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Abstract 

Cloud computing has transformed a large portion of the IT industry through its 

ability to provision infrastructure resources – computing, networking, storage, and 

software – as services. Transferring to such an infrastructure relies on virtualization 

and its dynamic construction ability to spread over a geographical area. The challenge 

is in finding effective mechanisms for isolating security issues in cloud infrastructure. 

Isolation implies creating security boundaries for protecting cloud assets at different 

levels of a cloud security architecture. Building security boundaries is critical not only 

for recognizing security violations but also for creating security solutions. However, 

it is challenging as virtual boundaries are not as clear-cut as physical boundaries in 

traditional infrastructure. The difficulty rises as virtual boundaries among components 

are not well defined and often undefined, and hence they are not visible/controllable 

by the providers. 

Additionally, defining object boundaries is extremely difficult because virtual 

objects are dynamic in both characteristics and functionality. Many efforts have been 

made to address security isolation challenges, but no attempt has been made to 

consider an overall solution to a dynamic, intelligent, programable, and on-demand 

security isolation system. Moreover, there is no platform/framework to deliver 

programmable and on-demand construction of security boundaries to protect cloud 

resources.  

We develop a new method to protect cloud infrastructure with new intelligent 

isolation mechanisms to detect and predict security breaks. This research applies 

promising new technologies, including software-defined networking and network 

function virtualization, in providing on-demand security services over large-scale 

cloud infrastructure and overcoming challenges in constructing dynamic security 

boundaries. To protect cloud resources, we propose a Policy-based Interaction Model 
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and develop the Software-Defined Security Service. We develop a novel intelligent 

security isolation interaction algorithm to model security boundaries. To do so, we 

proposed a Policy-driven Interaction Model to construct dynamic security boundaries 

intelligently. A Software-Defined Security Service (SDS2) model was developed with 

three novel components, including security controller, Sec-Manage protocol, and the 

virtual security function. The SDS2 carries the concepts of a logically centralized 

security controller to provision on-demand security services.  

The research novelty lies in its innovative and intelligent security isolation 

interaction model, novel approach in detecting and predicting security violations, and 

constructing dynamic, programmable, and on-demand VSFs. It enables i) overall 

visibility on security boundaries within the cloud infrastructure, ii) the automation of 

provisioning security services on-demand, iii) a proactive security technique against 

security interaction violations, iv) separation of security services for both cloud 

providers and tenants. 
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Chapter 1 
 

1 Introduction 

1.1 Introduction 

Over the last decade, cloud computing has established itself as a useful 

technology for sharing and provisioning resources among tenants in a pay-as-you-go 

service fashion. It has transformed a large portion of the IT industry through its ability 

to provision infrastructure resources – computing, networking, storage, and software 

– as services. The concept of everything-as-a-service was developed to utilize 

virtualization technology that allows underlying physical resources to be virtualized 

into virtual resources and services [1]. 

Cloud computing relies on its aggregation and centralization of virtual resources 

and flexible provision and orchestration to provide services to its customers. The 

cloud is a large scalable environment that consists of a vast number of physical and 

virtual resources operating and communicating over the cloud network. The cloud 

resources are shared in an extensive distributed infrastructure where they can be 

allocated in various locations worldwide [2]. 

       Meanwhile, the cloud has developed as a complex and large-scale 

infrastructure. It turns out to be more vulnerable to traditional and new security threats 

related to its structure and components. NIST declares security, portability, and 

interoperability as the main obstacles to ultimately adopting the cloud environment 
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[3]. Some of the traditional security issues found in the cloud infrastructure are data 

access control (illegal access to confidential data), loss and data leakage, trust, 

isolation.  

Moreover, the ever-increasing number and gravity of cyberattacks against cloud 

assets together with the introduction of new software-defined technologies such as 

Network Function Virtualization (NFV), Software-Defined Networking (SDN), and 

on-demand IoT devices/services have brought with them many severe cloud security 

issues. 

Accordingly, the standing of cybersecurity in our current society or any 

organization is undeniable. With modern infrastructures that support ever-

increasingly complex and pervasive applications, such as social networks, the Internet 

of everything, mobile applications, cloud services, new security models, and 

innovative security technologies must be invented to match emerging applications 

sophistication as well as the complexity of their attacks. 

 As stated in the official AustCyber’s website, “The Internet of Things, Cloud 

Computing and the convergence of IT and operational technology (OT), are some of 

the current important disruptive technological trends that will contribute to the future 

demand of cyber security solutions.”[4]. Exclusively the global connectivity and 

drastic growth of cloud services are increasing cybersecurity risks.  

The virtualized and resource sharing nature of cloud infrastructures and the 

deployment of new technologies such as Software-Defined Networking (SDN) and 

Network Function Virtualization (NFV) has created a surge in the number of potential 

targets and the complexity of security threats and their defence mechanisms. As a 

consequence, numerous major security issues have been acknowledged related to 

current cloud infrastructure: 

The cumulative number of virtual resources/functions and their connectivity. As 

anticipated, with the growing requests for cloud services, demand for virtual resources 

has drastically increased within the infrastructure. However, the major challenge is 
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how to manage the security complexity of the interactions of these resources via an 

effective approach within the cloud infrastructure, which increases the reliability of 

cloud resources.  

The massive number of virtual resources and their segregation. Cloud resources 

are shared among various customers in different centres all over the world. The 

challenge here is how to construct security boundaries to achieve sound isolation and 

how to isolate the resources on-demand and dynamically within an environment 

where its resource states/characteristics dynamically change. The main challenge is in 

finding effective isolation mechanisms in cloud infrastructure. Isolation implies the 

creation of security boundaries for protecting cloud assets at different levels of cloud 

security architecture. 

Furthermore, cloud providers and tenant administrators' primary concern is to 

establish security in the virtual environment where each virtual function’s workload, 

resources, and internal and external communication can be securely isolated when 

necessary on-demand. Nasseri et al. [5] mentioned a lack of proper consideration of 

isolation related to security in the research and academic community regardless of the 

fact that isolation is crucial and has a critical impact on confidentiality, integrity, and 

infrastructure availability. Security issues in a virtual cloud environment are more 

complex and challenging than those in traditional infrastructures since resources are 

both virtualized and shared among numerous users. 

As a result, virtual boundaries among components/participants are not well 

defined and often undefined, and hence they are not visible/controllable by the 

providers. Multi-tenancy is a specific cloud characteristic that allows the sharing of 

applications, services, resources (compute, network, storage) among tenants.  

Cloud multi-tenancy introduces critical security challenges related to the 

concept of isolation of tenants and shared virtual resources. In multi-tenant cloud 

architecture, such isolations are a crucial concept for both security and infrastructure 

management, and they ought to be considered at functional entity levels and 

appropriate abstraction levels of the infrastructure. In traditional environments, 
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physical isolation is relatively simple as the boundaries between physical elements are 

well defined and visible [6, 7]. The situation is not clear cut in virtual environments 

unless one can keep track of all perimeters of all virtual objects created. Defining 

object boundaries is extremely difficult because virtual objects are dynamic in both 

characteristics and functionality. The task is resource-expensive due to the sheer 

number of virtual objects and their complexity.  

A number of studies have attempted to address security issues related to security 

isolation in cloud infrastructure, such as [8], [9], [10], [11], and so on. The existing 

proposed isolation mechanisms are mostly focused on end-to-end isolation and are 

mainly classified as network isolation, performance isolation, space isolation, domain 

isolation, and tenant isolation. The current isolation mechanisms are not so useful in 

a dynamic and automated infrastructure which requires a dynamic, agile, and 

automatic construction of security boundaries in the provision of on-demand security 

functions. Another main security challenge in current mechanisms is a lack of a 
centralized security orchestrator with an overall view of underlying security 

infrastructure. 

A security breach occurs when a security policy is violated over an interaction. 

Practically, a security breach is defined in terms of the policies that define the 

interaction breaches. An event is considered a security breach either when it violates 

a defined security policy or violates the Confidentiality, Integrity, and Availability of 

security principles that could have been avoided if a relevant security policy has been 

in place. The construction of security boundaries in a cloud system is related to the 

characteristics of the interacting objects in the environment and the policies and 

constraints that govern their interaction. However, to the best of our knowledge, 

there is no previous work to provide isolation in relation to object interaction 

which can provide dynamic and on-demand security isolation. 

This research addresses these challenges by proposing an intelligent solution to 

detect and predict security breaches allowed by its policy-based interaction model. 

The study investigates an innovative algorithm to model the boundaries that can cause 
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violations and create a system to provide on-demand security service. For this 

purpose, a Software-defined Security Service (SDS2) model has been presented to 

provide on-demand and dynamic security services. We propose SDS2 as a Software-

Defined Security (SDSec) Service that uses virtual cloud resources and can be 

deployed by a cloud provider to protect its integrated infrastructure. 

The SDS2 introduces an innovative mechanism for the detection and prediction 

of security breaches in cloud infrastructure. The SDS2 model fashions intelligent, 

dynamic, automated, and on-demand security functions to protect cloud entities and 

resources. Our design focuses on building a robust, dynamic, and automated security 

boundary to protect cloud assets relying on a solid and innovative interaction model 

and security policy expressions that govern the interactions. 

 The construction of security boundaries in a cloud system is related to the 

characteristics of the cloud entities interactions in the environments. The model will 

introduce a novel policy-driven interaction model as a new security protection trend 

against cloud infrastructure threats. The SDS2 proposes the policy-based interaction 

model as a security defence against interaction violations in the cloud system. A 

security architecture will be designed in alignment with the security model, including 

three main layers: the security application layer, the security control layer, and the 

security data layer. The security application layer contains security applications and 

interfaces. The security control layer accommodates the security controller and its 

components. The security data layer hosts virtual security functions. To the best of 

our knowledge, there is a lack of an intelligent, proactive, and on-demand security 

service in isolation of cloud assets regarding their interaction over a large-scale cloud 

infrastructure using SDN and NFV techniques.  

To realize the cloud infrastructure security model, we address a variety of facing 

security challenges. We design the security service model, construct intelligent 

security boundaries according to policies and constraints, build a specific interaction 

virtual security function, and develop a new communication protocol between the 
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security controller and VSFs. We advance algorithms and mechanisms for security 

violation detection and prediction. 

This research contribution is the proposed software-defined security service 

framework, architecture for security isolation of cloud’s assets, on-demand security 

service, and a novel policy-driven interaction model to predict and detect security 

breaches, orchestration provisioning the virtual security functions, and protocol for 

orchestrating and managing virtual security functions. The model allows the security 

service to be easily integrated into a large-scale software-defined infrastructure while 

preserving the simplicity and independency of VSFs from underlying physical and 

virtual functions. Most importantly, the benefits of software-defined security control, 

on-demand security interaction monitoring, automation of management and 

configuration of the virtual security function, dynamic programmability of virtual 

security functions, and real-time interaction security violation detection and 

prediction are gained through the merging software-defined networking, network 

function virtualization, and cloud infrastructure.   

Moreover, the significance of this research is its new vision for an efficient and 

capable cloud security orchestration in the fight against security violations and its 

novel solution in terms of detection and prediction of security violations. The 

proposed model can be applied for both cloud providers and their tenants regardless 

of their environment scale, complexity, and structural sensitivity. 

The model is applicable for orchestrating automatic and on-demand virtual 

security functions by globally connecting security functions via specific security 

communication protocol and connectivity network by SDN technology. Furthermore, 

it enables i) security developers to initiate on-demand VSFs without limitation, ii) 

cloud infrastructure owners to gain more reliability in terms of security complexity, 

iii) providers and their end-users to benefit from advance agile security detection and 

prediction iv) cloud tenants to independently secure their organization v) provision of 

more QoS options for cloud customers. 
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This chapter is organized as follows. Section 1.2 provides a brief description of 

the terminologies involved in this thesis. Section 1.3 specifies the research problems 

addressed by this study. Section 1.4 states the research aim and objectives. Section 

1.5 recaps the key contributions of this dissertation. Section 1.6 defines the research 

model and methodology. Section 1.7 presents the thesis structure. 

1.2 Brief Background 

Security has been recognized as a critical issue that must be resolved at each 

domain/level of a cyber-infrastructure. Recently, the integration of new technologies 

such as cloud and virtualization in modern IT infrastructures makes it more difficult 

for security experts to protect their systems against numerous security threats due to 

the virtual resource-sharing nature among tenants and the larger attack surface of 

clouds. The virtualization and virtualized infrastructure introduce new security 

challenges related to virtualized resources.  

Traditional security measures and endpoint security are no longer adequate due 

to invisible boundaries created among shared logical and virtual entities among 

numerous users. To protect cloud resources against modern threats, there is an 

absolute need for a new isolation approach that can construct dynamic, automated, 

and on-demand security boundaries according to the object interaction rather than 

end-point devices. To allow the construction of security boundaries, we need a model 

with a centralizing overview of cloud resources and their interaction and the ability 

to construct security boundaries according to the object properties and interactions. 

Moreover, it can create dynamic, automated, and on-demand security functions to 

monitor the interactions to detect and predict security interaction violations. 

 This study focuses on the automation of security solutions for protecting cloud 

infrastructure by designing and implementing a software-defined security service. 

This research study's prime motivation is to provide a security software-based 
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platform focusing on delivering dynamic and on-demand security isolation, detecting 

and predicting security violations in relation to a novel interaction model. The model 

enables an efficient orchestration of security services on-demand within the cloud 

infrastructure. This section presents a brief overview of the software-defined 

infrastructure paradigm, software-defined security (SDSec), software-defined 

security service, and provision of software-based security functions on-demand. 

1.2.1 Software-Defined Infrastructure paradigm 

Software-Defined Infrastructure has merged as a promising approach to transfer 

the operation and control of IT infrastructure entirely as software services. According 

to [12], Software-Defined refers to “providing open interfaces to manage and control 

various sharing resources in different types of infrastructure for software 

programmability as well as providing access to infrastructure resources like usage 

data, topology, storage, and compute.” The SDI is considered an abstraction layer of 

resource-sharing infrastructure, such as compute, storage, and networking, managed, 

controlled, and governed using the software. The SDI provides infrastructure 

capability to function as self-aware, self-scaling, and self-optimizing to enable agile 

business services and processes [13]. The software-defined infrastructures are 

presented to pave the way for a faster and dynamic (re)configuration and flexibility 

of infrastructure resources through software-based functions [14]. The software-

defined infrastructure allows companies to deliver IT services with more dynamicity 

and agility governed by everything-as-a-software concepts. The SDI provides 

interoperability that enables companies to quickly implement their solutions 

regardless of types and hardware and their manufacturer. Besides, The SDI 

significantly improves speed and reduces the complexity of provisioning, deploying, 

and maintaining resources [15]. 

The SDI embraces two main concepts that have been presented in the current IT 

environment, the separation of the network control plane from the data plane, SDN 

[16], and separation of underlying network functions through software-based virtual 
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functions, NFV [17]. The software-defined infrastructure requires virtual networks 

from SDN, virtual network functions from NFV, and computing, storage, and 

orchestration resources from the cloud, but there has not been a standard integrated 

architecture for SDI, and this presents a considerable challenge in designing a sound 

framework for an SDI security architecture. The software-defined infrastructure 

provides an integrated software-based infrastructure consisting of software-defined 

networking, network function virtualization, and cloud environment where 

virtualization is adopted as a foundation technology.  

The virtualization technology empowers NFV and SDN to create scalable, 

dynamic, and automatically programmable virtual network functions and virtual 

network infrastructures in integrated cloud platforms such as telecom clouds. 

However, virtualization and creation of software-based virtual components within the 

cloud introduce new security challenges and exacerbate those existing ones in each 

domain. The primary security problem arises from creating numerous security 

boundaries that are often hidden or invisible within virtual environments. The 

proposed model is a software-based security service running on top of cloud software-

defined infrastructure. The security services are software-based virtual security 

functions allocating in different locations according to triggered interaction.  

1.2.2 Software-Defined Security (SDSec) 

Software-defined security (SDSec) has been introduced to assist security 

experts in handling automatic security enforcement in distributed environments [18]. 

The SDSec architecture decouples the security control plane from the security 

forwarding plane (including software-based security instances like firewall, intrusion 

detection systems (IDS), deep packet inspection (DPI)) in the same way SDN isolates 

the control plane from the network data plane. It offers security functions as software 

instances independent from traditional physical security appliances. Security 

measures can be deployed effectively and rapidly based on the changing levels of 

system/business requirements. SDSec has been developed as a result of the inability 
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of traditional security methods to cope with a mixture of virtual and physical elements 

in modern infrastructures. 

In [19], the authors mentioned six main outstanding features and attributes that 

distinguished the SDSec approach from traditional security approaches: i) abstraction: 

abstracting security policies from the underlying hardware plane which runs in an 

independent software layer; ii) automation: automated programmable creation of 

software-based functions and configuring security functions without the need of 

manual configuration; iii) elasticity: software-based security resources can be 

provisioned elastically; iv) concurrency of control: providing a higher level of security 

control over the virtual environment; v) visibility; and vii) portability.   

Cloud Security Alliance (CSA) introduced the idea of SDSec with Software-

Defined Perimeter (SDP) to facilitate a new security architecture that is resilient 

against network attacks and achieves security with higher visibility and lower costs. 

The CSA described SDP as follows: SDP is a framework of security controls that 

mitigate network-based attacks on Internet-accessible applications by eliminating 

connectivity to them until devices and users are authenticated and authorized. The 

SDP reduced security attacks on network applications by disconnecting applications 

until a proper authentication of both users and devices [20, 21]. In addition, there are 

several commercial products which consider the SDSec approach like Catbird [22], 

vArmor [23], vShield [24], and OneControl [25].  

Catbird implements several features and attributes that distinguish the SDSec 

approach from traditional security approaches. Catbird consists of two main elements: 

Catbird control center and a set of virtual machine appliances (VMAs) implemented 

as VMs. The system configures a mesh topology where the Catbird control center is 

located at the center of the network as the policy enforcement point to manage and 

distribute the security controls across the connected VMAs. There is a Linux-based 

VMA (virtual memory address) implemented inside it for every virtual switch, 

executing different security tasks through a hypervisor interface [22]. 
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vArmour is another SDSec solution that exploits the benefits of virtualized 

environments. The architecture of vArmour is like any software-defined system 

architecture, where the control plane is decoupled from the forwarding plane. The 

vArmour Distributed Security System consists of a logically centralized controller and 

multiple autonomous enforcement point appliances connected by an intelligent fabric. 

It constitutes a security (SDSec) service layer to enforce a security rule to a whole 

data centre [23]. 

vShield is another solution for VMware vCloud. vShield provides the customer 

the ability to build policy-based groups and establish a logical boundary between 

them. vShield integrates several components: vShield App and Zones protect the 

virtual data center applications by creating segmentation between enclaves or silos of 

workloads. vShield Edge secures the edge of the virtual data center boundary and 

defends the communication between segmentations. vShield Endpoint offloads 

antivirus processing. vShieldManger provides a centralized control point to manage 

all vShield components [24]. 

1.2.3 Software-Defined Security Service (SDS2) 

The software-defined security service provides control, management, 

orchestration of security services on-demand based on its specific virtual security 

functions (VSFs). The SDS2 offers a security model as well as a security service that 

relies on the object-oriented entities of a cloud environment, the interaction among 

them, and security policies that govern the interaction.  

The proposed model consists of three main layers and essential components: 

security controller, interaction monitoring functions, virtual security networking, and 

intelligent algorithm. The security controller is the centralized security intelligence 

with overall visibility on cloud object interactions. Interaction monitoring functions 

are an essential feature of the security model in detecting and predicting security 

violations according to the intelligent algorithm. The virtual security networking 
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function is in charge of transferring policies and interaction values between security 

controller-to-monitoring functions, monitoring function-to-monitoring function, and 

monitoring function-security controller. The proposed model enables the dynamic 

construction of security boundaries concerning the initiation of an object’s 

interactions. 

 The SDS2 enables automation and programmability of interaction virtual 

security functions to monitor a targeted interaction. It can monitor interactions based 

on two different states: 1) monitor based on a requested interaction; 2) monitor a 

random interaction/event within the system. 

1.2.4 Software-Defined Network of Virtual Security Functions 

Software-defined networking separates the control plane from the underlying 

network data plane for efficient data transport and fine-grained control of network 

management and services. SDN allows network virtualization and provision of virtual 

networks on-demand. SDS2 decouples security functions and security networks from 

the underlying infrastructure. A communication protocol has been introduced to 

transfer security messages and interaction parameters between the security controller 

and VSFs.  

The network connectivity inherits the fundamentals of SDN architecture using 

a solid policy-based interaction protocol. It works as a bridge between the security 

controller (SC) and the VSFs to transfer interaction values according to the SDS2 

Interaction Model. The main aims of designing the Sec-Manage protocol are 1) to 

provide direct communication between the SDS2 security controller and its VSFs and 

2) to transfer the parameters pertinent to the security aspects of objects’ interaction 

between a VSF and the SC to monitor parameters of interaction to detect and predict 

security violations.  

1.2.5 Provision of software-based security functions on-demand  
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Virtual network functions (VNFs) are defined as software-based functions 

decoupled from underlying physical network functions. There are various types of 

VNFs in various contexts. A virtual security function is a type of VNF with security 

functionality rather than networking. In the proposed SDS2 model, one of the main 

functions includes our specific interaction virtual security function. 

 A VSF inherits some properties of VNF, which precisely emphasize detection 

and prediction of security interaction violations. A VSF in our usage is created to 

perform a specific security function and deployed at strategic locations in the cloud 

infrastructure that requires protection. It is a software-based function constructed to 

protect cloud infrastructure against any type of interaction violations. The VSF is a 

simple but efficient and intelligent security function, monitoring cloud entities 

interaction to detect and predict security violations. The SDS2 dynamically triggers 

VSF to monitor an interaction on-demand. 

1.2.6 Security Issues and Challenges in an Integrated 

Cloud/SDN/NFV Infrastructure Platform 

Cloud computing demonstrated how best computing and storage resources 

could be virtualized and provisioned on-demand and offered as IT services. More 

importantly, its effective orchestration of services provides an excellent model for 

resources and service management. SDN and NFV demonstrated the most effective 

way network resources and services (network infrastructures, network functions, and 

connectivity services) can be created and managed. Cloud needs SDN and NFV to be 

integrated seamlessly to offer truly any resource as a service. SDN and NFV need to 

include cloud management infrastructure to provide network services and 

functionality. For example, existing telecommunications network infrastructures and 

service models are too rigid. They have to evolve into a telecom cloud to offer 

emerging and flexible services to their customers. An integrated software-defined 

infrastructure that seamlessly integrates cloud, SDN, and NFV will create a robust 

service model that incorporates all the best features of these technologies. 
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Two significant issues concerning cloud, SDN, NFV, and the integrated 

software-defined infrastructures are the security of the virtualization technology itself 

and the complexity of the virtualized interconnecting infrastructure. Cloud and SDN 

networks face an increasing intricacy of emerging social networks, applications, and 

services and their associated security problems. The whole range of issues includes 

scalability of cloud networks, the complexity of the way network functions 

communicate to each other, the lack of a centralized infrastructure control component, 

policy enforcement, dynamic workloads, multi-tenancy, isolation of tenants, services, 

resources (virtual networks, virtual machines, virtual storage). SDN and NFV allow 

tenants to share the underlying physical network to create their virtual networks, 

network functions, and services with their policy in a cloud environment. Integrating 

cloud, SDN, and NFV into a software-defined infrastructure provides a truly scalable, 

dynamic, and automatic programmable platform for creating everything as a service 

on demand. 

All these infrastructures rely on virtualization as the core technology. 

Virtualization is pervasive in almost all components of the service infrastructures: 

virtual machines, virtual networks, virtual storage, virtual network functions, and 

virtual services. However, virtualization brings with it new security challenges in the 

way virtual elements are created and maintained. For the security of the infrastructure, 

all virtual elements have to be secure for their whole lifecycle; their creators 

(hypervisors) must be trusted and secure; appropriate isolation among servers, among 

services, and tenants must be preserved. 

Although integration of cloud, SDN, and NFV into a service infrastructure 

provides benefit to both service providers and service users, the complexity of security 

of each technology, of virtual components, of individual infrastructures present a 

significant obstacle for comprehensive integration. One important aspect of 

virtualization is that it introduces invisible boundaries to traditional security 

mechanisms at various levels. To deal with this integrated software-defined 

infrastructure, one should use the very virtualization technology to provide security 

of the overall infrastructure; one should deploy the logically centralized paradigm of 
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SDN and NFV to separate security control from the functionality of security network 

functions. Software-Defined Security Service (SDS2) proposed in that spirit to create 

a centralized security service model for the cloud-SDN-NFV infrastructure platform. 

The SDS2 provides a centralized security controller over the infrastructure. The SDS2 

controller will possess the ability to create its flexible interconnecting infrastructure 

for connecting its security function elements. It will have the ability to program and 

manage its security function elements autonomously. 

1.3 Research Questions 

The major obstacle for organizations on complete migration through the cloud 

is considered as a security. As described, there are numerous security challenges 

pointed to the cloud infrastructure, especially on security isolations. Some of the 

significant security challenges are listed as a lack of proper visibility on security 

functions within a cloud infrastructure, lack of provisioning dynamic security 

monitoring orchestrator, absence of an efficient security violation prediction 

mechanism, and deprived efficient dynamic security isolation mechanism. 

In our research, we seek answers to the following questions “How can security 

services dynamically construct security boundaries?”, “How to automatically predict 

the next security breach within the system?”, “How to deliver programmable virtual 

security functions?”, “How to provide a centralized security controller with visibility 

on underlying security functions?” and “How to integrate the virtual security functions 

within the cloud infrastructure?”. Three significant challenges have been identified. 

Initially, a virtual security function requires dynamic, automated, programmable, and 

on-demand capabilities to be integrated into cloud infrastructure with advanced 

detection and prediction techniques for providing cloud security. Secondly, it is 

essential to offer a centralized orchestrator to manage, control, and configure security 

functions over a large-scale distributed environment like a cloud. Lastly, an approach 

should be introduced to deliver dynamic security isolations considering cost-
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effectiveness and efficiency. In brief, the research question addressed in this thesis 

can be specified as follows: 

 “How to secure and protect cloud infrastructure against security isolation 

breaches using new technologies based on SDN/NFV, and can the proposed 

model be realized in a practical environment?” 

To address the issue, we investigate the following research questions. 

• Can SDN-NFV technologies be ported to the cloud security domain where 

they demonstrate their proficiency in the programmability and automation 

of on-demand security services? 

• The concepts of SDN and NFV in managing and controlling network function can 

be fully applied to our proposed model. However, to adapt these technologies to a 

security model, there are quite formidable changes to apply since these 

technologies cannot directly be applied to security. Virtual security functions are 

defined for specific security activities. Unlike network functions, virtual security 

functions have restricted functionalities in terms of resources and communication 

techniques. They are required to communicate with the security controller and 

other VSFs within the system. They do not need to handle massive volumes of 

messages transferred in an SDN network. The number of security messages is 

limited as well as required computational resources. The VSFs do not require 

complex service life chaining and properties compared to virtual network 

functions. It is challenging to apply the SDN/NFV entirely over a security 

platform in practice.   

• How can we discover an efficient security isolation technique to detect and 

predict security breaches in virtual environment?     

The research conducted in this thesis seeks to answer this question by proposing 

an intelligent algorithm for detecting and predicting security violations. Security 

breaches primarily result from some violation of the rule of interaction (or policy that 

governs the interaction) between objects when they interact. Unless one has a formal 
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model of an interaction between objects, it is difficult to detect, predict or prevent 

security incidents. In this research, we propose a novel policy-driven interaction 

model that provides an innovative interaction structure foundation. The proposed 

model responds to this question by representing the interaction model characteristics 

and techniques to secure cloud objects according to their initiated interaction. 

• How to deliver dynamicity, programmability, and automation in relation to 

on-demand security services? 

To respond to this question, we proposed a Software-Defined Security Service 

(SDS2) model to secure cloud infrastructure. The proposed model contains main 

components, including a logically centralized security controller, virtual security 

functions, policy-driven interaction protocol. The SDS2 offers many key benefits to 

enterprise cybersecurity, including simplified security management and orchestration, 

visibility on logical security boundaries, dynamics and intelligent security detection 

and prediction mechanism, and agile security response to security breaches. 

• How to validate and evaluate a security model in a real deployment? 

 The proposed model is required to be validated and evaluated in practice. 

Currently, there is no open-source software-defined security simulator, emulator, or 

integrated security platform to enables the implementation of our model on top of their 

systems. Moreover, there are no previous works on security following our interaction 

model to construct security isolation within the cloud infrastructure. To validate our 

proposed model, it is essential to design and develop a software-based environment 

to implement all required components, including our security controller, a virtual 

security function, and communication protocol. To validate the model and its security 

algorithm, we run various tests.  
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1.4 Research Aim and Objectives 

The main aim of this thesis is to develop an intelligent security solution to 

protect cloud infrastructure that enables definable security boundaries based on an 

intelligent model to dynamically define realizable security boundaries aligned with 

new technologies like SDN/NFV. The security solution practically models security 

boundaries to detect and predict security violations by introducing a software-defined 

security architecture in relation to an innovative interaction model to secure the 

cloud’s resources. So, the main focus is on developing a security platform to establish 

dynamic and intelligent security boundaries, new techniques to detect and predict 

security breaches, and control structures for provisioning/coordinating resources for 

counterattacks.  

To accomplish the aim, we define following objectives and investigate practical 

solutions for their achievements.  

Objective 1: Detecting and establishing dynamic security boundaries in the 

cloud environment. To achieve this objective, we divide it according to six sub-

objectives as follows: 

• Investigating existing defined physical and virtual boundaries, their issues, and 

solutions associated with providing on-demand and dynamic security boundaries 

• Defining characteristics and functionality of cloud’s objects in relation to defining 

security boundaries 

• Inspecting policy-based structure in designing object interactions in cloud  

• Proposing a Policy-based Interaction model intended for the construction of 

dynamic, secure boundaries according to defined interaction parameters 

• Defining an intelligent interaction algorithm for cloud security breaches detection 

and prediction 

• Establishing dynamic security boundaries according to the policy-based 

interaction model 
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Objective 2: Deploying an innovative security model to secure and protect cloud 

infrastructure and provision on-demand security services. The sub-objectives for this 

step are explained as:  

• Designing a software-defined security model that can be integrated into cloud 

infrastructure to provide dynamic and agile security service to both cloud and its 

customers  

• Proposing a software-defined security service (SDS2) architecture to orchestrate, 

manage and establish defined dynamic security boundaries which align with the 

policy-based interaction model 

• Creating security controller and its components with the purpose of establishing 

dynamic security boundaries, detection and prediction of security breaches 

• Fashioning on-demand, intelligent, and agile Virtual Security Functions (VSFs) 

using Network Function Virtualization (NFV) techniques  

• Realizing a policy-based interaction protocol between the software-defined 

security controller and virtual security functions based on SDN technology  

• delivering a dynamic and on-demand security framework that allows 

orchestration, control, and management of interaction virtual security functions to 

protect an extensive distributed cloud infrastructure 

Objective 3: Evaluating the feasibility and proficiency of the proposed model 

and its functions.  

• Validating and evaluating our proposed security technique by implementing our 

Software-Defined Security architecture and Services (SDS2) and demonstrating 

the platform performance evaluation. 

1.5 Research Contributions and Significance 

This research concentrates on securing cloud infrastructure in the provision of 

cloud security services on-demand. This thesis researches a novel interaction model 
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for detecting and predicting interaction violations to initiate a new technique in 

constructing security isolation in cloud infrastructure. To our knowledge, there is no 

previous study or framework that proactively secures a large-scale distributed 

infrastructure like a cloud using an interaction model between resources at a high-

level. Expected outcomes in relation to the above objectives are as follows: 

• Software-defined security framework introduces a new knowledge on 

constructing dynamic and on-demand security boundaries in cloud infrastructure. 

The construction of security boundaries in a cloud system is related to the 

characteristics of the interacting objects in the environment and the policies and 

constraints that govern their interaction. The novelty of this approach is that it is 

a paradigm to build a robust, dynamic, and automated security boundary to protect 

cloud assets relying on a solid and innovative interaction model and security 

policy expressions that govern the interactions. The framework exploits four main 

concepts: logical centralization of security control, virtualization of secure 

connectivity, security functions virtualization, and orchestration of virtual 

resources.  

