) on entities

further limit the interaction in time, isolation level, and location as defined by

legitimate interaction parameters. SDS2 architecture logically divides cloud

infrastructure into three main security isolation levels (SILs) or boundaries for the

Cloud, Tenant, and Resource cloud domains.

Recently, [136] introduced a security service framework with three security

layers according to security domain divisions; however, the system only focused on

divisions related to tenant resources and VMs in building isolation layers. We map

security domains into security isolation levels that isolate each domain's entities

according to their security policy levels and entities locations. Figure 4.6 shows these

isolation levels.

Security policy in our context covers four aspects: system interaction policy,

time-based security policy, dynamic location-based security policy, and entity-

specific constraint policy. System interaction security policies are organizational sets

of security policies that dictate allowable object interactions as specified by valid

parameters of an interaction.

131 | P a g e

Time-based security policies dictate the valid time or time duration of an

interaction. These policies are often specified at runtime because they are needed

when dynamic operational circumstances demand.

Location-based security policies are required to deal with dynamic aspects of a

cloud entity, such as changes in responsibility and logical/physical zone placement

over time. Entity-specific constraint policies deal with the specific nature and

properties of an entity. Some entities may not perform some activities because they

do not possess the capability while others are capable, but their actions are constrained

by relevant policies when they were instantiated. With these definitions, the set of

security policies (Sk) relevant to an interaction Ik between Ei and Ej may be expressed

by the following equation.

𝑆𝑘 (𝐼𝑘, (𝐸𝑖 , 𝐸𝑗)) = 𝑃𝐸𝑖𝐸𝑗
 (𝐿𝑘(𝐸𝑖, 𝐸𝑗), 𝑡𝑘)) = 𝑃𝐸𝑖𝐸𝑗

𝐿𝑘,𝑡𝑘

 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗

The notations are defined in Table 4.3. P denotes the system policy governing

the entities, their location, and time. L denotes location-based policies for each entity.

If 𝐸𝑖, 𝐸𝑗 are placed in the same zone and same group zone policy, the location policies

are the same for both. Security policy-based interaction model concentrates on two

main policy concepts: general policies and local policies. General policies apply to all

requests within the system, and local policies apply separately to each entity and their

interactions within the system according to their location and assigned constraints.

Both sets of policies are stored in separate security databases. Security policies are

extracted during an interaction, and rules and constraints are assigned and applied to

the interaction over the valid interaction time duration.

132 | P a g e

Figure 4.6 Security Isolation levels

Table 4.3 Required Notations

Notation Meaning Detailed expression
𝒄𝒋𝒗 Set of constraints associated with entity j
E An entity composed of role and object i E= 𝐸𝑖

𝑗𝑘
I An interaction object

𝑰𝒊𝒏𝒊𝒕
𝒌 Interaction object k initialized with default

parameters (unconstrained) 𝐼𝑖𝑛𝑖𝑡
𝑘 (∗,∗)

𝑰𝑪
𝒌 Interaction object k with object constrained

applied 𝐼𝐶
𝑘(𝐸𝑖 , 𝐸𝑗) 𝑜𝑟 𝐼𝐶

𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣))

𝑰𝑷
𝒌 Interaction object k with system policies ap-

plied 𝐼𝑃
𝑘(𝐸𝑖, 𝐸𝑗 , 𝑆)

𝑰𝑷,𝑪
𝒌 Interaction object k with both system policies

and object constraints applied 𝐼𝑃,𝐶
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑆)

𝑰𝒓𝒆𝒒
𝒌 Interaction object k with parameters derived

from an interaction request 𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗)

Sk Interaction k policies derived from the sys-
tem policies 𝑆𝑘 = 𝑃𝐸𝑖𝐸𝑗

𝐿𝑘,𝑡𝑘

133 | P a g e

4.5 Interaction Security Violation Detection and Prediction

Algorithm (ISVDP)

With the introduction of the formal model of an interaction and its relationship

with security policy, we propose an interaction security violation detection and

prediction (ISVDP) algorithm. The ISVDP operates over the SDS2 cloud

infrastructure with three levels of security isolation. The algorithm automatically

detects and predicts security breached in relation to requested interaction according to

validate/invalidate interaction parameters. The main parameters of ISVDP include:

• Initiator entity: an entity that initiates a relationship with another entity and

establishes an interaction.

• Target entity (or Reactor): the entity of an interaction on which the initiator intends

to perform certain actions.

• Entities constraints: the constraints extracted from local policies related to both

initiator’s and target’s role, type, and their intrinsic properties.

• A complete set of system security policies defined over SDS2 cloud and its

isolation levels: Cloud, Tenant, and Resources.

• A requested interaction between the initiator and the target entities (for violation

detection).

In ISVDP, a constraint is represented as “a security statement which defines a

set of conditions that limits the scope and the property of an interaction between an

initiator and its target entity.” High-level security policies are written in human-

language policies, which will be translated using a policy-translator within the SDS2

controller. Armed with the translated security policies, a security controller

determines the validity of an interaction between entities based on their defined

interaction parameters. The detection and the prediction algorithms form two

fundamental components of the ISVDP model. Both of them share and are built upon

the initial three processing stages, as shown in figure 4.7 for a specific interaction k.

134 | P a g e

Figure 4.7 ISVDP stages

We define the following notations in Table 4.3. We define the following basic

set of operations on an interaction object with the above notations, as shown in Table

4.4.

Table 4.4 Operations Defined on an Interaction Object

Operation Meaning Detailed expression

Initialize (I) Initialize I with default parameters M, R, A and t

Mode (Ik) Return possible modes between Ei and Ej for inter-
action k 𝑀𝑜𝑑𝑒 𝑜𝑓 (𝐼𝐶

𝑘 𝑜𝑟 𝐼𝑃
𝑘𝑜𝑟 𝐼𝑃,𝐶

𝑘)

Relate (Ik) Return possible positional relations between Ei and
Ej for interaction k 𝑅𝑒𝑙𝑎𝑡𝑒 𝑜𝑓 (𝐼𝐶

𝑘 𝑜𝑟 𝐼𝑃
𝑘𝑜𝑟 𝐼𝑃,𝐶

𝑘)

Action (Ik) Return possible actions between Ei and Ej for inter-
action k 𝐴𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (𝐼𝐶

𝑘 𝑜𝑟 𝐼𝑃
𝑘𝑜𝑟 𝐼𝑃,𝐶

𝑘)

Const (Ik) Return possible interaction parameters after apply-
ing constraints on interaction k Const on (𝐼𝑖𝑛𝑖𝑡

𝑘)

State (Ik) Return all states of interaction k between Ei and Ej 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 (𝐼𝐶
𝑘 𝑜𝑟 𝐼𝑃

𝑘𝑜𝑟 𝐼𝑃,𝐶
𝑘)

State
(Ik, req)

Return all states the interaction as required by the
request 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 (𝐼𝑟𝑒𝑞

𝑘)

Policy
(L, Ei)

Returns the set of system policies applied to entity i
location

Policy
(Ik, req)

Return the set of system policies applied to interac-
tion k Policy on (Ik or 𝐼𝑟𝑒𝑞

𝑘)

Compare
(Im, In)

Compare the states of interaction m and interaction
n, return differences in M, R, A, and t

135 | P a g e

Stage 1: Initializing the interaction. At this initial stage, the objects involved in

the interaction are made available with their security-rated properties. The interaction

template is initialized with no constraints on interaction parameters. The requested

interaction is also made available. The result of this stage is the object 𝐼𝑖𝑛𝑖𝑡
𝑘 (∗,∗).

The algorithm intelligently identifies all involved entities and components in

this stage. Additionally, the algorithm detects interaction types and parameters.

Dynamically it can change interaction parameters according to the location and nature

of entities and create initial interaction parameters between two entities.

Stage 2: Application of entity constraints over the interaction k. At this stage,

the interaction parameters are modified according to the properties and constraints of

the entities involved. The result of this stage is the object 𝐼𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣)).

Stage 3: Application of the policy over the interaction k. At this stage, the

parameters of interaction k will be modified by the constraints derived from the

system policies that are applicable to the interaction k. The result of this stage is the

object 𝐼𝑝,𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑃) . The policy-driven interaction algorithm

encompassing stages 1, 2, and 3 is shown in Algorithm 4.1.

Algorithm 4.1 Policy-driven interaction algorithm (PdI ())

Input: Ei, Ej, SDS2 cloud objects’ DB, System Policy statement (P)
Output: 𝑰𝒑,𝒄

𝒌 (M', R', A', t')
1: while request is valid do
 1: for Ei, Ej do
 2: Intialize (Ik) //get interaction parameters for 𝑬𝒊, 𝑬𝒋 without applying constraints and

set 𝑰𝒊𝒏𝒊𝒕
𝒌

 3: if 𝑰𝒊𝒏𝒊𝒕
𝒌 ≠ Null

 Const (𝑰𝒊𝒏𝒊𝒕
𝒌) //get interaction parameters by applying constraints on 𝑰𝒊𝒏𝒊𝒕

𝒌 and set
𝑰𝑪

𝒌
 4: 𝑰𝑪

𝒌 = State (𝑰𝑪
𝒌) // return parameters after applying constrains

 5: Policy (Ik) // get system policies (P) applied to the Ik
 6: 𝑰𝒑,𝒄

𝒌 = State (Ik) // return parameters after applying policy system
 7: end if;
 8: end for;
9: end while;

136 | P a g e

4.5.1 Interaction Security Violation Detection

In case of a triggered interaction within the cloud system, the detection

algorithm determines if the interaction is safe or violates a system's security policy or

specifically if a security breach has occurred. With the global knowledge of the cloud

environment and the interactions among entities, the security controller intelligently

schedules to execute the ISVDP algorithm on suspicious circumstances, on a specific

request or triggered events, or on a regular basis.

The algorithm considers each interaction parameter under consideration to

discover if any inconsistency has occurred relative to the security policies, hence the

interaction parameters, dynamically applicable to the interaction. The module goes

through the four fundamental stages described above and proceeds to stages 4d, 5d,

6d, and 7d for violation detection.

Stage 4d: The requested interaction policy level is analyzed according to

defined security isolation levels explained in section 4 (Domain (𝐼𝑟𝑒𝑞
𝑘)).

Stage 5d: The interaction under consideration between the specified objects is

analyzed, resulting in a set of interaction statuses required by request: 𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗).

Stage 6d: The algorithm intelligently detects each object interaction parameter

rules based on security domain and location Domain (𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗)) and Loc (𝐸𝑖, 𝐸𝑗).

Stage 7d: By analyzing 𝐼𝑝,𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑃) , and

𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗) 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 the algorithm determines if the requested

actions are within the set of actions allowable by the policies and the constraints

imposed on the entities of the interaction.

The algorithm returns the validation status of the interaction: either Safe or

Violate. Safe means that the requested interaction does not violate any policy related

to each/any interaction parameter and is not a security breach. Violate means that the

requested interaction violates one of the parameters (M, R, A, t) or location of the

137 | P a g e

allowed security policy that governs the interaction. The algorithm returns whenever

a violation of an interaction parameter is detected. However, in cases where policies

governing the interaction parameter are undefined (either due to an oversight or

situations not yet encountered), it will decide if there is a possibility to partially accept

the interaction and initiate an alert to a decision-maker to create a new policy to cover

the newly discovered situation. Figure 4.8 shows the decision process of the ISVD

algorithm.

We use (𝑀′, 𝑅′, 𝐴′, 𝑡′) to denote State (𝐼𝑝,𝑐
𝑘) and (𝑀′′, 𝑅′′, 𝐴′′, 𝑡′′

) to denote

State (𝐼𝑟𝑒𝑞
𝑘). In the detection process, all system policies, including location, entity

constraints, are applied to the interaction k to obtain all the interaction's allowable

parameters. Figure 4.8 shows the detection approach in determining the validation

status of the requested interaction k. The detection algorithm will stop the process of

discovering the first interaction parameter violation and activate the security alarm

within the security controller. Algorithm 4.2 describes the ISVD detection algorithm,

which analyses the 𝐼𝑟𝑒𝑞
𝑘 , extracting the number and types of involved entities during

the requested interaction.

Figure 4.8 ISVD

138 | P a g e

Algorithm 4.2 Interaction Security Violation Detection (ISVD ()) algorithm

Input: 𝑰𝒓𝒆𝒒
𝒌 (requested interaction), 𝑰𝒑,𝒄

𝒌 ,
Output: Safe | Violate
1: for received 𝑰𝒓𝒆𝒒

𝒌 do
 2: if Domain (𝑰𝒓𝒆𝒒

𝒌)==True then
 3: Policy (L, E) //Returns set of system policies on the current location of entities during

initiation of 𝑰𝒓𝒆𝒒
𝒌 and set L

 4: If L == True (location is verified) then
 5: PdI () //call the algorithm 1 to get 𝑰𝒑,𝒄

𝒌
 𝑰𝑷,𝑪

𝒌 = State (𝑰𝑷,𝑪
𝒌)

 6: 𝑰𝒓𝒆𝒒
𝒌 = State (Ik, req) // get request interaction parameters

 7: for 𝑰𝒓𝒆𝒒
𝒌 and 𝑰𝑷,𝑪

𝒌 do
 8: diff := Compare (𝑰𝑷,𝑪

𝒌 , 𝑰𝒓𝒆𝒒
𝒌) // returns difference (diff) parameters between

𝑰𝑷,𝑪
𝒌 𝒂𝒏𝒅 𝑰𝒓𝒆𝒒

𝒌
 9: P := Policy (Ik, req) // returns system policies applied to interaction parameters
 10: if diff satisfies P then
 11: state (𝑰𝒓𝒆𝒒

𝒌) is safe
 12: else state (𝑰𝒓𝒆𝒒

𝒌) is Violate //rise security violation alarm to security controller,
isolate the interaction

 13: end if;
 14: end for;
 15: end if;
 16: end if
17: end for;

4.5.2 Interaction Security Violation Prediction

In this section, we describe the prediction algorithm and its functionality. The

ISVP prediction algorithm enables interaction violation predictability based on

permissible values of the parameters of the interaction. The algorithm is different from

the detection algorithm in that it determines all “Safe” interactions and all potential

“Violate” interactions under the system security policies and constraints imposed on

the interaction parameters between given entities.

The prediction algorithm automatically discovers the probability of possible

future violations according to the current state of validation interaction parameters.

For each interaction parameter, it discovers upcoming violation values. It analyses the

safe/valid state of entities interaction and predicts the possibility of future violations

according to unacceptable interaction parameters within the system. The prediction

139 | P a g e

algorithm considers each interaction parameter and determines to invalidate

parameter’ values through prediction approaches. The prediction algorithm proceeds

through the three stages of Algorithm 4.1 and proceeds through stages 4p and 5p, as

shown in Algorithm 4.3.

Algorithm 4.3 Interaction Security Violation Detection (ISVD ()) algorithm

Input: 𝑰𝒑,𝒄
𝒌

Output: V set of possible potential violate interaction parameters
1: PdI () // set 𝑰𝒑,𝒄

𝒌
2: for 𝑰𝒑,𝒄

𝒌 do
 3: while 𝑻𝑴 = Mode (𝑰𝒑,𝒄

𝒌) do // get all possible sets of M extracted from 𝑰𝒑,𝒄
𝒌 from safe

mode
 𝑽𝑴= opposite (𝑻𝑴) // set of possible violated mode parameters extracted from valid

(𝑻𝑴)
 4: end while;
 5: while 𝑻𝑴 = Relate (𝑰𝒑,𝒄

𝒌) do // get all possible sets of R extracted from 𝑰𝒑,𝒄
𝒌 from safe

mode
 𝑽𝑹 = opposite (𝑻𝑹)// sets of possible violated R from 𝑰𝒑,𝒄

𝒌 from safe mode
 6: end while;
 7: while 𝑻𝑨 = Action (𝑰𝒑,𝒄

𝒌) do // get all possible sets of A extracted from 𝑰𝒑,𝒄
𝒌 from safe

mode
 𝑽𝑨 = opposite (𝑻𝒗) // sets of possible violated A from 𝑰𝒑,𝒄

𝒌 from safe mode
 8: end while;
9: V = (𝑽𝑴, 𝑽𝑹, 𝑽𝑨) // set of predicted and possible violation interaction parameters accord-

ing 𝑰𝒑,𝒄
𝒌

10: end for;

Stage 4p: The stage outputs all possible “Safe” interaction parameters between

the given entities considering all constraints and security policies.

Stage 5p: The outputs are all potential “Violate” interactions between the given

entities.

It is done by inspecting each parameter (M, R, A, t) and applying security

constraints on each parameter. If Ms (safe parameters defined for M during k

interaction) is the allowed set of safe modes, then Mv = M – Ms is the set of violating

modes (M is all possible values). Similarly, Rs and Rv are the set of allowed relational

positions and violate relational positions, respectively; As and Av are the set of allowed

140 | P a g e

actions and violate actions, respectively. Similar notations are used for time and

location.

The results allow the system to predict possible security breaches if interaction

parameter conditions are not met. These conditions display the predicted violations in

terms of interaction parameters. Ideally, all possible violations relative to the current

interaction can be discovered/predicted; however, if all the interaction parameters are

allowed to vary independently of one another, the analysis can be computationally

expensive and not practicable. Realistically, we may want to address and predict the

most likely violations.

We thus restrict ourselves to simple situations where one parameter varies at a

time to illustrate the prediction process. In the predicting state, the system anticipates

all possible different situations that current interaction parameters between defined

entities can face. For instance, if the valid actions between two objects are defined as

“read”, all other possible actions can be considered violations of interaction

parameters considering object nature and constraints. So, the system can stop the

violation using its stored predicted violation parameters rather than going through

lower layers and nested policy discovery.

All opposite interaction parameters against validate parameters are considered

potential interaction parameter violations in the presented prediction algorithm. The

security controller runs the ISVDP algorithm to discover the probability of future

attacks according to each interaction parameter for an interaction, say k. It is an

intelligent mechanism that focuses on interaction parameters and their possible

forthcoming violation during an interaction.

4.6 Interaction scenarios and results

In this section, we demonstrate our policy-driven security scheme by using a

security controller in verifying allowable interactions and detecting policy violations

141 | P a g e

between entities in a cloud infrastructure based on our proposed model of interaction.

We built the security controller from scratch in Java language and run our ISVDP

algorithm in an Ubuntu machine with 16 GB RAM, Intel® Core (TM) i7-7600U CPU.

The results evaluate the efficiency of the ISVDP algorithms in discovering and

predicting security violations.

We set different scenarios according to various interaction types and analyze

the results to evaluate the proposed interaction model and its components for each

case. We simulate the interaction between different types of objects within the system

to detect and predict security violations according to our ISVDP model. We consider

the CloudSimSDN-NFV framework to simulate the cloud infrastructure and build our

security controller and ISVDP algorithm. Figure 4.9 demonstrates the implementation

process.