• The proposed interaction model represents a new technique for detecting and 

predicting security breaches. The model governs the interactions among entities 

in a cloud environment. The proposed model and its introduced algorithms protect 

cloud resources against security threats via defined security boundaries 

constructed from the model and the system security policies that govern the 

interaction model.  

• The proposed novel protocol opens up a new research area on communication 

security protocol between the security controller and virtual security controller 

using SDN/NFV technologies. The Sec-Manage protocol transfers security 

messages and interaction parameters between a security controller and its VSFs. 

The protocol is a novel approach in programming behaviour and configurational 

management of VSFs according to the proposed interaction model.  

• The proposed architecture of dynamic and programmable software-defined 

security service (SDS2) will be integrated within the cloud infrastructure. The 
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security service creates its specific virtual security function with the capability of 

agile response to security threats. SDS2 offers many critical benefits to enterprise 

cybersecurity, including simplified security management and orchestration, 

visibility on logical security boundaries in the physical and virtual environment, 

dynamics and intelligent security configuration, and agile security response to 

security breaches.  

• The proposed model is implemented in a cloud/SDN/NFV integrated software 

platform for practical realization. A software platform has been developed to 

evaluate and validate the proposed model and its introduced components. The 

innovation is a security software platform demonstrating the ability of SDS2 in 

protecting cloud infrastructure using SDN/NFV concepts.  

The research contributions are of Significance not only for cloud stakeholders 

such as end-users, tenants, security admins, security developers but also, they provide 

a significant impact on cybersecurity society. 

For cloud providers, the proposed SDS2 and its novel interaction model provide 

an intelligent proactive centralized security controller with a management and 

orchestration mechanism for providing on-demand virtual security functions. 

Moreover, the proposed security service enables cloud developers to develop their 

applications without concern over security protection. Tenants of cloud can use the 

SDS2 in their environment to protect against internal and external attacks 

independently and without concerns on deployment cost and difficulty in 

programming and controlling the virtual security functions.  

1.6 Research Methodology 

There are several main phases in this research approach that should be 

considered in order. The selected methodology is adapted from [26]. This research is 

divided into five phases, as shown in Figure 1.1.  
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Figure 1.1 Research Phases 

The first phase is defining the scope of the research. This phase identifies the 

exact scope of the research, which includes several technologies. The second phase, 

is to recognize the research problem. In this phase, we study the current state-of-art 

on diverse previous works according to defined research scope. It includes involved 

technologies for building our model. In this phase we identify the research problem 

as well as current existing solution to the issue. After this phase, we gain a knowledge 

on the discovered problem, existing solution to the problem, and gaps in the proposed 
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solutions. We classify the hypothesis concerning security problems where we prepare 

the research aim, research objectives, research questions, and significance. In the next 

phase, we design our proposed service model. We propose our new approaches and 

mechanisms for the research problem. In this phase, we create the model and new 

approaches to achieve our research objectives. The output defines our new solution to 

issue. The proposed solution requires to be validated and evaluated. In phase four, we 

validate and gather the data and results to evaluate the proposed solution and 

determine whether we need to refine the proposed model or not. In the last phase, we 

collect all the information and write a thesis to describe our work and future work. 

Figure 1.2 demonstrates all phases and their details.  

 
Figure 1.2 Research Methodology 

1.7 Thesis Structure 

This research has produced several papers, including three conferences, two 

journal papers, and one book chapter published in Springer. Figure 1.3 demonstrates 

the structure of the thesis. This thesis is organized into eight chapters as follow:  
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Figure 1.3 Research Structure 

• Chapter 1: Introduction  

This chapter presents an overview of this research study. It introduces the 

importance of a new security approach for protecting cloud infrastructure using a 

novel SDS2 security platform concerning the provision of agile security services on-
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demand. This chapter presents the research problem, research aim, objectives, 

research contribution, research methodology, and thesis structure. 

• Chapter 2: Background and Related Work  

This chapter provides a background on Software-Defined Infrastructure (SDI) 

and revolutions in terms of security challenges and technologies, security challenges, 

enabling technologies for a software-based security platform, virtual enabling, and 

resources for deployment of on-demand security services, and SDI architecture and 

models. As a leading and fundamental technology, a brief explanation has been 

presented in relation to virtualization and cloud infrastructure and its deployment 

models and security challenges.  

This chapter also provides a brief background on the involved open-sources 

platform required for the practical implementation of the proposed SDS2 model. The 

chapter describes SDN and NFV architecture and techniques used for this research 

study. It reviews both security challenges and solutions applying in SDN and NFV. 

This chapter discusses the integrated Cloud/SDN/NFV solution to the provision of a 

programmable and automated security system. 

• Chapter 3:  SDS2: Software-Defined Security Service Model  

This chapter presents a broad overview of the proposed software-defined 

security service for provisioning on-demand security services. It represents the 

significant contribution of the proposed model in relation to protecting cloud 

infrastructure. 

• Chapter 4: SDS2 Policy-based Interaction Model for Cloud Security Breaches 

Detection and Prediction  

This chapter presents the proposed novel, policy-driven interaction model. We 

demonstrate the structure of the interaction model and its specific parameters. The 

algorithms for detecting and predicting security breaches in relation to the interaction 

model are presented in this chapter.  
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• Chapter 5: Sec-MANAGE Protocol 

This chapter demonstrates the design and specification of the proposed Sec-

Manage protocol to configure and manage VSFs to provide on-demand security 

services. The protocol is designed to deal with security interaction constraints in cloud 

infrastructure. In this chapter, the detailed design and operation of the Sec-Manage 

protocol are described. Furthermore, this chapter also presented implementation 

results related to transferring the interaction parameters between VSFs and controller 

and an on-demand allocation of VSFs within the system.   

• Chapter 6: Policy-based Software-defined Security Service Architecture and 

Components 

This chapter presents an overall architecture of SDS2 in provisioning security 

services on-demand. It presents the detailed structure of SDS2 components, including 

the SDS2 controller, and virtual security functions. 

• Chapter 7: A Software-Defined Security Platform for Cloud Infrastructure 

and Evaluation   

This chapter presents the developed software-defined security platform in 

provisioning VSFs on-demand for detection and prediction of security violations. This 

chapter demonstrates the practical implementation of the SDS2 model and discusses 

the results. 

• Chapter 8: Conclusion and Future Works 

Chapter 8 summarizes the ideas presented in this thesis, the major research 

contribution, and outlines future research work.  
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Chapter 2 
 

2 Background and Related Work 

2.1 Introduction 

Software-defined networks, network functions, virtualization platforms, and 

clouds have established themselves as modern IT service infrastructures. They rely on 

virtualization technology to virtualize and aggregate physical resources into pools of 

virtual resources (virtual machines, virtual networks, virtual storage, virtual functions, 

and virtual services) and provision them to users on demand. Security has been 

recognized as an essential and integral part of the design of systems, infrastructures, 

organizations, and services; yet, the current state of security research and practice is 

at best fragmented, local, or case-specific. 

This chapter presents background on software-defined infrastructure and the 

provision of on-demand security services within the cloud infrastructure. We explore 

concepts of security isolation and related challenges in maintaining isolation in large-

scale infrastructure. We review various technologies, including virtualization, 

software-defined networking, network function virtualization, and cloud computing, 

while exploring security challenges entangled with these technologies.  

Designing the proposed SDS2 requires in-depth knowledge of involved 

technologies and their deployment models. We provide an overview of the open-
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source platform to be used, such as the OpenFlow protocol [27], OpenStack [28], 

CloudSimSDN-NFV framework [29], NFV platforms, and SDN controllers. 

The rest of this chapter is organized as follows. Section 2.2 gives a brief 

overview of software-defined infrastructure and virtualization as the primary 

fundamental technology. Section 2.3 presents cloud computing and its related security 

challenges. Section 2.4 provides a background of the SDN technique and presents 

major security issues. Section 2.5 describes the NFV technique and its security 

challenges. Section 2.6 provides an overview of policy and security policy 

mechanisms in the cloud. Section 2.7 includes literature on works based on isolation 

and describes security isolation in cloud computing. Section 2.8 briefly introduces 

open sources for developing a cloud SDN-NFV-based security system. Section 2.9 

summarizes this chapter. 

2.2 Software-Defined Infrastructure 

Software-Defined Infrastructure (SDI) is a resource-sharing infrastructure that 

embraces the concept of separation of the network control plane from its data plane 

and software realization of network functions from the underlying hardware 

appliances. It established itself as an efficient approach to designing and deploying 

modern IT service infrastructure by integrating Software-Defined Networks, Network 

Functions Virtualization platforms, and Clouds.  

The SDI combines Software-Defined compute (SDC), Software-Defined 

Networking (SDN), and Software-Defined Storage (SDS) into a fully software-

defined data center for providing simplified and standardized IT consumption models, 

with automatic configuration, ease of management, and centralized visibility over the 

infrastructure functions and resources. The integrated SDI infrastructure adopts 

virtualization as a fundamental and vital technology for its SDN, NFV, and cloud 

constituents. They rely on virtualization to create virtual resources, including virtual 
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networks (VNs), virtual network functions, virtual storage, virtual machines (VMs), 

and virtual services. This section explores virtualization as a key technology in SDI 

and investigates security challenges related to this technology.  

2.2.1 Virtualization 

Virtualization is the technology that simulates the interface to a physical object 

by multiplexing, aggregation, or emulation. With multiplexing, it creates multiple 

objects from one instance of a physical object. By aggregation, it creates one virtual 

object from multiple physical objects. Through emulation, it constructs a virtual object 

from a different type of physical object [30]. On another level, virtualization can be 

defined as the logical abstraction of assets, such as the hardware platform, operating 

system (OS), storage devices, network, services, or programming interfaces. 

Virtualization technology plays an essential role in the development and management 

of services offered by a provider. 

More commonly, virtualization is introduced as a software abstraction layer 

placed between an operating system and the underlying hardware (computing, 

network, and storage) in the form of a hypervisor. A hypervisor is a small and 

specialized operating system that runs on a physical server (host machine), allowing 

physical resources to be partitioned and provisioned as virtual resources (virtual CPU, 

virtual memory, virtual storage, and virtual networks).  

A hypervisor creates and manages virtual machines on computing resources, 

which are isolated instances of the application software and guest OS that run like 

separate computers. A virtual machine (VM) encapsulates the virtual hardware, the 

virtual disks, and the application metadata. Since the hypervisor manages the 

hardware resources in cloud data centers, multiple virtual machines, each with its 

operating system and applications and network services, can run parallel in a single 

hardware device [31]. Figure 2.1 illustrates the virtualization of virtual machines. 
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Virtualization technology has been deployed by enterprises in data centers 

storage virtualization (NAS, SAN, database), OS virtualization (VMware, Xen), 

software or application virtualization (Apache Tomcat, JBoss, Oracle App Server, 

Web Sphere), and Network Virtualization [32]. Virtualization technology enables 

each cloud tenant to perform its own services, applications, operating systems, and 

even network configuration in a logical environment without considering underlying 

physical infrastructure [33]. 

Virtualization is a key technology for cloud computing, SDN, and NFV. The 

technology enables network functions virtualization and software-defined network to 

create scalable, dynamic, and automated programmable virtual network functions and 

virtual network infrastructures in integrated cloud platforms such as telecom clouds. 

Virtualization is the foundation of integrated software-defined infrastructure 

(cloud/SDN/NFV), which allows the abstraction of the underlying resources for 

sharing with other tenants, isolation of users in the same cloud/network, and isolation 

of services functions running on the same hardware. 

Virtualization allows elastic and scalable resource provisioning and sharing 

among multiple users. The technology allows multi-tenancy in clouds through an 

isolation mechanism. It enables each cloud tenant to perform its own services, 

applications, operating systems, and even network configuration in a logical 

environment without concerns over the same underlying physical infrastructure. 

Virtualization results in better server utilization and server/data center consolidation 

(multiple VMs run within a physical server) and workload isolation (each application 

on a physical server has its own separate VM). 
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Figure 2.1 Virtual Machines Virtualization 

 

❖ Security Issues - Virtualization 

With virtualization, the complete state of an operating system and the instances 

of the application software together with their associated virtual hardware, disks, and 

metadata are captured by the VM. This state can be saved in a file, and the file can be 

copied and shared. Creating a VM reduces ultimately to copying a file. VM is an 

essential component of the cloud, SDN, and NFV. In SDN, a virtual network is created 

(virtualized) from the underlying network resources, and its virtual image can be 

captured by a file. Within this file, VMs exist as network elements (switches, routers, 

and communication links) of the virtual network. In NFV, a single VM or multiple 

VMs capture the complete state of a VNF instance which can be recorded as a file. In 

the architecture of these infrastructures, a hypervisor is a centerpiece that performs 

the task of virtualizing resources.  

Virtualization thus brings with it all the security concerns of the guest operating 

system, along with new virtualization specific threats, including hypervisor attacks, 

inter-VM attacks, inter-virtual network attacks, and inter-virtual function attacks [34]. 
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This part describes a number of fundamental security issues pertaining to 

virtualization and virtual environments.  

Software Life Cycle of Virtual Image Object The traditional assumption is that 

the software life cycle is sequential on a single line, so management processes 

progress monotonically along the sequence. However, the virtual execution object 

model maps to a tree structure rather than a line. At any point in time, multiple 

instances of the virtualized entity (e.g., VM, VNF) can be created, and then each of 

them can be updated, different patches installed, and so on. This problem has profound 

implications for security [30].  

The Indefinite Attack in a Virtual Environment Some of the infected VMs, VNs 

(Virtual Network), and VNFs may be dormant at the system clean up time, and later, 

they could surface and infect other systems. This scenario can repeat itself and 

guarantee that infection will perpetuate indefinitely. In the non-virtual environment, 

once an infection is detected, the infected systems are quarantined and then cleaned 

up.  

Rollback VM Attack Rollback is a feature that reverts all changes made by a user 

to a virtual machine when the user logs off from the virtual machine. As the complete 

state of a VM can be recorded, the feature opens the door for a new type of 

vulnerability caused by events recorded in an attacker's memory. The first scenario is 

that one-time passwords are transmitted in the clear, and the protection is not 

guaranteed if an attacker can replay rolled-back versions and access past sniffed 

passwords.  

The second scenario is related to the requirement of some cryptographic 

protocols regarding the freshness of the random-number source used for session keys 

and nonce. When a VM is rolled back to a state where a random number has been 

generated but not yet used, the door is left open for protocol hijacking [30]. 

Security Risks Posed by Shared Images A user of a public cloud such as Amazon 

Web Service (AWS) has the option to create an image (Amazon Machine Image, 
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AMI) from a running system, from another image in the image store, or from the 

image of a VM and copy the contents of the file system to the bundle. Three types of 

security risks were identified and analyzed: (1) backdoors and leftover credentials, (2) 

unsolicited connections, and (3) malware. The software vulnerability audit revealed 

that 98% of the Windows AMIs and 58% of Linux AMIs had critical vulnerabilities 

[30].  

Hypervisor Security Another critical security issue in virtualized environments 

is hypervisor vulnerabilities. A hypervisor creates virtual resources (VMs, VNs, and 

VNFs) inside the SDI and has the ability to monitor each of them. This feature 

introduces a high-security risk in terms of confidentially, integrity, availability, 

authenticity, and accountability. It may allow an attacker to view, inject, or modify 

operational state information connected with the SDI through a direct/indirect method. 

As a result, the attacker is able to read/write the contents of resources such as memory, 

storage, and other components of the SDI.  

Hypervisor hijacking is a type of attack that allows an adversary to take control 

of a hypervisor and access all VMs created by that particular hypervisor or other less 

secure hypervisors in the infrastructure. In the worst case, it may even introduce 

misconfigurations in SDN controllers when integrated with NFV technology. 

Furthermore, existing errors or bugs inside a virtual function or a hypervisor may 

allow an attacker to compromise other virtualized network functions for more serious 

attacks. 

A research was conducted on virtualization security issues to address the 

security of virtual system models. It discusses various security issues posed by 

virtualization according to a different classification. They perform a security analysis 

according to a reference architecture shown in Figure 2.2. They determined the threats 

affecting the architecture and analyzed the vulnerabilities and possible attacks [35]. 
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Figure 2.2 Virtualization Reference Model [35]  

The research detailed vulnerabilities in four categories with respect to the 

virtualization model: VM application, the VM guest OS, the hypervisor, and the 

execution environment of VMM [35]. 

 The VM applications are related to memory management and software 

interfaces. The memory management includes runtime variable type checking, kernel 

interface in user space, deallocation of memory, and development of software flows. 

Software interface vulnerabilities are connected to improper operation and 

configuration of access control mechanisms, code injections, and concurrency 

vulnerabilities (related to improper synchronization mechanisms) [35]. 

VM guest OS is related to possible vulnerabilities caused by software 

management and OS kernel oversight. Software management can trigger 

vulnerabilities related to solving dependency, degradation of services, and 

configuration issues. Each vulnerability raises the risk of sophisticated attacks in a 

virtual environemnt [35]. 
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The hypervisor is prone to different vulnerabilities related to VM-hypervisor 

crosstalks, inter-VM crosstalk, and management console. The VM-hypervisor 

vulnerabilities refer to resource isolation issues, resource sharing with host, 

hypervisor oversight issues, and implementation issues). Inter-VM vulnerabilities are 

considered to be based mainly on the isolation of resources shared among various VM 

which are sharing the same hypervisor on the same hardware [35]. 

  The hypervisor's execution environment is mainly related to the host OS and 

hardware that the hypervisor is running on. It occurs when the hypervisor depends on 

running on top of an OS that inherits the vulnerabilities related to OS software and 

applications [35]. Figure 2.3 shows a classification of considered threats and attacks 

according to virtualization reference in the research. 

 
Figure 2.3 Classification of attacks [35] 

Currently, there are various vulnerabilities and risks that can jeopardize the 

virtualization environment within a cloud infrastructure. An attacker can exploit or 

penetrate any of the vulnerabilities and access sensitive data and resources. [36] 

presented another classification of challenges related to virtualizations (Figure 2.4). 
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The research categorized the virtualization challenges into six primary classes and 

different sub-classes. The major classes are consist of challenges related to 

virtualization characteristics (in respect of virtualization characteristics technology in 

cloud infrastructures such as mobility, isolation, and scalability); infrastructure 

challenges (concerning any software and hardware components required by the virtual 

environment and its components); challenges on access and communication security 

(related to any types of access to virtual resources and their way of communication); 

data security challenges (in respect of how to securely share sensitive data in an 

insecure virtual environment); challenges related to controlling and monitoring 

(related to lack of visibility and monitoring on virtual functions within the system); 

security policies and rules issues (considered as a dynamic enforcement policies in a 

different layer of the virtual environment, integration of dynamic and static policies). 

 
Figure 2.4 Security Vulnerabilities and Risk in a Virtual Environment [36] 

 

❖ Solution and Guidance  

Cloud Security Alliance (CSA Security Guidance V3.0) has produced guidance 

for critical areas of focus in cloud computing and has offered recommendations on the 

following issues: 
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Virtual machine guest hardening: Proper hardening and protection of a VM 

instance can be delivered via software to each guest. 

Hypervisor security: The hypervisor needs to be locked and hardened using 

best practices. The primary concerns should be the proper management of 

configuration and operation and physical security of the server hosting the hypervisor. 

Inter-VM attacks and blind spots: VMs may communicate with each other 

over a hardware backplane rather than a network. As a result, standard-network based 

security controls are blind to this traffic and cannot perform monitoring or in-line 

blocking. In-line virtual appliances help to solve this problem. 

Migration of VMs: An attack scenario could be the migration of a malicious 

VM in a trusted zone, and with traditional network-based security control, its 

misbehavior will not be detected. Installing a full set of security tools on each machine 

is another approach to adding a layer of protection. 

Performance concerns: Installing security software for physical servers onto a 

virtualized server can result in severe degradation in performance. Security software 

needs to be virtualization-aware. 

Operational complexity from VM sprawl: The ease at which VM’s can be 

provisioned has led to an increase in the number of requests for VM’s in typical 

enterprises. This creates a larger attack surface and increases the odds of 

misconfiguration or operator error opening a security hole. Policy-based management 

and the use of a virtualization management framework are critical. 

 Instant-on gaps: A VM can be started and stopped with ease, and this creates 

a situation where threats can be introduced into the gap when a VM is turned off and 

when it is restarted, leaving the VM vulnerable. Best practices include network-based 

security and virtual patching that inspects known traffic attacks before they can get to 

a newly provisioned or newly started VM. 



 

57 | P a g e  

 

Virtual machine encryption: VMs are vulnerable to theft or modification 

when they are dormant or running. The solution to this problem is to encrypt VM 

images at all times, but there are performance concerns. 

Data comingling: There is concern that different classes of data (or VM’s 

hosting different classes of data) may be intermixed on the same physical machine. 

VLAN, firewalls, and IDS/IPS should be used to ensure VM isolation as a mechanism 

for supporting mixed model deployments. Data classification and policy-based 

management can also prevent this. 

Virtual machine data destruction: When a VM is moved from one physical 

server to another, enterprises need the assurance that no bits are left behind on the disk 

that could be recovered by another user or when the disk is de-provisioned. Zeroing 

memory/storage encryption of all data is a solution to this problem. Encryption keys 

should be stored on a policy-based key server away from the virtual environment. 

Virtual machine image tampering: Pre-configured virtual appliances and 

machine images may be misconfigured or may have been tampered with before you 

start them. 

In-motion virtual machines: The unique ability to move VMs from one 

physical server to another creates complexity for audits and security monitoring. In 

many cases, VMs can be relocated to another physical server (regardless of 

geographical location) without creating an alert or trackable audit trail. 

2.3 Cloud Computing 

Cloud computing has become an alternative IT infrastructure where users, 

infrastructure providers, and service providers all share and deploy resources for their 

business processes and applications. Business customers are shifting their services 

and applications to cloud computing since they do not need to invest in their own 
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costly IT infrastructure but can delegate and deploy their services effectively to cloud 

vendors and cloud service providers [37].  

Cloud computing offers a low-cost effective solution to provision on-demand 

cloud resources using its capability of pooling and resource virtualization. Cloud 

clients can store their data, share their informations, and consume and run their 

services with a low-cost and fast access over a remote and accessible server rather 

than on physical resources with limited capacity [38]. 

The most relevant definition is probably the one provided by the National 

Institute of Standards and Technology (NIST) [39]: “Cloud computing is a model for 

enabling ubiquitous, convenient, on-demand, network access to a shared pool of 

configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management 

effort or service provider interaction.” 

 This cloud model is composed of five essential characteristics, three service 

models, and four deployment models. The five characteristics are on-demand self-

service, broad network access, resource pooling, rapid elasticity, and measured 

service. Software as a service (SaaS), platform as a service (PaaS), and infrastructure 

as a service (IaaS) constitute the three service models [40].  

SaaS directly offers cloud services such as Google Docs, Google Map, and 

Google Health,  online to users. With PaaS, developers can order a required 

development platform, which may consist of SDK (software development kit), 

documentation, and test environment, to develop their own applications. IaaS is more 

about packaging and provisioning underlying virtual resources to customers, who then 

build, orchestrate, provision, and sell tailored infrastructure resources to organizations 

to support their own businesses. 



 

59 | P a g e  

 

 
Figure 2.5 Cloud provider—three-layer service orchestration model 

NIST provides a three-layer service orchestration model, as shown in Figure 

2.5. The physical resource layer includes all the physical computing resources: 

computers (CPU and memory), networks (routers, firewalls, switches, network links, 

and interfaces), storage components (hard disks), and other physical computing 

infrastructure elements.  

The resource abstraction and control layer contains the system components that 

cloud providers use to provide and manage access to the physical computing resources 

through software abstraction (virtualization layer). The resource abstraction 

components include software elements such as hypervisors, virtual machines, virtual 

data storage, and other computing resource abstractions. The control aspect of this 

layer refers to the software components responsible for resource allocation, access 

control, and usage monitoring. The service layer contains interfaces for cloud 

consumers to access the computing services. 

In [41], the cloud was described according to two main ends consisting of the 

front end and back end. The cloud tenants and users can communicate with the cloud 
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and access required and available services like OpenStack dashboard. The back end 

includes underlying physical and virtual resources that are responsible for delivering 

cloud services (refer to Figure 2.6). 

 
Figure 2.6 Cloud computing front and back end [41] 

2.3.1 Cloud terminology – roles and boundaries 



 

61 | P a g e  

 

Cloud introduced various predefined roles and classifications to each 

organization migrating to cloud infrastructure. This section defines some of these 

roles and how they interact with each other within the cloud system.  

Cloud Provider (CP) refers to an individual, association or third party that 

delivers cloud computing services via on-demand, pay-as-you-go systems as a service 

to businesses. The major responsibility is to deliver reliable and available cloud 

services to its tenants according to their signed Service Level Agreements (SLA). It 

provides a cloud-based platform, services, infrastructure, application, and storage. 

Cloud Consumer/Tenant is an individual/organization who consumes services 

provided by cloud providers.  

Cloud Resources Administrator is an individual or third party with higher 

privilege that performs administerial tasks for cloud resources. The cloud resource 

admin is considered a specific role with high accessibility to specific resources and 

can configure/change the resources. 

Cloud Broker is generally acting as an interface between the cloud provider and 

cloud consumer. It is an application or an individual that manages the performance, 

usage, and delivery of cloud resources. 

Cloud-Oriented Architecture (COA) is a conceptual model encircling all 

elements within the cloud infrastructure.  It includes all entities and elements 

networked to form a cloud environment.  

Cloud Object is an individual object that can be directly or indirectly identified 

via an identifier like ID number, location, name, and precisely defined characteristics 

within the cloud environment. A cloud object can be defined as a static or dynamic 

object according to its role. A cloud tenant has access to the static/dynamic objects 

shared by cloud providers. 

Additionally, [42] defined different types of actors in cloud computing, 

displayed in Figure 2.7. 
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Figure 2.7 different actors in cloud infrastructure [42] 

2.3.2 Cloud Security 

Since the cloud has become a large-scale and complex infrastructural 

environment, it becomes more vulnerable to traditional and new security threats 

related to its structure and elements. Cloud security is a critical part of computer 

security, which describes policies, technologies, control, and monitoring applications 

to protect virtualized data, and shared resources (services, applications, cloud objects). 

According to NIST, the major obstacle to adapting cloud environment and services in 

most organizations is security, portability, and interoperability. Cloud security covers 

numerous security issues and challenges. [43] considered cloud vulnerabilities and 

security requirements and highlighted security challenges in related areas like NFV, 

SDN, IoT, and cloud applications. It proposed appropriate countermeasures to 

mitigate security threats. However, the paper lacked security issues related to cloud 

data and resource isolation. [44] provided a survey on security challenges related to 

cloud infrastructure. The paper covered security countermeasures related to cloud 

nature and its virtualized, distributed, and resource sharing environments. It suggested 

an integrated security solution. [45] provided a security service that enables cloud 

tenants to protect and monitor their systems by deploying an intrusion detection 

system. Their method mainly focused on the tenant level. [46] published a taxonomy 

of intrusion detection and prevention literature. They analyzed various attacks related 

to service platforms and presented potential attacks and mitigation strategies against 
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such attacks in the cloud. The main notable security issues refer to two major 

concepts: virtualization and multi-tenancy. 

Virtualization is defined as the conceptual process of creating virtual version 

instances extracted from underlying physical resources and delivering them as 

software-based virtual components. Virtualization is pervasive in almost all 

components of the service infrastructures: virtual machines, virtual networks, virtual 

storage, virtual network functions, and virtual services. Cloud computing relies on 

virtualization technology to virtualize and aggregate physical resources into pools of 

virtual resources (virtual machines, virtual networks, virtual storage, virtual functions, 

and virtual services) and provision them to users on demand. 

A hypervisor and virtual machines are components of a virtual environment. A 

VM is an image operating system (OS) that contains memory and storage. A 

hypervisor is responsible for constructing, managing, and controlling VMs within the 

system. The hypervisor virtualizes the hardware resources like CPU, memory, 

storage, and network and allocates them to each VM [47]. As discussed in section 

2.2.1, various virtual environment vulnerabilities can be exploited by attackers and 

endanger the whole system. It is worth noting that the impact of security challenges 

in a virtual cloud environment is more critical than traditional infrastructures since 

resources are virtualized and shared among numerous users. 

Since virtualization is a crucial technology in cloud infrastructure, any 

vulnerability can endanger the whole system in a high-security breach. For example, 

any error and vulnerability inside the hypervisor can allow an attacker to launch VMs 

attacks (shutting down VMs) or monitor other VMs and their shared resources. A 

compromised VM can inform an attacker of the underlying network operation to 

exploit existing network vulnerabilities. It can also enable an adversary to 

compromise the hypervisor and achieve control over the whole system. Local users 

and malicious codes can bypass security boundaries or even gain privileges to cause 

damage to the infrastructure and its users through vulnerabilities found in 

virtualization software. 
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Multi-tenancy is a specific cloud computing characteristic that allows sharing 

applications, services, resources (compute, network, storage) among tenants. Each 

virtual instance can be shared by one or more tenants. A hypervisor supports multi-

tenancy by providing access to a pool of shared resources in cloud environment. Cloud 

multi-tenancy enables multiple users can access and use an application/resource in a 

same infrastructure. Three methods are recognized to achieve multi-tenancy in cloud 

which are physical separation, database, and using virtualization. The virtualization is 

a method to enable multi-tenancy especially in infrastructure as a service (IaaS). In a 

platform as a service (PaaS) provider, users can execute various applications/services 

in a multi-tenancy environment using virtual platform. It is worth noting that multi-

tenancy can be exploited in co-tenancy, co-residency- and co-location attacks since 

the valued tenant’s data might be placed in the same physical location or hardware.  

An adversary can access side VMs, perform illegal scripts, or even run unauthorized 

applications [44, 48].  

Some of the traditional security issues found in the cloud infrastructure are data 

access control, loss and data leakage, trust, and isolation. Cloud-specific security 

issues include insecure interfaces and APIs, malicious insiders, account or service 

hijacking, virtualization security, and service interruption. In the following, we 

discuss these critical and significant security challenges that affect cloud security.  

While there are many security concerns in cloud computing, Cloud Security 

Alliance (CSA) released twelve critical security threats specifically related to the 

shared, on-demand nature of cloud computing for cloud computing with the highest 

impact on enterprise business [49]:  

Data Breaches A data breach is an incident in which sensitive, protected, or 

confidential information is released, viewed, stolen, or used by an individual who is 

not authorized to do so. 

Weak Identity, Credential, and Access Management Data breaches and 

enabling attacks can occur because of a lack of scalable identity access management 
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systems, failure to use multifactor authentication, weak password use, and a lack of 

continuous automated rotation of cryptographic keys, passwords, and certificates. 

Insecure APIs (Application Programming Interface) Provisioning, 

management, orchestration, and monitoring are all performed using a set of software 

user interfaces (UIs) or application programming interfaces. These interfaces must be 

designed with adequate controls to protect against accidental and malicious attempts 

to circumvent policy. Cloud providers deliver services to their customers through 

software interfaces mostly integrated with the web application layer. The stability of 

cloud components is dependent upon the security level of these APIs within the cloud 

infrastructure. Insecure cloud APIs can cause various threats related to confidentiality, 

availability, integrity, and accountability.  

These API functions and web applications share a number of vulnerabilities, 

resulting in high-level security problems. Consequences of any malfunction in APIs 

may allow malicious codes to be imported inside the cloud and expose user 

confidential data. Although robust authentication methods, proper access controls, 

and encryption methods may solve some of the above problems, still, there are serious 

gaps especially related to the inability of massive auditing and logs. Any APIs that 

will interact with sensitive data within cloud infrastructure must be protected with a 

secure channel such as SSL/TLS. 

System and Application Vulnerabilities System vulnerabilities are exploitable 

bugs in programs that attackers can use to infiltrate a computer system to steal data, 

take control of the system, or disrupt service operations. 

Account Hijacking This is a significant threat, and cloud users must be aware 

of and guard against all methods such as phishing, fraud, and exploitation of software 

vulnerabilities to steal credentials. It is a kind of identity theft that aims to deceive 

end-users to obtain their sensitive data. If an attacker gains control of a user account, 

it can snoop on all customer’s activities, manipulate and steal their data, or redirect 

the customer into inappropriate sites. These kinds of threats can be accomplished 
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through phishing email, faux pop-up windows, spoofed emails, buffer overflow 

attacks, which result in the loss of control of the user’s account. 

Malicious Insiders A malicious insider threat to an organization is a current or 

former employee, contractor, or another business partner who has authorized access 

to an organization’s network, system, or data and intentionally misuses that access in 

a manner that negatively affects the CIAAA of the organization’s information system. 

According to the Cloud Security Alliance (CSA) cloud security threat list, this type of 

threat is one of the most serious cloud-specific security challenges. It happens when 

an employee of cloud service providers (CSPs) abuses his/her level of access to gain 

confidential information of cloud customers for any nefarious purposes. The worst 

case is when a malicious system administrator can access client resources hosted on 

virtual machines and data stores. So, detecting such indirect accesses to client data is 

one of the challenging tasks in cloud infrastructure. 

Advanced Persistent Threats (APTs) These are a parasitical form of cyber-

attack that infiltrates systems to establish a foothold in the computing infrastructure 

of target companies from which they smuggle data and intellectual property. 

Data Loss Data stored in the cloud can be lost for reasons other than malicious 

attacks. Accidental deletion by the cloud service provider or a physical catastrophe 

such as a fire or earthquake can lead to permanent customer data loss. 

Insufficient Due Diligence An organization that rushes to adopt cloud 

technologies and chooses cloud service providers (CSPs) without performing due 

diligence exposes itself to a myriad of commercial, financial, technical, legal, and 

compliance risks. 

Abuse and Nefarious Use of Cloud Services Poorly secured cloud service 

deployments, free cloud service trials, and fraudulent account sign-ups via payment 

instrument fraud expose cloud computing models such as IaaS, PaaS, and SaaS to 

malicious attacks. Malicious actors may leverage cloud computing resources to target 

users, organizations, or other cloud providers. 
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Denial of Service (DoS) Denial-of-service attacks are attacks meant to prevent 

users of a service from accessing their data or their applications by forcing the targeted 

cloud service to consume inordinate amounts of finite system resources so that the 

service cannot respond to legitimate users. Service interruption caused by DoS/DDoS 

attacks are usually attempted against Internet services with a large population of users, 

and it is more so against the cloud as a center of a high number of cloud services and 

users. These attacks may render services and computing resources unavailable. A 

DDoS attack may occur when an attacker gains access to a tenant’s VMs credentials 

due to their vulnerabilities. 

Shared Technology Issues Cloud service providers deliver their services by 

sharing infrastructure, platforms, or applications. The infrastructure supporting cloud 

services deployment may not have been designed to offer strong isolation properties 

for a multi-tenant architecture (IaaS), re-deployable platforms (PaaS), or multi-

customer applications (SaaS). This can lead to shared technology vulnerabilities that 

can potentially be exploited in all delivery models. 

2.4 Software-Defined Networking  

Referring to research conducted by [50], the Software-Defined Networking 

(SDN) term was initially made to express the OpenFlow protocol idea and 

functionality at Standford University, CA, USA. The new technology emerged as a 

networking paradigm that separates the data forwarding plane from the control plane. 

It centralizes the network state and the decision-making capability in the control plane 

(SDN controller), leaving simple forwarding operation at the data plane (SDN 

network devices) and abstracting the application plane underlying network 

infrastructure. The separation of the control plane and the data forwarding plane is 

through a programming interface between the SDN network devices and the SDN 

controller [51]. 
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The Open Networking Foundation (ONF) defines a high-level architecture for 

SDN [52], with three main layers as shown in Figure 2.8: the application layer for 

expressing and orchestrating application and network service requirements; the 

control layer for network control, services provisioning, and management; and the 

infrastructure layer for the abstraction of physical network resources. The 

infrastructure layer can be expanded into two planes: the physical plane and the virtual 

plane. The physical resources plane consists of the underlying physical infrastructure, 

and the virtual resources plane which represents the virtual resources abstracted from 

the physical resources through virtualization [53, 54]. 

SDN network devices are all placed at the infrastructure layer. According to 

instructions programmed by their SDN controller, the SDN network devices make a 

simple decision of what to do with incoming traffic (frames or packets). The SDN 

controller (or group of controllers) is located in the control layer. The technology 

programs and controls the forwarding behavior of the network devices and presents 

an abstraction of the underlying network infrastructure to the SDN applications. 

Applications and network services are on the application layer. The controller allows 

applications to define traffic flows and paths, with the support of a comprehensive 

information database of all underlying network infrastructure operations, in terms of 

common characteristics of packets to satisfy the needs of the applications and to 

respond to dynamic requirements by users and traffic/network conditions [53]. 

The SDN controller uses interfaces for communicating with other layers. To 

communicate with the data/infrastructure layer, a southbound interface (SBI) is used 

for programming and configuring network devices. A northbound interface (NBI) is 

provided for the interaction between the SDN controller and applications to 

communicate with the application layer. The NBI is to describe the application needs 

and pass along the commands to orchestrate the network. East/west interfaces are for 

information exchange between multiple or federated controllers. The OpenFlow 

protocol has been developed and widely adopted as one of the SBIs between SDN 

controllers and SDN switches. OpenFlow uses a secure channel for message 

transmission over the Transport Layer Security (TLS) connection. 
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Figure 2.8 SDN Components 

A centralized SDN controller dictates the network policies for underlying 

network fuctions[55]. There are varieties of SDN controller platforms such as 

FloodLight [56] , OpenDayLight [57], ONOS [52], POX [58], and Ryu [59].  

2.4.1 SDN Interfaces  

The crucial components of SDN are communicating through Application 

Programming interfaces (APIs). The APIs are considered as architectural components 

of SDN that push configuration, rules, and information to underlying forwarding 

function [60]. The SDN network is surrounded by three main APIs: Southbound API, 

Northbound API, and East and westbound API. 

❖ Southbound API  

The Southbound API acts as a connecting bridge between the SDN controller 

and underlying forwarding functions, which plays a crucial role in separating 

functionality between control and data plane. The required configurations and 

information between controller and forwarding elements travel through this API [61]. 

This interface's main objective is to transfer the SDN controller decisions/rules to 



 

70 | P a g e  

 

underlying SDN devices and provide information related to SDN devices back to the 

SDN controller. The OpenFlow is one of the most widely accepted and deployed 

southbound standards for SDN. However, it is not the only one, there are other 

southbound API like ForCES [62], Open vSwitch Database (OVSDB) [63], POF [64], 

OpFlex [65], and OpenState [66].  

IETF proposed forwarding and Control Element Separation (ForCES). Like 

OpenFlow, it decouples the control plane from the data plane but can still be kept in 

the same network function. The OVSDB is considered to offer advanced management 

capability for OVSs. The OVSDB is a complementary protocol to OpenFlow and can 

allow the SDN control functions to create multiple virtual switches. 

▪ OpenFlow   

OpenFlow is a standardized and well-known southbound protocol that defines 

the communication between SDN controller and OpenFlow switches.  The messages 

are transmitted over a secure channel implemented via a Transport Layer Security 

(TLS) connection over TCP. The SDN controller defines and programs the underlying 

OpenFlow switches packet forwarding behavior using the exchanged messages. 

According to SDN controller rules, OpenFlow switches perform packet forwarding 

and report back its configuration status and traffic conditions to the SDN controller 

over exchanged messages [53]. The main functionality of OpenFlow switches is to 

support the SDN controller and forward packets through the SDN network [67]. The 

SDN switches are mainly responsible for forwarding and handling traffic according 

to rules set by SDN controller rules, gathering network states, and transferring them 

to the SDN controller through the southbound interface [68-70]. The SDN switches 

are required to understand the OpenFlow header for forwarding the packets. The 

OpenFlow protocol has advanced through different versions: version 1.0 consisting 

12 fixed matching fields and one single flow to version 1.5, including 41 matching 

fields and quite a few new functionalities [60, 71].  

The OpenFlow devices must include three essential components: one/multiple 

flow tables, secure channel, and OpenFlow protocol. The OpenFlow is recognized as 
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a flow-oriented protocol that contains switches and port abstractions to handle and 

control the SDN network's traffic flows [72-74].  Each OpenFlow device may consist 

of one or more flow table, a protocol for communication between devices and the 

external controller, and a secure channel that connect them to the SDN controller. The 

table/s in OpenFlow switches consist of flow entries in a match, actions, and statistics 

format. Each packet should match with one of the matching fields presented by the 

OpenFlow protocol. According to [53, 75], “a flow is a set of packets transferred from 

one endpoint to another endpoint.” So, a flow table in each OpenFlow device consists 

of various flow entries. Figure 2.9 shows an OpenFlow essential operation, its flow 

table, and entries.  

The transferred messages between SDN controller and OpenFlow switches are 

categorized into three types: controller-to-switch messages, asynchronous messages, 

and symmetric messages. The controller-to-switch messages are referred to types of 

messages that manage and program the OpenFlow switches. The asynchronous 

messages are used to notify the security controller of any changes on the state of 

OpenFlow switches. The last type of message is considered as a hello message for 

both SDN controller and devices to ascertaining the liveness of the connection [53] 

 
Figure 2.9 OpenFlow Switch- operation [53] 
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❖ Northbound API 

The northbound interface is still an open issue compared to the southbound 

interface and does not follow a common standard like OpenFlow. The northbound 

interface is a software ecosystem and plays a critical role for application developers. 

It connects the control plane to the application plane and provides information on 

underlying SDN devices to application developers. Regarding northbound interfaces, 

each existing SDN controller such as OpenDaylight, Floodlight, and NOX proposed 

and defined its interface according to their specific definitions [76] [77] [16]. SDN 

controller has chosen different programming languages to provide an abstraction of 

SDN controller functions and underlying forwarding behavior from the application 

developers.  

❖ East and westbound API 

Centralized control over the large scale of networks is the main feature 

presented by SDN, but the number of switches controlled by a single SDN controller 

is limited. The east/westbound interfaces are required in the case of distributed SDN 

controllers. The interface requires the functional ability to import/export data between 

distributed SDN controllers. Currently, each SDN controller introduces its version of 

the east/westbound interface. There are various proposal of that proposed interfaces 

between SDN controllers such as Onix data import/export functions [78], ForCES 

CE–CE interface [62], [79], and distributed data stores [80]. 

2.4.2 SDN Security Challenges 

SDN introduces a new networking paradigm, and its impact is in the form of a 

new framework, new components, structural layers, and interfaces. SDN brings with 

it new security challenges beyond those that existed in traditional networks.  

As SDN decouples the control plane from the data plane, the technology brings 

with it new sets of components, interfaces, as well as many new security issues. 

Security challenges in SDN can be divided based on its three layers: the data plane, 
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the control plane, and the application plane. The data plane can suffer from various 

security threats such as malicious OpenFlow switches, flow rule discovery, flooding 

attacks (e.g., switch flow table flooding), forged or faked traffic flows, credential 

management, and insider malicious host. The application plane inherits security 

challenges such as unauthorized or unauthenticated applications, fraudulent role 

insertion, lack of authentication methods, and lack of secure provisioning.  

The control plane faces several security issues related to the centralized SDN 

controller, communication interfaces, policy enforcement, flow rule modification for 

modifying packets, controller-switch communication flood, system-level SDN 

security challenges (related to lack of auditing accountability mechanisms), and lack 

of trust between the SDN controller and third-party applications [81]. Since the 

control plane in the SDN architecture acts as the heart of this virtual network 

infrastructure, security vulnerabilities on this layer can cause failure to the entire 

virtual network architecture. 

According to a study published by [82], various SDN security challenges have 

been analyzed and classified in relation to SDN structure. Security challenges 

associated with the SDN framework by the affected layer/interface are categorized as 

follows: 

• Application Layer Unauthorized access is through the unauthenticated 

application. Malicious applications may introduce fraudulent rule insertion. 

Configuration issues arise from a lack of policy enforcement. 

•  Control Layer Unauthorized access can be introduced through unauthorized 

controller access and unauthenticated application. Data modification is presented 

in the form of flow rule modification to modify packets. Malicious applications 

can introduce fraudulent rule insertion and controller hijacking. Denial of service 

(DoS) may occur due to controller-switch communication flood. Configuration 

issues may arise because of the lack of TLS (or other authentication techniques) 

adoption or lack of policy enforcement. 
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•  Data Layer Unauthorized access may occur with unauthorized controller access. 

Data leakage may result from flow rule discovery (side-channel attack on input 

buffer) or forwarding policy discovery (packet processing timing analysis). Data 

modification is a result of flow rule modifications. Malicious applications may 

introduce controller hijacking. Denial of service may occur due to controller 

switch communication flood or switch flow table flooding. Configuration issues 

may arise from lack of TLS (or other authentication techniques) adoption. 

• Application-Control Interface (NBI—Northbound Interface) Unauthorized access 

may occur because of unauthenticated applications. The malicious application 

may introduce fraudulent rule insertion. Configuration issues may occur due to 

lack of policy enforcement. 

• Control-Data Interface (SBI—Southbound Interface) Unauthorized access can be 

introduced through unauthorized controller access. Data modification is presented 

in the form of flow rule modifications. Malicious applications can introduce 

controller hijacking. Denial of service may occur due to controller switch 

communication flood. Configuration issues may arise from lack of TLS (or other 

authentication techniques) adoption. 

Besides, since SDN uses virtualization technology to virtualize networks (VNs), 

it inherits traditional security problems related to the virtualization of virtual machines 

and new security issues related to the virtualization of network hypervisors and their 

isolation. It also suffers threats such as Dos/DDoS attacks, with higher impact because 

of SDN control centralized architecture. In another classification, the SDN introduces 

critical security challenges, including unauthorized access (control plane, data plane, 

application plane), routing policy collision, fraudulent flow rules insertion or 

tampering in switching level, insecure interfaces, and system-level SDN security 

challenges. 

SDN Controller. Since SDN decouples the data plane from the control plane, 

it is the responsibility of the centralized controller to deal with all incoming network 

flows. As a consequence, the controller itself is a key bottleneck and is the target for 

various attacks such as flooding and DDoS attacks. An SDN controller can be 
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implemented in a virtual or physical server with associated resources. An attacker can 

launch a kind of resource consumption attack on the controller to render it unavailable 

in response to flow rules coming from underlying switches and force it to respond 

extremely slowly to packet-in events or sending packet-out messages. A DoS/DDoS 

attack is one of the most serious security threats against the SDN controller when an 

attacker endlessly sends IP packets with different headers to the controller to put it in 

a nonresponsive state. 

Routing policy collision. Policy collision is another specific security challenge 

in SDN architecture when various vendors and third-party applications use different 

configurations and programming models. This is critical since a malicious component 

can delete, insert, or modify existing and predefined policies of flows inside the SDN 

controller. Separate servers or applications with different policy rules may result in 

policy conflicts with each other. 

Fraudulent flow rules insertion or tampering in switching level. A 

compromised or malicious application can generate fraudulent flow rules while 

communicating with the controller. An attacker can inject fake flow rules through the 

switches by exploiting vulnerabilities of southbound interfaces. It is possible for an 

attacker to tamper with network information by modifying flows in flow tables. These 

malicious flow rules can cause a network to behave abnormally. For instance, [83] 

introduced an attack in which an attacker generates forged link layer discovery 

protocol (LLDP) packets through an OpenFlow network to create vulnerabilities on 

internal links between two switches. An adversary can also insert malicious flow rules 

by monitoring the traffic from OpenFlow Switches. 

Insecure interfaces. Another critical security challenge in SDN infrastructure 

is related to insecure Application Programming Interfaces (APIs): Northbound, 

Southbound, and East and West Interfaces. This security issue is critical since all 

communications between the SDN controller, the application layer, the underlying 

forwarding layer, or even the communication between multiple controllers go through 

these interfaces. For instance, vulnerabilities and the lack of standard protocol in the 
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northbound interface may enable attackers to interfere with both the application and 

the controller's operation and send a malicious request through the controller or 

network elements or even generate flooding attacks with the purpose of disrupting its 

operation. An adversary is also capable of sending a large number of requests through 

the northbound interface to occupy the interface bandwidth. In a multi-domain multi-

controller environment, the controller’s communication goes through the East/West 

APIs. These SDN controllers may be from different vendors and do not have a 

common secure channel between them. Messages among them may be sniffed by an 

attacker through vulnerabilities of East-West APIs, and sensitive information may be 

exposed. 

System-level SDN security challenges. A specific SDN system-level security 

concerns auditing processes. As it is essential to keep comprehensive state 

information of network devices in the infrastructure to prevent unauthorized access, 

providing an auditing and accountability mechanism in SDN is a critical security 

challenge [84]. 

2.5 Network Function Virtualization  

Network functions virtualization (NFV) is proposed aiming to virtualize an 

entire class of network component functions using virtualization technologies. The 

objective is to decouple the network functions from the network equipment. The NFV 

is proposed to pave the way for a new way to provision network services in 

comparison to current existing practices. According to [85], the NFV introduces three 

main differences: decoupling software from hardware as network functions are 

defined as software-based virtual network functions; flexibility on deploying network 

functions where enables faster creation of virtual network functions and their 

placement over any NFV-enables devices; dynamic scaling which allows flexibility 

in deploying VNFs over larger-scale infrastructure.  
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ETSI provides an NFV reference architecture for a virtualized infrastructure and 

points of reference to interconnect the different components of architecture. The NFV 

architecture has three critical components for building a practical network service: 

network functions virtualization infrastructure (NFVI), VNFs, and NFV management 

and orchestration (MANO) [85]. Figure 2.10 shows an overall view of NFV 

architecture adapted from the ETSI NFV model. 

 
Figure 2.10 NFV architecture 

• NFV Infrastructure (NFVI) 

The NFVI includes hardware and a hypervisor that virtualizes and abstracts the 

underlying resources. The NFVI encompasses all underlying physical and software 

resources which are used to host the VNF. The physical resources consist of 

computing, storage, and network functions that provide required storage, compute, 

and connectivity for each VNF through a virtualization layer. The virtualization layer 
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includes a hypervisor that enables the abstraction of physical resources for initiated 

VNFs.   

• NFV-MANO 

The NFV MANO is responsible for configuring, deploying, and managing the 

life cycle of VNFs. The NFV-MANO includes different functional blocks like 

Network Functions Virtualization Orchestrator (NFVO) which provides both resource 

and service orchestration; Virtualized Network Function Manager (VNFM) which 

manages the life cycle of single/multiple VNFs; Virtualized Infrastructure Manager 

(VIM) which provides management and control over NFVI hardware and software 

resources. An NFV-MANO architectural framework is shown in Figure 2.11 

according to the ETSI description [86, 87].  

 
Figure 2.11 NFV-MANO architectural framework [86] 
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The main focus of NFV-MANO is its involvement in most virtualized-specific 

management tasks that are essential within the NFV architecture. It defines interfaces 

to provide communication between its different components. The NFV-MANO also 

coordinates with a traditional network management system, Operations Support 

System (OSS) and Business Support Systems (BSS),  to enable management of both 

VNFs as well as functions running on legacy devices [17].  

• VNF 

A network function is now a virtual instance of a customized software program 

called a virtual network function (VNF). The VNF is the software implementation of 

a network function that runs over the NFVI. This object can be created on-demand, 

launched into operation wherever needed, without installing new equipment (on any 

virtual or physical servers at data centers, gateways, routers). It can be moved at will 

and terminated when its function is no longer needed [88].  

The NFV enables network functions to be executed as software instances in a 

virtual machine (VM) on single or multiple hosts instead of customized hardware 

equipment. Network functions virtualization can be applied to both data and control 

planes in fixed or mobile infrastructures. The NFV allows operators to combine 

numerous network equipment types into high-volume switches, servers, and storage 

inside data centers, network nodes, and end-user premises. It offers a new means for 

creating, deploying, and managing networking services. 

Examples of these classes of functions include switching elements; tunnel 

gateway elements: IPSec/SSL (secure sockets layer), VPN (a virtual private network) 

gateways; security functions: firewalls, virus scanner, and intrusion detection systems; 

traffic analysis services: load balancers, network monitoring, and deep packet 

inspection tools; service assurance: SLA (service-level agreement) monitoring, test, 

and diagnostics; mobile network elements: multifunction home router, set-top boxes, 

base stations, and the evolved packet core (EPC) network [89]. 
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An essential key principle of NFV is service chaining: as each VNF provides 

limited functionality on its own, service chaining allows combining multiple VNFs to 

create useful new network functions and services. 

2.5.1 NFV Security Challenges 

In this section, we present security challenges related to NFV architecture. As 

network components are virtualized, NFV networks contain a level of abstraction that 

does not appear in traditional networks. Securing this complex and dynamic 

environment, that encompasses the virtual/physical resources, the controls/protocols, 

and the boundaries between the virtual and physical networks, is challenging for many 

reasons according to CSA[90]: 

Hypervisor dependencies Hypervisors are available from many vendors. They 

must address security vulnerabilities in their software. Understanding the underlying 

architecture, deploying appropriate types of encryption, and applying patching 

diligently are all critical for the security of the hypervisors. 

Elastic network boundaries In NFV, the network fabric accommodates multiple 

functions. Physical and virtual boundaries are blurred or non-existent in NFV 

architecture, making it challenging to design security systems. 

Dynamic workloads The NFV is about agility and dynamic capabilities, but 

traditional security models are static and unable to evolve as network topology 

changes in response to demand. 

Service insertion NFV promises elastic, transparent networks since the fabric 

intelligently routes packets that meet configurable criteria. Traditional security 

controls are deployed logically and physically in-line. With NFV, there is often no 

simple insertion point for security services that are not already layered into the 

hypervisor. 
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Stateful versus stateless inspection Security operations during the last decade 

have been based on the premise that stateful inspection is more advanced and superior 

to stateless access controls. NFV may add complexity where security controls cannot 

deal with the asymmetry flows created by multiple, redundant network paths and 

devices. 

 Scalability of available resources Deeper inspection technologies- next 

generation firewalls and Transport Layer Security decryption, for example- are 

resource-intensive and do not always scale without offload capability. 

The ETSI Security Expert Group focuses on the security of the software 

architecture. It identifies potential security vulnerabilities of NFV and establishes 

whether they are new problems or just existing problems in different guises [91]. The 

identified new security concerns resulting from NFV are as shown in Table 2.1. 

Table 2.1 Security Vulnerabilities of NFV 

 

The ETSI confirmed that NFV and its components certainly create new security 

concerns as presented in table 2.1. However, they have only provided security 

guidance specifically for NFV development and its architecture [91], but this does not 

consist of any specific implementation details 

Another study revealed,[92], the NFV architecture can be prone to various 

security risks as VNF mostly runs over virtual resources. The study listed several 

potential security risks related to NFVI according to different attack scenarios such as 



 

82 | P a g e  

 

isolation failure risk, mainly focused on improper isolation methods related to VNF 

and hypervisors; network topology validation and implementation failure, which 

introduced new attacks in relation to dynamicity and automation of network 

implementations within NFV framework and improper network implementations 

between VNFs; regular compliance failure; this  focuses on violation of security 

policies and laws related to VNF especially in terms of migration and location 

changes; denial of service protection failure, which introduces the possibility of 

resource exhaustion caused by compromised VNFs; malicious insider which points to 

internal security risks that arise from NFV framework and its components, and 

security logs troubleshooting failure, which highlights the security risks related to a 

considerable number of records on hypervisor due to a compromised VNF which 

causes hypervisor failure.  

2.6 Policy  

Considering today's technologies, security systems are required for more 

advanced mechanisms to protect resources against complicated daily threats. 

Complex connectivity of resources within the virtual infrastructure is very challenging 

to be managed efficiently against security violations. The policy is defined as rules 

that govern the system behaving. Policies can be driven from service level agreements 

(SLA), business goals, and enterprises relationships. However, refining these high-

level policies into policies involving a specific service and then into understandable 

low-level policies to be implemented by specific devices to support the service is not 

an easy task to behold [93].  

Enforcing security policies is more complicated and critical in the current state 

of systems and organizations caused by a massive number of constructed virtual 

network functions and their complicated structure. The difficulty rises as each security 

component follows its own policy and enforcement mechanism, where security 

policies have different types and are mostly hard to extract[94]. Despite the fact that 
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massive benefits are introduced by cloud technologies in various studies, there are still 

critical concerns regarding information policies such as security, privacy and access 

control rules in dynamic and large-scale cloud environments.   

In any system, an event is considered a security breach either when it violates a 

defined security policy or violates the Confidentiality, Integrity, and Availability of 

security principles that could have been avoided if a relevant security policy has been 

in place. According to Dave [95], a policy (or policy rule) is a simple declarative 

statement linking a policy object with a value and a policy rule. In general, a policy is 

not easy to work with, as at one extreme it applies to the overall behavior of a complex 

organization (or entity). At the other extreme, it applies to a particular action on an 

element of the organization or specific firewall rules on a network connection. [96] 

stressed that managing access control rules are quite a difficult task to be handled and 

requires organizational security policies to be unfolded to attain access control rules 

packages. According to the study, subjects acquire rules and permissions according to 

their role in each level of their organizations.   

 [97] defined the policy as a “set of rules that contains conditions or criteria 

with proper validate action were defined the system's behavior if the represented 

condition is satisfying or successful.” The conditions depend on the nature and 

characteristics of the system resources. The actions are defined as tasks that require to 

be enforced or controlled by the system. In other words, each policy definite how the 

system resources should be properly accessed or used if their conditions are fulfilled. 

Policy rules are associated with a value to an object. According to [95], “policy rules 

are defined either based on conditions or actions.” Each policy might consist of one 

or more conditions or actions.  

Policy Conditions A policy condition is defined if the policy rule is applicable 

for any object within the system. The object can be consisting of any items like user, 

organization, a user in an organization, application, a network/subnet, time,  

Policy Action A policy action describes what are the validated behavior/actions 

of an object like a network, device, and other similar entities in any system.  
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Policies in nature could be classified into two fundamental categories: complex 

or simple. Simple policies include a set of clear conditions and validated actions 

(Figure 2.12). Complex policies are constructed from simple policies but include more 

sophisticated interaction between objects. A nested policy can be considered a 

combination of various simple policies that create more complicated policies 

containing nested conditions and actions. Policies can be defined as a group of policies 

assigned to one/multiple entities/subjects. According to [98], a group policy consists 

of five types of policies authentication, authorization, filtering, channel protection, 

and operational. The authorization policies are defining rules to authenticate a subject 

in a network element. The mechanisms to be considered for authentication can be 

varied, such as biometrics, primary authentication method, Kerberos, certificates, 

physical credentials, and shared secrets. The authorization policies are referred to 

policies that specify privileges for each authenticated subject. The privileges are 

considered activities that grant/deny an action. The filtering policies are referred to as 

policies that create rules to define each network element filtering criteria. The channel 

protection policies are determined to provide channel protection requirements 

according to associated security such as IPSec, SSL/TLS, and SA. The operational 

policies described the behavior of a network in the face of any triggered event.   

 
Figure 2.12 Simple Policy [95] 
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Policies can be divided into two main categories: management policies (using 

policies for managing resources) and security policies (using policies for security 

purposes like controlling traffic). [95] classified policies into five main policy types 

based on their intent: 

Motivational Policies These types of policies focus on whether and how a 

policy goal is accomplished. The two specific related policies in this category are 

known as Configuration and Usage policies. 

Installation Policies These policies represent specific administrative 

permissions as well as dependencies among different components. In other words, 

they define what can and cannot be put on a component and configuration of 

mechanisms on component installation. 

Error and Event Policies These policies define what action should be taken in 

case of a component failure or malfunction.  

Security Policies These are essential policies that deal with the security of the 

components and the whole system. Security policies define the desired behavior of 

the heterogenous application, systems, networks, and any type of object within the 

system. They mainly deal with accessibility, authorization, authentication, 

accountability, and auditing rules to system resources/components. They determine 

the validated actions to be performed on any resources within the system.  

Service Policies These types of policies described available services in the 

network. Service policies characterize the network and other services within the 

system.    

A security policy mostly includes two parts, the targeted traffic, and the 

matching action. Security devices determine the targeted traffic using a existing fields 

of a packet header like IP address, port, and protocol. The action can be considered 

any possible action within the system like a drop, or a forward. Each security 

mechanism enforces the policies according to its method and criteria [99].  
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2.6.1 Security Policy Mechanisms 

In this section, we explore various security policy mechanisms.  

The principal aim of security mechanisms is to analyze and enforce the policies. 

The existing mechanisms can be divided into two parts based on their operations: 

statically or dynamically. Static mechanisms enable security devices to analyze the 

program source code or binary code before the execution step to catch the security 

violations before allowing the program to be run. These methods are not efficient for 

large-scale virtual environments such as the cloud with many VNFs and services. On 

the other hand, dynamic mechanisms monitor the programs and services during their 

running time and interven as necessary. [100] enforce the security policies according 

to program/application code. The study presents a taxonomy of security policies based 

on the granularity of the code.  

The multi-tenancy allows resources to be shared among multiple users and 

services. However, the challenge is on how to enforce the policies in such an 

environment. New technologies like virtualization, cloud, SDN, and NFV have 

revealed new challenges to enforce security policies. [101] demonstrated a security 

architecture based on virtualization and Trusted Computing technologies. The model 

addressed customer isolation in which isolation policies specified by customer 

policies that are automatically enforced. The model solution was presented according 

to Trusted Virtual Domain (TVD). [102] introduced CloudFlow as cloud-wide policy 

enforcement to deploy the policies on the cloud. The model enforced the information 

flow policies. The model is initially designed for an openstack cloud environment. 

Another study presented by [103] proposed a middleware to enforce security policies 

in the OpenStack cloud environment. It is a pluggable module within the OpenStack 

nova service. The model decides on user requests according to given security policies. 

The model is limited to the OpenStack environment. [104] proposed a policy-based 

security architecture to secure SDN domains. They defined different modules within 

their application to determine security policies related to packets and match for 

conflict discovery. It only detected policy conflicts concerning a request. The 
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mechanism did not include prediction on security policy violations. A monitoring 

approach was presented by [105] as a security solution to detect malicious or 

compromised services according to their agent monitoring with the capability of 

enforcing policies. The policy enforcement mechanism supports service interaction 

authorization policies. The model used interaction authorization policies to enforce 

one/more policies. The model is limited to end-to-end service monitoring in a cloud-

based environment. [106] introduced a policy space analysis and focused on 

addressing issues related to network security policy enforcement on middleboxes.  

Using software-defined networks, [107] proposed a policy-based security 

architecture to secure inter and intra domain communication between different hosts 

across multiple domains with their Policy-based Security Application. A policy 

language was presented which specifies attributes associated with entities and flows 

in SDN. [108] introduced an approach for automatic enforcement of security policies 

in network function virtualization according to dynamic network changes. It deployed 

virtual security functions (VSFs) for security policy reinforcement and introduced a 

security awareness manager in the orchestrator. A cyberspace-oriented access control 

model (CoAC) was proposed to provide access to sensitive data [109]. The method 

considered operations a combination of many atomic processes and defined a CoAC 

policy that permits access only if a particular operation's security risk is below a 

specified threshold.  

2.6.2 Access Control Policy Enforcement Methods 

The major responsibility of access control policies is to restrict access between 

a subject (initiator who wants to access a resource) and an object (reactor which is the 

resource to be accessed by subject). Access controls are described as a significant part 

of security analysis on cloud computing. The majority of security mechanisms studies 

have focused their research on proposing various access control policy enforcement 

methods such as [110], [111], [112], [113], [114], [115], [116].  



 

88 | P a g e  

 

 In this section, we describe access control mechanisms. [117] reviewed existing 

access models and policies along different application scenarios focusing on cloud 

and user requirements. The major components of an access model are described as 

subject, object, and access control policy. The research reviewed four types of access 

control: task-based access control, action-based access control, attribute-based access 

control, and usage-based access control. They described a comparison between 

different types of access controls shown in Figure 2.13. 

 
Figure 2.13 A comparison between different types of access control models[117] 

The authors in [118] proposed a geographical Role-Based Access Control. It 

relied on role-based mechanisms and defined constraints according to user location 

and position. It relied on role-based mechanisms and described conditions according 

to user location and position. The method mostly focuses on determining an 

authorization control function according to users' role schema and position. 

A cloud access control security model (CCACSM) was proposed considering 

different policy levels: authority level, action level, and behavior level. The model is 
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categorized under the action-based access control model. The CCACSM architecture 

described the relation among the main component of an access control model (Figure 

2.14) [119]. [120] proposed POSTER for enhancing administrative role-based access 

control. It has integrated obligations via an executive model by defining three main 

obligatory actions. However, the model only focused on administrative actions within 

the system. Although the model reduced potential security administrative risk, it 

mainly concentrated on a decentralized system rather than centralized mechanisms.   

[121]addressed the access control difficulties related to objects and linked object 

states. 