Figure 4.9 Implementation process

Scenario 1: User interaction. In this scenario, the security controller (SC)

receives interactions triggered by a user. The SC identifies the user and interprets the

requested interaction. According to the user level and rights, the security controller

determines the security policies related to the user and involved objects. The requested

interaction is sent to the interaction security domain controller to extract security

142 | P a g e

policies and interaction parameters. The security controller initiates a virtual security

function (VSF) designed to monitor the interaction based on received validated

interaction, entities policies, and constraints. The analyzer function is responsible for

running the ISVDP algorithm to detect and predict security violations.

Scenario 2: Specifically requested interaction. In this scenario, a specific

interaction runs within the system. The specific interaction is considered as a request

to monitor a specific interaction being performed by the security controller. This

scenario occurs when the security controller decides to monitor an interaction between

specific entities within the system. The security controller triggers an interaction to be

monitored among specific entities. It will happen mainly in two sub-scenarios 1)

randomly monitor entities based on its statistics received from its virtual security

functions; 2) activates monitoring of a sensitives entity within the system on specific

time slots.

Scenario 3: Triggered interaction. The security controller activates a virtual

security function to monitor a triggered interaction. This scenario occurs when an

abnormal interaction is triggered between entities within the system. An undesired

interaction may occur. The security controller initiates and commands reports from

relevant virtual security functions over suspicious entities and then executes the

ISVDP algorithm to assess the situation.

The functions within the security controller perform the ISVDP algorithms to

produce the results. As demonstrated in Figure 8, the system analyses the requested

interaction and involved objects. Security policies and objects’ constraints are

extracted according to object security isolation layers and entities location. In this

study, however, we mainly concentrate on the interaction between simple objects and

their interactions. Figure 4.7 shows the flow process of our ISVDP algorithms. In the

first step, the system creates entities within the cloud system by substantiating the

identified objects and their defined role. Figure 4.10 demonstrates extracted data from

an interaction and a VSF assigned to that specific interaction.

143 | P a g e

Figure 4.10 Extracting involved objects and assigning a monitoring security function to

each interaction

For demonstration purposes, Figure 4.11 shows a part of the security controller

that investigates a specific requested interaction. The controller initializes the

interaction according to analyzed parameters in a specific time slot. Then the system

automatically detects and predicts required parameters and discovers security

breaches.

The orange box shows extracted information from triggered interaction by the

security controller, which can be run manually by the security controller. The action

is a validated action that is calculated after interpreting the requested interaction. The

red boxes demonstrate detection results as well as prediction parameters. We consider

cloud objects of different types and determine possible allowable interactions.

For each scenario, objects can be at the same or different access levels. System

policies are applied to achieve valid entity interaction parameters. For simplicity,

interaction time is assumed valid the whole time under consideration. We detailed an

interactive case study between two entities to describe discovering and validating the

interaction between the two entities. In the following case, we describe how a policy-

based interaction analyzer will extract required interaction parameters to be sent to

the assigned security function.

144 | P a g e

Figure 4.11 The controller interface according to interaction

VM-Storage interaction: interaction between a virtual machine and a storage

entity. In the first step, the program at the controller level creates participating entities

(if it has not existed yet) based on the information stored in the security database

SecDB. EntityCreation.O () → Object (Oi) ∧ Role (𝑅𝑙𝑛
𝑂) → Ei, EntityCreation.O () →

Object (Oj) ∧ Role (𝑅𝑙𝑛
𝑂) → Ej. Then the program discovers and predicts all possible

interactions for each entity without considering their constraints: Initialize (I) →

𝐼𝑖𝑛𝑖𝑡
𝑘 (𝐸𝑖)|(𝐸𝑗).

In the next step, both role-based constraints and intrinsic object-based

constraints will be extracted and applied accordingly over the interaction between the

two entities. Entity constraints are extracted using Const (Ik) and applied to the

interaction parameters. As a result, possible interaction parameters for I (Ei, Ej) are

determined, Const (Ik) → 𝐼𝐶
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣)).

The policy translator then extracts possible interaction parameters permitted by

the system policy statement (P). In our testing model, we define several predefined

general security policies for each scenario. Then, at the final stage, the program calls

SysPolicyapplier() to apply policies on 𝐼𝑐
𝑘(𝐸𝑖 , 𝐸𝑗) and get all possible interaction

parameters: PolicyInterpreter (P) → (Msys, Rsys, Asys, tsys), Policy (Ik, req) →

𝐼𝑝,𝑐
𝑘 (𝐸𝑖, 𝐸𝑗).

145 | P a g e

 As depicted in Table 4.5, the first and second columns show values of the VM

and the storage entities interaction parameters after their constraints have been

applied. The third column shows the interpretation of the system policy on object

interaction parameters. The last column shows all possible interactions between the

two entities as determined by the allowable interaction parameters after all constraints

and system policies are considered. The results indicate that the only allowable actions

are Re, W in an allowable pair of (m1, d2) mode of interaction between the VM and

the storage entities within the cloud system.

In our system, we consider t as an acceptable duration time that interaction can

take place. For violation detection, the security controller calls algorithm 4.2. It

analyses the coming request and extracts required parameters and calls 𝑆𝑡𝑎𝑡𝑒 (𝐼𝑟𝑒𝑞
𝑘).

During this phase, the requested interaction statement requests the removal of a file

from the storage object requested by the virtual machine at the same level.

Table 4.5 Collected data from the controller for VM-Storage interaction
 I-Object 1 I-Object 2 SysPolicy 𝑰𝒑,𝒄

𝒌

M (m/d) (m1, d1) (m1, d1) (m1, d2) (m1, d2)

R Cloud Cloud cloud cloud

A Re, W, D Re, W Re, W, Cr, D Re, W

T 600ms 600ms 300ms 300ms

The program translates the coming request, which detects the delete violation

as delete action against 𝐼𝑝,𝑐
𝑘 . It raised a security alarm, indicating a violation of the

requested interaction. For violation prediction against possible attacks, the system will

call algorithm 3 to predict possible violations against the parameters of 𝐼𝑝,𝑐
𝑘 .

The system calculates possible violation parameters relative to allowable 𝐼𝑝,𝑐
𝑘

parameters. In this case, interaction actions except for Re, W are considered as action

violations. More importantly, this algorithm can enumerate all possible interaction

violations between two entities (those not allowable by 𝐼𝑝,𝑐
𝑘) by systematically going

146 | P a g e

through the mode, the positional relationship, the action, and the time parameters of

the interaction.

For example, if we keep all parameters except the mode parameters fixed, we

can declare that other modes except m1 and d3 are potential (or predicted) violations.

Similarly, the system considers any positional relation except cloud as a security

breach and stores the data. An insider/outsider request that involves any of the

predicted violation parameters will be investigated in anticipation of potential security

breaches: ISVP (𝐼𝑝,𝑐
𝑘)→V (𝑉𝑀, 𝑉𝑅, 𝑉𝐴, 𝑉𝑡) (Figure 4.12).

Figure 4.12 Implementation results for VM-Storage interaction

We executed various tests according to various scenarios to show expected

results. Table 4.6 reveals some result samples that the security controller captured by

performing many cases. In the table, Int reveals validated parameters expected after

running the PdI () algorithm. After running the ISVD () algorithm, it shows the results

using the Act parameter (s: safe, v: violate). We monitored our system's performance

according to the number of interactions that are triggered within the system from any

resources, the detection processing time, and the time until the system detects the

status of the requested interaction.

147 | P a g e

Table 4.6 Expected results of the simulated scenarios

VSF ID Src. Res. Int.
Init

Int.
Act. P.

Id
exe
c M R A t

VSF 6 VM Storage SC (m1, d3) Cloud Re,
W 3000ms s 3 Y

VSF 3 User Storage SC (m4, d3) Tenant Re,
W 900ms v 3 N

VSF 2 Storage APP UR (m1, d1) Cloud Md 10500
ms v 22 Y

VSF 9 User App AT (m4, d2)
Re-

source Md 1000ms v 23 Y

VSF 7 VM Storage SC (m2, d2) Tenant Re,
W 800ms s 30 Y

VSF 11 App Storage SC (m5, d2)
Re-

source
Re,
W 600ms v 13 N

VSF 8 Net VM UR (m4, d1) Tenant Ex,
Re 600ms s 19 N

VSF 22 Storage VM AT (m1, d2) Cloud Re 300ms v 22 N

Figure 4.13 illustrates the system's average decision processing time in dealing

with various interactions from different resources. The number of interactions is the

average of the decision processing times for all three defined types of interaction.

Figure 4.14 represents the relation between several interaction classes within the SDS2

security controller software.

148 | P a g e

Figure 4.13 Performance monitoring according to interaction detection processing time

Figure 4.14 Overview of SDS2 interaction classes

149 | P a g e

4.7 Summary

This chapter has taken a novel approach with the proposed Policy-based

Interaction Model to provide isolation within the cloud infrastructure. The proposed

model introduced a dynamic construction of security boundaries based on our

constructed interaction model and its parameters. An intelligent security algorithm

called ISVDP is developed to provide proactive detection and prediction in relation to

the interaction parameters to secure cloud resources. Security policy rules pertaining

to entities and their location are further applied to the interaction parameters to

determine the overall validity of the participating entities interaction. To the best of

our knowledge, the policy-driven interaction model is the first in a new direction for

combatting security incidents systematically.

150 | P a g e

Chapter 5

5 Sec-MANAGE Protocol

5.1 Introduction

In chapter 3, we proposed a software-defined security service (SDS2) model.

The proposed model contains specific virtual security functions (VSFs) to act as an

interaction monitoring component within the system. A security controller manages

VSFs within the software-defined security network. Clearly, an efficient protocol is

required between the controller and the VSFs for management and control purposes.

To manage and control these VSFs in accordance with the SDN/NFV principles, the

security model required an efficient but light-weight protocol to transfer the

interaction values.

Traditional IP networks rely on switches and routers to relay packages

according to their routing table entries. Separating flows from others that belong to a

specific destination requires a large number of identifying parameters in networking

systems. SDN uses OpenFlow protocol for communications between the network

controller and the switches. However, the protocol is heavy and rigid due to the nature

of routers and switches and the requirements of end-to-end flows. It requires 12

matching parameters to identify a flow and a take a complex set of actions. Clearly,

not all these parameters are required by the SDS2 for communicating security

interaction information between the security controller and a VSF. Additionally, VSFs

151 | P a g e

are not endpoint routing devices, and hence complex configuration and routing

features are irrelevant.

OpenFlow protocol was introduced to standardize communication between

network functions (switches, routers) and their centralized OpenFlow Network

controller. Moreover, SDN OpenFlow also needs other protocols like OF-Config to

configure networking devices. These protocols combine for managing routing,

configuring, and other network functions. OpenFlow and OF-Config are explicitly

designed for flow-based SDN switches; they are totally ineffective for resource-

constrained devices or specific virtual functions because of their different nature.

This chapter proposes a Sec-Manage protocol that provides a solution for

controlling and managing security functions. The Sec-Manage is designed to

configure VSFs and control the behavior of the underlying virtual security resources.

This chapter investigates the design and implementation of the Sec-Manage protocol.

This work has been published in Cyber Security in Networking Conference in

Switzerland.

This chapter is organized as follows. Section 4.2 presents a brief description of

SDS2 security service and proposed interaction model (chapter 3 and 4). Section 4.3

presents the proposed Sec-Manage protocol. This section demonstrates the design of

the Sec-Manage components and required messages. Section 4.4 presents an

evaluation of the proposed Sec-Manage protocol in managing the VSFs. Section 4.5

concludes this chapter.

5.2 Software-Defined Security Service (SDS2) and

Interaction Model

This section provides a brief review and summary of the SDS2, the security

controller's role in managing its VSF network, and the policy-based interaction model.

152 | P a g e

To reap the benefit of SDN and NFV paradigms, the SDS2 model is structured

in three main layers, the security application layer, the security control layer, and the

security data layer. The security application layer contains security applications and

interfaces. The developers can deploy their security policies and applications

regardless of the knowledge about the underlying security functions through a

Northbound API.

The security control layer accommodates the security controller and its

components. Its functions interpret security requirements, like security policies, and

analyses interaction parameters based on the interaction model. The security

controller directs security policy rules, interaction parameters, and instructions to

VSFs through the Sec-Manage protocol. The security data layer hosts virtual security

functions (Figure 5.1)

153 | P a g e

Figure 5.1 SDS2 three layers

5.2.1 SDS2 Security Controller

The SDS2 security controller is responsible for i) processing security

interactions, ii) initiating, controlling, and managing virtual security functions, iii)

analyzing security interaction parameters to be sent to its VSF, iv) monitoring and

initiating interactions security policies. To handle those responsibilities, the SDS2

security controller hosts several essential modules known as VSF Manager, Sec-Net

control, Security DB, Security Policy Manager, and Interaction Detection/Prediction

Manager.

154 | P a g e

The security controller initiates a VSF when the task of monitoring a specific

interaction is needed. The security controller interprets interaction security

requirements through its interaction analyzer function. It then sends instructions and

extracted interaction parameters to the assigned VSFs through the Sec-Manage

protocol, as depicted in Fig 5.2.

Figure 5.2 SDS2 Security controller and Sec-Manage protocol

5.2.2 SDS2 Policy-based Interaction Model

We proposed an innovative SDS2 Policy-driven Interaction model to detect and

predict security breaches in our earlier work. The proposed model was defined based

on parameters that control actions amongst entities in cloud infrastructure. The

interaction was defined as “an act of performing an action by an object on another.”

The model places a particular focus on object interactions as they play a critical role

in security incidents within a system. According to the proposed policy-based

155 | P a g e

interaction model, a security violation occurs due to an observed interaction against

defined security policies governing the relationship between involved entities.

The SDS2 proposed the policy-based interaction model as a security defense

against interaction violations in the cloud system. The interaction model is governed

via security policy expressions.

The interaction model relies on different security constraints to protect cloud

infrastructure. It describes how entities interact with one another and relies on an

object model of interaction defined with four main parameters: Mode (M)- possible

modes between entities for an interaction; Positional Relationship (R)- possible

potential relations between entities for an interaction according to role-based level;

Action (A)- possible actions between entities over an interaction; and time (t)- the

valid time-duration of an interaction.

The Mode consists of two parts, including the n:m mode relationship between

entities and the action direction from one object to another. The Positional

Relationship regulates an interaction action's validity via rules, roles, layers, and

policies applied with entities involved in an interaction. The interaction time refers to

an interaction’s valid time. The Action is a possible set of actions over an interaction.

A set of values defines each parameter. Security policies govern the validity of

interaction parameters. The proposed model introduced Interaction Security Violation

Detection/ Prediction (ISVDP) algorithms in relation to the defined interaction

parameters.

The interaction model and its exclusive parameters enable VSFs to monitor

relevant parameters required for security violation detection and prediction

algorithms. For this purpose, the SDS2 security controller requires to communicate

with a VSF for security data. The VSF monitors the targeted interaction and uses the

Sec-Manage protocol to supply interaction data to the security controller. Figure 5.3

illustrates an overall view of the Sec-Manage functionality between the security

controller and VSF. In the section, we detail how to obtain required values related to

the interaction model for VSF.

156 | P a g e

Figure 5.3 Interaction and Sec-Manage Protocol

5.3 Sec-Manage Protocol Design

The Sec-Manage protocol is designed in the style of OpenFlow [3] and OF-

Config [10] but for virtual security functions according to our policy-based interaction

model for security services. OpenFlow protocol concentrates on flow rules in terms

of modifying, deleting, adding, and setting rules to control OpenFlow switches

behavior. However, what is required by the SDS2 security model, is not only a

streamlined communication protocol that handles both configuration and management

of VSFs but also a channel for exchanging parameters-specific to the security policy-

based interaction model. The Sec-Manage protocol enables controllers to send the

required instructions to profile the VSF behavior dealing with an interaction.

The protocol permits controller to 1) communicate with VSFs; 2) configure the

forwarding and config-table entries; 3) send security instructions to the security

functions; 4) dynamically program VSFs; 5) get status information of a VSF; 6)

157 | P a g e

collect information regarding the security parameters collected by VSF during an

interaction.

The Sec-Manage protocol determines message types between SC-VSF/VSF-

VSF, the forwarding and config table structure, and message formats. It also specifies

how a VSF reacts and operates over an interaction.

The protocol also allows VSFs to 1) communicate with the security controller;

2) send security warning to SC; 3) send its statistics and state to update security

controller VSFs’ database; 4) intelligently communicate with other VSFs. 5) update

required interaction parameters; 6) send detection and prediction results back to the

security controller.

Figure 5.4 demonstrates the connectivity phases between a VSF and the SC. The

first step establishes the connection between the security controller and the VSF. Then

it sends a hello packet to authenticate the VSF/s. After that phase, the SC configures

and manages the VSF until the end of its chain cycle. The details of protocol design

and its message types are described in the following section.

Figure 5.4 Connection establishment

158 | P a g e

5.3.1 Sec-Manage packet header

The protocol also allows VSFs to 1) communicate with the security controller;

2) send a security warning to SC; 3) send its statistics and state to update security

controller VSFs’ DB; 4) intelligently communicate with other VSFs. 5) update

required interaction parameters; 6) send detection and prediction results back to the

security controller. Figure 5.5 shows the Sec-Manage header and payload.

Figure 5.5 Sec-Manage Header and payload

Fig 5.6 demonstrates the structure of the Sec-Manage Header. The packet

header consists of:

• Source Address (2 bytes): Shows the address of the source sending a packet

• Destination Address (2 bytes): Shows the destination address of the packet

• Type (1 byte): Specifies the packet type

• Hop count (1 byte): Specifies the number of valid hops that a message can travel

within our virtual security network

159 | P a g e

• Validity Time (1 byte): Demonstrates the valid time in which a packet can exist

and travel in the system. If SC or VSF receives the packet with validity time=0,

the packet will discharge immediately

• Message-ID (1 byte): Presents unique ID provided to each message which

identifies the message type

• Priority Flag (2 bytes): Shows the priority of message in terms of receiving

instruction or performing actions

• Packet length (2 bytes): Specifies the total size of the packet, including both header

and payload

• Interaction ID (2 bytes): Refers to the ID of the requested interaction

• Sec-Controller ID (2 bytes): Indicates the ID of the security controller that initiates

the VSF.

Figure 5.6 Sec-Manage Protocol Header

5.3.2 Message types

The different types of messages are transferred within the payload. Each

message carries different information between the SC and its VSFs. However, to

achieve our goal, we categorize three main messages as required to be sent via Sec-

Manage protocol: i) Security Controller (SC) to VSF- messages direct from SC to

security functions; ii) VSF to Security Controller- messages sent from security

160 | P a g e

functions to the controller; iii) VSF to another VSF- messages transfer between

security functions in same/different domain.

The proposed protocol grouped the message types into three categories 1) SC-

to-VSF; 2) Symmetric message (VSF/SC, SC/VSF); 3) Asynchronous message

(VSFs-to-SC). The security model minimized the number of messages transferred due

to security agility reaction to security incidents (Figure 5.7).