 
Figure 2.14 CCACSM architecture [119] 
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2.7 Security by Isolation 

Isolation is the most critical part of every shared and multitasking computing 

system, which provides resilience against different forms of violation/attacks and is 

an essential measure in our design. Isolation is a technique for separating or 

partitioning different concerns that can be used for both resource management and 

security purposes. For example, process isolation in the time-sharing operating system 

is realized with virtual address space, and network isolation in the early network 

operating system is realized with a firewall. In network management, system 

management, and service management, isolation is used to identify, detect, and isolate 

faults, misconfiguration, and performance issues. Security isolation has been a critical 

approach to system and network security. The systems community has adopted 

virtualization as the technique of choice for providing isolation. [8] identifies some 

challenges related to virtualization, mainly focusing on Side-channel attacks (SCAs) 

vulnerabilities causing isolation violation.  

The responsibility of the infrastructure service provider (ISP) is to provide a 

secure infrastructure that ensures tenant’s virtual machines are isolated in a 

multitenancy environment, and the various networks within the infrastructure are 

isolated from one another. Virtual networks can be one or many networks over which 

virtual machine traffic flows. Isolation of virtual machines within this network can be 

enhanced using virtual firewall solutions that set firewall rules at the virtual network 

controller. Although virtual machines are often marketed as the ultimate security 

isolation tool, it has been shown that many existing hypervisors contain vulnerabilities 

that can be exploited. 

 In a multi-tenant environment, traffic isolation, address space isolation, 

performance isolation, and control isolation are often required for different purposes. 

Traffic isolation prevents any data packets from leaking between tenants. Address 

space isolation allows the tenants to isolate their network by choosing their end-host 

IP and media access control (MACs) addresses independently from each other. 
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Control isolation enables the tenants to control and configure their network without 

affecting other tenants [122]. 

The design of classical security devices cannot protect the components of 

virtualized environments since traditional security depends on physical network 

devices. These devices cannot see the significant security activities inside virtualized 

environments [123]. Isolation will become an essential technique for monitoring 

virtual security boundaries. 

2.7.1 Isolation Classification 

In this section, we classify different types of isolations and their potential usage: 

Tenant Isolation In a cloud configuration, tenants share the same underlying 

physical infrastructure. Without network isolation, tenants could intentionally or 

unintentionally consume a large part of the network, intrusively see data on the 

network that does not belong to them or invoke breaches such as unauthorized 

connection monitoring, unmonitored application login attempts, malware 

propagation, and various man-in-the-middle attacks. 

Domain Isolation In order to label packets and enforce the isolation policies, it 

is necessary to determine the domain for each data flow. Each domain is associated 

with a set of input ports of the edge switches. Since the architecture distinguishes 

intra-tenant, inter-tenant, and external communications, the controller needs to check 

to which IP range the destination IP address belongs. There is a separate database 

table for mapping public IP addresses to the tenants who have been allocated such 

addresses. 

Data Isolation Customers in fields such as banking or medical records 

management often have extreme data isolation requirements and may not even 

consider an application that does not supply each tenant with its own individual 

database. VM Isolation A hypervisor divides the host hardware resources among 
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multiple VMs. It coordinates all accesses by VMs to the underlying hardware 

resources and thus provides the necessary isolation between the virtual machines. In 

other words, VMs can share the physical resources of a single computer and remain 

completely isolated from each other as if they were in separated physical machines 

[124]. 

VM Isolation A hypervisor divides the host hardware resources among multiple 

VMs. It coordinates all accesses by VMs to the underlying hardware resources and 

thus provides the necessary isolation between the virtual machines. In other words, 

VMs can share the physical resources of a single computer and remain completely 

isolated from each other as if they were in separated physical machines [124]. 

Traffic Isolation in Hypervisor-Based Environments Network traffic isolation is 

through the creation of segmented networks. In physical network isolation, network 

interface cards will be dedicated to a specific application or group of applications, and 

thus physical segmentation is provided between networks. In logical/virtual network 

isolation, software such as VLAN or network interface virtualization is used. Each 

interface is assigned a unique IP and MAC address; thus, each is logically distinct. 

The VLAN tagging can be defined in the host server to isolate network traffic further. 

Traffic for multiple applications share the same physical interfaces, but each 

application sees only the network traffic and resources assigned to it and cannot see 

traffic or resources assigned to other applications. 

Traffic Isolation in Zones-Based Environments Similar to hypervisor-based 

virtualization, when a zone is provisioned, one or more network interfaces are 

presented, and the IP stack is enabled. The IP and MAC addresses are configured on 

the logical interface. Routing policies and network security can be hardened in these 

zones when the zones are provisioned. 

Network Isolation Any isolated virtual network can be made up of workloads 

distributed anywhere in the data center. Workloads in the same virtual network can 

reside on the same or separate hypervisors. Additionally, workloads in several 

multiple isolated virtual networks can reside on the same hypervisor. Virtual networks 
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are also isolated from the underlying physical infrastructure. Because traffic between 

hypervisors is encapsulated, physical network devices operate in an entirely different 

address space than the workloads connected to the virtual networks. 

Network Segmentation Network isolation is between discrete entities. Network 

segmentation applies to homogeneous entities, e.g., protection within a group. 

Traditionally, network segmentation is a function of a physical firewall or router 

designed to allow or deny traffic between network segments or tiers. For example, 

segmenting traffic between a web tier, application tier, and database tier. In a virtual 

network, network services that are provisioned with a workload are programmatically 

created and distributed to the hypervisor vSwitch. Network services, including L3 

segmentation and firewalling, are enforced at the virtual interface. 

2.7.2 Standard Network Security Solutions by Isolation 

With compliance and regulatory requirements, network isolation and network 

security have become essential elements of any service infrastructure deployment. 

The technology used for network traffic isolation does not always cover issues with 

security breaches that stem from external networks, side-channel attacks, or 

regulatory concerns between tenants. Network security is built on top of network 

isolated traffic. Standard security solutions include: 

Network Firewalls Firewalls are often situated at the edges of networks to filter 

potential security threats coming from untrusted sources. Network firewalls may be 

hardware devices, software such as soft switches, or a combination of both. 

LAN Tagging Tagging allows multiple logically separated networks (VLANs) 

to use the same physical medium. Thus, two separate VLANs cannot communicate 

with each other. VLAN configurations are performed at the switch and define the 

mapping between VLANs and ports. Packets sent by a virtual network interface on a 

VLAN cannot be seen by virtual interfaces on other VLANs, and broadcast and 
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multicast packets sent from a virtual network interface on a VLAN will be distributed 

only to the network interfaces on the same VLAN. 

Role-Based Security On the client-side, the user devices must have hardened 

user authentication. On the database server side, role-based security, or role-based 

access control (RBAC), needs to be employed. 

2.7.3 Cloud resource isolation mechanisms 

In this section, we explore several existing isolation mechanisms in cloud 

computing. Researches focus on a various level to provide isolation within the system.  

Security isolation analysis in the cloud is comparatively a domain with less 

work.  [125] proposed a multi-tenant isolation solution using VMs as the boundary of 

security whereby applications run within containers on top of these virtual machines. 

To improve the security of running applications as a container in the cloud, it was 

suggested to run one container per VM. However, the drawback of such a system is 

recognized as its efficiency in performance. Silverline was proposed by [126] for 

enhancing data and network isolation for cloud tenant’s services. The model 

concentrated on providing isolation via OS-level and virtual instances. It used labeling 

and information-flow tracking services. The method only focused on providing data 

and network isolation at the tenant level. 

 A mechanism known as SLIM (Secure Logical Isolation for Multi-tenancy) 

was introduced in [127] as an end-to-end approach to providing isolation among 

tenant’s resources in a multi-tenant cloud storage environment. SLIM consisted of 

five privilege processes: security gateway, gatekeeper, guard and proxy, tenant 

authenticator, and request. The model only considered tenant-level isolation and two 

types of attacks: within and across the tenant. [128] proposed a method for strong 

tenant separation in cloud platforms by isolating components at the network level. It 

focused mainly on tenant separation via physical and cryptographic separation for 

large infrastructures. [129] conducted a research survey on network isolation solutions 
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for multi-tenant data centers for isolating cloud services. It emphasized the main 

challenges of isolation in a multitenant environment and pointed out appropriate 

existing isolation solutions. [130]proposed a Highly Scalable Isolation Architecture 

for Virtualized Layer-2 Data Center Networks (SVDC). It used SDN technology to 

provide isolation for a layer-2 data center at the network level. The method separated 

global identifiers for virtual networks and enhances MAC-in-MAC encapsulation. 

The SVDC only provided isolation at the network level by decoupling identifiers 

while using the server-local identifier to differentiate virtual networks within a 

physical server.  

2.8 Open-sources for Deploying a Cloud Security SDN/NFV 

platform 

CloudSimSDN-NFV: It is a new simulation framework consisting of NFV, 

cloud, and SDN features. It is an extended version of CloudSim, a novel framework 

for modeling cloud computing. The framework supports NFV functionalities and is 

based on mapping the architecture and components of ETSI NFV Management and 

Orchestration (MANO), including NFV Orchestrator (NFVO), VNF Manager 

(VNFM), and Virtual Infrastructure Manager (VIM) [29].  

OpenStack: OpenStack is an IaaS cloud platform based on shared storage, 

compute, and network resources. OpenStack is a collection of open-source technology 

projects with various functional components. OpenStack is an example of an 

integrated software-defined infrastructure involving ETSI NFV architecture 

framework, SDN network infrastructure, and cloud IaaS. It provides an automated 

infrastructure for cloud users. The OpenStack uses SDN technology to generate 

automated network infrastructure, NFV to create VNFs, and cloud to orchestrate and 

manage services. It is an IaaS cloud solution based on the integration of numerous 

benefits that interact through a set of OpenStack APIs, which is available to all cloud 

users. 
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OpenFlow: The protocol is considered as the first SDN communication 

standard protocol. The OpenFlow defines the southbound communication between 

SDN controller and OpenFlow Switch. It allows remote programmability and 

management of network devices through a network controller. The protocol provides 

a dynamic configuration of network functions via its controller.   

Mininet: It enables constructing a realistic virtual-based network, switches, and 

application code on a single virtual machine. It can connect to various types of 

commercial SDN controllers like OpenDaylight, FloodLight, Pox, and so on. It 

provides an experimental testbed environment which consists of OpenFlow and SDN 

system. 

OpenFlow Switches: It is an OpenFlow-based data switch that communicates 

over an OpenFlow channel to an SDN controller. It contains one or more flow tables 

and a group table that perform packet forwarding and lookup. It enables massive 

network automation and supports standard management, interfaces, and protocols.   

2.9 Summary 

This chapter provided an overview of software-defined infrastructure and its 

core technologies, including virtualization, cloud computing, software-defined 

networking, and network function virtualization. Moreover, this chapter discussed 

security challenges related to each technology as well as security isolation challenges. 

We provided a brief overview of various related topics utilized in software-defined 

security architecture, including policies and their current approaches. A brief 

introduction to open-source technologies used for developing and deploying the SDS2 

platform was given.   
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Chapter 3 
 

3 Software-Defined Security 
Service Model 

3.1 Introduction 

Over the last decade, cloud computing has established itself as an effective 

technology for sharing and provisioning resources among tenants in a pay-as-you-go 

service fashion. The concept of everything-as-a-service was developed to utilize 

virtualization technology that allows underlying physical resources to be virtualized 

into virtual resources and services. 

 In parallel to cloud computing, the software-defined networking (SDN) 

paradigm has enabled the automation of virtual networks and network management 

with centralized control. Network function virtualization (NFV) pushes the concept 

even further by allowing virtualization (software implementation) of network 

functions, traditionally realized by hardware, and deploying them on computing 

devices.  

Naturally, the concept of Cloud SDN/NFV integrated platform has been realized 

to take advantage of resource pooling and virtualization of cloud computing, 

programmability and automation of SDN, and network function virtualization 

performance, programmable, and dynamic systems and services. Along with these 
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advances in resource and service virtualization, security issues have been explored as 

well. Security controls have to be developed to safeguard these platforms. 

Many attempts have been made to address integrated resource-infrastructure 

platform security, providing security mechanisms and virtual security functions to 

counter numerous emerging security threats [43]. However, the challenge remains due 

to the scale and complexity of the virtual resource infrastructure and the difficulties 

in developing a matching security architecture that provides security and isolation of 

resources in a multi-tenant environment as well as provisioning dynamic security 

functions for security services on demand.  

This thesis addresses those issues by proposing a logically centralized Software-

Defined Security Service (SDS2) Model for provisioning on-demand security 

functions capable of protecting cloud resources with the help of Software-defined 

Networking and Network Function Virtualization technologies.  

The remainder of this chapter is organized into four sections. Section 3.2 

justifies the proposed SDS2 model. Section 3.3 presents SDS2 security model. Section 

3.4 describes the application of SDS2 in a data centre. Section 3.5 discusses the 

features of the SDS2 model. Section 3.6 provides a roadmap of this dissertation. 

Section 3.7 summarizes this chapter. 

3.2 Why Programmable and automated Security Services 

on Demand? 

Cloud computing has evolved into a key structure for IT industries for providing 

users on-demand services. Cloud architecture enables users to access cloud services 

over the Internet at any time regardless of their location through application software 

like web browsers. Cloud computing resources such as virtual servers, virtual storage, 

virtual networks, and virtual services are made available using virtualization 

technologies. In the current world, cloud computing has enabled many emerging 
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technologies, resources, and services crucial to the current state of our lives in various 

areas, from industrial infrastructures and services to personal healthcare.  

However, a broad movement to cloud infrastructure is limited by security 

challenges questioning cloud services reliability regarding protecting organizations' 

sensitive data and resources over intelligent security threats, especially over an 

integrated Cloud/SDN/NFV infrastructure. We have identified a number of significant 

issues of currently integrated cloud security platforms: 

The vast numbers of virtual functions and their connectivity-service 

infrastructure. As anticipated, with billions of virtual functions within the 

infrastructure and their connectivity, the challenge here is how to manage the security 

and complexity of these functions and their connectivity over the broad area of cloud 

infrastructure while harnessing their main capability to protect cloud resources. The 

vast number of virtual connections among virtual functions makes it even more 

difficult. 

The enormous number of virtual functions and their provisioning framework. 

The virtual functions are capable of interacting with others functions and performing 

their designated functions. However, the challenge lies in automating secure 

orchestration and provisioning these functions in critical areas as needed dynamically.  

The massive number of virtual resources and their security isolation 

mechanism. As projected, with billions of virtual resources within the cloud 

infrastructure, the challenge is to provide an effective mechanism to provide inclusive 

visibility on undefined/invisible boundaries caused by the virtual functionality of 

resources within the cloud.  

The vast number of virtual resources and their massive vector attacks. The 

augmented number of virtual functions and the complexity of their interaction within 

the virtual environment opens up massive security threats. The challenge is to provide 

proactive security mechanisms that dynamically predict security threats regardless of 

the number of virtual resources and functions within the infrastructure.  
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To address the challenging issues, we investigate various security models, 

isolation technologies, security function capabilities, protocols, and programmable 

security mechanisms for efficiently protecting the cloud and dynamic orchestration of 

virtual security functions.  

On security orchestration and programmability of on-demand virtual 

functions. We explore security models and mechanisms for security service 

orchestration. We investigate a software-defined security architecture with a 

centralized security controller with overall visibility on the security functionality of 

underlying virtual functions to orchestrate a massive number of virtual security 

functions. 

On automated secure connectivity and secure network architecture. The 

Software-Defined Networking (SDN) plays a critical role in SDI architecture by 

creating programmable virtual connectivity between components. Software-Defined 

Networking is developed as a technology to remove the current black box network 

infrastructure restrictions. SDN decouples the decision-making (control) plane from 

the data forwarding plane for adequate data transportation and fine-grained control of 

network management and services.  

The SDN controller can configure networking devices automatically to deal 

with dynamic networks [131]. The SDN programmability network in security is still 

not so common and is still developing. We aim to adopt SDN to deploy our security 

network within our security architecture for efficient programmability of network 

security between our virtual security components. 

On virtual security function. Network Function Virtualization (NFV) offers a 

new method for creating, deploying, and managing networking services by separating 

network/security functions from underlying hardware equipment. The technology 

introduces Virtual Network Functions (VNFs) as software-based virtual functions that 

can be created on-demand and launched into the system wherever required without 

installing new equipment [132]. NFV is a new emerging technology and did not 

completely develop within the infrastructure due to its architecture limitations and 
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incomplete standards and protocols. However, we aimed to adopt the concept of VNFs 

to create specific programmable and dynamic Virtual Security Functions within our 

security architecture according to its designated functionalities.  

On communication, control, and management protocol. Virtual security 

functions are not network routing devices, so heavy protocols for program network 

flows in network functions are not applicable to configure and manage VSFs in 

dynamic and programmable security infrastructure. No specific efforts have been 

made to address this issue within cloud security architectures. We decided to 

investigate the deployment of a new and simple protocol for transferring specific 

security parameters among components of our security model.  

On visibility of security boundaries and construction of dynamic security 

boundaries. Security issues in a virtual cloud environment are more complex and 

challenging than those in traditional infrastructures since resources are both 

virtualized and shared among numerous users. As a result, virtual boundaries among 

components/participants are not well defined and often undefined, and hence they are 

not visible/controllable by the providers.  

Isolation implies creating security boundaries for protecting cloud assets at 

different levels of a cloud security architecture. The main challenge is finding 

effective mechanisms for constructing dynamic security boundaries in cloud 

infrastructure. We investigate various security isolation mechanisms in different 

levels to provide an operative, intelligent and innovative technique to create security 

boundaries for protecting cloud resources. 

On proactive security violation mechanism. A dynamic virtual environment 

of cloud infrastructure with a massive number of interactions among its virtual 

resources cannot rely only on traditional security mechanisms with limited 

capabilities to prevent and predict real-time security violations. We investigated 

mechanisms and algorithms to enable dynamic, intelligent, and effective proactive 

mechanisms to protect cloud resources regardless of their complexity.  
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This thesis addresses these significant challenges by introducing a logically 

centralized Software-Defined Security Service (SDS2) Model. It provides a 

distributed architecture for orchestrating, managing a specific Interaction-based 

Virtual Security function to monitor cloud entities interactions. It proposed an 

innovative and intelligent Policy-based Interaction Model to manage, detect, and 

predict security violations in cloud infrastructure.  

This chapter discusses the significance of the proposed Software-Defined 

Security Service (SDS2) Model for provisioning on-demand virtual security functions 

and dynamic construction of security boundaries within a cloud infrastructure. We 

represent an overview of the proposed SDS2 Model and its indispensable components. 

A roadmap of this research is sketched.  

3.3 Software-Defined Security Service (SDS2) Model 

The ever-increasing number and gravity of cyberattacks against cloud assets, 

together with the introduction of new technologies, have brought many serious cloud 

security issues. Security issues in a virtual cloud environment are more complex and 

challenging than those in traditional infrastructures since resources are both 

virtualized and shared among numerous users. Traditional security mechanisms are 

not able to deal with virtualized environments. 

 The design of classical security devices cannot entirely protect the components 

of virtualized environments since traditional security depends on physical network 

devices. These devices cannot see the significant security activities inside virtualized 

environments [123]. To combat security attacks where attackers use software to 

exploit infrastructure vulnerabilities and virtualized agents to attack from anywhere 

and on multiple fronts instantaneously, we need to deploy the same tools and 

technologies of the attackers.  
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The concept of Software-Defined Security (SDSec) is a new approach in 

designing, deploying, and managing security by separating the forwarding and 

processing plane from the security control plane, similar to how SDN abstracts the 

forwarding plane from the control and management plane. Such separation provides 

a distributed security solution, which scales as VMs by virtualizing the security 

functions, and provides the ability to manage it as a logical, single system [133]. 

We propose the SDS2 model as an SDSec Service that uses virtual cloud 

resources and can be deployed by the cloud provider to protect its integrated 

infrastructure. SDS2 model exploits six main concepts: logical centralization of 

security control, virtualization of secure connectivity, security functions 

virtualization, and orchestration of virtual resources, dynamic construction of security 

boundaries, proactive technique encountering security violations according to cloud 

resource interactions.  

This chapter describes our proposed Software-Defined Security Service model. 

The model integrates Software-Defined Networking (SDN) and Network Function 

Virtualization (NFV) techniques to enable dynamic programmability of virtual 

security functions within the introduced SDSec system. The system entails a novel 

model of a Software-based Virtual Security Function (VSF), a streamlined SDS2 

Security Controller (SC), an innovative Interaction model and practical Policy-based 

Interaction Model, and a novel and efficient protocol (Sec-Manage) between SC and 

VSFs for both management and communication.  

The proposed model permits the programmability of heterogeneous virtual 

security functions for provisioning on-demand security services and their efficient 

management. A prototype is implemented with configurable virtual security functions 

representing specific interaction-based security functions, operating Sec-Manage. The 

implementation results demonstrate the feasibility and efficiency of the proposed 

model. 

In the context of, we consider two main concepts: i) an underlying security 

device refers to specific virtual interaction monitoring known as VSFs in relation to 
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the interaction model and its parameters; ii) an underlying virtual resource refers to 

virtual cloud resources such as Network, APP, Users, VMs, and Storage. 

The SDS2 deploys the very virtual resources of the cloud to provide its 

protection service. It behaves like a trusted tenant overseeing and providing the 

security service for the cloud infrastructure. SDS2 belongs to the new software-

defined approach that manages security by separating the security forwarding and 

processing plane from the security control plane. SDS2 utilizes concepts and 

techniques of cloud, SDN, and NFV. 

Applying the NFV concepts for security, virtualization technologies are used to 

implement virtual security functions (VSFs) on a VM or industry-standard commodity 

hardware. These virtual security functions can be created on-demand and moved to or 

instantiated in strategic locations in a software-defined dynamic virtual network 

environment.  

Applying the SDN concepts for security, network virtualization is deployed to 

provision virtual security networks (VSNs) connecting virtual security functions. The 

SDN enables the SDS2 model to create an automatic and dynamic specific 

communication link among VSFs and their connected security controller within the 

system.  

A logically centralized SDS2 controller forms a domain-wide view of the 

underlying network of virtual security functions. The SDS2 controller can program, 

configure, and control the VSFs autonomously through a new and efficient proposed 

protocol known as the Sec-Manage protocol. The proposed SDS2 model is shown in 

figure 3.1. It consists of three separate planes: the security application plane, the 

security control plane, and the security infrastructure plane or data plane.  
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Figure 3.1 SDS2 overall architecture 

The SDS2 security control plane, which includes one or more security 

controllers, provides an abstraction to build security services over virtual security 

elements. It is considered an SDSec network operating system that provides essential 

security services via interfaces: the southbound interface (SBI) to network devices 

and the northbound interface (NBI) to security applications. 

3.3.1 SDS2 Security Layers 

The high-level architecture of the Software-Defined Security Service (SDS2) 

model with three principal layers, comprising the security application layer, the 

security control layer, and the security data layer, is shown in figure 3.2. 
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Figure 3.2 SDS2 Security Layers 

• The Security Application Layer 

The security application layer contains security applications and interfaces. The 

developers can deploy their security policies and applications regardless of the 

knowledge about the underlying security functions through a Northbound API.  

• The Security Controller Layer 

The security control layer accommodates the security controller and its 

components (Figure 3.3). The main component of this layer refers as SDS2 Security 

Controller. Various components have been deployed within the security controller 

from analyzing interactions, interpreting security policies to defined modules to detect 

and predict security interaction violations. Security controller functions interpret 

security requirements, like security policies, and analyze interaction parameters based 

on the interaction model. The security controller directs security policy rules, 

interaction parameters, and instructions to VSFs through the Sec-Manage protocol.  
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The SDS2 security controller is a software element written in java with 

additional components to protect cloud resources. These components allow the 

security controller to i) process the requested interaction from inside/outside, ii) 

control, orchestrate, and manage virtual security functions to monitor interactions, iii) 

intelligently detect and predict security violation according to interaction parameters. 

Details of the security controller are described in Chapter 6.  

 

 
Figure 3.3 Security Control Layer 

• The Security Data Layer 

This layer is composed of virtual security functions and Sec-Manage protocol 

(Figure 3.4). The VSFs can form an individual or a cluster to monitor a specific or 

group of interactions triggered within the system. The interaction can be categorized 

into three classes: i) user request, ii) interaction triggered by security controller, iii) 

triggered interaction within the system between resources. VSF is a simple but 

efficient and intelligent security function, monitoring cloud entities interactions to 

detect and predict security violations. It should be noted that VSFs are not switches 

or routers; they only perform their defined security functions and relay their 

data/status to their controller and other VSFs when directed, such as in chaining 

operations. 
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The Sec-Manage protocol is a simple protocol designed to program, configure, 

and manage VSFs according to the interaction model and allow them to report their 

operational status to the controller. 

 
Figure 3.4 Security Data Layer 

3.4 Application of SDS2 to Data Centre Security 

With the SDS2 approach, we can design, implement, and modify the individual 

subsystems independently. A data center is an integrated cloud-SDNNFV 

infrastructure where entities include physical resources (physical servers, routers, 

links, storage, and their interfaces), tenants, and their virtual resources (virtual 

networks, virtual machines, virtual storage, virtual services, and their virtual 

interfaces).  

A common approach to managing system complexity is identifying a set of 

layers with well-defined interfaces among them. Layering minimizes the interactions 

among the subsystems and simplifies the description of the subsystems. Security of a 

system is often achieved by ensuring its subsystem's integrity and authorized access 
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to the system (subsystems) at their interfaces. The security isolation approach can 

identify not only physical but also virtual boundaries that are missing in traditional 

security mechanisms. Furthermore, security isolation effectively localizes security 

issues and can be tailored to deal with appropriate concerns. 

With this in mind, SDS2 can be implemented and offered as a security service 

to protect a data center. Depending on the data center, different numbers and types of 

virtual security functions can be instantiated, dynamic virtual security networks can 

be provisioned to interconnect those VSFs, and a logically centralized SDS2 controller 

can be created on-demand to serve the required security service.  

The provisioned SDS2 configuration can be attached/imposed on the specified 

data center as dictated by its policies and architecture. The SDS2 will enable security 

isolation through its interaction model and its software-based security functions 

located at critical locations in both physical and virtual layers within the infrastructure 

under the controller's control. 

3.5 SDS2 Features 

This section describes the main feature of the proposed SDS2 security model 

regarding the provision of on-demand security services in cloud infrastructure.  

• Logically centralized security controller  

A logically centralized security controller (SDS2 security controller) located in 

the control plane has a global view of all the tenants, data, physical/virtual resources, 

and interconnections. It possesses all security policies concerning the accesses and 

interactions of these components. Armed with such global knowledge, SDS2 can 

comprehensively provision a security service to monitor, detect, and protect the 

infrastructure. The security controller directly controls and manages virtual security 

functions. 
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• Provision on-demand virtual security functions 

The feature represents the ability of the SDS2 model to provide on-demand 

security functions to instantly respond to security threats at any time. Therefore, 

virtual security functions require to be automatically orchestrated to provision on-

demand virtual security functions and at any place within a cloud infrastructure—

these specific virtual security functions are designed to provide on-demand 

monitoring relying on an interaction model. 

The SDS2 enables the flexible and dynamic provision of on-demand virtual 

security functions in scalable cloud infrastructure. A security service can be 

established by individual/chaining virtual security functions, placed in a critical 

position within the cloud concerning interaction among cloud resources. According 

to on-demand security protection requirements, the SDS2 orchestrates its specific 

underlying virtual security functions to achieve both security detection and prediction 

required by cloud resources.  

• Virtual security functions automatic programmability 

The SDS2 enables the programmability of virtual security functions over 

interaction parameters through an innovative protocol. The security controller can 

program the data flows over the core network to deliver required security data, 

including interaction parameters from the security controller to VSF or vice versa. It 

dynamically programs the virtual security function according to interaction parameter 

changes.  

• Dynamic Security Isolation 

 In multi-tenant cloud architecture, isolations are a crucial concept for both 

security and infrastructure management, and they ought to be considered at functional 

entity levels and appropriate abstraction levels of the infrastructure. Defining object 

boundaries is extremely difficult because virtual objects are dynamic in both 

characteristics and functionality. The construction of security boundaries in a cloud 
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system is related to the characteristics of the interacting entities in the environment 

and the policies and constraints that govern their interaction. 

 In the SDS2 security model, security policies are used to construct security 

boundaries between cloud objects at their interaction level. A novel policy-based 

interaction model is deployed to build security boundaries according to proposed 

interaction parameters dynamically. The model is governed by cloud system security 

policies and constrained by cloud interacting entities locations and levels. Security 

policies are used to construct security boundaries between cloud objects at their 

interaction level. 

The SDS2 constructs security boundaries dynamically at the interaction level. 

The SDS2 uses the security policies/rules over the proposed interaction parameters 

model and the constraints imposed on the interacting entities. The security model 

builds a robust, dynamic, and automated security boundary to protect cloud assets 

relying on a solid and innovative interaction model and security policy expressions 

that govern the interactions.  

• Intelligent security detection and prediction mechanisms 

The SDS2 security model proposes a proactive mechanism against security 

threats within a cloud infrastructure. The security model introduces a novel policy-

driven interaction model that governs the relationship among entities in the cloud 

environment and develops intelligent algorithms for security breach detection and 

prediction.  

The Policy-based interaction model proposes to securly construct dynamic 

security boundaries formed by authentic interaction parameters based on security 

rules extracted from the governing security policies. The model provides a framework 

for incorporating system security policies and entity constraints in constructing 

interaction boundaries and defining a security dictionary of expected/unexpected 

behaviour of cloud entities while they access resources in the cloud environment. The 

model concentrates on new dynamic security policy approach at the interaction level 



 

112 | P a g e  

 

between cloud entities through a set of interaction parameters. The SDS2 model 

focuses on detecting and predicting interaction security violations at the interaction 

level over violation of interaction parameters. 

The interaction model is defined by parameters that control activities among 

components/entities in a cloud system. The model relies on an object model of 

interactions defined by four major parameters as Mode (M), Positional Relationship 

(R), Action (A), and time (t). Each parameter consists of different values. The M refers 

to possible mode and direction between entities during an interaction. The R 

represents all possible relation between entities considering their role at the time of an 

interaction. The A signifies possible actions between entities during an interaction. 

The t refers to valid time of an interaction.  

According to the proposed policy-based interaction model, the SDS2 model 

deploys automatic detection and prediction algorithms called ISVDP to identify 

security breaches related to interaction parameters. The algorithm also maps out 

possible future attacks based on expected violations of the currently defined 

interaction parameters. The algorithm automatically detects and predicts security 

boundary violations against interaction parameters related to requested interaction to 

validate/invalidate the requested interaction parameters.  

• Virtualization with SDN and NFV technologies 

SDN: by leveraging the SDN paradigm, the SDS2 is able to provide an automatic 

and programmable security network between itself and its virtual security functions. 

It enables the security controller to dynamically create a connection between the 

security controller and VSFs at the required time. The principal of SDN and its 

protocol inspired the developing of an innovative Policy-based interaction protocol to 

control and manage virtual security functions.  

NFV: The SDS2 is inspired by NFV technology and virtual network function 

concepts to construct its unique virtual security function based on the interaction 

model. The VSF in our usage is created to perform a specific security function and is 
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deployed at strategic locations in the cloud infrastructure that require protection. It is 

a software-based function constructed to protect cloud infrastructure against any type 

of interaction violations. VSF is a simple but efficient and intelligent security 

function, monitoring cloud entities interaction to detect and predict security 

violations.  

In summary, the proposed SDS2 delivers security as a service over a cloud 

infrastructure through defining security boundaries for cloud infrastructure with a 

novel interaction-based security isolation technique. It inherits the concepts of 

centralized controlling and separation of decision-making from security functions to 

build an intelligent and automated programmable security model.  

3.6 Thesis Roadmap  

It is worth noting that this chapter presents an overview of our software-defined 

security service model for provisioning on-demand security services and the 

construction of dynamic security boundaries. To build a robust security service model 

to provide security isolation for protecting cloud resources efficiently, the security 

service model requires the capability to orchestrate, manage and control on-demand 

security functions. This research leverages the SDN and NFV technologies.  

Although SDN and NFV technologies are capable of meeting demands in 

relation to automation, programmability, and dynamic creation of network functions, 

there are significant challenges in applying these techniques to security architecture, 

mostly to protect cloud resources. In this research study, we propose the SDS2 model 

to overcome challenges in adopting these technologies in constructing dynamic 

security boundaries.  