Figure 5.7 Sec-Manage message types

❖ SC-to-VSF messages

The security controller triggers these types of messages. The messages can be

considered as send/receive or send only messages. In send/receive, the security

controller expects the bulk of information to be sent back from the VSF, while in sent

only, the security controller does not expect a response. These messages used to be

sent to configure and manage VSFs. Required messages to be exchanged between SC-

VSF are defined as follows:

161 | P a g e

• SetSecConfigInstruction/SetSecForwardActionInstruction: It enables the security

controller to query and set configuring/forwarding parameters on VSF. The VSF

is expected to send a reply only in case of requesting a configuration from the

security controller

• ModifySecConfiguration: The security controller can modify VSF configuration

values

• ModifySecEntries: The security controller can modify entries parameters within

the VSF

• SecRequestState: The security controller request to collect statistics on VSF status

and its functions

• SecReplyState: The VSF sends this message to the controller as a response to

SecRequestState

• SetSecPolicyInstruction: The message is for the security controller to set/update

policies related to VSF

• SecRequestFeature: The security controller collects VSF information related to its

action, interaction prediction parameters, VSF’s status, VSF’s connectivity.

❖ Symmetric message (VSF/SC, SC/VSF)

These types of messages will be initiated by either the security controller or the

VSF during a connection setup without solicitation. The message is sent during the

lifetime of VSF for notification purposes.

• SecHelloMessage: The hello messages are exchanged between the security

controller and VSFs to verify their liveness during a periodical time slot.

• SecErrorMessage: Sent from VSFs to the security controller in case of fail request

configuration or security function malfunctioning.

❖ Asynchronous message (VSFs-to-SC)

VSF initiates these types of messages to inform the security controller in case

of any update or event/state changes. A VSF sends these messages without a security

162 | P a g e

controller soliciting them. It enables the VSF to report changes regarding object

interaction and the monitoring state back to the security controller.

SecPacket-in Report: Reports on the status of VSF and its behavior in handling

the interaction. It updates the security controller regarding applied changes.

• Inform the security controller on interaction status

• Update the security controller on its RequestedFeature Report changes

• Notify security controller on the discovery of any types of entry confliction

• Inform the security controller about the completion interaction monitoring process

• Alert the security controller in case of malicious modification

• Update security controller in case of dynamic changes of its actions related to an

interaction inquiry

• Update the security controller on predicted interaction parameters

ConfigurationRequestReport: It enables a VSF to request handling an

operation that does not match its instructions. The VSF informs the security controller

regarding upcoming interactions with no existing instruction to be handle.

5.3.3 Forwarding Interaction Table Specification

The table entails three main components: Interaction Matching, Instruction, and

Counters, as presented in Figure 5.8. The interaction matching window is matched

against the upcoming interaction field in the Sec-Manage header field. Corresponding

actions in the instruction window will take place in case of a match. The counter

window describes the statistics of matching entry.

1. Interaction matching: Provides matching information extracted from arriving

interaction packet header. The window is comprising of three parameters.

• Match ID: Specifies the ID of matching interaction. It matches an incoming

interaction packet with a matching field in the header.

163 | P a g e

• Interaction Match: Indicates which field of header requires to be matched in the

interaction matching window. So, not all header fields are required to be matched,

and less matching process is performed to find the match.

• Opr: Indicates a comparison between the matching header and interaction

matching value. The values can be considered as equal (=), and different (!=).

2. Instruction: Specifies the corresponding action to be applied to interaction entries.

It is composed of two parameters.

• Action (Act.): provides types of action to be executed according to matching

interaction. In this table, we defined types of action to be considered such as

Forward, Modify, Block, Drop, continue [11]; Continue: continue the interaction

process.

• Value (Val.): Indicates the value of an action.

Figure 5.8 Interaction Forward table structure

3. Counter: Collects the data and statistics in terms of updates/any changes in

interaction entries and matched entries.

• Count: Reveals a number of interactions matched against table entries. Counters

are maintained for interaction entries and statistics parameters.

• Priority: Indicates the priority of matching entries and their action. It is used in

case of multiple actions which are possible related to entries.

164 | P a g e

5.3.4 Config Interaction Table Specification

The table entries provide instructions on how a VSF handles an interaction. The

table structure consists of two main components: Config Instruction and Statistics

(presented in Figure 5.9).

1. Config Instruction: Includes three main components: Interaction Action,

Request VSF, and Interaction Conditions.

• Type: Indicates valid action/s type applied to an interaction entry in the table.

• VSF ID: Specifies the VSF/s connected with the interaction entry.

• Interaction Condition: Indicates matching conditions applied to the interaction

entry.

• Src: Specifies the source object in the interaction and related constraints.

• Dest: Specifies the destination object in the interaction and related constraints.

• P.ID: Directs to policy parameters assigned to interaction entry (local/general

policies).

• Loc: Indicates conditions related to the location of the source, destination, and

interaction.

• Res: Specifics conditions related to resource/s involved in an interaction.

2. Statistics: Provides statistics data on the interaction entry. The statistics will be

updated after a match discovery.

• Int.ID: Indicates interaction/s assigned to a VSF.

• Start time (St. Time): Shows the exact starting time of interaction.

• Counter: Shows the number of changes within a specific time.

• Validate time (Val. Time): Specifies the valid time of the target interaction,

defined by the SC according to the applied policies. When it is 0 the interaction

entry is expired.

• Executed: Specifies if an action has been executed.

165 | P a g e

Figure 5.9 Interaction Config Table

• Config table in software

Establishing a config interaction table required several classes displayed in

figure 5.10. The displayed classes are forming an entry table within the config

interaction table.

Figure 5.10 Interaction configuration table class of diagram

166 | P a g e

5.4 Implementation and Performance Evaluation

5.4.1 Implementation Set up

To demonstrate the proposed Sec-Manage protocol's performance, we develop

our environment where our Sec-Manage protocol can manage and control our

underlying interaction-based virtual security functions. We deployed a testbed using

two Ubuntu 14.04 VM running on top of the OpenStack cloud platform. A security

controller is software written in Java. The whole environment is running on top of the

VMware virtual environment.

Specifically, this section demonstrates 1) the feasibility of Sec-Manage as an

effective communication protocol between the SC and its VSFs in a virtual security

network; 2) the capability of Sec-Manage in supporting our policy-based interaction

protocol for security violation detection and prediction. The results demonstrate how

the controller configures its virtual security function using Sec-Manage protocol using

the VSF’s forwarding and config tables.

The results also demonstrate that the protocol allows the security controller to

direct its virtual security functions to monitor targeted object interaction and collect

interaction data for the security violation and detection algorithms. Our

implementation prototype is shown in Figure 5.10. To test the proposed protocol, a

number of interactions are triggered to access a specific resource. The security

controller is to look into this interaction request. Figure 5.11 demonstrates the process

of connection between Client and Controller.

167 | P a g e

Figure 5.11 The implementation of the prototype

The software modules consisting of security controller, southbound interface,

virtual security representation in charge of the SDS2 security controller, the Sec-

Manage protocol, and VSFs. The security controller includes classes responsible for

extracting required interactions and policy parameters, orchestrating underlying

interaction-based virtual security functions, networking, and communication between

the security controller and VSFs. The southbound interface module consists of classes

for our proposed Sec-Manage protocol, including messages, interaction forwarding,

and config tables. The virtual security function modules consist of java classes

representing the VSF.

A database was established as a built-in DB within the security controller to

store and update information regarding VSFs locations, interaction and policy

parameters, status, and attributes of VSF.

168 | P a g e

5.4.2 Performance Evaluation

According to the triggered interaction and its domain/ location, the security

controller initiates a VSF. It then sends SetSecConfigInstruction /

SetSecForwardActionInstruction message to VSF via Sec-Manage. The requested

interaction contains a set of parameters. The request parameters indicate the required

resources, identification of interaction (Int. ID), interaction actions (ACT.), source ID,

started time, security controller ID (Sec-ID).

Targeted interaction contains potential interaction parameters and user

privileges. The security controller then extracts the targeted interaction according to

its tangled resources and analyze required security policies. The Sec-Manage protocol

transfer interaction parameters through the Int.ID that includes essential interaction

parameters. It also transfers the required policy parameters by the P.ID parameter. The

Sec-Manage enables VSFs to report back the results of interaction security violation

monitoring. The following figures demonstrate the forwarding table, config table, and

security controller service table. The security controller service table shows the list of

VSFs and their status during and after an interaction. Figure 5.12 shows a client

request script to be sent to the controller.

Figure 5.12 Client sending request to the security controller

169 | P a g e

The figures follow two main scenarios: 1) indicates the tables before

configuration 2) demonstrates tables record after configuration. The security

controller uses a random number allocation for its functions to record their activities.

Figure 5.13 and 5.14 illustrate the security controller service table before and

after initiating a VSF. For the first time that the security controller receives an

interaction, the table has no record store inside.

Figure 5.13 Current Service Table

Figure 5.14 Security controller service table after receiving an interaction

The VSF ID is a unique identifier assigned to each VSF. The VSF Loc shows

the location that VSF is placed to monitor the targeted interaction. The VSF St.

displays the current status of the security function within the system. The VSF status

can be on, off, expire, idle, or delete.

After analyzing the interaction and its involved entities, the config table will be

configured accordingly. Figure 5.15 and 5.17 demonstrate results before VSF

configuration. Figure 5.15 and 5.16 demonstrate the Config table before and after the

configuration.

170 | P a g e

Figure 5.15 VSF Config Table before

Figure 5.16 VSF Config table after configuration

Figure 5.17 and 5.18 exhibited the VSF forwarding table before and after the

configuration.

Figure 5.17 Current VSF forwarding table

Figure 5.18 VSF Forwarding table after configuration

Through Sec-Manage, the SDS2 security controller can handle multiple

interactions and orchestrate VSFs to process the requests. Figure 5.19 demonstrates

the configuration and forwarding table from the Device-level side. It shows the

configuration of VSF in relation to various triggered interactions within the system.

171 | P a g e

Figure 5.19 SDS2 GUI interface demonstrating multiple interaction forwarding and

configuration records

5.5 Summary

This chapter proposed designing and implementing the Sec-Manage protocol to

address challenges in providing an effective communication channel between the SC

and VSFs for security violation and prediction based on the policy-based interaction

model. The Sec-Manage protocol provides streamlined and effective communication

between the security controller and its virtual security function/s in the underlying

virtual security network. It is also tailored to our proposed policy-based interaction

model to collect and transfer the interaction parameters to the software-defined

security controller to manage, detect, and predict security violations in the cloud

system. The Sec-Manage protocol enables the SDS2 controller to control the VSFs

dynamically. The proposed protocol paves the way for further research and

deployment on orchestration and deployment of virtual security function and

interaction security violation monitoring and prediction.

172 | P a g e

Chapter 6

6 Software-Defined Security
Service Architecture and

Components

6.1 Introduction

Cloud computing has become an alternative IT infrastructure where users,

infrastructure providers, and service providers all share and deploy resources for their

business processes and applications. Business customers are shifting their services

and applications to cloud computing since they do not need to invest in their own

costly IT infrastructure but can delegate and deploy their services effectively to cloud

vendors and service providers [137]. In parallel to cloud computing, the software-

defined networking (SDN) paradigm has enabled the automation of virtual networks

and network management with centralized control. Network functions virtualization

(NFV) pushes the concept even further by allowing virtualization (software

implementation) of network functions, traditionally realized by hardware, and

deploying them on commodity computing devices. Specifically, the SDN principle

decouples the network control plane from its data plane. The SDN enables providers

with the capability of provisioning automatic and on-demand network services

through a programmable and logically centralized network controller.

173 | P a g e

In this chapter, we introduce our software-defined security architecture. The

chapter describes the main component of SDS2 architecture, the SDS2 security

controller. This chapter mainly concentrates on demonstrating SDS2 architecture

working alongside its main components via the SDS2 security controller. The SDS2

architecture provides functionalities for SDS2 service to be performed in the cloud

environment to protect virtual resources. The architecture enables automation,

programmability, and on-demand underlying virtual security functions. The Policy-

based Interaction model to protect the cloud resources in an innovative method has

been discussed in chapter 4. The architecture introduces the core components and

enables management and orchestration of VSFs by Sec-Manage protocol, discussed

in chapter 5. The architecture has been published in [37, 134]. The architecture

consists of different main components and three main layers as displayed in Figure

6.1.

Figure 6.1 SDS2 Layers

The remainder of this chapter is organized as follows. Section 6.2 describes the

overall SDS2 architecture. Section 6.3 presents the structure and functionalities of the

SDS2 security controller. Section 6.4 describes the software implementation of the

174 | P a g e

SDS2 controller. Section 6.5 demonstrates an implementation scenario. Section 6.6

demonstrates the working of the SDS2 security controller as the main component of

SDS2 architecture. According to the interaction model, this section demonstrates

performance evaluation related to the SDS2 security controller's ability to orchestrate

virtual security functions. Section 6.7 concludes this chapter.

6.2 Software-Defined Security Service (SDS2) Architecture

Reflecting on the model and service aspects discussed in the earlier section, we

propose a Software-Defined Security Service architecture (SDS2) to support SDSec

Service that can be deployed by cloud providers to protect its integrated cloud

infrastructure. The proposed architecture embraces the SDN and NFV principles. To

reap the benefits of SDN and NFV paradigms, the SDS2 architecture is structured in

three security layers: Security Application Layer, Security Control Layer, and

Security Infrastructure/data Layer. The proposed SDS2 architecture is shown in figure

6.2.

The SDS2 deploys the very virtual resources of the cloud to provide its

protection service. It behaves like a trusted tenant overseeing and providing the

security service for the cloud infrastructure. SDS2 belongs to the new software-

defined approach that manages security by separating the security forwarding and

processing plane from the security control plane. The SDS2 utilizes concepts and

techniques of cloud, SDN, and NFV.

Applying the NFV concepts for security, virtualization technologies are used to

implement virtual security functions (VSFs) on a VM or industry-standard commodity

hardware. These virtual security functions can be created on-demand and moved to or

instantiated in strategic locations in a software-defined dynamic virtual network

environment. Applying the SDN concepts for security, network virtualization is

deployed to provision virtual security networks (VSNs) connecting virtual security

175 | P a g e

functions. A logically centralized SDSec controller forms a domain-wide view of the

underlying network of virtual security functions. The SDSec controller can program,

configure, and control the VSFs autonomously. Applying cloud computing concepts

for security, physical storage, network, and computing resources are virtualized to

accommodate virtual network functions, virtual security networks, and virtual security

storage. The cloud platform is used for orchestrating the provisioned security

components to provide security services for the target cloud infrastructure.

Figure 6.2 SDS2 Architecture overview

The proposed security architecture decouples security functions and security

networks from the underlying infrastructure. The software-defined security

architecture centres around an Interaction model among objects to detect and predict

security breaches. It relies on the proposed Security Policy-Based Interaction Model,

which utilizes virtual security functions (VSFs) within the software-defined security

network. The security architecture consists of three main components: Security

Controller, Virtual Security Functions (VSF), and a Sec-Manage Protocol. In this

section, we discuss the main functions in detail. The SDS2 deploys the very virtual

resources of the cloud to provide its protection service. It behaves like a trusted tenant

176 | P a g e

overseeing and providing the security service for the cloud infrastructure. SDS2

belongs to the new software-defined approach that manages security by separating the

security forwarding and processing plane from the security control plane.

Figure 6.2 is the overview of SDS2 architecture. It comprises three main planes:

the security application layer, the security control layer, and the security

infrastructure/data plane. At the top of security architecture, there are a diversity of

security APPs developed by third parties. The middle of the architecture consists of a

security controller and its main modules. The architecture's bottom is the security data

plane, including virtual security functions and their connectivity through Sec-Manage

protocol. An implementation of a platform that deploys the architecture is detailed in

chapter 7.

With the proposed SDS2 architecture, we address four significant contributions:

i) providing automation, orchestration, and configuration of virtual security functions

in a cloud infrastructure, ii) programming on-demand virtual security functions, iii)

enabling intelligent, proactive security system protecting cloud resources, iv)

deploying intelligent, dynamic and on-demand security boundaries for cloud

resources according to cloud’s entities interaction model. An SDS2 security

architecture is composed of three main layers/planes.

Security Application Layer Security applications are found in this layer. This

layer communicates with the SDS2 security control layer through an intent-based

security northbound interface that allows applications/orchestrators to express their

required security services regarding their application-specific requirements, including

security policies rather than their systems' structure/services.

Security Control layer This layer includes an SDS2 security controller, which

has a complete view over its VSFs and their interconnectivity within the cloud

infrastructure. It is essential to differentiate the SDS2 security controller from SDN

controller where security controller deals only with security services, security

functions, and their private virtual security network. In another word, SDN controller

construct dynamic connectivity among virtual network functions while SDS2 security

177 | P a g e

controller mainly concentrates on providing on-demand security services for cloud

resources protection.

The SDN controller deals with creation of dynamic networking for underlying

network functions. The security controller consists of various components, and each

is responsible for a specific task. Since the SDS2 controller has a global view over the

system, it can construct appropriate responses to security incidents in real-time.

 Security Data Layer The virtual security functions (VSFs) are placed in this

layer and communicate with the SDS2 controller through a specific protocol. A simple

protocol has been designed to program, configure, and manage VSFs and allow them

to report their operational status to the controller. It includes the intelligent and

dynamic networking communication mechanism and the link between the controller

and VSFs and even among VSFs. It should be noted that VSFs are not switches or

routers; they only perform their defined security functions and relay their data/status

to their controller and other VSFs when directed, such as in chaining operations.

6.2.1 Virtual Security Function (VSF)

The VSF is a security element or function implemented in software and

deployed on a virtual resource such as a VM in a physical server (host). It is a

generalization of NFV VF that abstracts a physical security appliance and is deployed

on a commodity server.

A VSF is created to perform a specific security function. It is a software object

that can be created, instantiated, and operated on any VM. A VSF is a software entity

with a life cycle starting from the instant when it is created through its operation and

its termination. A service chaining function can chain VSFs to create a new security

function. It can also be combined with others to create complex security functions.

Typical VSFs include firewalls, virus scanners, intrusion detection systems, security

gateways, and in-depth packet inspections. Other functions include policy/rule

checkers, and security metric meters. In the proposed SDS2 architecture, the primary

178 | P a g e

function of a VSF is to intelligently monitor the requested interaction according to

proposed interaction parameters (depicted in Chapter 4).

6.2.2 Sec-Manage Protocol

The key purpose of the proposed protocol between SDS2 Security Controller

and VSFs is to transfer security messages and interaction parameters between a

security controller and its VSFs. The Sec-Manage protocol is proposed as a bridge

between the security controller (SC) and the VSFs to transfer interaction values

according to the SDS2 Interaction Model. The main aims of designing the Sec-Manage

protocol are 1) to provide direct communication between the SDS2 security controller

and its VSFs and 2) to transfer the parameters pertinent to the security aspects of

objects’ interaction between a VSF and the SC to monitor parameters of an interaction

to detect and predict security violations. The proposed Sec-Manage protocol is

described in chapter 5.