We propose a software-defined security architecture to provide programmable, 

automated, and dynamic orchestration and management of on-demand security 

functions. We propose an intelligent security policy-based interaction model 
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consisting of Interaction Security Violation Detection/prediction mechanisms to 

construct security boundaries. We present a dynamic and intelligent Virtual Security 

Function (VSF) to monitor interaction among cloud entities to enrich the limited 

functionality of security functions. To control and manage VSFs, we propose a policy-

based interaction manage and control protocol, termed Sec-Manage. We design a 

security controller (SC) to control and manage VSFs and construct security 

boundaries within a cloud infrastructure.   

To pave the way for designing and deploying an innovative integrated software-

defined security platform, a roadmap for the rest of this thesis has been planned as 

follow.  

Chapters 4, 5, and 6 describe the design and operation of the proposed 

Interaction Model, Sec-Manage protocol, and SDS2 architecture together with novel 

components, including SDS2 Security controller, Sec-Manage Protocol, and VSFs. 

Chapter 4 describes an innovative policy-based interaction model, including its 

components and essential algorithms to detect and predict security violations. We 

propose a novel policy-driven interaction model that governs the interactions among 

entities in a cloud environment. According to our best knowledge, this is the first 

approach to use interaction parameters for building dynamic and automated security 

boundaries.  

Chapter 5 describes the design and the implementation of the Sec-Manage 

protocol. The significant contributions of this chapter include: 1) Design and develop 

a novel Sec-Manage protocol that governs communication between the security 

controller and its VSFs. The Sec-Manage protocol focuses on transferring interaction 

security messages and required parameters between the security controller and VSFs. 

2) A novel approach in programming behavior and configurational management of 

VSFs according to the proposed interaction model. 

Chapter 6 describes the SDS2 architecture and its main component, the security 

controller. It provides the overall design of the security architecture. The architecture 
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proposed a novel security architecture that enables automation, programmability, and 

provision of on-demand security services to protect cloud resources against 

interaction security violations.   

Chapter 7 describes the implementation of the SDS2 platform with implemented 

elements SC, VSF, Sec-Manage, and policy-based interaction function. We also 

evaluate the performance of the platform in the provision of on-demand VSFs. 

Chapter 8 concludes this dissertation by summarizing this study and suggesting 

future work. 

3.7 Summary 

This chapter presented the overall picture of our proposed software-defined 

security service model to provide on-demand security services and outlined the 

roadmap of this thesis. Firstly, we discussed the need for as well as the challenges to 

effectively construct security isolations within interaction level in cloud infrastructure 

to protect cloud resources. We then provided a high-level description of the proposed 

SDS2 model. We discussed the main features of the SDS2 model in relation to the 

provision of on-demand security services. Finally, we presented the Thesis. 
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Chapter 4 
 

4 SDS2 Policy-based Interaction 
Model for Cloud Security 

Breaches detection and 
Prediction 

4.1 Introduction 

Security breaches primarily result from some violation of the rules of interaction 

(or policy that governs the interaction) between objects when they interact. Unless 

one has a formal model of an interaction between objects, it is difficult to detect, 

predict or prevent security incidents. It has been recognized that security policies play 

a crucial role in all secured systems because they define what constitutes a security 

breach. In other words, security policies define the rules for secure interaction between 

objects in an environment.  

This chapter introduces a policy-driven entity interaction model and algorithms 

to detect and predict security violations in cloud infrastructure. The focus is on object 

interaction and constraints, security policy, and security boundary isolation. We 

introduce a policy-driven interaction model that governs the relationship among 

entities in the cloud environment and develop algorithms for security violation 

detection and prediction.  
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The interaction model is defined by parameters that control activities among 

components/entities in a cloud system. The model provides a framework for 

incorporating system security policies and entity constraints in constructing 

interaction boundaries and defining the security dictionary of expected/unexpected 

behavior of cloud entities to access resources in the cloud environment.  

This chapter is organized as follows. Section 4.2 describes the cloud object 

model to be used by the interaction model. Section 4.3 describes the proposed 

interaction model and its parameters. Section 4.4 discusses the proposed security 

policy-based interaction model. Section 4.5 describes ISVDP algorithms. Section 4.6 

presents an evaluation of the proposed algorithms by simulating various interaction 

scenarios. Section 4.7 concludes this chapter. 

4.2 Cloud Object Model used for Interaction Model  

This section described the cloud object model and required components to be 

used in our interaction model.  

A cloud is built by cloud providers with a multitenant architecture for sharing 

resources and delivering services. A cloud platform can be deployed as a public cloud, 

a private cloud, a community cloud, or a hybrid cloud. It is entirely service-oriented, 

which means everything is delivered as a service to cloud clients. Cloud virtualization 

technology provides a flexible and scalable on-demand computing and sharing 

resources to its clients. Virtualization also provides some degree of isolation among 

cloud tenants regarding services, applications, tenant networks, operating systems, 

and other resources. However, these isolation and virtual boundaries are not often 

visible to the relevant security controller and hence, securing the cloud, and its 

services is challenging. Virtual data centers are relying on their virtual technologies 

for provisioning and sharing their resources. 
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Traditional physical security mechanisms are not effective in dealing with 

threats and activities from virtual systems and virtual resource components, [123] as 

virtual boundaries between virtual components are not often well defined. 

Additionally, scalability of resource sharing in a multitenant cloud architecture 

introduced a new research area in academia and industry to build centralized security 

controllers capable of provisioning, monitoring and isolating physical and virtual 

resources in large-scale cloud data centers. 

 The infrastructure desires a logically centralized security controller with 

visibility on security boundaries within different layers. For this purpose, a security 

model was proposed as a dynamic, intelligent, and automated security service/model 

to tackle mentioned challenges in a multi-tenant cloud infrastructure [134]. It provides 

a security model as well as a security service called SDS2 that applies on the object-

oriented entities of a cloud environment, the interaction among them, and security 

policies that govern the interaction. The SDS2 provides a security architecture to 

protect cloud assets with policies mapped to the cloud, tenant, and resource security 

policy levels.  

The main idea of our centralized model centers around the interaction between 

constrained entities and is governed by system security policies for the detection and 

prediction of security breaches. An interaction can be defined as a “relation” between 

the different objects during a specific time slot. So, to define the security boundaries 

in terms of interaction, the system requires a sustainable object model. In our security 

architecture, we define an object as “a component or a sub-component, both virtual 

and physical, that participates in a cloud environment and that can access/be 

accessed by other objects according to their properties, security constraints, and 

system policies.”  

An object has a number of attributes, some are common among all objects 

(generic), and some represent specific constraints and characteristics of the object 

(specific). Each attribute defines some properties and hence together constitute a 

boundary for an object relative to other objects in its environment.  
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Generic parameters are pointing to common parameters required by all objects. 

These parameters are mandatory and identify the object (ID), the type of object in 

terms of its security policy level, which can be Cloud, Tenant, and Resource levels as 

defined hierarchically by our system. The Resource policy level identifies five sets of 

resources at the same level: Compute_Resource, Storage_Resource, 

Network_Resource, Application_Resource, and User_Resource. 

    Specific parameters refer to parameters that specify specific 

features/attributes of an object concerning its hierarchical position within the 

architecture identified by the role of the object and the object location that identifies 

its logical zone within the system. It should be noted that the policy level is related to 

the role of an object, and the location is related to the logical/physical location of an 

object. Each specific parameter carries explicit characteristics pertaining to that 

particular object.  

An object can be simple or complex. A complex object includes nested 

attributes and may consist of a set of sub-objects. An object can be internal or external 

to a cloud, depending on its role/interaction. It should be noted that the policy level is 

related to the role of an object, and the location is related to the logical/physical 

location of an object.  

The security model defines three main objects associated with the cloud, tenant, 

and resource security domains. Corresponding objects to these are Cloud Object, 

Tenant Object, and Resource Objects which include Compute Object, Storage Object, 

Network Object, App Object, and User Object.   

The cloud domain, where cloud objects reside, classifies all the data, resources, 

and interactions at the cloud level while ignoring information related to lower domains 

like Tenant and Resource. At this level, the main parameters include cloud security 

policies (SP), which govern interactions policies among objects at the cloud level; 

data and resources policies, which only concentrate on cloud resource level (tenant, 

cloud-compute, -net, -storage resources) (Figure 4.1). 
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Figure 4.1 Cloud Object domain parameters 

 The tenant domain only reflects attributes and parameters related to the tenant 

objects in the cloud domain. The focus is only on the tenants’ structure and their 

parameters and resources.  

The resource domain concentrates on the base underlying physical/virtual 

resources within the cloud system as distinct from resources at the cloud and the tenant 

domains. They provide detailed information related to each resource-object. Resource 

objects are defined similarly to cloud objects but for objects in the resource domain. 

A role (Rl) assigns some responsibility to an object and necessary 

authorities/privileges to discharge its duty. The role is often not static and may change 

as circumstances demand. A role may be simple/complex assigned to an individual or 

a group of objects. A role is often associated with different layers of the architecture 

of a cloud system. It should be noted that ‘role’ is best defined using formal logic that 

entails complex rules to deal with dynamicity and multiple inheritances.  

In our design, we avoid the complexity by equating a role with a hierarchical 

level in our defined cloud security architecture, where its attributes are defined 

explicitly when the role is assigned to a cloud object. We define an entity (E) as an 

integrated object consisting of the object’s role and its object structure. The entity is 
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a key concept in our structure to detect and predict security breaches in cloud 

infrastructure. The role assigned to the object will be considered based on object level 

and position within the system extracted from defined object parameters. An object 

may be assigned to a role/group of roles activated at a different system level. Objects 

may assume more than one role with different levels of authority in different domains. 

We use the entity as the main component within the interaction model.  

4.3 Interaction Model 

In the following section, we introduce our interaction model and its parameters. 

Security will always be a concern when entities start interacting with each other and 

with the infrastructure. In general, interaction is the act of performing an action by an 

object on another. A natural disaster can also be considered a special interaction 

between an external object on a set of objects.  An action always entails some effects 

or consequences. Potential security violations may occur when an interaction takes 

place against policies governing the relationship between two/more parties. 

Consequently, interactions play a central role in security incidents in a system.  

The main focus of SDS2 is on the protection of a cloud system by anticipating 

possible security breaches and preventing them from happening. The SDS2 proposes 

a novel interaction model that defines exceptional interaction parameters to detect and 

predict security violations. The following subsections describe the detailed structure 

of each parameter. The scheme centers around a new interaction model, entities 

connected to a cloud system, and security policies governing the system. 
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Table 4.1 Summary of Notations 

Notation Description 
𝑬𝒊 E denotes entity i 
𝑴 Denotes the interaction mode 
𝒎𝒊 A set of mode relation values of the interaction mode 
𝒅𝒏 A set of action direction values of the interaction mode 
R R denotes the interaction positional relationship 
Rl Refers to set of roles on object 
𝒓𝒏 A set of positional relation values of R 

T Refers to interaction time consisting of  𝑡𝑠(𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒), 
𝑡𝑒(𝑒𝑛𝑑 𝑡𝑖𝑚𝑒), 𝑡𝑑(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒), and 𝛼 (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒) 

𝑨 Represent a set of all possible actions 
P Refers to system security policy 
C Refers to entities constraints 
𝐒𝐤 Refers to set of security policies on k 
𝑳𝒌 Refers to the location-based security policy of k interaction 
𝒕𝒌 Refers to validate time for an interaction k 
M Set of permissible parameter values for interaction 𝐼𝑝,𝑐

𝑘  
V Set of non-permissible parameter values for 𝐼𝑝,𝑐

𝑘  

In its general sense, an interaction takes place between simple or complex 

entities in a defined environment such as a cloud system. Figure 4.2 shows a 

simple/complex interaction between simple/complex entities. We proposed an 

interaction model for characterizing a relationship between objects.  

The interaction model describes how objects interact with one another; it characterizes 

the modes of interaction, the roles of interacting entities, the actions one can perform 

against others, and the time of the interaction. In order to capture the essentials of 

interaction, we define an object model of interaction with four parameters or variables: 

mode (M), positional relationship (R), action (A), and time (t). Each parameter may 

take on a range of values. The range is determined or constrained by a) the interaction 

environment such as organizational policies, b) participating entities of the interaction 

in terms of their nature, properties, capabilities, and constraints, c) roles of the 

participating entities such as their relative positional relationship, and d) the time of 

the interaction. 



 

123 | P a g e  

 

These parameters will be defined later in this section. With these descriptions 

of the interaction object, we will be interested in the following operations: 

1. We want to initialize an interaction, allowing default values for all parameters 

without any constraints. 

2. We want to know what actions are possible and what are not, due to the 

constrained nature of the entities involved in the interaction. 

3. We want to know if the interaction is permissible under a set of governing system 

policies. 

 
Figure 4.2 Interaction Types 

Specifically, we can define a number of base operations on an interaction 

between entities: 

• Initialize (I): Initialize I with default parameters M, R, A and t 

• Mode (𝐼𝐸𝑖𝐸𝑗

𝑘 ): Return all the possible modes between Ei and Ej for interaction k 

• Relate (𝐼𝐸𝑖𝐸𝑗

𝑘 ) : Return all possible positional relations between Ei and Ej for 

interaction k 

• Action (𝐼𝐸𝑖𝐸𝑗

𝑘 ): Return all possible actions between Ei and Ej for interaction k 
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• State ( 𝐼𝐸𝑖𝐸𝑗

𝑘 Sk): Return all allowed M, R, A, and t once the constraints for 

participating entities and security policies (Sk) have been applied to the 

interaction. 

Additional operations involving entities, their constraints, and system policies 

relevant to security violation and detection will be described in Section 4.5. 

4.3.1 Interaction Mode  

Interaction mode (M) determines both the mode relationship (m) between 

objects such as one to one, one to many, and the action direction (d) from one object 

to another such as one way, both ways, of the interaction. Figure 4.3 illustrates all 

possible interaction modes of interaction. M consists of two parts: the first part refers 

to the mode relation (mi), and the second refers to the action direction (dn). So, the M 

is defined as a set of pairs consisting of mi and dn:   

                 𝑀 = 𝑚𝑖  × 𝑑𝑛  

where 𝑚𝑖  refers to a set of possible relations between entities 𝑚𝑖 = { 𝑚1 , 

𝑚2, 𝑚3, 𝑚4, 𝑚5, 𝑚6}; i= 1,2,3,4,5,6. 

Each of the modes m signifies the following: 

𝑚1 ∶=  1: 1(𝑜𝑛𝑒: 𝑜𝑛𝑒), 𝑚2 ∶= 1: 𝑚 (𝑜𝑛𝑒: 𝑚𝑎𝑛𝑦), 𝑚3 ∶= 𝑚: 1(𝑚𝑎𝑛𝑦: 1),  

𝑚4 ∶= 𝑚: 𝑚 (𝑚𝑎𝑛𝑦: 𝑚𝑎𝑛𝑦), 

𝑚5 ∶= 1: 0 (𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑), 𝑚6 ∶= 0: 0 (𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

An interaction's action direction may take on one of three possible values d1 d2, 

and d3. Specifically, 𝑑𝑛 =  {𝑑1, 𝑑2, 𝑑3} where n =1, 2, 3.  

dn may take on values and meaning as defined below. 

 𝑑1 = 1 ∶=→ (𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡), 𝑑2 = 2 ∶=← (𝑟𝑖𝑔ℎ𝑡 𝑡𝑜 𝑙𝑒𝑓𝑡), 𝑑3 = 3 ∶=↔ (𝑡𝑤𝑜 𝑤𝑎𝑦) 
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Figure 4.3 Interaction Mode 

4.3.2 Interaction Positional Relationship (R) 

An object within a system or an organization exists at a position either defined 

by its role within the organization or the layer or the domain within the system 

architecture. In an interaction, not only the role of an entity but its standing relative to 

the role of the other entities is essential as this may dictate whether the interaction is 

legitimate. For this reason, we consider an interaction positional relationship (R) as 

the relative positional relationship between the entities of an interaction.  

The positional relationship determines an interaction action validity through 

defined rules, roles, layers, and policies associated with an interaction entities. For 

example, a security policy may specify that only objects at the same domain/level may 

interact. Interaction level is entangles with the role-based level assigned to each 

domain in the design. Each level entails classified security policies associated with 
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object roles that determine a set of authorized actions. As “roles” may be of a complex 

nature with inheritance and may change during an entity's lifetime, we restrict and 

associate roles with three interaction positional relationships in any interaction 

between objects to three different security isolation layers of the security architecture: 

Cloud, Tenant, and Resource.  

In this design, R denotes the interaction positional relationship according to 

entities relation during an active interaction.  

R = {r1, r2, r3} where r1 is mapped to down, representing the interaction between 

objects from a high layer to a lower layer. r2 is mapped to up, representing interaction 

from a low layer to a higher layer. r3 is mapped to equal, representing the interaction 

between objects in the same layer. Knowledge about positional relationships among 

objects helps define the nature of the interaction and the security policy decision. 

4.3.3 Interaction time (t) 

Interaction time refers to the valid time for an interaction to take place in the 

system.  The interaction time can be specified either by its start time and its end time 

(𝑡𝑠, 𝑡𝑒) or start time and duration (𝑡𝑠, 𝑡𝑑). There may be cases where the start time of 

an interaction is known, but its end time may be indeterminate depending on some 

environmental conditions. For such cases 𝑡𝑑 is replaced by the 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 (𝛼) 

to indicate if the interaction is still on-going (on) or has stopped (off). Interaction time 

can thus be specified by:   

    𝑡 = {(𝑡𝑠, 𝑡𝑒) 𝑜𝑟 (𝑡𝑠, 𝑡𝑑) 𝑜𝑟 (𝑡𝑠, 𝛼)} 

4.3.4 Interaction Action (A) 

An interaction is meaningful if it conveys a particular set of actions. A security 

breach occurs when objects perform an action that violates their permissible 

interactions. An action is defined as a possible set of actions over an interaction 
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between system objects by virtue of their specific relationship connected to the 

system.   

An action is a set of possible activities that may be triggered by an event; 

however, the set of possible actions is often limited by nature and constraints on 

object/entities involved and security policy rules governing them and their interaction. 

Let A represent a set of possible actions that are chosen based on the types of objects 

found in a cloud environment. For our cloud security model, we studied cloud objects 

and established the set A of actions as follows: 

𝐴 =  {‘read’, ‘write’, ‘modify’, ’create’, ’delete’, ’execute’, ’migrate’, 

 ’suspend’, ’enable’, ‘disable’,′ reset′,′ l𝐨𝐜𝐤′, ′activation′, ′𝑢nlock′, ′clear′} 

Clearly, not all actions can be performed by an object as they are subject to 

system policies and object constraints. Table 4.2 describes the meaning of actions A. 

Table 4.2 Action Description 

Action Description 
Read (Re) Permission to read the data on another Object 
Write (W) Permission to write data onto another Object 

Modify (Md) Permission to change (Write and Delete) existing data on 
another Object 

Create (Cr) The right to create instances of another Object 
Delete (D) The right to remove instances of another Object 

Execute (Ex) The rights to run an instance of another Object 
Migrate (Mi) The rights to re-map an instance of another Object 
Suspend (Sp) The rights to pause an instance of another Object 
Enable (En) The rights to run power up another Object 
Disable (Di) The rights to run power down another Object 

Reset (Rt) The rights to delete metadata and reboot instances of another 
Object 

Lock (Lk) The rights deny user access to another Object 
Unlock (U) The rights permit user access to another Object 

Activate (Av) The rights to make another Object available to a User 
Clear (Cl) The rights remove user data from another Object 
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4.4 Security Policy-Based Interaction Model 

This section describes our policy-based interaction model and how we use 

security policies to detect and predict the security breaches at the interaction level. 

Security policies are fundamental for any effective solutions that secure an 

organization, a system, an infrastructure, a cyberspace, or a service because they 

provide a directive and scalable approach for handling a class of security issues with 

a single policy. 

In our design, security policies are mapped to rules that determine the 

interaction parameters between entities. The proposed policy-based interaction model 

constructs dynamic security boundaries formed by legitimate interaction parameters 

according to security rules extracted from the governing security policies.  

Our model focuses on security policies at the interaction level between entities 

through a set of interaction parameters. The complex structure of cloud infrastructure 

and the shared and dynamic nature of their resources demand robust security policy 

enforcement. So, it requires a clear definition of a boundary between violated and non-

violated policies. Applying security policies at the interaction level allows a system 

to make visible previously undefined virtual boundaries between engaged entities 

through their interaction parameters.  

In the following, we describe our policy-based interaction model and its 

required components. A policy can be defined as “an aggregation of policy rules” 

where policy rules are used to construct sets of conditions consistent with the set 

permissible actions [135]. Policy rules are often derived from human language 

statements extracted from service level agreements (SLAs) between users and service 

providers. NIST (2006) defines security policies as “Aggregate of directives, 

regulations, rules, and practices that prescribe how an organization manages, 

protects, and distributes information.” 
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 Our design security policies address rules and conditions that establish valid 

interactions between entities in a cloud environment. In SDS2 architecture, we define 

a security policy (SP) as “a directive that governs the interaction among 

simple/complex entities through specific constraints applied to the entities, their 

location, and their interaction parameters.” Security constraints extracted from 

security policies determine the validity of a set of actions taking place during an 

interaction. Figure 4.4 illustrates the relationship among these components. 

 
Figure 4.4 Security policy and its components 

As discussed, system security policies, when applied to an interaction between 

the initiator/s (𝐸𝑖), and the target entity/s (𝐸𝑗), determine sets of parameters (described 

in section 4.2) that are secure (valid, or permissible) for the interaction. We define a 

Security Policy-Based Interaction model as shown in Figure 4.5.  
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Figure 4.5 Security Policy-Based Interaction Model 

Security policies govern the validity of the parameters of the interaction. 

Together with the system security policies (P), security constraints (C) on entities 

further limit the interaction in time, isolation level, and location as defined by 

legitimate interaction parameters. SDS2 architecture logically divides cloud 

infrastructure into three main security isolation levels (SILs) or boundaries for the 

Cloud, Tenant, and Resource cloud domains.  

Recently, [136] introduced a security service framework with three security 

layers according to security domain divisions; however, the system only focused on 

divisions related to tenant resources and VMs in building isolation layers. We map 

security domains into security isolation levels that isolate each domain's entities 

according to their security policy levels and entities locations. Figure 4.6 shows these 

isolation levels.  

Security policy in our context covers four aspects: system interaction policy, 

time-based security policy, dynamic location-based security policy, and entity-

specific constraint policy. System interaction security policies are organizational sets 

of security policies that dictate allowable object interactions as specified by valid 

parameters of an interaction.  
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Time-based security policies dictate the valid time or time duration of an 

interaction. These policies are often specified at runtime because they are needed 

when dynamic operational circumstances demand.  

Location-based security policies are required to deal with dynamic aspects of a 

cloud entity, such as changes in responsibility and logical/physical zone placement 

over time. Entity-specific constraint policies deal with the specific nature and 

properties of an entity. Some entities may not perform some activities because they 

do not possess the capability while others are capable, but their actions are constrained 

by relevant policies when they were instantiated. With these definitions, the set of 

security policies (Sk) relevant to an interaction Ik between Ei and Ej may be expressed 

by the following equation. 

𝑆𝑘  (𝐼𝑘, (𝐸𝑖 , 𝐸𝑗)) = 𝑃𝐸𝑖𝐸𝑗
 (𝐿𝑘(𝐸𝑖, 𝐸𝑗), 𝑡𝑘)) =  𝑃𝐸𝑖𝐸𝑗

𝐿𝑘,𝑡𝑘

       𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

The notations are defined in Table 4.3. P denotes the system policy governing 

the entities, their location, and time. L denotes location-based policies for each entity. 

If  𝐸𝑖, 𝐸𝑗  are placed in the same zone and same group zone policy, the location policies 

are the same for both. Security policy-based interaction model concentrates on two 

main policy concepts: general policies and local policies. General policies apply to all 

requests within the system, and local policies apply separately to each entity and their 

interactions within the system according to their location and assigned constraints. 

Both sets of policies are stored in separate security databases. Security policies are 

extracted during an interaction, and rules and constraints are assigned and applied to 

the interaction over the valid interaction time duration. 
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Figure 4.6 Security Isolation levels 

 

Table 4.3 Required Notations 

Notation Meaning Detailed expression 
𝒄𝒋𝒗 Set of constraints associated with entity j  
E An entity composed of role and object i E= 𝐸𝑖

𝑗𝑘 
I An interaction object  

𝑰𝒊𝒏𝒊𝒕
𝒌  Interaction object k initialized with default 

parameters (unconstrained) 𝐼𝑖𝑛𝑖𝑡
𝑘 (∗,∗) 

𝑰𝑪
𝒌 Interaction object k with object constrained 

applied 𝐼𝐶
𝑘(𝐸𝑖 , 𝐸𝑗) 𝑜𝑟 𝐼𝐶

𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣)) 

𝑰𝑷
𝒌  Interaction object k with system policies ap-

plied 𝐼𝑃
𝑘(𝐸𝑖, 𝐸𝑗 , 𝑆) 

𝑰𝑷,𝑪
𝒌  Interaction object k with both system policies 

and object constraints applied 𝐼𝑃,𝐶
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑆) 

𝑰𝒓𝒆𝒒
𝒌  Interaction object k with parameters derived 

from an interaction request 𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗) 

Sk Interaction k policies derived from the sys-
tem policies 𝑆𝑘 =  𝑃𝐸𝑖𝐸𝑗

𝐿𝑘,𝑡𝑘
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4.5 Interaction Security Violation Detection and Prediction 

Algorithm (ISVDP) 

With the introduction of the formal model of an interaction and its relationship 

with security policy, we propose an interaction security violation detection and 

prediction (ISVDP) algorithm. The ISVDP operates over the SDS2 cloud 

infrastructure with three levels of security isolation. The algorithm automatically 

detects and predicts security breached in relation to requested interaction according to 

validate/invalidate interaction parameters. The main parameters of ISVDP include:  

• Initiator entity: an entity that initiates a relationship with another entity and 

establishes an interaction. 

• Target entity (or Reactor): the entity of an interaction on which the initiator intends 

to perform certain actions.  

• Entities constraints:  the constraints extracted from local policies related to both 

initiator’s and target’s role, type, and their intrinsic properties.  

• A complete set of system security policies defined over SDS2 cloud and its 

isolation levels: Cloud, Tenant, and Resources. 

• A requested interaction between the initiator and the target entities (for violation 

detection). 

In ISVDP, a constraint is represented as “a security statement which defines a 

set of conditions that limits the scope and the property of an interaction between an 

initiator and its target entity.” High-level security policies are written in human-

language policies, which will be translated using a policy-translator within the SDS2 

controller. Armed with the translated security policies, a security controller 

determines the validity of an interaction between entities based on their defined 

interaction parameters. The detection and the prediction algorithms form two 

fundamental components of the ISVDP model. Both of them share and are built upon 

the initial three processing stages, as shown in figure 4.7 for a specific interaction k.  
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Figure 4.7 ISVDP stages 

We define the following notations in Table 4.3. We define the following basic 

set of operations on an interaction object with the above notations, as shown in Table 

4.4. 

Table 4.4 Operations Defined on an Interaction Object 

Operation Meaning Detailed expression 

Initialize (I) Initialize I with default parameters M, R, A and t  

Mode (Ik) Return possible modes between Ei and Ej for inter-
action k 𝑀𝑜𝑑𝑒 𝑜𝑓 (𝐼𝐶

𝑘 𝑜𝑟 𝐼𝑃
𝑘𝑜𝑟 𝐼𝑃,𝐶

𝑘 ) 

Relate (Ik) Return possible positional relations between Ei and 
Ej for interaction k 𝑅𝑒𝑙𝑎𝑡𝑒 𝑜𝑓 (𝐼𝐶

𝑘  𝑜𝑟 𝐼𝑃
𝑘𝑜𝑟 𝐼𝑃,𝐶

𝑘 ) 

Action (Ik) Return possible actions between Ei and Ej for inter-
action k 𝐴𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 (𝐼𝐶

𝑘  𝑜𝑟 𝐼𝑃
𝑘𝑜𝑟 𝐼𝑃,𝐶

𝑘 ) 

Const (Ik) Return possible interaction parameters after apply-
ing constraints on interaction k Const on (𝐼𝑖𝑛𝑖𝑡

𝑘 ) 

State (Ik) Return all states of interaction k between Ei and Ej 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 (𝐼𝐶
𝑘  𝑜𝑟 𝐼𝑃

𝑘𝑜𝑟 𝐼𝑃,𝐶
𝑘 ) 

State  
(Ik, req) 

Return all states the interaction as required by the 
request 𝑆𝑡𝑎𝑡𝑒 𝑜𝑓 (𝐼𝑟𝑒𝑞

𝑘 ) 

Policy  
(L, Ei) 

Returns the set of system policies applied to entity i 
location  

Policy  
(Ik, req) 

Return the set of system policies applied to interac-
tion k Policy on (Ik or 𝐼𝑟𝑒𝑞

𝑘 ) 

Compare 
(Im, In) 

Compare the states of interaction m and interaction 
n, return differences in M, R, A, and t  
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Stage 1: Initializing the interaction. At this initial stage, the objects involved in 

the interaction are made available with their security-rated properties. The interaction 

template is initialized with no constraints on interaction parameters. The requested 

interaction is also made available. The result of this stage is the object 𝐼𝑖𝑛𝑖𝑡
𝑘 (∗,∗).  

The algorithm intelligently identifies all involved entities and components in 

this stage. Additionally, the algorithm detects interaction types and parameters. 

Dynamically it can change interaction parameters according to the location and nature 

of entities and create initial interaction parameters between two entities.  

Stage 2: Application of entity constraints over the interaction k. At this stage, 

the interaction parameters are modified according to the properties and constraints of 

the entities involved. The result of this stage is the object 𝐼𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣)). 

Stage 3: Application of the policy over the interaction k. At this stage, the 

parameters of interaction k will be modified by the constraints derived from the 

system policies that are applicable to the interaction k. The result of this stage is the 

object 𝐼𝑝,𝑐
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑃) . The policy-driven interaction algorithm 

encompassing stages 1, 2, and 3 is shown in Algorithm 4.1. 

Algorithm 4.1 Policy-driven interaction algorithm (PdI ()) 

Input: Ei, Ej, SDS2 cloud objects’ DB, System Policy statement (P) 
Output: 𝑰𝒑,𝒄

𝒌  (M', R', A', t') 
1: while request is valid do  
     1: for Ei, Ej do 
        2: Intialize (Ik) //get interaction parameters for 𝑬𝒊, 𝑬𝒋 without applying constraints and 

set 𝑰𝒊𝒏𝒊𝒕
𝒌  

        3: if 𝑰𝒊𝒏𝒊𝒕
𝒌  ≠ Null 

                Const (𝑰𝒊𝒏𝒊𝒕
𝒌 )  //get interaction parameters by applying constraints on 𝑰𝒊𝒏𝒊𝒕

𝒌  and set 
𝑰𝑪

𝒌 
             4: 𝑰𝑪

𝒌 = State (𝑰𝑪
𝒌) // return parameters after applying constrains  

            5:  Policy (Ik) // get system policies (P) applied to the Ik 
            6: 𝑰𝒑,𝒄

𝒌 = State (Ik) // return parameters after applying policy system 
        7: end if; 
     8: end for; 
9: end while; 
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4.5.1 Interaction Security Violation Detection  

In case of a triggered interaction within the cloud system, the detection 

algorithm determines if the interaction is safe or violates a system's security policy or 

specifically if a security breach has occurred. With the global knowledge of the cloud 

environment and the interactions among entities, the security controller intelligently 

schedules to execute the ISVDP algorithm on suspicious circumstances, on a specific 

request or triggered events, or on a regular basis.  

The algorithm considers each interaction parameter under consideration to 

discover if any inconsistency has occurred relative to the security policies, hence the 

interaction parameters, dynamically applicable to the interaction. The module goes 

through the four fundamental stages described above and proceeds to stages 4d, 5d, 

6d, and 7d for violation detection.  

Stage 4d: The requested interaction policy level is analyzed according to 

defined security isolation levels explained in section 4 (Domain (𝐼𝑟𝑒𝑞
𝑘 )).  

Stage 5d: The interaction under consideration between the specified objects is 

analyzed, resulting in a set of interaction statuses required by request:  𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗). 

Stage 6d:  The algorithm intelligently detects each object interaction parameter 

rules based on security domain and location Domain (𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗)) and Loc (𝐸𝑖, 𝐸𝑗). 

Stage 7d: By analyzing  𝐼𝑝,𝑐
𝑘  (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣), 𝑃) , and 

𝐼𝑟𝑒𝑞
𝑘 (𝐸𝑖, 𝐸𝑗) 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠   the algorithm determines if the requested 

actions are within the set of actions allowable by the policies and the constraints 

imposed on the entities of the interaction.  

The algorithm returns the validation status of the interaction: either Safe or 

Violate. Safe means that the requested interaction does not violate any policy related 

to each/any interaction parameter and is not a security breach. Violate means that the 

requested interaction violates one of the parameters (M, R, A, t) or location of the 
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allowed security policy that governs the interaction. The algorithm returns whenever 

a violation of an interaction parameter is detected. However, in cases where policies 

governing the interaction parameter are undefined (either due to an oversight or 

situations not yet encountered), it will decide if there is a possibility to partially accept 

the interaction and initiate an alert to a decision-maker to create a new policy to cover 

the newly discovered situation. Figure 4.8 shows the decision process of the ISVD 

algorithm.  

We use (𝑀′, 𝑅′, 𝐴′, 𝑡′)  to denote State (𝐼𝑝,𝑐
𝑘 )  and (𝑀′′, 𝑅′′, 𝐴′′, 𝑡′′

)  to denote 

State (𝐼𝑟𝑒𝑞
𝑘 ). In the detection process, all system policies, including location, entity 

constraints, are applied to the interaction k to obtain all the interaction's allowable 

parameters. Figure 4.8 shows the detection approach in determining the validation 

status of the requested interaction k. The detection algorithm will stop the process of 

discovering the first interaction parameter violation and activate the security alarm 

within the security controller. Algorithm 4.2 describes the ISVD detection algorithm, 

which analyses the  𝐼𝑟𝑒𝑞
𝑘 , extracting the number and types of involved entities during 

the requested interaction.  

 
Figure 4.8 ISVD 
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Algorithm 4.2 Interaction Security Violation Detection (ISVD ()) algorithm 

Input: 𝑰𝒓𝒆𝒒
𝒌 (requested interaction), 𝑰𝒑,𝒄

𝒌  ,  
Output: Safe | Violate 
1:  for received  𝑰𝒓𝒆𝒒

𝒌  do 
   2: if Domain (𝑰𝒓𝒆𝒒

𝒌 )==True then 
 3: Policy (L, E) //Returns set of system policies on the current location of entities during 

initiation of 𝑰𝒓𝒆𝒒
𝒌  and set L 

    4: If L == True (location is verified) then 
       5: PdI () //call the algorithm 1 to get 𝑰𝒑,𝒄

𝒌  
            𝑰𝑷,𝑪

𝒌 = State (𝑰𝑷,𝑪
𝒌 ) 

       6:  𝑰𝒓𝒆𝒒
𝒌 = State (Ik, req) // get request interaction parameters 

    7: for  𝑰𝒓𝒆𝒒
𝒌  and 𝑰𝑷,𝑪

𝒌  do 
        8: diff := Compare ( 𝑰𝑷,𝑪

𝒌 ,   𝑰𝒓𝒆𝒒
𝒌 )  // returns difference (diff) parameters between 

𝑰𝑷,𝑪
𝒌  𝒂𝒏𝒅   𝑰𝒓𝒆𝒒

𝒌  
        9: P :=  Policy (Ik, req) // returns system policies applied to interaction parameters 
        10: if diff satisfies P then 
            11: state ( 𝑰𝒓𝒆𝒒

𝒌 ) is safe 
            12: else state ( 𝑰𝒓𝒆𝒒

𝒌 ) is Violate //rise security violation alarm to security controller, 
isolate the interaction 

        13:    end if; 
    14:  end for; 
   15:  end if;  
  16: end if 
17: end for; 

4.5.2 Interaction Security Violation Prediction 

In this section, we describe the prediction algorithm and its functionality. The 

ISVP prediction algorithm enables interaction violation predictability based on 

permissible values of the parameters of the interaction. The algorithm is different from 

the detection algorithm in that it determines all “Safe” interactions and all potential 

“Violate” interactions under the system security policies and constraints imposed on 

the interaction parameters between given entities.  

The prediction algorithm automatically discovers the probability of possible 

future violations according to the current state of validation interaction parameters. 

For each interaction parameter, it discovers upcoming violation values. It analyses the 

safe/valid state of entities interaction and predicts the possibility of future violations 

according to unacceptable interaction parameters within the system. The prediction 
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algorithm considers each interaction parameter and determines to invalidate 

parameter’ values through prediction approaches. The prediction algorithm proceeds 

through the three stages of Algorithm 4.1 and proceeds through stages 4p and 5p, as 

shown in Algorithm 4.3. 

Algorithm 4.3 Interaction Security Violation Detection (ISVD ()) algorithm 

Input: 𝑰𝒑,𝒄
𝒌   

Output: V set of possible potential violate interaction parameters 
1: PdI () // set 𝑰𝒑,𝒄

𝒌  
2: for 𝑰𝒑,𝒄

𝒌  do  
   3: while  𝑻𝑴 = Mode (𝑰𝒑,𝒄

𝒌 ) do // get all possible sets of M extracted from 𝑰𝒑,𝒄
𝒌  from safe 

mode 
         𝑽𝑴= opposite (𝑻𝑴) // set of possible violated mode parameters extracted from valid 

(𝑻𝑴) 
   4: end while; 
   5: while  𝑻𝑴 = Relate (𝑰𝒑,𝒄

𝒌 ) do // get all possible sets of R extracted from 𝑰𝒑,𝒄
𝒌  from safe 

mode 
        𝑽𝑹  = opposite (𝑻𝑹)// sets of possible violated R from 𝑰𝒑,𝒄

𝒌  from safe mode 
    6: end while; 
    7: while 𝑻𝑨 = Action (𝑰𝒑,𝒄

𝒌 ) do // get all possible sets of A extracted from 𝑰𝒑,𝒄
𝒌  from safe 

mode 
         𝑽𝑨  = opposite (𝑻𝒗)  // sets of possible violated A from 𝑰𝒑,𝒄

𝒌  from safe mode 
     8: end while; 
9: V = (𝑽𝑴, 𝑽𝑹, 𝑽𝑨)  // set of predicted and possible violation interaction parameters accord-

ing   𝑰𝒑,𝒄
𝒌  

10:  end for; 

 

Stage 4p: The stage outputs all possible “Safe” interaction parameters between 

the given entities considering all constraints and security policies. 

Stage 5p: The outputs are all potential “Violate” interactions between the given 

entities.  

It is done by inspecting each parameter (M, R, A, t) and applying security 

constraints on each parameter. If Ms (safe parameters defined for M during k 

interaction) is the allowed set of safe modes, then Mv = M – Ms is the set of violating 

modes (M is all possible values). Similarly, Rs and Rv are the set of allowed relational 

positions and violate relational positions, respectively; As and Av are the set of allowed 
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actions and violate actions, respectively. Similar notations are used for time and 

location.  

The results allow the system to predict possible security breaches if interaction 

parameter conditions are not met. These conditions display the predicted violations in 

terms of interaction parameters. Ideally, all possible violations relative to the current 

interaction can be discovered/predicted; however, if all the interaction parameters are 

allowed to vary independently of one another, the analysis can be computationally 

expensive and not practicable. Realistically, we may want to address and predict the 

most likely violations.  

We thus restrict ourselves to simple situations where one parameter varies at a 

time to illustrate the prediction process. In the predicting state, the system anticipates 

all possible different situations that current interaction parameters between defined 

entities can face. For instance, if the valid actions between two objects are defined as 

“read”, all other possible actions can be considered violations of interaction 

parameters considering object nature and constraints. So, the system can stop the 

violation using its stored predicted violation parameters rather than going through 

lower layers and nested policy discovery.  

All opposite interaction parameters against validate parameters are considered 

potential interaction parameter violations in the presented prediction algorithm. The 

security controller runs the ISVDP algorithm to discover the probability of future 

attacks according to each interaction parameter for an interaction, say k. It is an 

intelligent mechanism that focuses on interaction parameters and their possible 

forthcoming violation during an interaction. 

4.6 Interaction scenarios and results  

In this section, we demonstrate our policy-driven security scheme by using a 

security controller in verifying allowable interactions and detecting policy violations 
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between entities in a cloud infrastructure based on our proposed model of interaction. 

We built the security controller from scratch in Java language and run our ISVDP 

algorithm in an Ubuntu machine with 16 GB RAM, Intel® Core (TM) i7-7600U CPU. 

The results evaluate the efficiency of the ISVDP algorithms in discovering and 

predicting security violations. 

We set different scenarios according to various interaction types and analyze 

the results to evaluate the proposed interaction model and its components for each 

case. We simulate the interaction between different types of objects within the system 

to detect and predict security violations according to our ISVDP model. We consider 

the CloudSimSDN-NFV framework to simulate the cloud infrastructure and build our 

security controller and ISVDP algorithm. Figure 4.9 demonstrates the implementation 

process. 

 
Figure 4.9 Implementation process 

Scenario 1: User interaction. In this scenario, the security controller (SC) 

receives interactions triggered by a user. The SC identifies the user and interprets the 

requested interaction. According to the user level and rights, the security controller 

determines the security policies related to the user and involved objects. The requested 

interaction is sent to the interaction security domain controller to extract security 
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policies and interaction parameters. The security controller initiates a virtual security 

function (VSF) designed to monitor the interaction based on received validated 

interaction, entities policies, and constraints. The analyzer function is responsible for 

running the ISVDP algorithm to detect and predict security violations. 

Scenario 2: Specifically requested interaction. In this scenario, a specific 

interaction runs within the system. The specific interaction is considered as a request 

to monitor a specific interaction being performed by the security controller. This 

scenario occurs when the security controller decides to monitor an interaction between 

specific entities within the system. The security controller triggers an interaction to be 

monitored among specific entities. It will happen mainly in two sub-scenarios 1) 

randomly monitor entities based on its statistics received from its virtual security 

functions; 2) activates monitoring of a sensitives entity within the system on specific 

time slots. 

Scenario 3: Triggered interaction. The security controller activates a virtual 

security function to monitor a triggered interaction. This scenario occurs when an 

abnormal interaction is triggered between entities within the system. An undesired 

interaction may occur. The security controller initiates and commands reports from 

relevant virtual security functions over suspicious entities and then executes the 

ISVDP algorithm to assess the situation.  

The functions within the security controller perform the ISVDP algorithms to 

produce the results. As demonstrated in Figure 8, the system analyses the requested 

interaction and involved objects. Security policies and objects’ constraints are 

extracted according to object security isolation layers and entities location. In this 

study, however, we mainly concentrate on the interaction between simple objects and 

their interactions. Figure 4.7 shows the flow process of our ISVDP algorithms. In the 

first step, the system creates entities within the cloud system by substantiating the 

identified objects and their defined role. Figure 4.10 demonstrates extracted data from 

an interaction and a VSF assigned to that specific interaction. 
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Figure 4.10 Extracting involved objects and assigning a monitoring security function to 

each interaction 

For demonstration purposes, Figure 4.11 shows a part of the security controller 

that investigates a specific requested interaction. The controller initializes the 

interaction according to analyzed parameters in a specific time slot. Then the system 

automatically detects and predicts required parameters and discovers security 

breaches.  

The orange box shows extracted information from triggered interaction by the 

security controller, which can be run manually by the security controller. The action 

is a validated action that is calculated after interpreting the requested interaction. The 

red boxes demonstrate detection results as well as prediction parameters. We consider 

cloud objects of different types and determine possible allowable interactions.  

For each scenario, objects can be at the same or different access levels. System 

policies are applied to achieve valid entity interaction parameters. For simplicity, 

interaction time is assumed valid the whole time under consideration. We detailed an 

interactive case study between two entities to describe discovering and validating the 

interaction between the two entities. In the following case, we describe how a policy-

based interaction analyzer will extract required interaction parameters to be sent to 

the assigned security function. 
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Figure 4.11 The controller interface according to interaction 

VM-Storage interaction: interaction between a virtual machine and a storage 

entity. In the first step, the program at the controller level creates participating entities 

(if it has not existed yet) based on the information stored in the security database 

SecDB. EntityCreation.O () → Object (Oi) ∧ Role (𝑅𝑙𝑛
𝑂) → Ei, EntityCreation.O () → 

Object (Oj) ∧ Role (𝑅𝑙𝑛
𝑂) → Ej. Then the program discovers and predicts all possible 

interactions for each entity without considering their constraints: Initialize (I) → 

𝐼𝑖𝑛𝑖𝑡
𝑘  (𝐸𝑖)|(𝐸𝑗).  

In the next step, both role-based constraints and intrinsic object-based 

constraints will be extracted and applied accordingly over the interaction between the 

two entities.  Entity constraints are extracted using Const (Ik) and applied to the 

interaction parameters. As a result, possible interaction parameters for I (Ei, Ej) are 

determined, Const (Ik) → 𝐼𝐶
𝑘 (𝐸𝑖(𝑐𝑖𝑢), 𝐸𝑗(𝑐𝑗𝑣)).  

The policy translator then extracts possible interaction parameters permitted by 

the system policy statement (P). In our testing model, we define several predefined 

general security policies for each scenario. Then, at the final stage, the program calls 

SysPolicyapplier() to apply policies on 𝐼𝑐
𝑘(𝐸𝑖 , 𝐸𝑗)  and get all possible interaction 

parameters:  PolicyInterpreter (P) → (Msys, Rsys, Asys, tsys), Policy (Ik, req) → 

𝐼𝑝,𝑐
𝑘 (𝐸𝑖, 𝐸𝑗). 
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 As depicted in Table 4.5, the first and second columns show values of the VM 

and the storage entities interaction parameters after their constraints have been 

applied. The third column shows the interpretation of the system policy on object 

interaction parameters. The last column shows all possible interactions between the 

two entities as determined by the allowable interaction parameters after all constraints 

and system policies are considered. The results indicate that the only allowable actions 

are Re, W in an allowable pair of (m1, d2) mode of interaction between the VM and 

the storage entities within the cloud system.  

In our system, we consider t as an acceptable duration time that interaction can 

take place. For violation detection, the security controller calls algorithm 4.2. It 

analyses the coming request and extracts required parameters and calls 𝑆𝑡𝑎𝑡𝑒  (𝐼𝑟𝑒𝑞
𝑘 ). 

During this phase, the requested interaction statement requests the removal of a file 

from the storage object requested by the virtual machine at the same level. 

Table 4.5 Collected data from the controller for VM-Storage interaction 
 I-Object 1 I-Object 2 SysPolicy  𝑰𝒑,𝒄

𝒌  

M (m/d) (m1, d1) (m1, d1) (m1, d2) (m1, d2) 

R Cloud Cloud cloud cloud 

A Re, W, D Re, W Re, W, Cr, D Re, W 

T 600ms 600ms 300ms 300ms 

 

The program translates the coming request, which detects the delete violation 

as delete action against 𝐼𝑝,𝑐
𝑘 . It raised a security alarm, indicating a violation of the 

requested interaction. For violation prediction against possible attacks, the system will 

call algorithm 3 to predict possible violations against the parameters of 𝐼𝑝,𝑐
𝑘 .  

The system calculates possible violation parameters relative to allowable 𝐼𝑝,𝑐
𝑘  

parameters. In this case, interaction actions except for Re, W are considered as action 

violations. More importantly, this algorithm can enumerate all possible interaction 

violations between two entities (those not allowable by 𝐼𝑝,𝑐
𝑘 ) by systematically going 
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through the mode, the positional relationship, the action, and the time parameters of 

the interaction.  

For example, if we keep all parameters except the mode parameters fixed, we 

can declare that other modes except m1 and d3 are potential (or predicted) violations. 

Similarly, the system considers any positional relation except cloud as a security 

breach and stores the data. An insider/outsider request that involves any of the 

predicted violation parameters will be investigated in anticipation of potential security 

breaches: ISVP (𝐼𝑝,𝑐
𝑘 )→V (𝑉𝑀, 𝑉𝑅, 𝑉𝐴, 𝑉𝑡) (Figure 4.12).  

 

 
Figure 4.12 Implementation results for VM-Storage interaction 

We executed various tests according to various scenarios to show expected 

results. Table 4.6 reveals some result samples that the security controller captured by 

performing many cases. In the table, Int reveals validated parameters expected after 

running the PdI () algorithm. After running the ISVD () algorithm, it shows the results 

using the Act parameter (s: safe, v: violate). We monitored our system's performance 

according to the number of interactions that are triggered within the system from any 

resources, the detection processing time, and the time until the system detects the 

status of the requested interaction.  
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Table 4.6 Expected results of the simulated scenarios 

VSF ID Src. Res. Int. 
Init 

Int. 
Act. P. 

Id 
exe
c M R A t 

VSF 6 VM Storage SC (m1, d3) Cloud Re, 
W 3000ms s 3 Y 

VSF 3 User Storage SC (m4, d3) Tenant Re, 
W 900ms v 3 N 

VSF 2 Storage APP UR (m1, d1) Cloud Md 10500
ms v 22 Y 

VSF 9 User App AT (m4, d2) 
Re-

source Md 1000ms v 23 Y 

VSF 7 VM Storage SC (m2, d2) Tenant Re, 
W 800ms s 30 Y 

VSF 11 App Storage SC (m5, d2) 
Re-

source 
Re, 
W 600ms v 13 N 

VSF 8 Net VM UR (m4, d1) Tenant Ex, 
Re 600ms s 19 N 

VSF 22 Storage VM AT (m1, d2) Cloud Re 300ms v 22 N 

 

Figure 4.13 illustrates the system's average decision processing time in dealing 

with various interactions from different resources. The number of interactions is the 

average of the decision processing times for all three defined types of interaction. 

Figure 4.14 represents the relation between several interaction classes within the SDS2 

security controller software. 
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Figure 4.13 Performance monitoring according to interaction detection processing time 

 

 
Figure 4.14 Overview of SDS2 interaction classes 
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4.7 Summary 

This chapter has taken a novel approach with the proposed Policy-based 

Interaction Model to provide isolation within the cloud infrastructure. The proposed 

model introduced a dynamic construction of security boundaries based on our 

constructed interaction model and its parameters. An intelligent security algorithm 

called ISVDP is developed to provide proactive detection and prediction in relation to 

the interaction parameters to secure cloud resources. Security policy rules pertaining 

to entities and their location are further applied to the interaction parameters to 

determine the overall validity of the participating entities interaction. To the best of 

our knowledge, the policy-driven interaction model is the first in a new direction for 

combatting security incidents systematically. 
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Chapter 5 
 

5 Sec-MANAGE Protocol 

5.1 Introduction 

In chapter 3, we proposed a software-defined security service (SDS2) model. 

The proposed model contains specific virtual security functions (VSFs) to act as an 

interaction monitoring component within the system. A security controller manages 

VSFs within the software-defined security network. Clearly, an efficient protocol is 

required between the controller and the VSFs for management and control purposes. 

To manage and control these VSFs in accordance with the SDN/NFV principles, the 

security model required an efficient but light-weight protocol to transfer the 

interaction values.  

Traditional IP networks rely on switches and routers to relay packages 

according to their routing table entries. Separating flows from others that belong to a 

specific destination requires a large number of identifying parameters in networking 

systems. SDN uses OpenFlow protocol for communications between the network 

controller and the switches. However, the protocol is heavy and rigid due to the nature 

of routers and switches and the requirements of end-to-end flows. It requires 12 

matching parameters to identify a flow and a take a complex set of actions. Clearly, 

not all these parameters are required by the SDS2 for communicating security 

interaction information between the security controller and a VSF. Additionally, VSFs 



 

151 | P a g e  

 

are not endpoint routing devices, and hence complex configuration and routing 

features are irrelevant.  

OpenFlow protocol was introduced to standardize communication between 

network functions (switches, routers) and their centralized OpenFlow Network 

controller. Moreover, SDN OpenFlow also needs other protocols like OF-Config to 

configure networking devices. These protocols combine for managing routing, 

configuring, and other network functions. OpenFlow and OF-Config are explicitly 

designed for flow-based SDN switches; they are totally ineffective for resource-

constrained devices or specific virtual functions because of their different nature.  

This chapter proposes a Sec-Manage protocol that provides a solution for 

controlling and managing security functions. The Sec-Manage is designed to 

configure VSFs and control the behavior of the underlying virtual security resources. 

This chapter investigates the design and implementation of the Sec-Manage protocol. 

This work has been published in Cyber Security in Networking Conference in 

Switzerland. 

This chapter is organized as follows. Section 4.2 presents a brief description of 

SDS2 security service and proposed interaction model (chapter 3 and 4). Section 4.3 

presents the proposed Sec-Manage protocol. This section demonstrates the design of 

the Sec-Manage components and required messages. Section 4.4 presents an 

evaluation of the proposed Sec-Manage protocol in managing the VSFs. Section 4.5 

concludes this chapter.  

5.2 Software-Defined Security Service (SDS2) and 

Interaction Model 

This section provides a brief review and summary of the SDS2, the security 

controller's role in managing its VSF network, and the policy-based interaction model. 
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To reap the benefit of SDN and NFV paradigms, the SDS2 model is structured 

in three main layers, the security application layer, the security control layer, and the 

security data layer. The security application layer contains security applications and 

interfaces. The developers can deploy their security policies and applications 

regardless of the knowledge about the underlying security functions through a 

Northbound API.  

The security control layer accommodates the security controller and its 

components. Its functions interpret security requirements, like security policies, and 

analyses interaction parameters based on the interaction model. The security 

controller directs security policy rules, interaction parameters, and instructions to 

VSFs through the Sec-Manage protocol. The security data layer hosts virtual security 

functions (Figure 5.1) 
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Figure 5.1 SDS2 three layers 

5.2.1 SDS2 Security Controller 

The SDS2 security controller is responsible for i) processing security 

interactions, ii) initiating, controlling, and managing virtual security functions, iii) 

analyzing security interaction parameters to be sent to its VSF, iv) monitoring and 

initiating interactions security policies. To handle those responsibilities, the SDS2 

security controller hosts several essential modules known as VSF Manager, Sec-Net 

control, Security DB, Security Policy Manager, and Interaction Detection/Prediction 

Manager.  
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The security controller initiates a VSF when the task of monitoring a specific 

interaction is needed. The security controller interprets interaction security 

requirements through its interaction analyzer function. It then sends instructions and 

extracted interaction parameters to the assigned VSFs through the Sec-Manage 

protocol, as depicted in Fig 5.2. 

 
Figure 5.2 SDS2 Security controller and Sec-Manage protocol 

5.2.2 SDS2 Policy-based Interaction Model 

We proposed an innovative SDS2 Policy-driven Interaction model to detect and 

predict security breaches in our earlier work. The proposed model was defined based 

on parameters that control actions amongst entities in cloud infrastructure. The 

interaction was defined as “an act of performing an action by an object on another.” 

The model places a particular focus on object interactions as they play a critical role 

in security incidents within a system. According to the proposed policy-based 



 

155 | P a g e  

 

interaction model, a security violation occurs due to an observed interaction against 

defined security policies governing the relationship between involved entities.  

The SDS2 proposed the policy-based interaction model as a security defense 

against interaction violations in the cloud system. The interaction model is governed 

via security policy expressions.  

The interaction model relies on different security constraints to protect cloud 

infrastructure. It describes how entities interact with one another and relies on an 

object model of interaction defined with four main parameters: Mode (M)- possible 

modes between entities for an interaction; Positional Relationship (R)- possible 

potential relations between entities for an interaction according to role-based level; 

Action (A)- possible actions between entities over an interaction; and time (t)- the 

valid time-duration of an interaction.  

The Mode consists of two parts, including the n:m mode relationship between 

entities and the action direction from one object to another. The Positional 

Relationship regulates an interaction action's validity via rules, roles, layers, and 

policies applied with entities involved in an interaction. The interaction time refers to 

an interaction’s valid time. The Action is a possible set of actions over an interaction. 

A set of values defines each parameter. Security policies govern the validity of 

interaction parameters. The proposed model introduced Interaction Security Violation 

Detection/ Prediction (ISVDP) algorithms in relation to the defined interaction 

parameters.  

The interaction model and its exclusive parameters enable VSFs to monitor 

relevant parameters required for security violation detection and prediction 

algorithms. For this purpose, the SDS2 security controller requires to communicate 

with a VSF for security data. The VSF monitors the targeted interaction and uses the 

Sec-Manage protocol to supply interaction data to the security controller. Figure 5.3 

illustrates an overall view of the Sec-Manage functionality between the security 

controller and VSF. In the section, we detail how to obtain required values related to 

the interaction model for VSF. 
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Figure 5.3 Interaction and Sec-Manage Protocol 

5.3 Sec-Manage Protocol Design 

The Sec-Manage protocol is designed in the style of OpenFlow [3] and OF-

Config [10] but for virtual security functions according to our policy-based interaction 

model for security services. OpenFlow protocol concentrates on flow rules in terms 

of modifying, deleting, adding, and setting rules to control OpenFlow switches 

behavior. However, what is required by the SDS2 security model, is not only a 

streamlined communication protocol that handles both configuration and management 

of VSFs but also a channel for exchanging parameters-specific to the security policy-

based interaction model. The Sec-Manage protocol enables controllers to send the 

required instructions to profile the VSF behavior dealing with an interaction.  

The protocol permits controller to 1) communicate with VSFs; 2) configure the 

forwarding and config-table entries; 3) send security instructions to the security 

functions; 4) dynamically program VSFs; 5) get status information of a VSF; 6) 
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collect information regarding the security parameters collected by VSF during an 

interaction.  

The Sec-Manage protocol determines message types between SC-VSF/VSF-

VSF, the forwarding and config table structure, and message formats. It also specifies 

how a VSF reacts and operates over an interaction.  

The protocol also allows VSFs to 1) communicate with the security controller; 

2) send security warning to SC; 3) send its statistics and state to update security 

controller VSFs’ database; 4) intelligently communicate with other VSFs. 5) update 

required interaction parameters; 6) send detection and prediction results back to the 

security controller.  

Figure 5.4 demonstrates the connectivity phases between a VSF and the SC. The 

first step establishes the connection between the security controller and the VSF. Then 

it sends a hello packet to authenticate the VSF/s. After that phase, the SC configures 

and manages the VSF until the end of its chain cycle. The details of protocol design 

and its message types are described in the following section. 

 
Figure 5.4 Connection establishment 
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5.3.1 Sec-Manage packet header 

The protocol also allows VSFs to 1) communicate with the security controller; 

2) send a security warning to SC; 3) send its statistics and state to update security 

controller VSFs’ DB; 4) intelligently communicate with other VSFs. 5) update 

required interaction parameters; 6) send detection and prediction results back to the 

security controller. Figure 5.5 shows the Sec-Manage header and payload. 

 
Figure 5.5 Sec-Manage Header and payload 

 

Fig 5.6 demonstrates the structure of the Sec-Manage Header. The packet 

header consists of:  

• Source Address (2 bytes): Shows the address of the source sending a packet 

• Destination Address (2 bytes): Shows the destination address of the packet  

• Type (1 byte): Specifies the packet type 

• Hop count (1 byte): Specifies the number of valid hops that a message can travel 

within our virtual security network  
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• Validity Time (1 byte): Demonstrates the valid time in which a packet can exist 

and travel in the system. If SC or VSF receives the packet with validity time=0, 

the packet will discharge immediately 

• Message-ID (1 byte): Presents unique ID provided to each message which 

identifies the message type 

• Priority Flag (2 bytes): Shows the priority of message in terms of receiving 

instruction or performing actions 

• Packet length (2 bytes): Specifies the total size of the packet, including both header 

and payload  

• Interaction ID (2 bytes): Refers to the ID of the requested interaction  

• Sec-Controller ID (2 bytes): Indicates the ID of the security controller that initiates 

the VSF.  

 
Figure 5.6 Sec-Manage Protocol Header 

5.3.2 Message types 

The different types of messages are transferred within the payload. Each 

message carries different information between the SC and its VSFs. However, to 

achieve our goal, we categorize three main messages as required to be sent via Sec-

Manage protocol: i) Security Controller (SC) to VSF- messages direct from SC to 

security functions; ii) VSF to Security Controller- messages sent from security 
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functions to the controller; iii) VSF to another VSF- messages transfer between 

security functions in same/different domain.  

The proposed protocol grouped the message types into three categories 1) SC-

to-VSF; 2) Symmetric message (VSF/SC, SC/VSF); 3) Asynchronous message 

(VSFs-to-SC). The security model minimized the number of messages transferred due 

to security agility reaction to security incidents (Figure 5.7).  

 
Figure 5.7 Sec-Manage message types 

❖ SC-to-VSF messages  

The security controller triggers these types of messages. The messages can be 

considered as send/receive or send only messages. In send/receive, the security 

controller expects the bulk of information to be sent back from the VSF, while in sent 

only, the security controller does not expect a response. These messages used to be 

sent to configure and manage VSFs. Required messages to be exchanged between SC-

VSF are defined as follows: 
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• SetSecConfigInstruction/SetSecForwardActionInstruction: It enables the security 

controller to query and set configuring/forwarding parameters on VSF. The VSF 

is expected to send a reply only in case of requesting a configuration from the 

security controller 

• ModifySecConfiguration: The security controller can modify VSF configuration 

values  

• ModifySecEntries: The security controller can modify entries parameters within 

the VSF 

• SecRequestState: The security controller request to collect statistics on VSF status 

and its functions  

• SecReplyState: The VSF sends this message to the controller as a response to 

SecRequestState  

• SetSecPolicyInstruction: The message is for the security controller to set/update 

policies related to VSF  

• SecRequestFeature: The security controller collects VSF information related to its 

action, interaction prediction parameters, VSF’s status, VSF’s connectivity.  

❖ Symmetric message (VSF/SC, SC/VSF)  

These types of messages will be initiated by either the security controller or the 

VSF during a connection setup without solicitation. The message is sent during the 

lifetime of VSF for notification purposes.  

• SecHelloMessage: The hello messages are exchanged between the security 

controller and VSFs to verify their liveness during a periodical time slot.  

• SecErrorMessage: Sent from VSFs to the security controller in case of fail request 

configuration or security function malfunctioning.  

❖ Asynchronous message (VSFs-to-SC)  

VSF initiates these types of messages to inform the security controller in case 

of any update or event/state changes. A VSF sends these messages without a security 
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controller soliciting them. It enables the VSF to report changes regarding object 

interaction and the monitoring state back to the security controller.  

SecPacket-in Report: Reports on the status of VSF and its behavior in handling 

the interaction. It updates the security controller regarding applied changes.  

• Inform the security controller on interaction status 

• Update the security controller on its RequestedFeature Report changes 

• Notify security controller on the discovery of any types of entry confliction 

• Inform the security controller about the completion interaction monitoring process 

• Alert the security controller in case of malicious modification 

• Update security controller in case of dynamic changes of its actions related to an 

interaction inquiry 

• Update the security controller on predicted interaction parameters 

ConfigurationRequestReport: It enables a VSF to request handling an 

operation that does not match its instructions. The VSF informs the security controller 

regarding upcoming interactions with no existing instruction to be handle.  

5.3.3 Forwarding Interaction Table Specification 

The table entails three main components: Interaction Matching, Instruction, and 

Counters, as presented in Figure 5.8. The interaction matching window is matched 

against the upcoming interaction field in the Sec-Manage header field. Corresponding 

actions in the instruction window will take place in case of a match. The counter 

window describes the statistics of matching entry. 

1. Interaction matching: Provides matching information extracted from arriving 

interaction packet header. The window is comprising of three parameters.  

• Match ID: Specifies the ID of matching interaction. It matches an incoming 

interaction packet with a matching field in the header.  
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• Interaction Match: Indicates which field of header requires to be matched in the 

interaction matching window. So, not all header fields are required to be matched, 

and less matching process is performed to find the match.  

•  Opr: Indicates a comparison between the matching header and interaction 

matching value. The values can be considered as equal (=), and different (!=).  

2. Instruction: Specifies the corresponding action to be applied to interaction entries. 

It is composed of two parameters.  

• Action (Act.): provides types of action to be executed according to matching 

interaction. In this table, we defined types of action to be considered such as 

Forward, Modify, Block, Drop, continue [11]; Continue: continue the interaction 

process. 

• Value (Val.): Indicates the value of an action.  

 
Figure 5.8 Interaction Forward table structure 

3. Counter: Collects the data and statistics in terms of updates/any changes in 

interaction entries and matched entries.  