6.2.3 Policy-based Interaction Model

The software-defined security architecture centers around an interaction model

among objects to detect and predict security breaches, relying on the proposed

Security Policy-Based Interaction Model, which utilizes virtual security functions

(VSFs) within the software-defined security network.

The policy-driven interaction model governs the interactions among entities in

a cloud environment. The interaction model and its unique parameters have been

developed for agile detection and prediction of security threats against cloud

resources. The model deals with external and internal interactions among entities

representing diverse participating elements of different levels of complexity in a cloud

environment. This component has been described in detail in chapter 4.

179 | P a g e

6.2.4 SDS2 Security Controller

Like an SDN controller, the SDS2 controller is the whole security system's brain,

controlling its components and operations. It has a global view of its virtual security

network and interconnected virtual security functions. The SDS2 security controller

consists of multiple components which mainly deal only with security functions and

security services.

The SDS2 controller has a complete topological graph of the connectivity of its

virtual security functions (VSFs), allowing it to construct appropriate responses to

attacks in real-time. The controller will construct service chaining of VSFs to create

new security services to address emerging threats. Security intelligence is logically

centralized in the software-based controller that maintains the global view of the

security network. Hence, the global view of the security status of the protected system

appears to the security applications and policy engines as a single security element.

The SDS2 security controller must be able to construct essential services and compose

complex services into new services based on the capability of its underlying network

of virtual security functions. The security controller is programmable. It configures

and manages all virtual security functions under its control through its virtual security

network using a Sec-Manage protocol. The SDS2 allows the security Network

manager alongside with the virtual security function manager to configure, manage,

secure, and optimize network security resources (VSNs and VSFs) quickly via

dynamic, automated programs.

The basic set of components of the SDS2 security controller may consist of

entity security policy-driven manager (ESPM), security policy manager (SPM),

policy-based interaction manager (PIM), virtual security function manager (VSFM),

the security network manager (SNM), interaction request manager (IRM), interaction

detection and prediction engine (IDPE). Figure 6.3 demonstrates some of the main

components within the SDS2 Security controller.

180 | P a g e

Figure 6.3 overview on SDS2 major components

Security Policy Manager (SPM) System security policy-related activities are co-

located in this module. This module provides security policy parameters related to

general policies transferred from provided system policies. Security policies define

the desired behavior of the heterogenous application, systems, networks, and any type

of object within the system. General policies apply to all requests within the system.

Entity security policy-driven manager (ESPM) It provides specific policies

related to each entity during an interaction. This module focuses on policies applied

to each entity according to their features and nature. This module is responsible for

extracting and translating local policies. Local policies apply separately to each entity

and their interactions within the system according to their location and assigned

constraints.

Policy-based interaction manager (PIM) It manages security policies applied to

each interaction. It is responsible for triggering intelligent algorithms to detect and

predict security violations according to interaction parameters.

Virtual Security Function Manager (VSFM) This component is responsible for

creating a specific interaction software-based virtual security function (VSF). It

orchestrates specific VSFs to provision on-demand security services within the

security system. VSFs are created and positioned in critical locations of the

infrastructure. Each VSF is launched as a specific security function such as firewall,

181 | P a g e

security gateways, in-depth packet inspections (DPI), intrusion detection systems, or

a mission-specific software-based security agent. These VSFs are dynamic, on-

demand, and intelligent. Their primary responsibility is to detect security breaches

through monitoring possible penetration doors for attacks from diverse aspects based

on interaction parameters. The SDS2 uses NFV technology for the creation of its

VSFs.

Security Network Manager (SNM) This component is responsible for creating

and managing the dynamic Virtual Security Network (VSN). It is responsible for

providing a direct communication path between the security controller and VSFs or

vice versa. A streamlined protocol is deployed for routing security messages between

VSFs and SDS2 security controller/other VSFs. It uses Sec-Manage protocol to

transfer the required interaction parameters and policies between both security

controllers and VSFs. The small routing table is created inside each VSF consisting

of IP address, unique controller ID, and access port.

Interaction request manager (IRM) This component analyzes and manages

requested interaction within the security system. The module is responsible for

detecting the types of interaction. It interprets interactions in their high-level language

and translates them for the security controller modules.

Interaction detection and prediction engine (IDPE) This component runs the

prime algorithms for detection and prediction. It is in direct connection with the PIM

module within the security controller.

SDS2 Secure DB provides updated information for the operation of the security

controller and its core modules. The DB stores updated interaction parameters and

security policies related to each entity. It is responsible for storing security policies,

system tenant and resource information, interaction parameters, and VSFs data.

Security Life Cycle Monitoring This component looks after the life cycle of each

VSF from its initialization till expiration. Specifically, this component ensures that a

182 | P a g e

VSF will not create security issues due to virtualization even after its termination.

Information related to the VSF is encrypted and maintained in the secure DB.

Security Audit, Events, and Statistics It is responsible for keeping records of all

security architecture events.

6.3 SDS2 Security controller – Functioning Mechanism

The SDS2 security controller's main functions are to analyze the requested

interactions and dynamic creation of virtual security functions so that it can

orchestrate and manage on-demand security functions within the system. The SDS2

has installed the following mechanisms to achieve and perform its functionalities.

6.3.1 Virtual Security Function orchestration approach

The core functions of the security controller include the creation and

orchestration of virtual security functions. The security controller orchestrates virtual

security functions to handle any interaction violations among cloud resources. It

initiates the VSFs according to the requested interaction and availability of VSFs

within the system. It can reuse existing virtual security functions if their status is

IDLE.

We design an algorithm (Algorithm 6.1) to associate an appropriate VSF, which

will satisfy the interaction request and current states of available virtual security

functions. The security controller checks the states of VSFs and assigns them to the

requested interaction. Since VSFs are software-based components, the security

controller can initiate them according to the system load and the VSF’s status. A “VSF

State” is computed according to their job status and availability in handling the tasks.

183 | P a g e

Algorithm 6.1 VSF Creation

Inputs: required parameters as Resources, locations, an updated list of requested

interaction, and associated VSFs

Outputs: the list of initiated VSFs and requested interaction

Switch VSF_Initiator do

case "GET":

 get a list of requested interactions and associated VSF with GET action ac-

cording interaction type in the required locations from the updated VSF list

 if the list is empty then

 initiate a new VSF and assign the required resources

 set the new VSF status ON

 else

 get a list of current VSFs with their status

 set the VSFs with IDLE status to ON and assign the resources

 end if

case "VSF_ON":

 initiate the new VSF and assign the resources

case "VSF_OFF":

 change the VSF status to OFF after expiration and release the resources

6.3.2 VSF Configuration Approach

The security controller needs to associate VSFs to an intended or requested

interaction. It requires configuring the VSF according to the interaction and policy

parameters. The security controller associates an interested interaction with a VSF

based on its functionalities, availabilities, and locations. The VSF status determines a

VSF’s availability for the required task.

184 | P a g e

The Security controller sends configuration messages via the Sec-Manage

protocol. However, to control configuration message overhead between the security

controller and VSFs, the security controller may reuse the current interaction and

policy parameters assigned to objects involved in the interaction and the current VSF

configurations. The Security controller only transfers the required/updated parameters

in the case of any changes. We design an algorithm (Algorithm 6.2) to associate a

requested interaction with a VSF.

Algorithm 6.2 Association Requested interaction

Input: a set of requested interactions with parameters to be monitor by VSF

Output: a set of associated VSF_IDs and Interaction Parameters

1: for each requested interaction in queue (RIQ) do

2: if (VSF_status is ON & Int_ID valid) then

3: I=getListInteraction (i); // update I with requested int_id and location_id

4: L =getListVSF(v); // update V with list of VSF_id, location

 5: else

6: Exit ();

7: for each v.vsf_id in V of each i.int_id in I do

8: AssignInttoVSF(v); // Return appropriate assigned VSF_IDs for each

requested interaction

9: end for

10: end for

6.4 SDS2 Security Controller – Software Implementation

This section describes the implementation of the SDS2 security controller in

terms of its functional components. The security controller consists of different

classes in relation to its components. The overall security controller main classes

diagram is shown in figure 6.4.

185 | P a g e

Figure 6.4 Class Diagram of SDS2 Security Controller

The SecurityControllerIntercationAnalayzer class is responsible for analyzing

the requested interactions within the system. The InteractionParametersCollector

interpret entities interaction parameters required by

SecurityControllerIntercationAnalayzer. The CloudObject class defines cloud objects

required by SDS2SecurityController. It includes properties of each object, including

their specific attributes related to each object. The VSFManager class orchestrates the

virtual security functions via VSFResources and VSFLocations. The VSF class

delivers virtual security functions attributes and resource IDs.

The protocol class connects the SDS2 security controller and VSFs via the Sec-

Manage protocol class, including required parameters and headers. The

SecurityControllerDB class provides a connection between the SDS2 database and all

186 | P a g e

functions of the security controller. The database is created with MySQL, including

main tables. The tabl_VSF tables store VSFs’ information such as VSF_id

(Identification number of each initiated VSF), Loc_id (location of associated VSF

within the system like Loc01 or Loc02), Int_id (interaction ID assigned to each VSFs).

6.5 Results and Performance evaluation

The main aim is to provide on-demand security services where virtual security

functions are orchestrated via a logically centralized security controller. To

demonstrate the practical realization of the SDS2 Security controller in orchestrating

VSFs, we deploy the architecture and security controller that manage and control

VSFs within the cloud simulation environment. The VSFs can be orchestrated to

provide on-demand security services for one or multiple interactions.

The primary responsibilities of VSFs are monitoring requested interaction and

discovering the violations against interaction parameters at the interaction level. In

this case, various interactions were initiated to evaluate the SDS2 security controller

functionality in handling and orchestrating the VSF related to multiple interaction

configuration. Any interaction is dynamically assigned to a VSF for further

monitoring.

The SDS2 security controller initiates VSFs on-demand according to triggered

interaction within our environment. The system can orchestrate its underlying virtual

security functions to handle multiple simultaneous triggered interactions, as shown in

figure 6.5.

187 | P a g e

Figure 6.5 Implementation Prototype

6.5.1 Implementation Set Up

The SDS2 security controller is a software platform written in Java and built

using Eclipse. The security controller is connected to a secure DB built-in MySQL to

store required parameters. The design's three main elements consist of a security

controller, VSFs, and a Sec-Manage protocol. The three key software modules,

including security controller, southbound interface, and interaction-based software

security function, are responsible for the SDS2 security controller, the Sec-Manage

protocol, and underlying VSFs.

The security control module is responsible for analyzing the interested

interaction, orchestrating, controlling, and managing the involved VSFs, detecting and

predicting security violations based on associated VSF and algorithms, and the

communication between VSFs and their security controller. The southbound interface

is composed of Sec-Manage protocol messages, forwarding and configuring table,

interaction status, and policies parameters. The module, which represents interaction-

188 | P a g e

based VSF, contains classes for defining VSF and its software-based functionality and

resources. We build a network using java classes where the security controller

communicates with VSFs via the Sec-Manage protocol.

6.5.2 SDS2 Security controller - Performance Evaluation

This section concentrates on demonstrating performance results related to the

SDS2 model. The results demonstrate the ability of the security controller in initiating

and orchestrating VSFs. The Sec-Manage makes it possible for the SDS2 security

controller to instruct VSFs to achieve on-demand security interaction monitoring and

transfer interaction parameters to the security controller. The Sec-Manage protocol

empowers the security controller to detect and predict security violations according to

VSFs security messages. Using the designed features, the security controller can

achieve the following results:

• Dynamic and on-demand initiation of VSFs via VSFManager functionality

according to requested interaction (figure 6.6)

• Responding and handling dynamically to simultaneous triggered interaction

within the system (figure 6.6)

• Displaying and updating the status of virtual security functions and requested

interactions (figure 6.7)

• Evaluating the message overload and system performance in relation to the

construction of multiple VSFs (figure 6.8 and figure 6.9)

Figure 6.6 demonstrates the dynamic creation of VSFs by the security

controller. In this figure the interaction is triggered, and the SDS2 security controller

initiates a new VSF with ID 36 to monitor an interaction via VSFManager. Through

the Sec-Manage protocol the security controller can instruct the VSF according to

interpreted interaction parameters. The VSFManager calls its classes to create the

VSF and assign the required resources to initiated VSF. Each interaction is assigned

to a specific VSF with a unique ID that lasts till the end of the interaction lifetime.

189 | P a g e

The TTL in the VSF table shows a live time for each VSF during an interaction. The

security controller decides where to locate the VSF according to location and

condition of interaction. The VSF status shows the current status of each VSF. Figure

6.6 shows most VSFs are running according to their status as “ON” which means they

are already associated with interaction and running. The security controller creates a

new VSF after checking its VSF table within the database. So, if there is no same

previous interaction and no existing VSF associated with the triggered interaction, the

security controller initiates a VSF and assigns it to the requested interaction.

Figure 6.6 multiple interactions handled by the security controller

The security controller is capable of handling multiple interactions

simultaneously (shown in Figure 6.6). In this case, the security controller receives

multiples interactions in the same period. The security controller creates an interaction

queue pool and assigns the VSFs according to the priority system related to

monitoring and responding to requested interaction. The security controller assigns

the interaction to the most proper and available VSFs based on their triggered location

and priority. The Sec-Manage protocol provides the security controller with the

capability to configure and manage VSFs directly. After interaction validates, time

ended, the security controller changes the initiated VSF via their status. Figure 6.7 (a,

b) demonstrates expected results according to the security controller process—the

security controller programs underlying VSFs to handle multiple requested

interactions through VSFs configuration table via Sec-Manage protocol. As described

in figure 6.7 (a), both VSF 12 and VSF 13 exceed their time to live when TTL turns

190 | P a g e

to 0. The security controller updates the VSF table and changes the status for both

interactions, as shown in figure 6.7 (b), from “on” to “off/expired.”

Figure 6.7 Status of VSFs

The security controller prevents overload of messages sent among its

components (security controller and VSFs) by assigning existing VSF to an interested

interaction. The security controller reduced the overload of messages sent between

itself and its underlying VSFs via reconfiguration of existing VSF for a repetitive

interaction from the same source. In this case, the security controller only sends

required changes through Sec-Manage protocol and reduces the number of messages

to be transferred. The security controller keeps track of interactions, VSFs, and

involved initiator and reactor. Regarding the count number of interactions handled by

a VSF, the security controller can reuse offline VSFs in similar interactions based on

initiator and reactor. Table 6.1 demonstrates assigned interaction_id, the number of

interactions (count) assigned to each VSF, and the current status of the VSFs (EXEC).

191 | P a g e

In the following table, VSF id (3) was able to handle/monitor 2 requested interactions

previously completely and currently it is monitoring the third one with interaction id

(3) as EXEC is Y. Similarly, in another case, VSF id (2) is currently monitoring

interaction id (7). The VSF id (4) is assigned to monitor interaction id (12), but it is

not running or unable to monitor the interaction. In this case, the security controller

changes VSF 4 status to “OFF/expire” and assigns the interaction to another VSF.

Table 6.1 Security Controller VSF Orchestration Results

VSF ORCHESTRATION

VSF_ID INT_ID Count EXEC

VSF 3 3 3 Y

VSF 2 7 8 Y

VSF 4 12 0 N

VSF 12 12 1 Y

Two performance metrics evaluate the SDS2 security model's efficiency:

controller processing time in handling multiple interactions and average provisioning

time to initiate VSFs (as shown in figure 6.8 and figure 6.9). The security controller

processing time in this scenario signifies the total time from when the security

controller receives the requested interaction when it initiates the VSF and assigns it to

that specific interaction. The average processing time of handling multiple

interactions depends on: i) several simultaneous requested interactions, ii) similarity

between currently requested interactions with previous/existing configuration of VSF,

iii) the availability of existing IDL VSFs. For instance, for each new interaction with

no previous configuration availability, the processing time will be longer than in other

cases. The reason is the lack of previously existing stored data on the requested

interaction used by the security controller. So, the security controller must spend more

time analyzing, collecting, and transferring the data to VSF. Besides, in some cases,

the security controller requires to initiate new VSFs and assign new resources.

192 | P a g e

However, at the time of requested interaction, if there are still idle VSFs, it will

reduce the time by excluding the time required to initiate a new VSF. However, to

reduce the processing time, the security controller uses a previous VSF, and instead

of deleting them, they are just put idle mode for further processing.

Figure 6.8 SDS2 security controller the average processing time for all types of

interactions

Figure 6.8 describes the average processing time for the security controller to

analyze the inputs according to the number of requested interactions. The interaction

numbers include all three types of interaction handled by the security controller within

the system. The number of triggered interactions is increased by 10 each time from

10 to 60. The more interactions triggered, the higher the processing time growth. The

reason relies on the time that the security controller requires to analyze different types

of interactions. The time the security controller requires increased slightly as the

number of requested interactions increased. However, since some interactions are

repeated during the system, the increase is not sharp as the security controller can use

its stored data assigned to each repeated interaction.

193 | P a g e

Figure 6.9 demonstrates the average time that the security controller requires to

initiate a VSF. To evaluate the SDS2 performance according to VSFs initiation times,

we consider increasing the VSF number by 10 each time from 10 to 50. The aim is to

demonstrate the time required by the security controller to initiate the VSFs and assign

their resources through its VSFManager and its functionalities.

Figure 6.9 Provisioning On-demand security services

We noticed that by increasing numbers of VSFs to handle interactions, there is

a sharp rise in terms of initiation time of VSFs between 30 to 40. This increase is that

in the edge of 30, the validation time for most of the existing VSFs expired, as a result,

the security controller requires to initiate new VSFs to handle the interested

interactions. With the expiration of the majority of existing VSFs, the security

controller needs to construct new VSFs, including the time to run the new VSFs (time

to assign their required resources) and their configurations.

 One of the reasons is preserving VSF security for not holding a VSF for a long

time in a specific location. Regardless of their popularity in handling the number of

interactions, after a time, their TTL will go down to 0. In this situation, the security

controller requires to initiate the new VSF via VSFManager.

194 | P a g e

6.6 Summary

In this chapter, we have introduced our software-defined security service

architecture with main components including Security Controller, Intellectual

algorithm (discussed in chapter 4), Sec-Manage protocol (described in chapter 5), and

VSFs. In this chapter we demonstrate the proposed security architecture for protecting

cloud infrastructure. We developed a new security controller that uses the Sec-

Manage protocol to dynamically and efficiency orchestrate VSFs in response to

detection and prediction of security violations. In this chapter a detailed description

of functional components of security architecture has been provided.

195 | P a g e

Chapter 7

7 Software-Defined Security
Service Platform

7.1 Introduction

As discussed in Chapter 3, the proposed software-defined security service

model delivers a resolution to secure cloud infrastructure by employing a logically

centralized security control to monitor, orchestrate, and manage on-demand security

services. Our proposed security model decouples security functions and security

networks from underlying infrastructure. We have introduced a logically centralized

Software-Defined Security Service (SDS2), a policy-based interaction model, and

Sec-Manage protocol in our earlier chapters.