• Count: Reveals a number of interactions matched against table entries. Counters 

are maintained for interaction entries and statistics parameters.  

• Priority: Indicates the priority of matching entries and their action. It is used in 

case of multiple actions which are possible related to entries.  
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5.3.4 Config Interaction Table Specification 

The table entries provide instructions on how a VSF handles an interaction. The 

table structure consists of two main components: Config Instruction and Statistics 

(presented in Figure 5.9).  

1. Config Instruction: Includes three main components: Interaction Action, 

Request VSF, and Interaction Conditions.  

• Type: Indicates valid action/s type applied to an interaction entry in the table.  

• VSF ID: Specifies the VSF/s connected with the interaction entry.  

• Interaction Condition: Indicates matching conditions applied to the interaction 

entry.  

• Src: Specifies the source object in the interaction and related constraints.  

• Dest: Specifies the destination object in the interaction and related constraints.  

• P.ID: Directs to policy parameters assigned to interaction entry (local/general 

policies).  

• Loc: Indicates conditions related to the location of the source, destination, and 

interaction. 

• Res: Specifics conditions related to resource/s involved in an interaction.  

 

2. Statistics: Provides statistics data on the interaction entry. The statistics will be 

updated after a match discovery.  

• Int.ID: Indicates interaction/s assigned to a VSF.  

• Start time (St. Time): Shows the exact starting time of interaction.  

• Counter: Shows the number of changes within a specific time.  

• Validate time (Val. Time): Specifies the valid time of the target interaction, 

defined by the SC according to the applied policies. When it is 0 the interaction 

entry is expired.  

• Executed: Specifies if an action has been executed.  
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Figure 5.9 Interaction Config Table 

• Config table in software 

Establishing a config interaction table required several classes displayed in 

figure 5.10. The displayed classes are forming an entry table within the config 

interaction table. 

 
Figure 5.10 Interaction configuration table class of diagram 
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5.4 Implementation and Performance Evaluation 

5.4.1 Implementation Set up 

To demonstrate the proposed Sec-Manage protocol's performance, we develop 

our environment where our Sec-Manage protocol can manage and control our 

underlying interaction-based virtual security functions. We deployed a testbed using 

two Ubuntu 14.04 VM running on top of the OpenStack cloud platform. A security 

controller is software written in Java. The whole environment is running on top of the 

VMware virtual environment.  

Specifically, this section demonstrates 1) the feasibility of Sec-Manage as an 

effective communication protocol between the SC and its VSFs in a virtual security 

network; 2) the capability of Sec-Manage in supporting our policy-based interaction 

protocol for security violation detection and prediction. The results demonstrate how 

the controller configures its virtual security function using Sec-Manage protocol using 

the VSF’s forwarding and config tables.  

The results also demonstrate that the protocol allows the security controller to 

direct its virtual security functions to monitor targeted object interaction and collect 

interaction data for the security violation and detection algorithms. Our 

implementation prototype is shown in Figure 5.10. To test the proposed protocol, a 

number of interactions are triggered to access a specific resource. The security 

controller is to look into this interaction request. Figure 5.11 demonstrates the process 

of connection between Client and Controller. 
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Figure 5.11 The implementation of the prototype 

The software modules consisting of security controller, southbound interface, 

virtual security representation in charge of the SDS2 security controller, the Sec-

Manage protocol, and VSFs. The security controller includes classes responsible for 

extracting required interactions and policy parameters, orchestrating underlying 

interaction-based virtual security functions, networking, and communication between 

the security controller and VSFs. The southbound interface module consists of classes 

for our proposed Sec-Manage protocol, including messages, interaction forwarding, 

and config tables. The virtual security function modules consist of java classes 

representing the VSF.  

A database was established as a built-in DB within the security controller to 

store and update information regarding VSFs locations, interaction and policy 

parameters, status, and attributes of VSF.   

 

 



 

168 | P a g e  

 

5.4.2 Performance Evaluation 

According to the triggered interaction and its domain/ location, the security 

controller initiates a VSF. It then sends SetSecConfigInstruction / 

SetSecForwardActionInstruction message to VSF via Sec-Manage. The requested 

interaction contains a set of parameters. The request parameters indicate the required 

resources, identification of interaction (Int. ID), interaction actions (ACT.), source ID, 

started time, security controller ID (Sec-ID).  

Targeted interaction contains potential interaction parameters and user 

privileges. The security controller then extracts the targeted interaction according to 

its tangled resources and analyze required security policies. The Sec-Manage protocol 

transfer interaction parameters through the Int.ID that includes essential interaction 

parameters. It also transfers the required policy parameters by the P.ID parameter. The 

Sec-Manage enables VSFs to report back the results of interaction security violation 

monitoring. The following figures demonstrate the forwarding table, config table, and 

security controller service table. The security controller service table shows the list of 

VSFs and their status during and after an interaction. Figure 5.12 shows a client 

request script to be sent to the controller. 

 
Figure 5.12 Client sending request to the security controller 
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The figures follow two main scenarios: 1) indicates the tables before 

configuration 2) demonstrates tables record after configuration. The security 

controller uses a random number allocation for its functions to record their activities.  

Figure 5.13 and 5.14 illustrate the security controller service table before and 

after initiating a VSF. For the first time that the security controller receives an 

interaction, the table has no record store inside. 

 
Figure 5.13 Current Service Table 

 

 
Figure 5.14 Security controller service table after receiving an interaction 

The VSF ID is a unique identifier assigned to each VSF. The VSF Loc shows 

the location that VSF is placed to monitor the targeted interaction. The VSF St. 

displays the current status of the security function within the system. The VSF status 

can be on, off, expire, idle, or delete.  

After analyzing the interaction and its involved entities, the config table will be 

configured accordingly. Figure 5.15 and 5.17 demonstrate results before VSF 

configuration. Figure 5.15 and 5.16 demonstrate the Config table before and after the 

configuration. 
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Figure 5.15 VSF Config Table before 

 
Figure 5.16 VSF Config table after configuration 

Figure 5.17 and 5.18 exhibited the VSF forwarding table before and after the 

configuration. 

 
Figure 5.17 Current VSF forwarding table 

 
Figure 5.18 VSF Forwarding table after configuration 

Through Sec-Manage, the SDS2 security controller can handle multiple 

interactions and orchestrate VSFs to process the requests. Figure 5.19 demonstrates 

the configuration and forwarding table from the Device-level side. It shows the 

configuration of VSF in relation to various triggered interactions within the system. 
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Figure 5.19 SDS2 GUI interface demonstrating multiple interaction forwarding and 

configuration records 

5.5 Summary 

This chapter proposed designing and implementing the Sec-Manage protocol to 

address challenges in providing an effective communication channel between the SC 

and VSFs for security violation and prediction based on the policy-based interaction 

model. The Sec-Manage protocol provides streamlined and effective communication 

between the security controller and its virtual security function/s in the underlying 

virtual security network. It is also tailored to our proposed policy-based interaction 

model to collect and transfer the interaction parameters to the software-defined 

security controller to manage, detect, and predict security violations in the cloud 

system. The Sec-Manage protocol enables the SDS2 controller to control the VSFs 

dynamically. The proposed protocol paves the way for further research and 

deployment on orchestration and deployment of virtual security function and 

interaction security violation monitoring and prediction. 
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Chapter 6 
 

6 Software-Defined Security 
Service Architecture and 

Components 

6.1 Introduction 

Cloud computing has become an alternative IT infrastructure where users, 

infrastructure providers, and service providers all share and deploy resources for their 

business processes and applications. Business customers are shifting their services 

and applications to cloud computing since they do not need to invest in their own 

costly IT infrastructure but can delegate and deploy their services effectively to cloud 

vendors and service providers [137]. In parallel to cloud computing, the software-

defined networking (SDN) paradigm has enabled the automation of virtual networks 

and network management with centralized control. Network functions virtualization 

(NFV) pushes the concept even further by allowing virtualization (software 

implementation) of network functions, traditionally realized by hardware, and 

deploying them on commodity computing devices. Specifically, the SDN principle 

decouples the network control plane from its data plane. The SDN enables providers 

with the capability of provisioning automatic and on-demand network services 

through a programmable and logically centralized network controller.  
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In this chapter, we introduce our software-defined security architecture. The 

chapter describes the main component of SDS2 architecture, the SDS2 security 

controller.  This chapter mainly concentrates on demonstrating SDS2 architecture 

working alongside its main components via the SDS2 security controller. The SDS2 

architecture provides functionalities for SDS2 service to be performed in the cloud 

environment to protect virtual resources. The architecture enables automation, 

programmability, and on-demand underlying virtual security functions. The Policy-

based Interaction model to protect the cloud resources in an innovative method has 

been discussed in chapter 4. The architecture introduces the core components and 

enables management and orchestration of VSFs by Sec-Manage protocol, discussed 

in chapter 5. The architecture has been published in [37, 134]. The architecture 

consists of different main components and three main layers as displayed in Figure 

6.1. 

 
Figure 6.1 SDS2 Layers 

The remainder of this chapter is organized as follows. Section 6.2 describes the 

overall SDS2 architecture. Section 6.3 presents the structure and functionalities of the 

SDS2 security controller. Section 6.4 describes the software implementation of the 
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SDS2 controller. Section 6.5 demonstrates an implementation scenario. Section 6.6 

demonstrates the working of the SDS2 security controller as the main component of 

SDS2 architecture. According to the interaction model, this section demonstrates 

performance evaluation related to the SDS2 security controller's ability to orchestrate 

virtual security functions. Section 6.7 concludes this chapter.  

6.2 Software-Defined Security Service (SDS2) Architecture  

Reflecting on the model and service aspects discussed in the earlier section, we 

propose a Software-Defined Security Service architecture (SDS2) to support SDSec 

Service that can be deployed by cloud providers to protect its integrated cloud 

infrastructure. The proposed architecture embraces the SDN and NFV principles. To 

reap the benefits of SDN and NFV paradigms, the SDS2 architecture is structured in 

three security layers: Security Application Layer, Security Control Layer, and 

Security Infrastructure/data Layer. The proposed SDS2 architecture is shown in figure 

6.2.  

The SDS2 deploys the very virtual resources of the cloud to provide its 

protection service. It behaves like a trusted tenant overseeing and providing the 

security service for the cloud infrastructure. SDS2 belongs to the new software-

defined approach that manages security by separating the security forwarding and 

processing plane from the security control plane. The SDS2 utilizes concepts and 

techniques of cloud, SDN, and NFV. 

Applying the NFV concepts for security, virtualization technologies are used to 

implement virtual security functions (VSFs) on a VM or industry-standard commodity 

hardware. These virtual security functions can be created on-demand and moved to or 

instantiated in strategic locations in a software-defined dynamic virtual network 

environment. Applying the SDN concepts for security, network virtualization is 

deployed to provision virtual security networks (VSNs) connecting virtual security 
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functions. A logically centralized SDSec controller forms a domain-wide view of the 

underlying network of virtual security functions. The SDSec controller can program, 

configure, and control the VSFs autonomously. Applying cloud computing concepts 

for security, physical storage, network, and computing resources are virtualized to 

accommodate virtual network functions, virtual security networks, and virtual security 

storage. The cloud platform is used for orchestrating the provisioned security 

components to provide security services for the target cloud infrastructure.  

 
Figure 6.2 SDS2 Architecture overview 

The proposed security architecture decouples security functions and security 

networks from the underlying infrastructure. The software-defined security 

architecture centres around an Interaction model among objects to detect and predict 

security breaches. It relies on the proposed Security Policy-Based Interaction Model, 

which utilizes virtual security functions (VSFs) within the software-defined security 

network. The security architecture consists of three main components: Security 

Controller, Virtual Security Functions (VSF), and a Sec-Manage Protocol. In this 

section, we discuss the main functions in detail. The SDS2 deploys the very virtual 

resources of the cloud to provide its protection service. It behaves like a trusted tenant 
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overseeing and providing the security service for the cloud infrastructure. SDS2 

belongs to the new software-defined approach that manages security by separating the 

security forwarding and processing plane from the security control plane.  

Figure 6.2 is the overview of SDS2 architecture. It comprises three main planes: 

the security application layer, the security control layer, and the security 

infrastructure/data plane. At the top of security architecture, there are a diversity of 

security APPs developed by third parties. The middle of the architecture consists of a 

security controller and its main modules. The architecture's bottom is the security data 

plane, including virtual security functions and their connectivity through Sec-Manage 

protocol. An implementation of a platform that deploys the architecture is detailed in 

chapter 7.  

With the proposed SDS2 architecture, we address four significant contributions: 

i) providing automation, orchestration, and configuration of virtual security functions 

in a cloud infrastructure, ii) programming on-demand virtual security functions, iii) 

enabling intelligent, proactive security system protecting cloud resources, iv) 

deploying intelligent, dynamic and on-demand security boundaries for cloud 

resources according to cloud’s entities interaction model. An SDS2 security 

architecture is composed of three main layers/planes. 

Security Application Layer Security applications are found in this layer. This 

layer communicates with the SDS2 security control layer through an intent-based 

security northbound interface that allows applications/orchestrators to express their 

required security services regarding their application-specific requirements, including 

security policies rather than their systems' structure/services. 

Security Control layer This layer includes an SDS2 security controller, which 

has a complete view over its VSFs and their interconnectivity within the cloud 

infrastructure. It is essential to differentiate the SDS2 security controller from SDN 

controller where security controller deals only with security services, security 

functions, and their private virtual security network. In another word, SDN controller 

construct dynamic connectivity among virtual network functions while SDS2 security 
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controller mainly concentrates on providing on-demand security services for cloud 

resources protection.   

The SDN controller deals with creation of dynamic networking for underlying 

network functions. The security controller consists of various components, and each 

is responsible for a specific task. Since the SDS2 controller has a global view over the 

system, it can construct appropriate responses to security incidents in real-time. 

 Security Data Layer The virtual security functions (VSFs) are placed in this 

layer and communicate with the SDS2 controller through a specific protocol. A simple 

protocol has been designed to program, configure, and manage VSFs and allow them 

to report their operational status to the controller. It includes the intelligent and 

dynamic networking communication mechanism and the link between the controller 

and VSFs and even among VSFs. It should be noted that VSFs are not switches or 

routers; they only perform their defined security functions and relay their data/status 

to their controller and other VSFs when directed, such as in chaining operations. 

6.2.1 Virtual Security Function (VSF) 

The VSF is a security element or function implemented in software and 

deployed on a virtual resource such as a VM in a physical server (host). It is a 

generalization of NFV VF that abstracts a physical security appliance and is deployed 

on a commodity server. 

A VSF is created to perform a specific security function. It is a software object 

that can be created, instantiated, and operated on any VM. A VSF is a software entity 

with a life cycle starting from the instant when it is created through its operation and 

its termination. A service chaining function can chain VSFs to create a new security 

function. It can also be combined with others to create complex security functions. 

Typical VSFs include firewalls, virus scanners, intrusion detection systems, security 

gateways, and in-depth packet inspections. Other functions include policy/rule 

checkers, and security metric meters. In the proposed SDS2 architecture, the primary 
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function of a VSF is to intelligently monitor the requested interaction according to 

proposed interaction parameters (depicted in Chapter 4).  

6.2.2 Sec-Manage Protocol 

The key purpose of the proposed protocol between SDS2 Security Controller 

and VSFs is to transfer security messages and interaction parameters between a 

security controller and its VSFs. The Sec-Manage protocol is proposed as a bridge 

between the security controller (SC) and the VSFs to transfer interaction values 

according to the SDS2 Interaction Model. The main aims of designing the Sec-Manage 

protocol are 1) to provide direct communication between the SDS2 security controller 

and its VSFs and 2) to transfer the parameters pertinent to the security aspects of 

objects’ interaction between a VSF and the SC to monitor parameters of an interaction 

to detect and predict security violations. The proposed Sec-Manage protocol is 

described in chapter 5.   

6.2.3 Policy-based Interaction Model 

The software-defined security architecture centers around an interaction model 

among objects to detect and predict security breaches, relying on the proposed 

Security Policy-Based Interaction Model, which utilizes virtual security functions 

(VSFs) within the software-defined security network. 

The policy-driven interaction model governs the interactions among entities in 

a cloud environment. The interaction model and its unique parameters have been 

developed for agile detection and prediction of security threats against cloud 

resources. The model deals with external and internal interactions among entities 

representing diverse participating elements of different levels of complexity in a cloud 

environment. This component has been described in detail in chapter 4.  

 



 

179 | P a g e  

 

6.2.4 SDS2 Security Controller 

Like an SDN controller, the SDS2 controller is the whole security system's brain, 

controlling its components and operations. It has a global view of its virtual security 

network and interconnected virtual security functions. The SDS2 security controller 

consists of multiple components which mainly deal only with security functions and 

security services.  

The SDS2 controller has a complete topological graph of the connectivity of its 

virtual security functions (VSFs), allowing it to construct appropriate responses to 

attacks in real-time. The controller will construct service chaining of VSFs to create 

new security services to address emerging threats. Security intelligence is logically 

centralized in the software-based controller that maintains the global view of the 

security network. Hence, the global view of the security status of the protected system 

appears to the security applications and policy engines as a single security element. 

The SDS2 security controller must be able to construct essential services and compose 

complex services into new services based on the capability of its underlying network 

of virtual security functions. The security controller is programmable. It configures 

and manages all virtual security functions under its control through its virtual security 

network using a Sec-Manage protocol. The SDS2 allows the security Network 

manager alongside with the virtual security function manager to configure, manage, 

secure, and optimize network security resources (VSNs and VSFs) quickly via 

dynamic, automated programs. 

The basic set of components of the SDS2 security controller may consist of 

entity security policy-driven manager (ESPM), security policy manager (SPM), 

policy-based interaction manager (PIM), virtual security function manager (VSFM), 

the security network manager (SNM), interaction request manager (IRM), interaction 

detection and prediction engine (IDPE). Figure 6.3 demonstrates some of the main 

components within the SDS2 Security controller. 
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Figure 6.3 overview on SDS2 major components 

Security Policy Manager (SPM) System security policy-related activities are co-

located in this module. This module provides security policy parameters related to 

general policies transferred from provided system policies. Security policies define 

the desired behavior of the heterogenous application, systems, networks, and any type 

of object within the system. General policies apply to all requests within the system.  

Entity security policy-driven manager (ESPM) It provides specific policies 

related to each entity during an interaction. This module focuses on policies applied 

to each entity according to their features and nature. This module is responsible for 

extracting and translating local policies. Local policies apply separately to each entity 

and their interactions within the system according to their location and assigned 

constraints. 

Policy-based interaction manager (PIM) It manages security policies applied to 

each interaction. It is responsible for triggering intelligent algorithms to detect and 

predict security violations according to interaction parameters.  

Virtual Security Function Manager (VSFM) This component is responsible for 

creating a specific interaction software-based virtual security function (VSF). It 

orchestrates specific VSFs to provision on-demand security services within the 

security system. VSFs are created and positioned in critical locations of the 

infrastructure. Each VSF is launched as a specific security function such as firewall, 
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security gateways, in-depth packet inspections (DPI), intrusion detection systems, or 

a mission-specific software-based security agent. These VSFs are dynamic, on-

demand, and intelligent. Their primary responsibility is to detect security breaches 

through monitoring possible penetration doors for attacks from diverse aspects based 

on interaction parameters. The SDS2 uses NFV technology for the creation of its 

VSFs. 

Security Network Manager (SNM) This component is responsible for creating 

and managing the dynamic Virtual Security Network (VSN). It is responsible for 

providing a direct communication path between the security controller and VSFs or 

vice versa. A streamlined protocol is deployed for routing security messages between 

VSFs and SDS2 security controller/other VSFs. It uses Sec-Manage protocol to 

transfer the required interaction parameters and policies between both security 

controllers and VSFs. The small routing table is created inside each VSF consisting 

of IP address, unique controller ID, and access port. 

Interaction request manager (IRM) This component analyzes and manages 

requested interaction within the security system. The module is responsible for 

detecting the types of interaction. It interprets interactions in their high-level language 

and translates them for the security controller modules.  

Interaction detection and prediction engine (IDPE) This component runs the 

prime algorithms for detection and prediction. It is in direct connection with the PIM 

module within the security controller.  

SDS2 Secure DB provides updated information for the operation of the security 

controller and its core modules. The DB stores updated interaction parameters and 

security policies related to each entity. It is responsible for storing security policies, 

system tenant and resource information, interaction parameters, and VSFs data. 

Security Life Cycle Monitoring This component looks after the life cycle of each 

VSF from its initialization till expiration. Specifically, this component ensures that a 
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VSF will not create security issues due to virtualization even after its termination. 

Information related to the VSF is encrypted and maintained in the secure DB. 

Security Audit, Events, and Statistics It is responsible for keeping records of all 

security architecture events. 

6.3 SDS2 Security controller – Functioning Mechanism 

The SDS2 security controller's main functions are to analyze the requested 

interactions and dynamic creation of virtual security functions so that it can 

orchestrate and manage on-demand security functions within the system. The SDS2 

has installed the following mechanisms to achieve and perform its functionalities. 

6.3.1 Virtual Security Function orchestration approach 

The core functions of the security controller include the creation and 

orchestration of virtual security functions. The security controller orchestrates virtual 

security functions to handle any interaction violations among cloud resources. It 

initiates the VSFs according to the requested interaction and availability of VSFs 

within the system. It can reuse existing virtual security functions if their status is 

IDLE.  

We design an algorithm (Algorithm 6.1) to associate an appropriate VSF, which 

will satisfy the interaction request and current states of available virtual security 

functions. The security controller checks the states of VSFs and assigns them to the 

requested interaction. Since VSFs are software-based components, the security 

controller can initiate them according to the system load and the VSF’s status. A “VSF 

State” is computed according to their job status and availability in handling the tasks.  
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Algorithm 6.1 VSF Creation 

Inputs: required parameters as Resources, locations, an updated list of requested 

interaction, and associated VSFs 

Outputs: the list of initiated VSFs and requested interaction 

Switch VSF_Initiator do 

case "GET":  

    get a list of requested interactions and associated VSF with GET action ac-

cording interaction type in the required locations from the updated VSF list 

        if the list is empty then 

             initiate a new VSF and assign the required resources 

             set the new VSF status ON 

       else 

   get a list of current VSFs with their status  

           set the VSFs with IDLE status to ON and assign the resources  

       end if 

case "VSF_ON": 

     initiate the new VSF and assign the resources 

case "VSF_OFF": 

         change the VSF status to OFF after expiration and release the resources 

 

6.3.2 VSF Configuration Approach  

The security controller needs to associate VSFs to an intended or requested 

interaction. It requires configuring the VSF according to the interaction and policy 

parameters. The security controller associates an interested interaction with a VSF 

based on its functionalities, availabilities, and locations. The VSF status determines a 

VSF’s availability for the required task.  
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The Security controller sends configuration messages via the Sec-Manage 

protocol. However, to control configuration message overhead between the security 

controller and VSFs, the security controller may reuse the current interaction and 

policy parameters assigned to objects involved in the interaction and the current VSF 

configurations. The Security controller only transfers the required/updated parameters 

in the case of any changes. We design an algorithm (Algorithm 6.2) to associate a 

requested interaction with a VSF. 

Algorithm 6.2 Association Requested interaction 

Input: a set of requested interactions with parameters to be monitor by VSF 

Output: a set of associated VSF_IDs and Interaction Parameters 

1: for each requested interaction in queue (RIQ) do 

2:   if (VSF_status is ON & Int_ID valid) then 

3:            I=getListInteraction (i); // update I with requested int_id and location_id 

4:            L =getListVSF(v); // update V with list of VSF_id, location 

 5:    else    

6:       Exit (); 

7:    for each v.vsf_id in V of each i.int_id in I do 

8:         AssignInttoVSF(v); // Return appropriate assigned VSF_IDs for each 

requested interaction  

9:     end for 

10: end for   

6.4 SDS2 Security Controller – Software Implementation 

This section describes the implementation of the SDS2 security controller in 

terms of its functional components. The security controller consists of different 

classes in relation to its components. The overall security controller main classes 

diagram is shown in figure 6.4.  
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Figure 6.4 Class Diagram of SDS2 Security Controller 

The SecurityControllerIntercationAnalayzer class is responsible for analyzing 

the requested interactions within the system. The InteractionParametersCollector 

interpret entities interaction parameters required by 

SecurityControllerIntercationAnalayzer. The CloudObject class defines cloud objects 

required by SDS2SecurityController. It includes properties of each object, including 

their specific attributes related to each object. The VSFManager class orchestrates the 

virtual security functions via VSFResources and VSFLocations. The VSF class 

delivers virtual security functions attributes and resource IDs.  

The protocol class connects the SDS2 security controller and VSFs via the Sec-

Manage protocol class, including required parameters and headers. The 

SecurityControllerDB class provides a connection between the SDS2 database and all 
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functions of the security controller. The database is created with MySQL, including 

main tables. The tabl_VSF tables store VSFs’ information such as VSF_id 

(Identification number of each initiated VSF), Loc_id (location of associated VSF 

within the system like Loc01 or Loc02), Int_id (interaction ID assigned to each VSFs).  

6.5 Results and Performance evaluation 

The main aim is to provide on-demand security services where virtual security 

functions are orchestrated via a logically centralized security controller. To 

demonstrate the practical realization of the SDS2 Security controller in orchestrating 

VSFs, we deploy the architecture and security controller that manage and control 

VSFs within the cloud simulation environment. The VSFs can be orchestrated to 

provide on-demand security services for one or multiple interactions.  

The primary responsibilities of VSFs are monitoring requested interaction and 

discovering the violations against interaction parameters at the interaction level. In 

this case, various interactions were initiated to evaluate the SDS2 security controller 

functionality in handling and orchestrating the VSF related to multiple interaction 

configuration. Any interaction is dynamically assigned to a VSF for further 

monitoring.  

The SDS2 security controller initiates VSFs on-demand according to triggered 

interaction within our environment.  The system can orchestrate its underlying virtual 

security functions to handle multiple simultaneous triggered interactions, as shown in 

figure 6.5.  
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Figure 6.5 Implementation Prototype 

6.5.1 Implementation Set Up 

The SDS2 security controller is a software platform written in Java and built 

using Eclipse. The security controller is connected to a secure DB built-in MySQL to 

store required parameters. The design's three main elements consist of a security 

controller, VSFs, and a Sec-Manage protocol. The three key software modules, 

including security controller, southbound interface, and interaction-based software 

security function, are responsible for the SDS2 security controller, the Sec-Manage 

protocol, and underlying VSFs.  

The security control module is responsible for analyzing the interested 

interaction, orchestrating, controlling, and managing the involved VSFs, detecting and 

predicting security violations based on associated VSF and algorithms, and the 

communication between VSFs and their security controller. The southbound interface 

is composed of Sec-Manage protocol messages, forwarding and configuring table, 

interaction status, and policies parameters. The module, which represents interaction-
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based VSF, contains classes for defining VSF and its software-based functionality and 

resources. We build a network using java classes where the security controller 

communicates with VSFs via the Sec-Manage protocol.  

6.5.2 SDS2 Security controller - Performance Evaluation  

This section concentrates on demonstrating performance results related to the 

SDS2 model. The results demonstrate the ability of the security controller in initiating 

and orchestrating VSFs. The Sec-Manage makes it possible for the SDS2 security 

controller to instruct VSFs to achieve on-demand security interaction monitoring and 

transfer interaction parameters to the security controller. The Sec-Manage protocol 

empowers the security controller to detect and predict security violations according to 

VSFs security messages.  Using the designed features, the security controller can 

achieve the following results: 

• Dynamic and on-demand initiation of VSFs via VSFManager functionality 

according to requested interaction (figure 6.6) 

• Responding and handling dynamically to simultaneous triggered interaction 

within the system (figure 6.6) 

• Displaying and updating the status of virtual security functions and requested 

interactions (figure 6.7) 

• Evaluating the message overload and system performance in relation to the 

construction of multiple VSFs (figure 6.8 and figure 6.9) 

Figure 6.6 demonstrates the dynamic creation of VSFs by the security 

controller. In this figure the interaction is triggered, and the SDS2 security controller 

initiates a new VSF with ID 36 to monitor an interaction via VSFManager. Through 

the Sec-Manage protocol the security controller can instruct the VSF according to 

interpreted interaction parameters. The VSFManager calls its classes to create the 

VSF and assign the required resources to initiated VSF. Each interaction is assigned 

to a specific VSF with a unique ID that lasts till the end of the interaction lifetime. 
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The TTL in the VSF table shows a live time for each VSF during an interaction. The 

security controller decides where to locate the VSF according to location and 

condition of interaction. The VSF status shows the current status of each VSF. Figure 

6.6 shows most VSFs are running according to their status as “ON” which means they 

are already associated with interaction and running. The security controller creates a 

new VSF after checking its VSF table within the database. So, if there is no same 

previous interaction and no existing VSF associated with the triggered interaction, the 

security controller initiates a VSF and assigns it to the requested interaction.   

 
Figure 6.6 multiple interactions handled by the security controller  

The security controller is capable of handling multiple interactions 

simultaneously (shown in Figure 6.6). In this case, the security controller receives 

multiples interactions in the same period. The security controller creates an interaction 

queue pool and assigns the VSFs according to the priority system related to 

monitoring and responding to requested interaction. The security controller assigns 

the interaction to the most proper and available VSFs based on their triggered location 

and priority. The Sec-Manage protocol provides the security controller with the 

capability to configure and manage VSFs directly. After interaction validates, time 

ended, the security controller changes the initiated VSF via their status. Figure 6.7 (a, 

b) demonstrates expected results according to the security controller process—the 

security controller programs underlying VSFs to handle multiple requested 

interactions through VSFs configuration table via Sec-Manage protocol. As described 

in figure 6.7 (a), both VSF 12 and VSF 13 exceed their time to live when TTL turns 
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to 0. The security controller updates the VSF table and changes the status for both 

interactions, as shown in figure 6.7 (b), from “on” to “off/expired.” 

 
Figure 6.7 Status of VSFs 

The security controller prevents overload of messages sent among its 

components (security controller and VSFs) by assigning existing VSF to an interested 

interaction. The security controller reduced the overload of messages sent between 

itself and its underlying VSFs via reconfiguration of existing VSF for a repetitive 

interaction from the same source. In this case, the security controller only sends 

required changes through Sec-Manage protocol and reduces the number of messages 

to be transferred. The security controller keeps track of interactions, VSFs, and 

involved initiator and reactor. Regarding the count number of interactions handled by 

a VSF, the security controller can reuse offline VSFs in similar interactions based on 

initiator and reactor. Table 6.1 demonstrates assigned interaction_id, the number of 

interactions (count) assigned to each VSF, and the current status of the VSFs (EXEC). 



 

191 | P a g e  

 

In the following table, VSF id (3) was able to handle/monitor 2 requested interactions 

previously completely and currently it is monitoring the third one with interaction id 

(3) as EXEC is Y. Similarly, in another case, VSF id (2) is currently monitoring 

interaction id (7). The VSF id (4) is assigned to monitor interaction id (12), but it is 

not running or unable to monitor the interaction. In this case, the security controller 

changes VSF 4 status to “OFF/expire” and assigns the interaction to another VSF.  

Table 6.1 Security Controller VSF Orchestration Results 

VSF ORCHESTRATION 

VSF_ID INT_ID Count EXEC 

VSF 3 3 3 Y 

VSF 2 7 8 Y 

VSF 4 12 0 N 

VSF 12 12 1 Y 

 

Two performance metrics evaluate the SDS2 security model's efficiency: 

controller processing time in handling multiple interactions and average provisioning 

time to initiate VSFs (as shown in figure 6.8 and figure 6.9). The security controller 

processing time in this scenario signifies the total time from when the security 

controller receives the requested interaction when it initiates the VSF and assigns it to 

that specific interaction. The average processing time of handling multiple 

interactions depends on: i) several simultaneous requested interactions, ii) similarity 

between currently requested interactions with previous/existing configuration of VSF, 

iii) the availability of existing IDL VSFs. For instance, for each new interaction with 

no previous configuration availability, the processing time will be longer than in other 

cases. The reason is the lack of previously existing stored data on the requested 

interaction used by the security controller. So, the security controller must spend more 

time analyzing, collecting, and transferring the data to VSF. Besides, in some cases, 

the security controller requires to initiate new VSFs and assign new resources.  
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However, at the time of requested interaction, if there are still idle VSFs, it will 

reduce the time by excluding the time required to initiate a new VSF. However, to 

reduce the processing time, the security controller uses a previous VSF, and instead 

of deleting them, they are just put idle mode for further processing.   