 For the purpose of controlling and managing of virtual security functions, we

proposed security service architecture for supporting the orchestration, coordination,

and provision of security services within the cloud infrastructure (Chapter 6).

This chapter describes detailed functionality of the components in the SDS2

platform (described in Figure 7.1). Moreover, in this chapter we conduct a

performance analysis using proposed SDS2 platform with all proposed components

including the security controller, the Sec-Manage protocol, the policy-based

interaction algorithm, and various VSFs.

196 | P a g e

The reminder of this chapter is organized as follows. Section 7.2 presents the

architecture and components of the SDS2. Section 7.3 describes the procedure of the

SDS2 platform in the provision of on-demand security services. Section 7.4 presents

the platform implementation. Section 7.5 determines performance evaluation. Section

7.6 summarizes this chapter.

Figure 7.1 Overview of SDS2 Layers and components

197 | P a g e

7.2 Integrated Software-Defined Security architecture

This section describes the integrated software-defined security service structure

using cloud, SDN, and NFV concepts.

The SDN, NFV, and cloud all share the software-defined concept where

physical resources are virtualized into software components. They share the

underlying physical infrastructure and the virtualization layer and require controllers

and orchestrators to provision services. Naturally, SDN, NFV, and cloud evolve into

an integrated software-defined infrastructure or software-defined system (SDS) to

optimize the use of resources, eliminate the redundancy in their structure, and provide

a richer set of services on demand.

However, the security of such a software-based virtual environment will entail

more than just the security issues common to all domains, the security issues specific

to each domain, the security gaps among them, and the security of the overall

infrastructure. For this purpose, the SDS2 is deployed to provide security in such

integrated software-defined infrastructure. The SDS2 takes advantages of three

technologies to establish its main functionalities:

Cloud Infrastructure Cloud provides a multitenant environment to share the

infrastructure resources. The cloud resources enable SDS2 to initiate its interaction-

based virtual security functions.

Software-Defined Networking (SDN) SDN provides automatic programmable

virtual connectivity among cloud objects. The SDN is based on the separation of the

network control from the data forwarding functions, allowing the controller to directly

program the underlying infrastructure and present it as a high-level network

functionality abstraction to applications and network services [138]. The SDS2 utilizes

the SDN features, constructing dynamic and direct communication between its

specific security controller and underlying virtual security functions.

198 | P a g e

Network Function Virtualization (NFV) NFV technology provides a vast

number of software-based virtual functions within the system. It enables network

functions to be realized and executed as software instances in a VM or container on a

single host instead of customized hardware appliances. NFV implements network

functions using software virtualization methods and operates them on top of

underlying hardware equipment. The SDS2 applies the NFV concept to create a

specific software-based virtual security function to monitor the cloud resources

interaction. The VSF inspired by Virtual Network Function (VNF) structure focuses

only on security features.

The SDS2 structure has been designed in such a way that it can be integrated

into any software-defined infrastructure. The conceptual architecture of SDS2 within

the integrated Cloud/SDN/NFV is shown in figure 7.2.

The upper layer includes security services, interfaces, and tools to define security

policies for cloud objects. A set of pre-defined security policies is simulated and used

over the platform according to the nature and feature of defined cloud objects. The

policies are interpreted to govern and validate constraints and rules for entities within

the system, such as an eligible access control action to be taken during a triggered

interaction. The high-level policies act as input to the interaction security policy

module in the platform structure's middle layer. In chapter 4, we explained our novel

policy-based interaction model and the main components.

199 | P a g e

Figure 7.2 Conceptual structure of SDS2 in an integrated Cloud/SDN/NFV

The middle layer mainly focuses on the orchestration of on-demand virtual

security functions and other SDS2 modules. This layer consists of a security

orchestrator, a security policy module, a security interaction monitoring module, and

violation detection and prediction module, a virtual security function module, and a

security network module.

200 | P a g e

Security Orchestrator It houses the SDS2 security controller. The security

controller controls and manages the whole virtual security environment. In chapter 6,

we described the security controller and several of its main components. Figure 7.3

shows the workflow of the security controller in our SDS2 security model.

Security Policy Module This module includes functionality for interpreting

high-level policies according to entities (initiator, reactor) and the entity interactions

related to security policies. As the name implies, the security policy manager monitors

and enforces policies for both entity policy and interaction policy managers. The

policy interpreter is responsible for translating high-level policy expressions to

allowable interaction rules and constraints.

The entity policy manager extracts policies related to each entity that evolves in

an interaction according to its features and nature intrinsic characteristics. There are

different constraints on each interaction and its interacting entities, such as time of

interaction, and location. This module enforces the policies on entities during the time

interval that interaction takes place within the system. The policy repository contains

policy expressions which are expressed via a simple language-based template.

Chapter 6 contains the foundation of specification of the policy expressions to be used

in our security system.

Virtual Security Function Module The module contains a VSF manager, a VSF

catalog, a VSF repository, and a VSF initiator. It is in charge of creating VSFs and

assigns required resources from the Virtual Infrastructure Manager (VIM) to virtual

security functions. It is in control of running VSF scripts start-up defined within the

system to monitor an interaction within the system.

The VSF catalog includes simple VSF templates to be run by the VSF manager.

The VSF initiator is similar to Element Management (EM) in NFV. The Security

Element Management (SEM) is responsible for the functional management of VSFs.

Similar to EMS, each SEM can be assigned to one or more VSFs. In our design, we

consider each SEM for one specific interaction-based VSF. The VSF repository

contains data related to each VSF like ID, location, IP, and MAC addresses.

201 | P a g e

Security Network Module It consists of two main components: the security

model topology and Sec-Net manager. As the name Sec-Net manager implies, it is

responsible for constructing logical networking between system components. It is

connected to the SDN controller to provide dynamic construction of virtual security

networking links specifically between the security controller and VSFs. Through an

internal interface, it is connected to security model topology. The Security model

topology stores the constructed links between the security controller and its VSF. A

unique protocol has been implemented to transfer the required interaction parameters

through this network link between the security controller and a VSF. In chapter 5, we

described the design and implementation of this communication protocol. The figure

7.3 describes an overview of SDS2 security platform workflow. The workflow of

SecNet is displayed in Figure 7.4.

Figure 7.3 Overall SDS2 security platform workflow

202 | P a g e

Figure 7.4 Workflow of security Network structure

7.3 SDS2 Platform – Procedure of provisioning on-demand

Security Services to Protect Cloud Resources

The process of a cloud security service via an SDS2 model consists of five stages

(shown in figure 7.5). At the moment of receiving an interaction, SDS2 analyses the

triggered interaction and initiates a virtual security function to monitor the specified

interaction. An interaction can be for several reasons, including i) User Interaction-

sending an interaction via system API to act on a cloud resource, ii) Triggered

interaction- a suspicious interaction occurs within the platform, and this triggers the

security controller to activate a VSF requesting it to monitor a specific interaction

between suspicious entities, iii) Specific requested Interaction- scheduled or random

monitoring an interaction between specific entities requested by an intelligent

component of the security controller.

Provisioning Stage At this stage, the SDS2 security controller analyses the

triggered interaction and extracts the necessary parameters to provide a monitoring

203 | P a g e

service as needed at different cloud system levels. According to the interaction

parameters, the security model protects entities as they evolve via an on-demand

virtual security function service. Thus, the model is capable of provisioning on-

demand and dynamic virtual security service at the critical points of the system.

Orchestration Stage At this stage, the SDS2 security controller analyses the

interaction parameters and policies and accordingly orchestrates one/more virtual

security functions (VSFs) to detect and predict violations.

Programmability Stage At this stage, the SDS2 security controller orchestrates

its virtual security functions to respond to any interaction-based security violation

incidents. It automatically allocates required interaction and policy parameters to its

VSF monitoring functions to acquire the interaction's security status. The VSFs will

send back their monitoring results to the security controller. The security algorithms

then use the status results to detect and/or predict security violations. The underlying

virtual network function enables automatic programmability based on the interaction-

based model.

The SDS2 security controller configures an on-demand underlying virtual

security function to acquire satisfying security monitoring results. The VSFs are

initiated accordingly to monitor a triggered interaction. The security controller then

automatically configures the VSFs using its Sec-Manage protocol. The VSFs, armed

with validated interaction parameters, monitor the requested interaction. The security

controller configures the VSFs at their initiation and during the monitoring process.

Security Violation Stage At this stage, the security controller analyses the

security monitoring reports sent by each VSF for a specifically requested interaction.

Then it performs the interaction-based security detection and prediction algorithms.

The results determine if the triggered interaction violated any validated parameters.

The results are transferred to the security controller for further decisions.

Completion Stage At this stage, the programmed VSF functions monitoring

results and results of interaction-based security detection and prediction methods have

204 | P a g e

been returned to the security controller. At this final stage, the security controller

decides the interaction of interest, the VSF state, and predicts future security

violations according to interaction parameters. The security controller will finalize

and report its security services results in relation to the requested interaction.

Figure 7.5 shows the procedure of provisioning on-demand security services

according to described stages.

Figure 7.5 Overall process of provisioning on-demand security services via SDS2

The process happens through the SDS2 controller and its VSFs. Details of the

SDS2 security controller and VSF workflow are described as in the following.

At SDS2 Security Controller: The security controller analyses triggered

interactions and then orchestrates and configures the VSFs following the interaction

205 | P a g e

model and SDS2 service requirements. The operation of the SDS2 Security controller

is shown in figure 7.6.

Figure 7.6 Overview of SDS2 security controller workflow

 At the virtual security function: upon initiation through the security controller,

the virtual security function resources will be orchestrated by the security controller

to monitor the specified interaction. The operation of virtual security functions is

represented in figure 7.7.

206 | P a g e

Figure 7.7 Overview of VSF workflow

7.4 SDS2 Platform Implementation

7.4.1 Implemented Platform

In previous sections, we presented the proposed model, described the

architecture and its main modules, as well as the design of the main components. In

this section, we present the platform that integrates all the main components.

The SDS2 model for the cloud has been designed and implemented. The

platform consists of deployments of significant components, as demonstrated in table

7.1. Each component is implemented within our Java program. The overall

implementation defines the main cloud objects within the cloud environment. The

SDS2 runs as security software on top of the infrastructure using its interfaces to access

VIM and SDN controller resources (Figure 7.8).

207 | P a g e

Table 7.1 Main Implemented Components of The Platform

Integrated Platform

components

Features

Security controller (SC) interaction module, security policy module, interaction

detection/prediction module, VSF net module

VSF VSF initiator module, the VSF manager module

Sec-Manage Protocol protocol messages and packet header

The SDS2 Security controller: We represent the design and implementation of

its main components that interpret the policies, analyze the interaction requests,

orchestrate and provision on-demand virtual security functions over the cloud system.

The internal interfaces enable communication between the components. In chapter 6,

we described the security controller and its significant functions.

Sec-Manage protocol: It is responsible for the communication between the

security controller and its virtual security functions and the exchange of interaction

and policy parameters among them. This protocol was presented in chapter 5.

Virtual Security Function (VSF): A VSF in our usage is created to perform a

specific security function and deployed at strategic locations in the cloud that require

protection. The VSFs functions are controlled and managed by the SDS2 security

controller through the Sec-Manage protocol—the VSF monitors the interaction

between entities according to interaction-based model parameters. The VSF catalogs

integrate in our SDS2 software platform.

OpenFlow protocol (opensource): The protocol is a well-known programmable

network protocol intended to manage and direct traffic between virtual network

functions. By taking advantage of the OpenFlow protocol, the SDS2 security

controller adapts and reuses the protocol to direct traffic among its VSFs.

208 | P a g e

OpenStack (open source): OpenStack is a central open-source cloud computing

platform that orchestrates and manages shared storage, compute, and network

resources using multiple hypervisors based on a set of applications and open-source.

The SDS2 security software runs on a VM in OpenStack compute node.

Figure 7.8 overall view of Platform structure

OpenFlow switch (opensource): This is an OpenFlow-enabled data switch that

provides communication over an OpenFlow channel to the SDN controller. It enables

packet forwarding and lookup based on its routing table entries. Each switch contains

essential information such as Port No., IP address, and port name. The SDS2 controller

can update its network and VSF links through the switches. Figure 7.8 shows the

structure of the platform.

209 | P a g e

7.4.2 Implementation Scenarios and Results

To demonstrate the proposed SDS2 model performance, we run different

experiments on our implemented platform covering various interaction scenarios to

demonstrate the proposed security model's validity and services. The SDS2

orchestrates VSFs in a cloud environment to achieve on-demand security service to

protect cloud resources. In our security scenario different interactions triggers from

different entities. Interactions can occur between different resources at different cloud

infrastructure hierarchy levels and from different locations/domains. The cloud object

types are defined based on their intrinsic characteristics. The interactions are defined

based on different conditions and the environment surrounding the participating

objects. The SDS2 security controller orchestrates the VSF at different locations to

monitor the interaction of interest (Figure 7.9). In each interaction, a different set of

conditions/policies are applied to test the security controller's efficiency in

formulating security violations. The SDS2 security controller communicates access

resources

The test scenarios are based on three main categories of interaction: i) the level

of access, ii) the interaction parameters, iii) the interaction types. The security

controller analyses the interactions according to their variable parameters (mode,

action, and positional relation) extracted from the interaction of interest. The SDS2

security controller orchestrates and configures the relevant underlying virtual security

functions and allocates them at relevant places related to the location of the triggered

interaction.

210 | P a g e

Figure 7.9 SDS2 service Implementation Scenario

Each scenario explores the SDS2 capability in discovering and predicting the

security interaction of interest. The SDS2 orchestrates the VSFs accordingly and

assigns a random identification id to each. We tested various types of interaction

within the testbed running the SDS2 service and algorithms to monitor each interaction

between entities. Both general and local policies are extracted and stored in the policy

repository.

211 | P a g e

Experiment 1: In this scenario, we examine the security model performance

through the variation of extracted interaction parameters. We simulate an adversary

interaction trying to manipulate cloud resources performing various interactions. This

scenario takes into account an interaction modification by an attacker to gain access

to the cloud resources triggering different interactions with various interaction

parameter conditions (Con*) that consists of variable interaction parameters including

mode, action, and positional relation at the same access level. To test the SDS2

platform in each case one interaction parameter ((M, *, *, *), (*, R, *, *), (*, *, A, *))

is varied at a time. The achieved results demonstrate the SDS2 security controller's

capability to detect security violations via orchestration of its underlying virtual

security functions. The scenario prototype is demonstrated in figure 7.10.

Figure 7.10 Overall state of threat Scenario

212 | P a g e

Scenario Requirements: In order to carry out the simulation to validate the

system operation and performance, we established the following requirements.

• Default policies are applied to both entities involved in the interaction.

• Location policies are stable during the triggered interaction.

To test the efficiency of the system, we run different experiments containing

different interaction parameters. Malicious interaction was launched to simulate user

interaction attacks against different resources (Figure 7.11). The SDS2 security service

intelligently detects malicious interactions by the discovery of policy violations

related to interaction parameters. The security controller intelligently, according to its

VSF reports, determines the state of interaction parameters. The ISVD algorithm calls

upon the discovery of interaction violation (described in chapter 4) against validated

extracted interaction parameters.

The VSF detects interaction parameter patterns, discovers interaction parameter

states (stability of interaction parameters) over a number of interactions, and monitors

the behavior of the variable parameters. The discovery of a stable interaction

parameter enables the SDS2 security controller to optimize the detection processing

time that the same source triggers. The reason is that after the discovery of the constant

interaction parameter, the SDS2 security controller only focuses on variable

interaction parameters. So, it saves time to process all parameters in each step.

Figure 7.11 Assigned VSF to interactions

213 | P a g e

Each interaction's processing time is different in each case based on processing

the interaction parameters with the condition (Con*) that the interaction parameter

mode is the same. So, the time for the system to process the interaction is calculated

accordingly. However, we calculate the detection process time for some of these

triggered interactions with the condition of stability of interaction mode parameter

during interaction period time, depicted in figure 7.12. A single violation detection

for Int6 assigned to VSF2 is demonstrated in figure 7.13 as a sample record. The

results are stored in the security controller database, and any policy changes are

recorded in the policy repository directly. The time to process is defined as the process

time the platform requires to detect an interaction violation in the case of the applied

condition.

Figure 7.12 Process time by VSFs

Figure 7.13 Violation detection of Int6

To test the SDS2 security platform against other interaction parameter

conditions, we run various interactions between different resources. The interactions

are triggered via user requests. The triggered interactions and their status of actions

are illustrated in figure 7.14.

214 | P a g e

Figure 7.14 performed tests with two sets of interaction conditions (A*, R*)

We have evaluated the SDS2 service platform's performance in experiment 1

according to two features: the average detection and prediction processing. We

consider the time based on the number of interactions that take place. In this

experiment, we evaluate the platform performance according to the following cases

showed in Table 7.2. each case tested against different conditions related to the

stability of the random interaction parameter.

Table 7.2 Tested cases

Experiment Number of tested interactions Conditions
Case 1 20 M*, A*, R*
Case 2 30 M*, A*, R*

Figure 7.15 demonstrates the average time the SDS2 service requires to detect

and predict the security violations based on the different variable parameters. As

shown, the predicated processing time is less than detection since the ISVP algorithm

uses the current state of validating parameters for prediction.

215 | P a g e

Figure 7.15 Processing average detection and prediction time for Case 1 and 2

Experiment 2: In this experiment, we focus on evaluating our security model

in the face of two scenarios related to security policies i) no-policy, ii) dynamic

policies. In the first scenario, there is no defined security policy parsed to triggered

interactions. The results demonstrate the platform's capability in dealing with such

cases. The next scenarios concentrate on monitoring the platform's behavior against

dynamic policy changes related to triggered interactions. In a dynamic cloud

environment, the security policies frequently change, which requires platform agility

in applying the changes using its security functions. We use the basic set up of

experiment 1 presented above but run various interactions with/without defined

security policies. In our interaction-based software-defined security model, the policy

module allows fine granular policy specifications based on various entities and

interaction attributes.

To test the system, we allow changes to the defined policies within the system

and monitor the behavior of the security controller and VSFs in handling the situation.

We can map this experiment to real-world scenarios where resource locations or

policies dynamically change due to factors like resource/data location (one server to

another server in same/different geographical location) changes, changes of general

policies in companies, and owner changes.

Experiment requirements:

• We change entity policies that affect one interaction parameter at the time of

initiation. We change local security policies applied to each interaction according

216 | P a g e

to their entities features and roles. We define various policy files within the

system.

• The general system policies stay steady. The system policies refer to policies we

defined by default for our cloud data center based on each security domain

(described in chapter 4).

Different policy files are defined within the platform to be used against various

interactions. We consider the same general policy file for all interactions while

different security policies are applied to entities using defined policy files. We follow

a simple policy language to construct the policies to be used. The security policy

manager function captures the policies applied to interactions and entities. The

policies related to entities are stored in the policy repository. This module enforces

the security policies extracted from entity security policy-driven manager. Policies

directly affect the interaction parameters. Figure 7.16 shows a few requested

interactions captured by the security controller, monitored by the VSFs and theirs

assigned policy id (PID).

Figure 7.16 Captured requested interaction and their policies

Regarding the changes of policies, Figure 7.17 shows that the VSF 1 has been

assigned to monitor the interactions with Int ID 1, which is triggered from the same

resource but with different policies. The security controller assigned the same VSF to

monitor the interaction; however, since VSF detects the policy changes, the security

controller updates the policy repository and assigns new changes dynamically.

217 | P a g e

Figure 7.17 Changes of policies for

To test the SDS2 platform capability on the agile discovery of defining security

policies and demonstrating its automatic and dynamic configuration of security

policies, we conduct tests with no pre-defined policies assigned to sources. So, we

initiate interactions where no policies were parsed within the repository. In this case,

VSF discovers the lack of policies for any interaction parameter and sends messages

through the Sec-Manage protocol to get the updated policy or new policy approved

by the security controller. The process is illustrated in the following workflow (Figure

7.18).

We monitor the behavior of VSFs in dealing with two prominent cases. We

simulate the interaction between two resources where no policies are set with Con*

(M, A*, R, t)). Figure 7-19 shows the interaction, process time, and assigned new

policies. According to figure 7-19, the VSF 3 discovers that no-policy has been parsed

for the Int. ID 3. After exchanging messages between VSF and the security controller,

a new policy (P.ID 245) is assigned according to defined policies explained in chapter

4.

218 | P a g e

Figure 7.18 Workflow of VSF no-policy process

We tested the ability of the SDS2 system to monitor its behavior in regard to

dynamic changes in security policies. In this case, the SDS2 security controller and its

services receive many interactions triggered by the same resource. We consider Con*

(M*, A*) where the reactor entity's position is varying within the system. For this

purpose, policies related to R* change frequently, and the system is required to adapt

to new security policies dynamically. As discussed in chapter 4, each R level is

governed by different security policies based on the access level and the assigned role-

based policies applied to each entity at that level. The SDS2 security controller updates

the entity's policies using its entity security policy-driven manager function for R*

interaction parameters. It updates the VSFs after enforcing the policies and sends back

the updated validate parameters. Figure 7.20 demonstrates updated policies for 12

interactions being handle with 4 VSFs. The SDS2 service uses the VSFs that

previously ran the interaction to detect and predict future parameters.

219 | P a g e

Figure 7.19 No-policy case- a) demonstrates VSF discovery of interaction with no

assigned P.ID, b) presents the new P.ID for interaction, c) shows process time of

orchestrating a new policy for particular interaction in two main scenarios

Figure 7.20 The SDS2 platform deals with policy changes during an interaction

220 | P a g e

Experiment 3: we have tested the system against different types of interaction

triggered by different sources. In this experiment, we monitor entities in three main

scenarios described in Table 7.3.

Table 7.3 Experiment scenarios

Experiment Tested interactions Condition
Case 1 Requested (UR) Variable policy, Variable interaction parameters
Case 2 Specified (SC) Variable policy, Variable interaction parameters
Case 3 Triggered (AT) Variable policy, Variable interaction parameters

The requested interactions refer to user interactions triggered from a user

interface (UR). The specified interactions consider interactions triggered by the

security controller to monitor specific interactions (SC). The triggered interactions

demonstrate unexpected/abnormal interaction between cloud resources when an

undesired interaction is triggered (AT). Figure 7.21 demonstrates the prototype of this

experiment.

Figure 7.21 Presents the experiment prototype

221 | P a g e

Each experiment runs a diversity of interactions monitored by the SDS2 security

service. The assigned VSF can distinguish the initiator of the interaction and

accordingly can speed up the process of monitoring according to previously stored

data on the same initiator. The security controller is capable of not only discovering

violations from input requests but also monitoring and discovering abnormal

interactions between entities. Malicious activity can be considered as a DoS scenario

attack scenario which is sending numerous interactions to cloud resources. After

receiving a security alarm report from the VSF indicating abnormal interactions, the

security controller triggers an internal interaction. In our design, the SDS2 Security

dynamically monitors different resources and their interactions. In this case, the

security controller sets specific parameters (such as interaction threshold, suspicious

behavior on accessing a specific resource, scheduled monitoring) to monitor the

interaction of interest. Figure 7.22 demonstrates a list of interactions, assigned

interactions, and their initiators.

Figure 7.22 Presents various interaction types

222 | P a g e

As displayed in figure 7.22, SDS2 service intelligently and can initiate

interactions to protect resources. It can detect the attacks in a dynamic environment

when interactions are triggered in different scenarios. In our proposed system, we

demonstrate that the SDS2 security controller not only is capable of monitoring

requested interactions triggered by internal/external users (initiator UR) but also can

monitor suspicious interactions among resources.

7.4.3 SDS2 Platform setup

To demonstrate the working of the model, we implement all components of the

proposed architecture in software. The SDS2 service and its components are

implemented in Java. In order to establish the SDS2 security service model, we

implement i) the SDS2 security controller, which is a software written in java with

various classes run on VM on top of OpenStack compute node, ii) a network of

OpenFlow switches that connect system components, iii) a built-in database within

the SDS2 platform to store the security data including interaction parameters, cloud

objects, and the VSFs information, and iv) the SDS2 classes including components of

NFV according to NFV MANO for initiating the VSF.

• All main SDS2 components are built as software on one PC on Ubuntu 16.04 LTS

with the following configuration: RAM: 16GB, CPU: Intel Core i7-8650U,

Storage: 100 GB.

• A custom-built user interface is developed for the SDS2 security controller to

demonstrate results, including the device and controller level tables.

• A network of SDN devices is implemented within the system for the purpose of

connectivity. Open vSwitches are deployed using OpenFlow protocol for

connection.

• The SDS2 service is a java-based platform developed in Eclipse IDE version:

4.14.0. The platform is deployed in an OpenStack cloud environment and

connected to SDN devices. We implement the main components, including the

223 | P a g e

SDS2 security controller, the Sec-Manage protocol, and Virtual Security Functions

(VSFs).

o The security controller consists of classes in charge of security controller

functionality.

o The virtual security function representation modules consist of classes to

initiate and manage VSFs instances within the SDS2 platform.

o The southbound interface module includes classes to construct Sec-

Manage messages, configuration, and forwarding tables within the system.

• The NFV MANO is deployed and integrated within the platform as java classes

inspired by OpenBaton opensource software.

• The SDS2 system uses a built-in database using MySQL, version: 5.7.32-

0ubuntu0.16.04.1

7.5 SDS2 Platform Performance Evaluation

In this section, we evaluate our proposed SDS2 security model and platform

based on two aspects: capability of the platform for provisioning on-demand security

services for the purpose of security violation detection and prediction, and

performance of the platform in relation to orchestration and configuration of virtual

security functions- the processing time of security violation detection and prediction.

7.5.1 SDS2 platform capability

We evaluate the SDS2 service components and capabilities that contribute to the

provision of on-demand security services to protect cloud resources. The following

aspects are demonstrated: 1) Orchestration and configuration of on-demand virtual

security functions, 2) Formation of interaction security violation detection and

prediction. The SDS2 service capability is divided into: 1) security controller level, 2)

virtual security function level. The process is expressed as follow:

224 | P a g e

❖ Orchestration and functionalities - the Security Controller level

In this part, we implemented the significant components and functions required

for two primary purposes: 1) defining interaction model as well as policy-based

interaction model; 2) deploying new interaction proactive mechanisms and its

algorithms.

At the Controller level, the SDS2 security controller is capable of:

• Analyzing dynamic security policies according to features like entities, location,

interactions, and assigning interaction parameter policies (figure 7.23)

• Handling dynamic changes of security policies (figure 7.24)

• Automating the construction of interaction-based virtual security functions (figure

7.25)

• Handling and detecting interaction security violation threats (figure 7-26a)

• Providing interaction-based security violation predictions for further security

threats (figure 7-26b)

The SDS2 security controller captures the interaction, initiates the VSFs to

monitor the interaction, and performs detection and prediction techniques according

to VSF result reports. As shown in figure 7.23, the security controller analyzes the

security policies aligned with interaction parameters and assigns a policy

identification for each triggered interaction to validate each interaction parameter's

security rules. The P. ID refers to a table with stored policies for each entity according

to their defined features.

225 | P a g e

Figure 7.23 Presents the assigned PID according to each entity (Src., Dst.)

Figure 7.24 represents the ability of the security controller to handle dynamic

changes in security policies. The security controller re-orchestrates the assigned

security policies for entities with any changes during an interaction based on

interaction parameters. Figure 7.25 demonstrates the security controller interface that

shows the VSF functions. The primary purpose of the SDS2 platform is to detect and

predict interaction-based security violations. The Security controller is in charge of

performing ISVDP algorithms to detect and predict the present and possible future

attacks. Figures 7.26a and 7.26.b demonstrate captured interactions and detection and

prediction results (expressed in chapter 4). The detection and the prediction rely on

VSF sec_messages to the security controller reporting on the monitored interaction

status.

As you can see in Image 7.26a, the VSF 9 denotes a USER request for

NETWORK resource on the TENANT level with extracted READ and MODIFY

actions. The request is dynamically analyzed by the security controller and, based on

the applied policy, is detected as a violation for requesting beyond what is allowed.

The figure shows the detection analysis of various interactions at the security

controller level. The results present the state of interaction decided by the security

controller after monitoring.

226 | P a g e

Figure 7.24 Dynamic changes of Policies

Figure 7.25 SDS2 automatically initiates VSFs to monitor interactions

As demonstrated in figure 7.26.b, each row defines predicted future violation of

presented interactions according to their interaction parameters. Each entry results

from an automatic analysis of potential interaction violations concerning the value of

227 | P a g e

interaction parameters. For example, the first row shows potential interaction

violation as a set of variables for each interaction parameter against the targeted

resource (Application).

Figure 7.26 demonstrates result after SDS2 runs ISVDP algorithms: a) shows results of

ISVD algorithm for various simulated interactions within the system, b) presents results

after running ISVP algorithm

❖ Orchestration and configuration – At Virtual Security Function level

At this level, the SDS2 security controller configures the virtual security

functions through Sec-Manage protocol and security messages. The virtual security

228 | P a g e

functions are configured based on interaction parameters. They include information

regarding the configuration table, forwarding table, and VSF services. The VSFs can

be configured to monitor the interactions (figure 7.27a). It forwards data back to the

security controller for further decisions (figure 7.27b). The VSFs table lists VSFs

functions and their associated status and location to monitor the interaction (figure

7.27c). The config and forward table contain parameters required to configure a VSF

and define forwarding action in relation to an interaction—each parameter is

described in detail in chapter five.

 As you can see, figure 7.27 shows the security service table entries for each

assigned VSF. For example, VSF 7 shows that VSF function is still running with

remaining time to live equal to 50s allocated in a VM to monitor interactions.

229 | P a g e

Figure 7.27 SDS2 security functions

230 | P a g e

7.5.2 SDS2 platform – Performance

In this section, we carry out service provisioning tasks and evaluate the proposed SDS2

performance through two performance measures: security orchestration time and

security reaction time. Security orchestration time is referred to as the time required

for the security controller to orchestrate and configure VSFs according to interaction

parameters. Security reaction time is the security action time that measures the time

to detect security violations and predict future interaction violation parameters. Figure

7.28 signifies the SDS2 service timing diagram. As demonstrated in the figure, the

orchestration time is T3, which is comprised of T1 and T2—the total security reaction

time measured based on T4, T5, T6, T7, T8, and T9. The T6 demonstrates the time

that SDS2 system requires to detect violations using the algorithms.

Figure 7.28 SDS2 time diagram

231 | P a g e

The orchestration times consider both orchestration of VSFs and the time it

requires to configure the functions. We examined the efficiency of the SDS2 service

through the parameters mentioned above. During the orchestration phase, the SDS2

platform analyzes the interaction and triggers new or existing VSFs to monitor the

interaction and configure/update the VSFs according to validate interaction

parameters. To evaluate it, we consider two prominent cases 1) orchestrate new VSFs,

2) re-orchestrate existing VSFs. In the first case, system orchestration time increased

as this requires the initiation of the new VSF. The reason relies on the time the security

controller requires to initiate, assign the resources, and run a new VSF. The SDS2

security controller needs to assign new resources to the VSFs, which takes a long time

to communicate with VIM to get the VSF resources. We examine the security

orchestration of the system in both cases. A considerable number of interactions have

been sent to the security controller. The interaction can be of any type of interaction.

As displayed in figure 7.29, the time required for the cases orchestrations increases

with a rising number of interactions within the system. Remarkably, the maximum

amount of time for responding to 60 concurrent requested interactions is slightly

above the 4s while this amount is less for re-orchestrating the existing VSFs. This is

because case two 1) reuses the existing VSFs which already have assigned resources,

and 2) reduces the time to configure the VSFs for the same interaction. Case one does

not consider these factors; hence it requires to orchestrate and configure the new VSF

for each incoming interaction.

232 | P a g e

Figure 7.29 Orchestration time Case 1 and Case 2

The security reaction time is expressed as when the SDS2 service requires to

respond to an interaction. The response time measures are based on two main factors:

1) detection time and 2) prediction time. To evaluate the performance of the SDS2

service, we consider two cases: 1) non-smart SDS2 service, and 2) smart SDS2 service.

We run numerous interactions for each case. The first case demonstrates the required

time to detect the security violations without previous prediction parameters (Figure

7.30).

In this case, the SDS2 service each time measures the average detection time for

various interactions without considering predicted potential interaction parameters

violations. The second case enables the SDS2 service to reduce the time by accessing

prediction parameters (Figure 7.31). The detection processing time will be reduced as

a result of considering prediction parameters as the first stage of detection for an

interaction. The SDS2 shows a considerable decrease in detection processing time

where predicted interaction parameters reflect future threats for an incoming

interaction. In such cases, the SDS2 security services first will deliberate on the

detection process considering previously predicted violation interaction parameters.

So, it optimizes the processing time during the detection period by considering

233 | P a g e

previously predicted parameters. As demonstrates in Figures 7.30 and 7.31, the

detection process time that the SDS2 requires to detect security violations within the

system reaches its peak by an increased number of interactions to 60.

Figure 7.30 Non-Smart SDS2 service

234 | P a g e

Figure 7.31 Smart SDS2 service

As shown in Figure 7.32, we can observe a performance improvement of

upwards of 90%. With the lower number of interactions, the performance

improvement is around 99%, and as the number of interactions increase, we can see

the improvement stabilize upwards of 90%. This is predictable as with an increase in

the number of interactions, so does the average detection time, however using the

Smart SDS2 service, we can have a better prediction model and maintain a steady

performance improvement over time.

235 | P a g e

Figure 7.32 SDS2 service - performance improvement

As illustrated in Figure 7.33, the SDS2 service spent more time during the

detection discovery phase for interactions triggered by users. The discovery time for

SDS2 related to user interactions maximizes as interactions reach 90 concurrent

requested interactions compared to other types. In the other cases, this time is less as

SDS2 uses existing stored data, its local security DB. The SDS2 service requires more

computation time to process a user requests since new data has been presented which

there is no record in DB for involved entities.

236 | P a g e

Figure 7.33 SDS2 service performance evaluation - in case of different simulated

interactions

7.6 Summary

This chapter has introduced our SDS2 platform to provide on-demand security

services to protect cloud resources. The SDS2 model aims to introduce a proactive

system to limit virtual environment challenges on provisioning and programming

underlying virtual security functions. We attempt to incorporate the SDS2 security

model within an integrated cloud/SDN/NFV system for dynamic protection against

interaction security violations. We have deployed the proposed model's primary

functionality and have enabled the SDS2 service to control and manage virtual security

functions according to their purpose. We discuss several experiments to demonstrate

SDS2 model functionality and to provide the proposed model operation in

provisioning on-demand virtual security functions. We present the feasibility and

efficiency of the proposed model through the design and implementation of the SDS2

platform. We evaluate the system performance through numerous simulated

interactions.

237 | P a g e

238 | P a g e

Chapter 8

8 Conclusion and Future Work

8.1 Research Remarks

This chapter summarizes this research and outlines the significant contributions.

We suggest future work in association with the research achievements.

Cloud computing has evolved into a key structure for IT industries for providing

users with on-demand services. Cloud architecture enables users to access cloud

services over the Internet at any time regardless of their location through application

software like web browsers. Rapidly cloud services and their on-demand virtual

functions have become an indispensable technology involved in many aspects of

human life, educational system, healthcare, industry, government, and social

enterprises. However, the cloud environment adoption and its services have been

slowly moving forward as it becomes more vulnerable to traditional and new security

threats related to its structure and elements. Moreover, the integration of new

emerging technologies like software-defined networking and Network Function

Virtualization provoked security cloud services and their virtual functions. According

to the National Institute of Standards and Technologies (NIST), security, portability,

and interoperability have been declared the main obstacles to adopting the cloud

environment.

239 | P a g e

Cloud, SDN, and NFV technologies and their associated software-defined

infrastructures rely on virtualization technology to provide their virtual resources and

offer them as services to users. However, the complexity of security issues in virtual

cloud infrastructure is more complicated than traditional infrastructure since

resources/functions are shared and virtualized between numerous cloud users. In

multi-tenant cloud architecture, isolation is introduced as a crucial concept for both

security and infrastructure management. Isolation should be considered at functional

entity levels and appropriate abstraction levels of the infrastructure. However, virtual

boundaries amongst cloud virtual functions/components are not always well defined

and rather often undefined, and hence they are not visible/controllable by security

mechanisms or cloud providers.

In this research, we discovered a number of significant security challenges of

the current cloud and its integrated technologies. The first challenge is finding

effective mechanisms for constructing dynamic isolation boundaries for securing

cloud assets at different cloud infrastructure levels. This challenge prompted the need

to provide overall visibility on virtual boundaries within a cloud infrastructure. The

second challenge is to deliver a competent, proactive security technique to detect and

predict security violations to protect cloud resources. The third issue is to automate

and provision virtual security functions whenever they are required.

To address the challenges, we propose a software-defined security service

model and its associated techniques to provision on-demand security service to protect

cloud resources.

In particular, on dynamic connectivity and networking among virtual security

functions, software-defined networking (SDN) has transformed the physical

underlying network infrastructure into programmable and virtualized networks. The

SDN controller enables automatic connectivity among virtual network functions

through its logically centralized overview of network function dynamics. However,

using SDN in cloud security is still not common as it is still developing and facing

security challenges. This research aims to use SDN to enable connectivity among

240 | P a g e

virtual security functions through a direct connection between the security controller

and VSFs.

 We introduce a new technique to provide dynamic visibility on security

boundaries for cloud entities during a triggered request on the dynamic construction

of security isolation. For this purpose, we investigate various algorithms and

mechanisms for security isolation.

On security violation detection and prediction mechanism, we try to deliver an

exceptional, innovative technique when an interaction occurs within the system. To

achieve that goal, we explore security breaches and methods in different domains for

security violation services.

As for communication and management protocol, it is worth noting that virtual

security functions (VSFs) are not routing network functions where heavy protocols

for programming network flows in virtual network functions are not entirely

applicable to virtual security functions. In a security model less, an effort has been

made to address these challenges. This study investigates the deployment of a new

simple protocol to transfer essential required security parameters.

Regarding the creation and orchestration of virtual functions, Network function

virtualization (NFV) aims to virtualize an entire class of network component functions

using virtualization technologies. NFV enables network functions to be realized and

executed as software instances in a VM on single or multiple hosts instead of

customized hardware appliances. However, efforts to utilize virtual functions in

creating efficient but straightforward virtual security functions are limited. We

explore network function virtualization mechanism to deploy virtual security

functions with simple functionality and capability to be used in a security model in a

cloud environment.

The contribution of this research has been summarized as follows.

241 | P a g e

We proposed a software-defined security service model that enables the

provision of on-demand security services via orchestration of virtual security

functions over cloud infrastructure. This model enables the programmability of

numerous virtual security functions for provisioning on-demand security services.

The model consists of novel security violation techniques to construct dynamic

security boundaries related to interaction among cloud entities.

We introduced an innovative policy-based interaction model that enables the

dynamic construction of security boundaries for cloud entities involved during a real-

time interaction. The model governs interaction security among entities in a virtual

cloud environment. The model provides a framework for incorporating system

security policies and entity constraints in constructing interaction boundaries and

defining a security dictionary of expected/unexpected cloud entities

expected/unexpected behavior when they access resources in the cloud environment.

We presented new algorithms and techniques to detect and predict security

violations during a triggered interaction. We deploy an automatic detection and

prediction algorithm called ISVDP to identify security breaches related to interaction

parameters. The algorithm also maps out possible future attacks based on expected

violations of the currently defined interaction parameters.

We proposed a novel control and management protocol for programming virtual

security functions. The proposed protocol enables direct communication between the

SDS2 security controller and its VSFs. The main purpose is to transfer the parameters

pertinent to the security aspects of objects’ interaction, between a VSF and the security

controller, to monitor an interaction's parameters to detect and predict security

violations.

We proposed a software-defined security service system that can be a part of

cloud infrastructure protecting virtual resources/functions. The proposed architecture

via its centralized security controller enables dynamic programmability of the

underlying virtual security function. The virtual security functions can be controlled,

242 | P a g e

orchestrated, managed, and configured by centralizing security control with overall

visibility on entities security boundaries.

We design and implement the software-defined security platform to present its

capability and performance in provisioning on-demand virtual security functions to

protect the cloud resources. The proposed platform demonstrates a new software-

defined security system for integrating cloud, SDN, and NFV concepts in cloud

security and a specific method to detect and predict security violations.

On security connectivity between the security controller and virtual security

functions, we adopted SDN functionalities to provide connectivity. We demonstrated

the use of a software-defined networking domain in security through the SDS2 model.

On virtual security function, we introduce a simple VSF to monitor interactions

between cloud resources. The security function enhanced on-demand security

monitoring within cloud infrastructure due to the dynamicity of interactions.

On control and management protocol, we designed and deployed a novel,

simple protocol as Sec-Manage protocol, specifically designed to transfer interaction

parameters and policies between the security controller and virtual security functions.

On security isolation, we introduced a new isolation domain via interaction. A

novel interaction model governs the protection of cloud resources through dynamic

security interaction boundaries. We presented major interaction parameters for the

construction of security boundaries during triggered interactions.

We design and deploy an innovative policy-based interaction model and its

associated techniques and an algorithm to construct a proactive security mechanism.

We introduced an original security violation detection and prediction method

according to interaction parameters and policies governing the interaction and entities.

In brief, we trust that this research thesis delivers an affirmative response to the

posed question in chapter 1, “How to secure and protect cloud resources against

security isolation breaches using new technologies based on SDN/NFV, and can the

243 | P a g e

proposed model be realized in the practical environment?”. Our security model and

its innovative elements and algorithms can be used to provide on-demand security

service to protect cloud’s resources.

This research's novelty lies in its novel software-defined security service

platform for provisioning on-demand security services, its unique mechanisms in

constructing dynamic security boundaries, and its innovative method in detecting and

predicting security violations in relation to the proposed policy-based interaction

model. The proposal includes a novel software-defined security architecture that is

constructed using SDN and NFV technologies. The proposed architecture introduces

a logically centralized security controller with overall visibility of security boundaries.

The significance of this study is that it allows the orchestration and

programmability of virtual security functions in provisioning on-demand security

service to protect cloud resources. This research enables i) cloud providers to

dynamically provide security interaction isolation to protect cloud resources, ii) cloud

providers to develop innovative 0n-demand virtual security functions to improve

dynamicity of security monitoring over virtual cloud environments iii) clouds and

tenants security developers to enhance security methods in detecting and predicting

security violation over virtual functions, iv) security admins to dynamically program

and orchestrate underlying virtual security function against any types of interaction

violation breaches.

8.2 Future Work

Usage of SDN and NFV in cloud security is still a developing research area. In

this section, we outline some potential future works and research directions for cloud

security.

 This research investigates technologies, security architectures, virtual function

capabilities, security protocols, security isolation mechanisms, and programmable and

244 | P a g e

orchestration of virtual security functions within a cloud infrastructure. This thesis

opens up new research directions in integrating SDN and NFV in the cloud

environment to provide on-demand security services. Even though this research

presented significant outcomes, there remain several limitations.

The SDS2 security platform can be considered a crucial platform for future

investigation on new mechanisms associated with QoS-driven network among virtual

security functions and security platform elements. This research mainly focuses on

constructing a dynamic but straightforward network security connection between VSF

and SC. In the future, billions of virtual security functions can transfer security data

and messages, which may cause a heavy load on network transportation. In the future,

we consider the QoS and design QoS techniques to prevent the above-mentioned issue

and enhance software-defined security service orchestration in provisioning on-

demand virtual security functions.

Currently, the proposed SDS2 security model focuses on constructing VSFs

according to network function virtualization concepts. The VSFs are implemented

from pre-defined scripts/templates written in Jason/TOSCA templates. The security

controller places them according to the placement of triggered interaction. In future

work, we plan to work on allocation optimization of VSFs within a cloud

infrastructure. We plan to investigate intelligent location discovery algorithms and

integrate them within the security controller.

The proposed model includes the Sec-Manage protocol to control and manage

virtual security functions. The Sec-Manage transfers specific interaction parameters

between the security controller and VSFs. Currently, protocol mainly focuses on

forwarding a limited number of specific parameters and functioning the behavior of

VSFs to monitor the interactions. We can develop this further to includes QoS-specific

parameters considering the limitation of virtual security functions and security

controllers.

245 | P a g e

Currently, the SDS2 security model concentrates mostly on validating the

security model's efficiency within a single cloud node. However, we plan to test the

model in an integrated cloud infrastructure, including various nodes and domains.

An interaction can be considered as a simple/complex interaction. As previously

discussed in chapter 4, an interaction can involve numerous internal interactions

before achieving its goal, which can involve a hierarchy of dependent resources.

However, in this research, the proposed SDS2 security model emphasizes only simple

interaction among two resources. The security system bypasses the complexity of the

interaction in terms of nested internal interactions and dependable resources. We are

currently investigating interaction complexity in terms of nested interactions and plan

to enhance our policy-based interaction mechanism which will satisfy such

interactions within the virtual cloud environment.

In our proposed interaction model, the relational position parameter is entangled

with role-based security policies. Role-based policies are considered as significant

access policies in each security domain. However, they are not easy to be calculated

in a complex and dynamic environment such as a cloud. In our study, we mainly focus

on three main role-based policy levels. We consider improving the complexity of our

security model by deploying complex dynamic role-based security policies. We aim

to use nested role-based security policies to enhance the discovery time in our security

model.

246 | P a g e

Bibliography

[1] S. Jeuk, G. Salgueiro, and F. J. Baker, "Cloud provider, service, and tenant
classification in cloud computing," ed: Google Patents, 2017.

[2] L. Schubert, "ADVANCES in CLOUDS Report from the CLOUD Computing
Expert Working Group," 2012.

[3] F. Liu et al., "NIST cloud computing reference architecture," NIST special
publication, vol. 500, no. 2011, pp. 1-28, 2011.

[4] (2018). AUSTCYBER CYBER SECURITY SECTOR – COMPETITIVENESS PLAN.
[Online] Available:
file:///C:/Users/11822400/Downloads/CYB7900_SCP_digital_and_print_Co
mplete_V12_FILM_web.pdf

[5] H. M. K. Al Nasseri and I. M. M. Duncan, "Investigation of Virtual Network
Isolation security in Cloud computing: data leakage issues," 2016.

[6] B. P. Rimal and M. Maier, "Workflow scheduling in multi-tenant cloud
computing environments," IEEE Transactions on parallel and distributed
systems, vol. 28, no. 1, pp. 290-304, 2016.

[7] M. Almorsy, J. Grundy, and I. Müller, "An analysis of the cloud computing
security problem," arXiv preprint arXiv:1609.01107, 2016.

[8] M.-M. Bazm, M. Lacoste, M. Südholt, and J.-M. Menaud, "Isolation in cloud
computing infrastructures: new security challenges," Annals of
Telecommunications, vol. 74, no. 3, pp. 197-209, 2019.

[9] K. Z. Bijon, R. Krishnan, and R. Sandhu, "A formal model for isolation
management in cloud infrastructure-as-a-service," in International
Conference on Network and System Security, 2015: Springer, pp. 41-53.

[10] T. Madi et al., "ISOTOP: auditing virtual networks isolation across cloud
layers in OpenStack," ACM Transactions on Privacy and Security (TOPS), vol.
22, no. 1, pp. 1-35, 2018.

[11] M. A. Babar and B. Ramsey, "Understanding container isolation mechanisms
for building security-sensitive private cloud," The University of Adelaide,
Australia, 2017.

247 | P a g e

[12] J.-M. Kang, T. Lin, H. Bannazadeh, and A. Leon-Garcia, "Software-defined
infrastructure and the SAVI testbed," in International Conference on
Testbeds and Research Infrastructures, 2014: Springer, pp. 3-13.

[13] J. C. Patni, S. Banerjee, and D. Tiwari, "Infrastructure as a Code (IaC) to
Software Defined Infrastructure using Azure Resource Manager (ARM)," in
2020 International Conference on Computational Performance Evaluation
(ComPE), 2020: IEEE, pp. 575-578.

[14] Research, "The Future of Infrastructure and the Software-Defined
Organization," 451 Research, 2018. [Online]. Available:
https://www.suse.com/media/white-
paper/future%20of%20infrastructure%20and%20software%20defined%20o
rganization.pdf

[15] (2015). Software Defines the Infrastructure of a Future-Ready Enterprise.
[Online] Available: https://i.dell.com/sites/csdocuments/Shared-
Content_data-
Sheets_Documents/en/Software_defines_the_future_infrastructure.pdf

[16] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, "Software-defined networking: A comprehensive survey,"
Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2014.

[17] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
"Network function virtualization: State-of-the-art and research challenges,"
IEEE Communications surveys & tutorials, vol. 18, no. 1, pp. 236-262, 2015.

[18] M. Compastié, R. Badonnel, O. Festor, R. He, and M. Kassi-Lahlou, "A
software-defined security strategy for supporting autonomic security
enforcement in distributed cloud," in 2016 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2016: IEEE, pp. 464-
467.

[19] M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and A. Rindos,
"Sdsecurity: A software defined security experimental framework," in 2015
IEEE international conference on communication workshop (ICCW), 2015:
IEEE, pp. 1871-1876.

[20] M. Vizardl, "What software-defined security could mean for the channel,"
ed, 2013.

[21] K. Walker, "Cloud security alliance announces software defined perimeter
(sdp) initiative," online] https://cloudsecurityalliance. org/media/news/csa-

https://www.suse.com/media/white-paper/future%20of%20infrastructure%20and%20software%20defined%20organization.pdf
https://www.suse.com/media/white-paper/future%20of%20infrastructure%20and%20software%20defined%20organization.pdf
https://www.suse.com/media/white-paper/future%20of%20infrastructure%20and%20software%20defined%20organization.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/Software_defines_the_future_infrastructure.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/Software_defines_the_future_infrastructure.pdf
https://i.dell.com/sites/csdocuments/Shared-Content_data-Sheets_Documents/en/Software_defines_the_future_infrastructure.pdf
https://cloudsecurityalliance/

248 | P a g e

announcessoftware-defined-perimeter-sdp-initiative/(accessed October
2014), 2013.

[22] (2014). Catbird® 6.0: Private Cloud Security.

[23] N. v, "vArmour distributed security system: protecting assets in the world
without perimeters," 2015.

[24] V. Team, "VMware vCloud networking and security overview, White Paper,
VMware," ed: Inc, 2013.

[25] N. Team, "NetCitadel’s one control platform the key to intelligent, adaptive
network security, White Paper, NetCitadel," ed: Inc, 2012.

[26] C. R. Kothari, Research methodology: Methods and techniques. New Age
International, 2004.

[27] F. Hu, Q. Hao, and K. Bao, "A survey on software-defined network and
openflow: From concept to implementation," IEEE Communications Surveys
& Tutorials, vol. 16, no. 4, pp. 2181-2206, 2014.

[28] A. Markelov, Certified OpenStack Administrator Study Guide. Springer, 2016.

[29] J. Son, T. He, and R. Buyya, "CloudSimSDN‐NFV: Modeling and simulation of
network function virtualization and service function chaining in edge
computing environments," Software: Practice and Experience, 2019.

[30] D. C. Marinescu, Cloud computing: theory and practice. Morgan Kaufmann,
2017.

[31] J. Sahoo, S. Mohapatra, and R. Lath, "Virtualization: A survey on concepts,
taxonomy and associated security issues," in 2010 Second International
Conference on Computer and Network Technology, 2010: IEEE, pp. 222-226.

[32] Y. Xing and Y. Zhan, "Virtualization and cloud computing," in Future Wireless
Networks and Information Systems: Springer, 2012, pp. 305-312.

[33] C.-J. Chung, SDN-based Proactive Defense Mechanism in a Cloud System.
Arizona State University, 2015.

[34] C. C. A. SM–CSA, "Security guidance for critical areas of focus in cloud
computing V3. 0," ed, 2011.

[35] M. Compastié, R. Badonnel, O. Festor, and R. He, "From Virtualization
Security Issues to Cloud Protection Opportunities: An In-Depth Analysis of
System Virtualization Models," Computers & Security, p. 101905, 2020.

249 | P a g e

[36] N. M. Almutairy, K. H. Al-Shqeerat, and H. A. Al Hamad, "A taxonomy of
virtualization security issues in cloud computing environments," Indian
Journal of Science and Technology, vol. 12, no. 3, 2019.

[37] D. B. Hoang and S. Farahmandian, "Security of Software-Defined
Infrastructures with SDN, NFV, and Cloud Computing Technologies," in
Guide to Security in SDN and NFV: Springer, 2017, pp. 3-32.

[38] K. Jeffery and L. Schubert, "Advances in Clouds Research in Future Cloud
Computing," London, pp. 34-45, 2016.

[39] P. Mell and T. Grance, "The NIST Definition of Cloud Computing, National
Institute of Standards and Technology, Gaithersburg, MD, 2011," URL
http://nvlpubs. nist. gov/nistpubs/Legacy/SP/nistspecialpublication800-145.
pdf, vol. 905, 2014.

[40] S. Bele, "A Comprehensive Study on Cloud Computing," International
Journal of Information Research and Review, vol. 5, pp. 5310-5313, 2018.

[41] C. N. Modi and K. Acha, "Virtualization layer security challenges and
intrusion detection/prevention systems in cloud computing: a
comprehensive review," the Journal of Supercomputing, vol. 73, no. 3, pp.
1192-1234, 2017.

[42] H. Tabrizchi and M. K. Rafsanjani, "A survey on security challenges in cloud
computing: issues, threats, and solutions," The Journal of Supercomputing,
pp. 1-40, 2020.

[43] R. Kumar and R. Goyal, "On cloud security requirements, threats,
vulnerabilities and countermeasures: A survey," Computer Science Review,
vol. 33, pp. 1-48, 2019.

[44] A. Singh and K. Chatterjee, "Cloud security issues and challenges: A survey,"
Journal of Network and Computer Applications, vol. 79, pp. 88-115, 2017.

[45] M. Hawedi, C. Talhi, and H. Boucheneb, "Security as a service for public
cloud tenants (SaaS)," Procedia computer science, vol. 130, pp. 1025-1030,
2018.

[46] S. Iqbal et al., "On cloud security attacks: A taxonomy and intrusion
detection and prevention as a service," Journal of Network and Computer
Applications, vol. 74, pp. 98-120, 2016.

http://nvlpubs/

250 | P a g e

[47] S. Prakash, "Role of virtualization techniques in cloud computing
environment," in Advances in Computer Communication and Computational
Sciences: Springer, 2019, pp. 439-450.

[48] M. Saraswathi and T. Bhuvaneswari, "Multitenancy in cloud software as a
service application," International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 11, pp. 159-162,
2013.

[49] T. T. W. Group, "The treacherous 12: cloud computing top threats in 2016,"
Cloud Security Alliance, 2016.

[50] K. Greene, "TR10: Software-defined networking," Technology Review (MIT),
2009.

[51] M. Pham and D. B. Hoang, "SDN applications-The intent-based Northbound
Interface realisation for extended applications," in 2016 IEEE NetSoft
Conference and Workshops (NetSoft), 2016: IEEE, pp. 372-377.

[52] P. Berde et al., "ONOS: towards an open, distributed SDN OS," in
Proceedings of the third workshop on Hot topics in software defined
networking, 2014, pp. 1-6.

[53] D. B. Hoang, "Software Defined Networking? Shaping up for the next
disruptive step?," Australian Journal of Telecommunications and the Digital
Economy, vol. 3, no. 4, 2015.

[54] P. Goransson, C. Black, and T. Culver, Software defined networks: a
comprehensive approach. Morgan Kaufmann, 2016.

[55] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, "Software‐defined
networking (SDN): a survey," Security and communication networks, vol. 9,
no. 18, pp. 5803-5833, 2016.

[56] P. Floodlight. Floodlight [Online] Available:
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/

[57] J. Medved, R. Varga, A. Tkacik, and K. Gray, "Opendaylight: Towards a
model-driven sdn controller architecture," in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, 2014: IEEE, pp. 1-6.

[58] M. Fernandez, "Evaluating OpenFlow controller paradigms," in ICN 2013,
The Twelfth International Conference on Networks, 2013, pp. 151-157.

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/

251 | P a g e

[59] K. Kaur, S. Kaur, and V. Gupta, "Performance analysis of python based
openflow controllers," 2016.

[60] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, "A
comprehensive survey of interface protocols for software defined
networks," Journal of Network and Computer Applications, vol. 156, p.
102563, 2020.

[61] N. McKeown et al., "OpenFlow: enabling innovation in campus networks,"
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74,
2008.

[62] A. Doria et al., "Forwarding and Control Element Separation (ForCES)
Protocol Specification," RFC, vol. 5810, pp. 1-124, 2010.

[63] B. Pfaff and B. Davie, "The open vswitch database management protocol,"
Internet Requests for Comments, RFC Editor, RFC, vol. 7047, 2013.

[64] H. Song, "Protocol-oblivious forwarding: Unleash the power of SDN through
a future-proof forwarding plane," in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, 2013,
pp. 127-132.

[65] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weidenbache,
"OpFlex Control Protocol, Internet Draft, Internet Engineering Task Force,"
ed: April, 2014.

[66] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, "Openstate:
Programming platform-independent stateful openflow applications inside
the switch," ACM SIGCOMM Computer Communication Review, vol. 44, no.
2, pp. 44-51, 2014.

[67] N. V. R. Gupta and M. Ramakrishna, "A road map for SDN-open flow
networks," International Journal of Modern Communication Technologies
and Research, vol. 3, no. 6, p. 265725, 2015.

[68] A. Gupta, H. Bhadauria, A. Singh, and J. C. Patni, "A theoretical comparison
of job scheduling algorithms in cloud computing environment," in 2015 1st
International Conference on Next Generation Computing Technologies
(NGCT), 2015: IEEE, pp. 16-20.

[69] S. Rowshanrad, S. Namvarasl, V. Abdi, M. Hajizadeh, and M. Keshtgary, "A
survey on SDN, the future of networking," Journal of Advanced Computer
Science & Technology, vol. 3, no. 2, pp. 232-248, 2014.

252 | P a g e

[70] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, "A survey on software-
defined networking," IEEE Communications Surveys & Tutorials, vol. 17, no.
1, pp. 27-51, 2014.

[71] C. Ching-Hao and Y.-D. Lin, "OpenFlow Version Roadmap," tech. rep, 2015.
http://speed. cis. nctu. edu. tw/~ ydlin/miscpub …, 2015.

[72] P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella, "Simultaneously
reducing latency and power consumption in openflow switches," IEEE/ACM
Transactions On Networking, vol. 22, no. 3, pp. 1007-1020, 2013.

[73] A. Khan and N. Dave, "Enabling hardware exploration in software-defined
networking: A flexible, portable openflow switch," in 2013 IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing
Machines, 2013: IEEE, pp. 145-148.

[74] W. Braun and M. Menth, "Software-defined networking using OpenFlow:
Protocols, applications and architectural design choices," Future Internet,
vol. 6, no. 2, pp. 302-336, 2014.

[75] O. S. S. V. ONF, "1.5. 1, Open Networking Foundation, 2015," ed.

[76] B. Salisbury, "The northbound api-a big little problem," ed: June, 2012.

[77] R. Chua, "OpenFlow northbound API: A new olympic sport," ed: July, 2012.

[78] T. Koponen et al., "Onix: A distributed control platform for large-scale
production networks," in OSDI, 2010, vol. 10, pp. 1-6.

[79] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin, "Analysis of comparisons
between OpenFlow and ForCES," ForCES, IETF, 2012.

[80] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, "On the
feasibility of a consistent and fault-tolerant data store for SDNs," in 2013
Second european workshop on software defined networks, 2013: IEEE, pp.
38-43.

[81] K. Govindarajan, K. C. Meng, and H. Ong, "A literature review on software-
defined networking (SDN) research topics, challenges and solutions," in
2013 Fifth International Conference on Advanced Computing (ICoAC), 2013:
IEEE, pp. 293-299.

[82] S. Scott-Hayward and T. Arumugam, "OFMTL-SEC: State-based Security for
Software Defined Networks," in 2018 IEEE Conference on Network Function

http://speed/

253 | P a g e

Virtualization and Software Defined Networks (NFV-SDN), 2018: IEEE, pp. 1-
7.

[83] S. Hong, L. Xu, H. Wang, and G. Gu, "Poisoning network visibility in
software-defined networks: New attacks and countermeasures," in NDSS,
2015, vol. 15, pp. 8-11.

[84] S. Scott-Hayward, S. Natarajan, and S. Sezer, "A survey of security in
software defined networks," IEEE Communications Surveys & Tutorials, vol.
18, no. 1, pp. 623-654, 2015.

[85] N. ETSI, "Network functions virtualisation (NFV); terminology for main
concepts in NFV," Group Specification, vol. 3, pp. 1-10, 2014.

[86] G. ETSI, "011: Network functions virtualisation (NFV) release 2;
management and orchestration," Os-Ma-Nfvo reference point-interface and
information model specification. v3, vol. 1, 2018.

[87] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latré, M. Charalambides, and D.
Lopez, "Management and orchestration challenges in network functions
virtualization," IEEE Communications Magazine, vol. 54, no. 1, pp. 98-105,
2016.

[88] O. D. C. Alliance, "Master Usage Model: Software-Defined Networking," ed:
Rev, 2013.

[89] J. M. AMA. The 2016 guide to SDN and NFV – part 4: Network Functions

Virtualization (NFV) a status update

[90] A. Milenkoski et al., "Security position paper network function
virtualization," Cloud Security Alliance-Virtualization Working Group, 2016.

[91] N. ETSI, "Network Functions Virtualisation (NFV); NFV Security; Problem
Statement," ETSI GS NFV-SEC, vol. 1, 2014.

[92] S. Lal, T. Taleb, and A. Dutta, "NFV: Security threats and best practices," IEEE
Communications Magazine, vol. 55, no. 8, pp. 211-217, 2017.

[93] M. Sloman and E. Lupu, "Security and management policy specification,"
IEEE network, vol. 16, no. 2, pp. 10-19, 2002.

254 | P a g e

[94] A. Hassan and W. Bahgat, "A framework for translating a high level security
policy into low level security mechanisms," Journal of Electrical Engineering,
vol. 61, no. 1, pp. 20-28, 2010.

[95] D. Kosiur, Understanding policy-based networking. John Wiley & Sons, 2001.

[96] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège, "A formal
approach to specify and deploy a network security policy," in IFIP World
Computer Congress, TC 1, 2004: Springer, pp. 203-218.

[97] K. Karmakar, "Techniques for securing software defined networks and
survices," Ph. D. dissertation, 2019.

[98] J. B. Bernabé et al., "Security policy specification," in Network and Traffic
Engineering in Emerging Distributed Computing Applications: IGI Global,
2013, pp. 66-93.

[99] J. Liu et al., "Leveraging software-defined networking for security policy
enforcement," Information Sciences, vol. 327, pp. 288-299, 2016.

[100] S. Engram and J. Ligatti, "Through the lens of code granularity: A unified
approach to security policy enforcement," in 2020 IEEE Conference on
Application, Information and Network Security (AINS), 2020: IEEE, pp. 41-46.

[101] S. Cabuk et al., "Towards automated security policy enforcement in multi-
tenant virtual data centers," Journal of Computer Security, vol. 18, no. 1, pp.
89-121, 2010.

[102] M. B. Baig, C. Fitzsimons, S. Balasubramanian, R. Sion, and D. E. Porter,
"CloudFlow: Cloud-wide policy enforcement using fast VM introspection," in
2014 IEEE International Conference on Cloud Engineering, 2014: IEEE, pp.
159-164.

[103] A. Tabiban, S. Majumdar, L. Wang, and M. Debbabi, "Permon: An openstack
middleware for runtime security policy enforcement in clouds," in 2018 IEEE
Conference on Communications and Network Security (CNS), 2018: IEEE, pp.
1-7.

[104] K. K. Karmakar, V. Varadharajan, U. Tupakula, and M. Hitchens, "Policy
based security architecture for software defined networks," in Proceedings
of the 31st Annual ACM Symposium on Applied Computing, 2016: ACM, pp.
658-663.

255 | P a g e

[105] R. Fernando, R. Ranchal, B. Bhargava, and P. Angin, "A monitoring approach
for policy enforcement in cloud services," in 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), 2017: IEEE, pp. 600-607.

[106] X. Wang, W. Shi, Y. Xiang, and J. Li, "Efficient network security policy
enforcement with policy space analysis," IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2926-2938, 2015.

[107] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens, "A policy-
based security architecture for software-defined networks," IEEE
Transactions on Information Forensics and Security, vol. 14, no. 4, pp. 897-
912, 2018.

[108] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales, "Adding Support
for Automatic Enforcement of Security Policies in NFV Networks," IEEE/ACM
Transactions on Networking, vol. 27, no. 2, pp. 707-720, 2019.

[109] F. Li et al., "Cyberspace-Oriented Access Control: A Cyberspace
Characteristics-Based Model and its Policies," IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1471-1483, 2018.

[110] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan,
"User-driven access control: Rethinking permission granting in modern
operating systems," in 2012 IEEE Symposium on Security and Privacy, 2012:
IEEE, pp. 224-238.

[111] R. S. Sandhu and P. Samarati, "Access control: principle and practice," IEEE
communications magazine, vol. 32, no. 9, pp. 40-48, 1994.

[112] P. Samarati and S. C. de Vimercati, "Access control: Policies, models, and
mechanisms," in International School on Foundations of Security Analysis
and Design, 2000: Springer, pp. 137-196.

[113] F. Sifou, A. Hammouch, and A. Kartit, "Ensuring security in cloud computing
using access control: A survey," in Proceedings of the Mediterranean
Symposium on Smart City Applications, 2017: Springer, pp. 255-264.

[114] S. Yu, C. Wang, K. Ren, and W. Lou, "Achieving secure, scalable, and fine-
grained data access control in cloud computing," in 2010 Proceedings IEEE
INFOCOM, 2010: Ieee, pp. 1-9.

[115] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor, "A
distributed access control architecture for cloud computing," IEEE software,
vol. 29, no. 2, pp. 36-44, 2011.

256 | P a g e

[116] Y. A. Younis, K. Kifayat, and M. Merabti, "An access control model for cloud
computing," Journal of Information Security and Applications, vol. 19, no. 1,
pp. 45-60, 2014.

[117] F. Cai, N. Zhu, J. He, P. Mu, W. Li, and Y. Yu, "Survey of access control
models and technologies for cloud computing," Cluster Computing, vol. 22,
no. 3, pp. 6111-6122, 2019.

[118] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca, "GEO-RBAC: a spatially
aware RBAC," ACM Transactions on Information and System Security
(TISSEC), vol. 10, no. 1, p. 2, 2007.

[119] G.-Y. Lin, S. He, H. Huang, J.-Y. Wu, and W. Chen, "Access control security
model based on behavior in cloud computing environment," Journal of
China Institute of Communications, vol. 33, no. 3, pp. 59-66, 2012.

[120] R. PV and R. Sandhu, "POSTER: security enhanced administrative role based
access control models," in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016: ACM, pp. 1802-1804.

[121] I. Tarkhanov, "Extension of access control policy in secure role-based
workflow model," in 2016 IEEE 10th International Conference on Application
of Information and Communication Technologies (AICT), 2016: IEEE, pp. 1-4.

[122] A. Ranjbar, M. Antikainen, and T. Aura, "Domain isolation in a multi-tenant
software-defined network," in 2015 IEEE/ACM 8th International Conference
on Utility and Cloud Computing (UCC), 2015: IEEE, pp. 16-25.

[123] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, and A. Rindos, "Software
defined cloud: Survey, system and evaluation," Future Generation Computer
Systems, vol. 58, pp. 56-74, 2016.

[124] A. Viswanathan and B. Neuman, "A survey of isolation techniques,"
Information Sciences Institute, University of Southern California, 2009.

[125] I. Mavridis and H. Karatza, "Combining containers and virtual machines to
enhance isolation and extend functionality on cloud computing," Future
Generation Computer Systems, vol. 94, pp. 674-696, 2019.

[126] Y. Mundada, A. Ramachandran, and N. Feamster, "SilverLine: Data and
Network Isolation for Cloud Services," in HotCloud, 2011.

[127] M. Factor et al., "Secure logical isolation for multi-tenancy in cloud
storage," in 2013 IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST), 2013: IEEE, pp. 1-5.

257 | P a g e

[128] M. Pfeiffer, M. Rossberg, S. Buttgereit, and G. Schaefer, "Strong Tenant
Separation in Cloud Computing Platforms," in Proceedings of the 14th
International Conference on Availability, Reliability and Security, 2019, pp.
1-10.

[129] V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle, "A survey of
network isolation solutions for multi-tenant data centers," IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2787-2821, 2016.

[130] C. Chen, D. Li, J. Li, and K. Zhu, "SVDC: A Highly Scalable Isolation
Architecture for Virtualized Layer-2 Data Center Networks," IEEE
Transactions on Cloud Computing, vol. 6, no. 4, pp. 1178-1190, 2016.

[131] O. Accessed, "Open Networking Foundation," ed, 2016.

[132] N. Etsi, "Etsi gs nfv 002 v1. 1.1 network functions virtualization (nfv),"
Architectural Framework. sl: ETSI, 2013.

[133] SDxCentral, "SDN security challenges in SDN environments," 2017. [Online].
Available: https://www.sdxcentral.com/security/definitions/security-
challenges-sdn-software-definednetworks/.

[134] S. Farahmandian and D. B. Hoang, "SDS 2: A novel software-defined
security service for protecting cloud computing infrastructure," in 2017 IEEE
16th International Symposium on Network Computing and Applications
(NCA), 2017: IEEE, pp. 1-8.

[135] G. N. Stone, B. Lundy, and G. G. Xie, "Network policy languages: a survey
and a new approach," IEEE network, vol. 15, no. 1, pp. 10-21, 2001.

[136] X. Yin, X. Chen, L. Chen, G. Shao, H. Li, and S. Tao, "Research of Security as a
Service for VMs in IaaS Platform," IEEE Access, vol. 6, pp. 29158-29172,
2018.

[137] M. Zhou, R. Zhang, D. Zeng, and W. Qian, "Services in the cloud computing
era: A survey," in 2010 4th International Universal Communication
Symposium, 2010: IEEE, pp. 40-46.

[138] A. Manzalini and N. Crespi, "SDN and NFV for network cloud computing: a
universal operating system for SD infrastructures," in 2015 IEEE Fourth
Symposium on Network Cloud Computing and Applications (NCCA), 2015:
IEEE, pp. 1-6.

https://www.sdxcentral.com/security/definitions/security-challenges-sdn-software-definednetworks/
https://www.sdxcentral.com/security/definitions/security-challenges-sdn-software-definednetworks/

	Title Page
	Dedication
	Certificate of Original Authorship
	Acknowledgement
	Author’s Publications
	Table of Contents
	Figures
	Tables
	Algorithms
	Abbreviations and Acronyms
	Abstract
	1 Introduction
	1.1 Introduction
	1.2 Brief Background
	1.2.1 Software-Defined Infrastructure paradigm
	1.2.2 Software-Defined Security (SDSec)
	1.2.3 Software-Defined Security Service (SDS2)
	1.2.4 Software-Defined Network of Virtual Security Functions
	1.2.5 Provision of software-based security functions on-demand
	1.2.6 Security Issues and Challenges in an Integrated Cloud/SDN/NFV Infrastructure Platform

	1.3 Research Questions
	1.4 Research Aim and Objectives
	1.5 Research Contributions and Significance
	1.6 Research Methodology
	1.7 Thesis Structure

	2 Background and Related Work
	2.1 Introduction
	2.2 Software-Defined Infrastructure
	2.2.1 Virtualization

	2.3 Cloud Computing
	2.3.1 Cloud terminology – roles and boundaries
	2.3.2 Cloud Security

	2.4 Software-Defined Networking
	2.4.1 SDN Interfaces
	2.4.2 SDN Security Challenges

	2.5 Network Function Virtualization
	2.5.1 NFV Security Challenges

	2.6 Policy
	2.6.1 Security Policy Mechanisms
	2.6.2 Access Control Policy Enforcement Methods

	2.7 Security by Isolation
	2.7.1 Isolation Classification
	2.7.2 Standard Network Security Solutions by Isolation
	2.7.3 Cloud resource isolation mechanisms

	2.8 Open-sources for Deploying a Cloud Security SDN/NFV platform
	2.9 Summary

	3 Software-Defined Security Service Model
	3.1 Introduction
	3.2 Why Programmable and automated Security Services on Demand?
	3.3 Software-Defined Security Service (SDS₂) Model
	3.3.1 SDS₂ Security Layers

	3.4 Application of SDS₂ to Data Centre Security
	3.5 SDS₂ Features
	3.6 Thesis Roadmap
	3.7 Summary

	4 SDS2 Policy-based Interaction Model for Cloud Security Breaches detection and Prediction
	4.1 Introduction
	4.2 Cloud Object Model used for Interaction Model
	4.3 Interaction Model
	4.3.1 Interaction Mode
	4.3.2 Interaction Positional Relationship (R)
	4.3.3 Interaction time (t)
	4.3.4 Interaction Action (A)

	4.4 Security Policy-Based Interaction Model
	4.5 Interaction Security Violation Detection and Prediction Algorithm (ISVDP)
	4.5.1 Interaction Security Violation Detection
	4.5.2 Interaction Security Violation Prediction

	4.6 Interaction scenarios and results
	4.7 Summary

	5 Sec-MANAGE Protocol
	5.1 Introduction
	5.2 Software-Defined Security Service (SDS₂) and Interaction Model
	5.2.1 SDS₂ Security Controller
	5.2.2 SDS₂ Policy-based Interaction Model

	5.3 Sec-Manage Protocol Design
	5.3.1 Sec-Manage packet header
	5.3.2 Message types
	5.3.3 Forwarding Interaction Table Specification
	5.3.4 Config Interaction Table Specification

	5.4 Implementation and Performance Evaluation
	5.4.1 Implementation Set up
	5.4.2 Performance Evaluation

	5.5 Summary

	6 Software-Defined Security Service Architecture and Components
	6.1 Introduction
	6.2 Software-Defined Security Service (SDS₂) Architecture
	6.2.1 Virtual Security Function (VSF)
	6.2.2 Sec-Manage Protocol
	6.2.3 Policy-based Interaction Model
	6.2.4 SDS₂ Security Controller

	6.3 SDS₂ Security controller – Functioning Mechanism
	6.3.1 Virtual Security Function orchestration approach
	6.3.2 VSF Configuration Approach

	6.4 SDS₂ Security Controller – Software Implementation
	6.5 Results and Performance evaluation
	6.5.1 Implementation Set Up
	6.5.2 SDS₂ Security controller - Performance Evaluation

	6.6 Summary

	7 Software-Defined Security Service Platform
	7.1 Introduction
	7.2 Integrated Software-Defined Security architecture
	7.3 SDS₂ Platform – Procedure of provisioning on-demand Security Services to Protect Cloud Resources
	7.4 SDS₂ Platform Implementation
	7.4.1 Implemented Platform
	7.4.2 Implementation Scenarios and Results
	7.4.3 SDS₂ Platform setup

	7.5 SDS₂ Platform Performance Evaluation
	7.5.1 SDS₂ platform capability
	7.5.2 SDS₂ platform – Performance

	7.6 Summary

	8 Conclusion and Future Work
	8.1 Research Remarks
	8.2 Future Work

	Bibliography