 
Figure 6.8 SDS2 security controller the average processing time for all types of 

interactions 

Figure 6.8 describes the average processing time for the security controller to 

analyze the inputs according to the number of requested interactions. The interaction 

numbers include all three types of interaction handled by the security controller within 

the system. The number of triggered interactions is increased by 10 each time from 

10 to 60. The more interactions triggered, the higher the processing time growth. The 

reason relies on the time that the security controller requires to analyze different types 

of interactions. The time the security controller requires increased slightly as the 

number of requested interactions increased. However, since some interactions are 

repeated during the system, the increase is not sharp as the security controller can use 

its stored data assigned to each repeated interaction.  
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Figure 6.9 demonstrates the average time that the security controller requires to 

initiate a VSF. To evaluate the SDS2 performance according to VSFs initiation times, 

we consider increasing the VSF number by 10 each time from 10 to 50. The aim is to 

demonstrate the time required by the security controller to initiate the VSFs and assign 

their resources through its VSFManager and its functionalities.  

 
Figure 6.9 Provisioning On-demand security services 

We noticed that by increasing numbers of VSFs to handle interactions, there is 

a sharp rise in terms of initiation time of VSFs between 30 to 40. This increase is that 

in the edge of 30, the validation time for most of the existing VSFs expired, as a result, 

the security controller requires to initiate new VSFs to handle the interested 

interactions. With the expiration of the majority of existing VSFs, the security 

controller needs to construct new VSFs, including the time to run the new VSFs (time 

to assign their required resources) and their configurations. 

 One of the reasons is preserving VSF security for not holding a VSF for a long 

time in a specific location. Regardless of their popularity in handling the number of 

interactions, after a time, their TTL will go down to 0. In this situation, the security 

controller requires to initiate the new VSF via VSFManager. 
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6.6 Summary 

In this chapter, we have introduced our software-defined security service 

architecture with main components including Security Controller, Intellectual 

algorithm (discussed in chapter 4), Sec-Manage protocol (described in chapter 5), and 

VSFs. In this chapter we demonstrate the proposed security architecture for protecting 

cloud infrastructure. We developed a new security controller that uses the Sec-

Manage protocol to dynamically and efficiency orchestrate VSFs in response to 

detection and prediction of security violations. In this chapter a detailed description 

of functional components of security architecture has been provided. 
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Chapter 7 
 

7 Software-Defined Security 
Service Platform 

7.1 Introduction 

As discussed in Chapter 3, the proposed software-defined security service 

model delivers a resolution to secure cloud infrastructure by employing a logically 

centralized security control to monitor, orchestrate, and manage on-demand security 

services. Our proposed security model decouples security functions and security 

networks from underlying infrastructure. We have introduced a logically centralized 

Software-Defined Security Service (SDS2), a policy-based interaction model, and 

Sec-Manage protocol in our earlier chapters. 

 For the purpose of controlling and managing of virtual security functions, we 

proposed security service architecture for supporting the orchestration, coordination, 

and provision of security services within the cloud infrastructure (Chapter 6).  

This chapter describes detailed functionality of the components in the SDS2 

platform (described in Figure 7.1). Moreover, in this chapter we conduct a 

performance analysis using proposed SDS2 platform with all proposed components 

including the security controller, the Sec-Manage protocol, the policy-based 

interaction algorithm, and various VSFs.  
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The reminder of this chapter is organized as follows. Section 7.2 presents the 

architecture and components of the SDS2. Section 7.3 describes the procedure of the 

SDS2 platform in the provision of on-demand security services.  Section 7.4 presents 

the platform implementation. Section 7.5 determines performance evaluation. Section 

7.6 summarizes this chapter. 

 
Figure 7.1 Overview of SDS2 Layers and components 
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7.2 Integrated Software-Defined Security architecture  

This section describes the integrated software-defined security service structure 

using cloud, SDN, and NFV concepts.  

The SDN, NFV, and cloud all share the software-defined concept where 

physical resources are virtualized into software components. They share the 

underlying physical infrastructure and the virtualization layer and require controllers 

and orchestrators to provision services. Naturally, SDN, NFV, and cloud evolve into 

an integrated software-defined infrastructure or software-defined system (SDS) to 

optimize the use of resources, eliminate the redundancy in their structure, and provide 

a richer set of services on demand.  

However, the security of such a software-based virtual environment will entail 

more than just the security issues common to all domains, the security issues specific 

to each domain, the security gaps among them, and the security of the overall 

infrastructure. For this purpose, the SDS2 is deployed to provide security in such 

integrated software-defined infrastructure. The SDS2 takes advantages of three 

technologies to establish its main functionalities: 

Cloud Infrastructure Cloud provides a multitenant environment to share the 

infrastructure resources. The cloud resources enable SDS2 to initiate its interaction-

based virtual security functions.  

Software-Defined Networking (SDN) SDN provides automatic programmable 

virtual connectivity among cloud objects. The SDN is based on the separation of the 

network control from the data forwarding functions, allowing the controller to directly 

program the underlying infrastructure and present it as a high-level network 

functionality abstraction to applications and network services [138]. The SDS2 utilizes 

the SDN features, constructing dynamic and direct communication between its 

specific security controller and underlying virtual security functions.  
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Network Function Virtualization (NFV) NFV technology provides a vast 

number of software-based virtual functions within the system. It enables network 

functions to be realized and executed as software instances in a VM or container on a 

single host instead of customized hardware appliances. NFV implements network 

functions using software virtualization methods and operates them on top of 

underlying hardware equipment. The SDS2 applies the NFV concept to create a 

specific software-based virtual security function to monitor the cloud resources 

interaction. The VSF inspired by Virtual Network Function (VNF) structure focuses 

only on security features.  

The SDS2 structure has been designed in such a way that it can be integrated 

into any software-defined infrastructure. The conceptual architecture of SDS2 within 

the integrated Cloud/SDN/NFV is shown in figure 7.2.  

The upper layer includes security services, interfaces, and tools to define security 

policies for cloud objects. A set of pre-defined security policies is simulated and used 

over the platform according to the nature and feature of defined cloud objects. The 

policies are interpreted to govern and validate constraints and rules for entities within 

the system, such as an eligible access control action to be taken during a triggered 

interaction. The high-level policies act as input to the interaction security policy 

module in the platform structure's middle layer. In chapter 4, we explained our novel 

policy-based interaction model and the main components.  
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Figure 7.2 Conceptual structure of SDS2 in an integrated Cloud/SDN/NFV 

The middle layer mainly focuses on the orchestration of on-demand virtual 

security functions and other SDS2 modules. This layer consists of a security 

orchestrator, a security policy module, a security interaction monitoring module, and 

violation detection and prediction module, a virtual security function module, and a 

security network module.  
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Security Orchestrator It houses the SDS2 security controller. The security 

controller controls and manages the whole virtual security environment. In chapter 6, 

we described the security controller and several of its main components. Figure 7.3 

shows the workflow of the security controller in our SDS2 security model.  

Security Policy Module This module includes functionality for interpreting 

high-level policies according to entities (initiator, reactor) and the entity interactions 

related to security policies. As the name implies, the security policy manager monitors 

and enforces policies for both entity policy and interaction policy managers. The 

policy interpreter is responsible for translating high-level policy expressions to 

allowable interaction rules and constraints. 

The entity policy manager extracts policies related to each entity that evolves in 

an interaction according to its features and nature intrinsic characteristics. There are 

different constraints on each interaction and its interacting entities, such as time of 

interaction, and location. This module enforces the policies on entities during the time 

interval that interaction takes place within the system. The policy repository contains 

policy expressions which are expressed via a simple language-based template. 

Chapter 6 contains the foundation of specification of the policy expressions to be used 

in our security system.  

Virtual Security Function Module The module contains a VSF manager, a VSF 

catalog, a VSF repository, and a VSF initiator. It is in charge of creating VSFs and 

assigns required resources from the Virtual Infrastructure Manager (VIM) to virtual 

security functions. It is in control of running VSF scripts start-up defined within the 

system to monitor an interaction within the system. 

The VSF catalog includes simple VSF templates to be run by the VSF manager. 

The VSF initiator is similar to Element Management (EM) in NFV. The Security 

Element Management (SEM) is responsible for the functional management of VSFs. 

Similar to EMS, each SEM can be assigned to one or more VSFs. In our design, we 

consider each SEM for one specific interaction-based VSF. The VSF repository 

contains data related to each VSF like ID, location, IP, and MAC addresses.  
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Security Network Module It consists of two main components: the security 

model topology and Sec-Net manager. As the name Sec-Net manager implies, it is 

responsible for constructing logical networking between system components. It is 

connected to the SDN controller to provide dynamic construction of virtual security 

networking links specifically between the security controller and VSFs. Through an 

internal interface, it is connected to security model topology. The Security model 

topology stores the constructed links between the security controller and its VSF. A 

unique protocol has been implemented to transfer the required interaction parameters 

through this network link between the security controller and a VSF. In chapter 5, we 

described the design and implementation of this communication protocol. The figure 

7.3 describes an overview of SDS2 security platform workflow. The workflow of 

SecNet is displayed in Figure 7.4. 

 
Figure 7.3 Overall SDS2 security platform workflow 
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Figure 7.4 Workflow of security Network structure 

7.3 SDS2 Platform – Procedure of provisioning on-demand 

Security Services to Protect Cloud Resources 

The process of a cloud security service via an SDS2 model consists of five stages 

(shown in figure 7.5). At the moment of receiving an interaction, SDS2 analyses the 

triggered interaction and initiates a virtual security function to monitor the specified 

interaction. An interaction can be for several reasons, including i) User Interaction- 

sending an interaction via system API to act on a cloud resource, ii) Triggered 

interaction- a suspicious interaction occurs within the platform, and this triggers the 

security controller to activate a VSF requesting it to monitor a specific interaction 

between suspicious entities, iii) Specific requested Interaction- scheduled or random 

monitoring an interaction between specific entities requested by an intelligent 

component of the security controller. 

Provisioning Stage At this stage, the SDS2 security controller analyses the 

triggered interaction and extracts the necessary parameters to provide a monitoring 



 

203 | P a g e  

 

service as needed at different cloud system levels. According to the interaction 

parameters, the security model protects entities as they evolve via an on-demand 

virtual security function service. Thus, the model is capable of provisioning on-

demand and dynamic virtual security service at the critical points of the system.    

Orchestration Stage At this stage, the SDS2 security controller analyses the 

interaction parameters and policies and accordingly orchestrates one/more virtual 

security functions (VSFs) to detect and predict violations.  

Programmability Stage At this stage, the SDS2 security controller orchestrates 

its virtual security functions to respond to any interaction-based security violation 

incidents. It automatically allocates required interaction and policy parameters to its 

VSF monitoring functions to acquire the interaction's security status. The VSFs will 

send back their monitoring results to the security controller. The security algorithms 

then use the status results to detect and/or predict security violations. The underlying 

virtual network function enables automatic programmability based on the interaction-

based model. 

The SDS2 security controller configures an on-demand underlying virtual 

security function to acquire satisfying security monitoring results. The VSFs are 

initiated accordingly to monitor a triggered interaction. The security controller then 

automatically configures the VSFs using its Sec-Manage protocol. The VSFs, armed 

with validated interaction parameters, monitor the requested interaction. The security 

controller configures the VSFs at their initiation and during the monitoring process.    

Security Violation Stage At this stage, the security controller analyses the 

security monitoring reports sent by each VSF for a specifically requested interaction. 

Then it performs the interaction-based security detection and prediction algorithms. 

The results determine if the triggered interaction violated any validated parameters. 

The results are transferred to the security controller for further decisions.  

Completion Stage At this stage, the programmed VSF functions monitoring 

results and results of interaction-based security detection and prediction methods have 
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been returned to the security controller. At this final stage, the security controller 

decides the interaction of interest, the VSF state, and predicts future security 

violations according to interaction parameters. The security controller will finalize 

and report its security services results in relation to the requested interaction.  

Figure 7.5 shows the procedure of provisioning on-demand security services 

according to described stages. 

 

 
Figure 7.5 Overall process of provisioning on-demand security services via SDS2  

The process happens through the SDS2 controller and its VSFs. Details of the 

SDS2 security controller and VSF workflow are described as in the following.  

At SDS2 Security Controller: The security controller analyses triggered 

interactions and then orchestrates and configures the VSFs following the interaction 
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model and SDS2 service requirements. The operation of the SDS2 Security controller 

is shown in figure 7.6. 

 
Figure 7.6 Overview of SDS2 security controller workflow  

 At the virtual security function: upon initiation through the security controller, 

the virtual security function resources will be orchestrated by the security controller 

to monitor the specified interaction. The operation of virtual security functions is 

represented in figure 7.7. 
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Figure 7.7 Overview of VSF workflow 

7.4 SDS2 Platform Implementation  

7.4.1 Implemented Platform 

In previous sections, we presented the proposed model, described the 

architecture and its main modules, as well as the design of the main components. In 

this section, we present the platform that integrates all the main components.   

The SDS2 model for the cloud has been designed and implemented. The 

platform consists of deployments of significant components, as demonstrated in table 

7.1. Each component is implemented within our Java program. The overall 

implementation defines the main cloud objects within the cloud environment. The 

SDS2 runs as security software on top of the infrastructure using its interfaces to access 

VIM and SDN controller resources (Figure 7.8). 
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Table 7.1 Main Implemented Components of The Platform 

Integrated Platform 

components 

Features 

Security controller (SC) interaction module, security policy module, interaction 

detection/prediction module, VSF net module 

VSF VSF initiator module, the VSF manager module 

Sec-Manage Protocol protocol messages and packet header 

 

The SDS2 Security controller: We represent the design and implementation of 

its main components that interpret the policies, analyze the interaction requests, 

orchestrate and provision on-demand virtual security functions over the cloud system. 

The internal interfaces enable communication between the components. In chapter 6, 

we described the security controller and its significant functions.  

Sec-Manage protocol: It is responsible for the communication between the 

security controller and its virtual security functions and the exchange of interaction 

and policy parameters among them. This protocol was presented in chapter 5. 

Virtual Security Function (VSF): A VSF in our usage is created to perform a 

specific security function and deployed at strategic locations in the cloud that require 

protection. The VSFs functions are controlled and managed by the SDS2 security 

controller through the Sec-Manage protocol—the VSF monitors the interaction 

between entities according to interaction-based model parameters. The VSF catalogs 

integrate in our SDS2 software platform. 

OpenFlow protocol (opensource): The protocol is a well-known programmable 

network protocol intended to manage and direct traffic between virtual network 

functions. By taking advantage of the OpenFlow protocol, the SDS2 security 

controller adapts and reuses the protocol to direct traffic among its VSFs. 
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OpenStack (open source): OpenStack is a central open-source cloud computing 

platform that orchestrates and manages shared storage, compute, and network 

resources using multiple hypervisors based on a set of applications and open-source. 

The SDS2 security software runs on a VM in OpenStack compute node.  

 
Figure 7.8 overall view of Platform structure 

OpenFlow switch (opensource): This is an OpenFlow-enabled data switch that 

provides communication over an OpenFlow channel to the SDN controller. It enables 

packet forwarding and lookup based on its routing table entries. Each switch contains 

essential information such as Port No., IP address, and port name. The SDS2 controller 

can update its network and VSF links through the switches. Figure 7.8 shows the 

structure of the platform.  
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7.4.2 Implementation Scenarios and Results 

To demonstrate the proposed SDS2 model performance, we run different 

experiments on our implemented platform covering various interaction scenarios to 

demonstrate the proposed security model's validity and services. The SDS2 

orchestrates VSFs in a cloud environment to achieve on-demand security service to 

protect cloud resources. In our security scenario different interactions triggers from 

different entities. Interactions can occur between different resources at different cloud 

infrastructure hierarchy levels and from different locations/domains. The cloud object 

types are defined based on their intrinsic characteristics. The interactions are defined 

based on different conditions and the environment surrounding the participating 

objects. The SDS2 security controller orchestrates the VSF at different locations to 

monitor the interaction of interest (Figure 7.9).  In each interaction, a different set of 

conditions/policies are applied to test the security controller's efficiency in 

formulating security violations. The SDS2 security controller communicates access 

resources  

The test scenarios are based on three main categories of interaction: i) the level 

of access, ii) the interaction parameters, iii) the interaction types. The security 

controller analyses the interactions according to their variable parameters (mode, 

action, and positional relation) extracted from the interaction of interest. The SDS2 

security controller orchestrates and configures the relevant underlying virtual security 

functions and allocates them at relevant places related to the location of the triggered 

interaction. 
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Figure 7.9 SDS2 service Implementation Scenario 

 

Each scenario explores the SDS2 capability in discovering and predicting the 

security interaction of interest. The SDS2 orchestrates the VSFs accordingly and 

assigns a random identification id to each. We tested various types of interaction 

within the testbed running the SDS2 service and algorithms to monitor each interaction 

between entities. Both general and local policies are extracted and stored in the policy 

repository. 
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Experiment 1: In this scenario, we examine the security model performance 

through the variation of extracted interaction parameters. We simulate an adversary 

interaction trying to manipulate cloud resources performing various interactions. This 

scenario takes into account an interaction modification by an attacker to gain access 

to the cloud resources triggering different interactions with various interaction 

parameter conditions (Con*) that consists of variable interaction parameters including 

mode, action, and positional relation at the same access level. To test the SDS2 

platform in each case one interaction parameter ((M, *, *, *), (*, R, *, *), (*, *, A, *)) 

is varied at a time. The achieved results demonstrate the SDS2 security controller's 

capability to detect security violations via orchestration of its underlying virtual 

security functions. The scenario prototype is demonstrated in figure 7.10. 

 
Figure 7.10 Overall state of threat Scenario 
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Scenario Requirements: In order to carry out the simulation to validate the 

system operation and performance, we established the following requirements.  

• Default policies are applied to both entities involved in the interaction.  

• Location policies are stable during the triggered interaction. 

To test the efficiency of the system, we run different experiments containing 

different interaction parameters. Malicious interaction was launched to simulate user 

interaction attacks against different resources (Figure 7.11). The SDS2 security service 

intelligently detects malicious interactions by the discovery of policy violations 

related to interaction parameters. The security controller intelligently, according to its 

VSF reports, determines the state of interaction parameters. The ISVD algorithm calls 

upon the discovery of interaction violation (described in chapter 4) against validated 

extracted interaction parameters. 

The VSF detects interaction parameter patterns, discovers interaction parameter 

states (stability of interaction parameters) over a number of interactions, and monitors 

the behavior of the variable parameters. The discovery of a stable interaction 

parameter enables the SDS2 security controller to optimize the detection processing 

time that the same source triggers. The reason is that after the discovery of the constant 

interaction parameter, the SDS2 security controller only focuses on variable 

interaction parameters. So, it saves time to process all parameters in each step.   

 

 
Figure 7.11 Assigned VSF to interactions  
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Each interaction's processing time is different in each case based on processing 

the interaction parameters with the condition (Con*) that the interaction parameter 

mode is the same. So, the time for the system to process the interaction is calculated 

accordingly. However, we calculate the detection process time for some of these 

triggered interactions with the condition of stability of interaction mode parameter 

during interaction period time, depicted in figure 7.12. A single violation detection 

for Int6 assigned to VSF2 is demonstrated in figure 7.13 as a sample record. The 

results are stored in the security controller database, and any policy changes are 

recorded in the policy repository directly. The time to process is defined as the process 

time the platform requires to detect an interaction violation in the case of the applied 

condition.  

 
Figure 7.12 Process time by VSFs 

 
Figure 7.13 Violation detection of Int6 

To test the SDS2 security platform against other interaction parameter 

conditions, we run various interactions between different resources. The interactions 

are triggered via user requests. The triggered interactions and their status of actions 

are illustrated in figure 7.14. 
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Figure 7.14 performed tests with two sets of interaction conditions (A*, R*) 

We have evaluated the SDS2 service platform's performance in experiment 1 

according to two features: the average detection and prediction processing. We 

consider the time based on the number of interactions that take place. In this 

experiment, we evaluate the platform performance according to the following cases 

showed in Table 7.2. each case tested against different conditions related to the 

stability of the random interaction parameter.  

Table 7.2 Tested cases 

Experiment Number of tested interactions Conditions 
Case 1 20 M*, A*, R* 
Case 2 30 M*, A*, R* 

Figure 7.15 demonstrates the average time the SDS2 service requires to detect 

and predict the security violations based on the different variable parameters. As 

shown, the predicated processing time is less than detection since the ISVP algorithm 

uses the current state of validating parameters for prediction.  



 

215 | P a g e  

 

 
Figure 7.15 Processing average detection and prediction time for Case 1 and 2 

Experiment 2: In this experiment, we focus on evaluating our security model 

in the face of two scenarios related to security policies i) no-policy, ii) dynamic 

policies. In the first scenario, there is no defined security policy parsed to triggered 

interactions. The results demonstrate the platform's capability in dealing with such 

cases. The next scenarios concentrate on monitoring the platform's behavior against 

dynamic policy changes related to triggered interactions. In a dynamic cloud 

environment, the security policies frequently change, which requires platform agility 

in applying the changes using its security functions. We use the basic set up of 

experiment 1 presented above but run various interactions with/without defined 

security policies. In our interaction-based software-defined security model, the policy 

module allows fine granular policy specifications based on various entities and 

interaction attributes.  

To test the system, we allow changes to the defined policies within the system 

and monitor the behavior of the security controller and VSFs in handling the situation. 

We can map this experiment to real-world scenarios where resource locations or 

policies dynamically change due to factors like resource/data location (one server to 

another server in same/different geographical location) changes, changes of general 

policies in companies, and owner changes. 

Experiment requirements:  

• We change entity policies that affect one interaction parameter at the time of 

initiation. We change local security policies applied to each interaction according 
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to their entities features and roles. We define various policy files within the 

system. 

• The general system policies stay steady. The system policies refer to policies we 

defined by default for our cloud data center based on each security domain 

(described in chapter 4).  

Different policy files are defined within the platform to be used against various 

interactions. We consider the same general policy file for all interactions while 

different security policies are applied to entities using defined policy files. We follow 

a simple policy language to construct the policies to be used. The security policy 

manager function captures the policies applied to interactions and entities. The 

policies related to entities are stored in the policy repository. This module enforces 

the security policies extracted from entity security policy-driven manager. Policies 

directly affect the interaction parameters. Figure 7.16 shows a few requested 

interactions captured by the security controller, monitored by the VSFs and theirs 

assigned policy id (PID). 

 
Figure 7.16 Captured requested interaction and their policies 

Regarding the changes of policies, Figure 7.17 shows that the VSF 1 has been 

assigned to monitor the interactions with Int ID 1, which is triggered from the same 

resource but with different policies. The security controller assigned the same VSF to 

monitor the interaction; however, since VSF detects the policy changes, the security 

controller updates the policy repository and assigns new changes dynamically.  
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Figure 7.17 Changes of policies for  

To test the SDS2 platform capability on the agile discovery of defining security 

policies and demonstrating its automatic and dynamic configuration of security 

policies, we conduct tests with no pre-defined policies assigned to sources. So, we 

initiate interactions where no policies were parsed within the repository. In this case, 

VSF discovers the lack of policies for any interaction parameter and sends messages 

through the Sec-Manage protocol to get the updated policy or new policy approved 

by the security controller. The process is illustrated in the following workflow (Figure 

7.18).  

We monitor the behavior of VSFs in dealing with two prominent cases. We 

simulate the interaction between two resources where no policies are set with Con* 

(M, A*, R, t)). Figure 7-19 shows the interaction, process time, and assigned new 

policies. According to figure 7-19, the VSF 3 discovers that no-policy has been parsed 

for the Int. ID 3. After exchanging messages between VSF and the security controller, 

a new policy (P.ID 245) is assigned according to defined policies explained in chapter 

4. 
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Figure 7.18 Workflow of VSF no-policy process 

We tested the ability of the SDS2 system to monitor its behavior in regard to 

dynamic changes in security policies. In this case, the SDS2 security controller and its 

services receive many interactions triggered by the same resource. We consider Con* 

(M*, A*) where the reactor entity's position is varying within the system. For this 

purpose, policies related to R* change frequently, and the system is required to adapt 

to new security policies dynamically. As discussed in chapter 4, each R level is 

governed by different security policies based on the access level and the assigned role-

based policies applied to each entity at that level. The SDS2 security controller updates 

the entity's policies using its entity security policy-driven manager function for R* 

interaction parameters. It updates the VSFs after enforcing the policies and sends back 

the updated validate parameters. Figure 7.20 demonstrates updated policies for 12 

interactions being handle with 4 VSFs. The SDS2 service uses the VSFs that 

previously ran the interaction to detect and predict future parameters. 
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Figure 7.19 No-policy case- a) demonstrates VSF discovery of interaction with no 

assigned P.ID, b) presents the new P.ID for interaction, c) shows process time of 

orchestrating a new policy for particular interaction in two main scenarios 

 
Figure 7.20 The SDS2 platform deals with policy changes during an interaction 
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Experiment 3: we have tested the system against different types of interaction 

triggered by different sources. In this experiment, we monitor entities in three main 

scenarios described in Table 7.3. 

Table 7.3 Experiment scenarios 

Experiment Tested interactions Condition 
Case 1 Requested (UR) Variable policy, Variable interaction parameters 
Case 2 Specified (SC) Variable policy, Variable interaction parameters 
Case 3 Triggered (AT) Variable policy, Variable interaction parameters 

The requested interactions refer to user interactions triggered from a user 

interface (UR). The specified interactions consider interactions triggered by the 

security controller to monitor specific interactions (SC). The triggered interactions 

demonstrate unexpected/abnormal interaction between cloud resources when an 

undesired interaction is triggered (AT). Figure 7.21 demonstrates the prototype of this 

experiment.  

 
Figure 7.21 Presents the experiment prototype 
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Each experiment runs a diversity of interactions monitored by the SDS2 security 

service. The assigned VSF can distinguish the initiator of the interaction and 

accordingly can speed up the process of monitoring according to previously stored 

data on the same initiator. The security controller is capable of not only discovering 

violations from input requests but also monitoring and discovering abnormal 

interactions between entities. Malicious activity can be considered as a DoS scenario 

attack scenario which is sending numerous interactions to cloud resources. After 

receiving a security alarm report from the VSF indicating abnormal interactions, the 

security controller triggers an internal interaction. In our design, the SDS2 Security 

dynamically monitors different resources and their interactions. In this case, the 

security controller sets specific parameters (such as interaction threshold, suspicious 

behavior on accessing a specific resource, scheduled monitoring) to monitor the 

interaction of interest. Figure 7.22 demonstrates a list of interactions, assigned 

interactions, and their initiators. 

 
Figure 7.22 Presents various interaction types  
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As displayed in figure 7.22, SDS2 service intelligently and can initiate 

interactions to protect resources. It can detect the attacks in a dynamic environment 

when interactions are triggered in different scenarios. In our proposed system, we 

demonstrate that the SDS2 security controller not only is capable of monitoring 

requested interactions triggered by internal/external users (initiator UR) but also can 

monitor suspicious interactions among resources.  

7.4.3 SDS2 Platform setup 

To demonstrate the working of the model, we implement all components of the 

proposed architecture in software. The SDS2 service and its components are 

implemented in Java. In order to establish the SDS2 security service model, we 

implement i) the SDS2 security controller, which is a software written in java with 

various classes run on VM on top of OpenStack compute node, ii) a network of 

OpenFlow switches that connect system components, iii) a built-in database within 

the SDS2 platform to store the security data including interaction parameters, cloud 

objects, and the VSFs information, and iv) the SDS2 classes including components of 

NFV according to NFV MANO for initiating the VSF.  

• All main SDS2 components are built as software on one PC on Ubuntu 16.04 LTS 

with the following configuration: RAM: 16GB, CPU: Intel Core i7-8650U, 

Storage: 100 GB. 

• A custom-built user interface is developed for the SDS2 security controller to 

demonstrate results, including the device and controller level tables.  

• A network of SDN devices is implemented within the system for the purpose of 

connectivity. Open vSwitches are deployed using OpenFlow protocol for 

connection.   

• The SDS2 service is a java-based platform developed in Eclipse IDE version: 

4.14.0. The platform is deployed in an OpenStack cloud environment and 

connected to SDN devices. We implement the main components, including the 
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SDS2 security controller, the Sec-Manage protocol, and Virtual Security Functions 

(VSFs).  

o The security controller consists of classes in charge of security controller 

functionality. 

o The virtual security function representation modules consist of classes to 

initiate and manage VSFs instances within the SDS2 platform.  

o The southbound interface module includes classes to construct Sec-

Manage messages, configuration, and forwarding tables within the system. 

• The NFV MANO is deployed and integrated within the platform as java classes 

inspired by OpenBaton opensource software. 

• The SDS2 system uses a built-in database using MySQL, version: 5.7.32-

0ubuntu0.16.04.1 

7.5 SDS2 Platform Performance Evaluation 

In this section, we evaluate our proposed SDS2 security model and platform 

based on two aspects: capability of the platform for provisioning on-demand security 

services for the purpose of security violation detection and prediction, and 

performance of the platform in relation to orchestration and configuration of virtual 

security functions- the processing time of security violation detection and prediction. 

7.5.1 SDS2 platform capability  

We evaluate the SDS2 service components and capabilities that contribute to the 

provision of on-demand security services to protect cloud resources. The following 

aspects are demonstrated: 1) Orchestration and configuration of on-demand virtual 

security functions, 2) Formation of interaction security violation detection and 

prediction. The SDS2 service capability is divided into: 1) security controller level, 2) 

virtual security function level. The process is expressed as follow: 
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❖ Orchestration and functionalities - the Security Controller level 

In this part, we implemented the significant components and functions required 

for two primary purposes: 1) defining interaction model as well as policy-based 

interaction model; 2) deploying new interaction proactive mechanisms and its 

algorithms.  

At the Controller level, the SDS2 security controller is capable of: 

• Analyzing dynamic security policies according to features like entities, location, 

interactions, and assigning interaction parameter policies (figure 7.23) 

• Handling dynamic changes of security policies (figure 7.24) 

• Automating the construction of interaction-based virtual security functions (figure 

7.25) 

• Handling and detecting interaction security violation threats (figure 7-26a) 

• Providing interaction-based security violation predictions for further security 

threats (figure 7-26b) 

The SDS2 security controller captures the interaction, initiates the VSFs to 

monitor the interaction, and performs detection and prediction techniques according 

to VSF result reports. As shown in figure 7.23, the security controller analyzes the 

security policies aligned with interaction parameters and assigns a policy 

identification for each triggered interaction to validate each interaction parameter's 

security rules. The P. ID refers to a table with stored policies for each entity according 

to their defined features.  
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Figure 7.23 Presents the assigned PID according to each entity (Src., Dst.)  

Figure 7.24 represents the ability of the security controller to handle dynamic 

changes in security policies. The security controller re-orchestrates the assigned 

security policies for entities with any changes during an interaction based on 

interaction parameters. Figure 7.25 demonstrates the security controller interface that 

shows the VSF functions. The primary purpose of the SDS2 platform is to detect and 

predict interaction-based security violations. The Security controller is in charge of 

performing ISVDP algorithms to detect and predict the present and possible future 

attacks. Figures 7.26a and 7.26.b demonstrate captured interactions and detection and 

prediction results (expressed in chapter 4). The detection and the prediction rely on 

VSF sec_messages to the security controller reporting on the monitored interaction 

status.  

As you can see in Image 7.26a, the VSF 9 denotes a USER request for 

NETWORK resource on the TENANT level with extracted READ and MODIFY 

actions. The request is dynamically analyzed by the security controller and, based on 

the applied policy, is detected as a violation for requesting beyond what is allowed. 

The figure shows the detection analysis of various interactions at the security 

controller level. The results present the state of interaction decided by the security 

controller after monitoring.  
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Figure 7.24 Dynamic changes of Policies 

 
Figure 7.25 SDS2 automatically initiates VSFs to monitor interactions 

As demonstrated in figure 7.26.b, each row defines predicted future violation of 

presented interactions according to their interaction parameters. Each entry results 

from an automatic analysis of potential interaction violations concerning the value of 
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interaction parameters. For example, the first row shows potential interaction 

violation as a set of variables for each interaction parameter against the targeted 

resource (Application). 

 
Figure 7.26 demonstrates result after SDS2 runs ISVDP algorithms: a) shows results of 

ISVD algorithm for various simulated interactions within the system, b) presents results 

after running ISVP algorithm 

❖ Orchestration and configuration – At Virtual Security Function level 

At this level, the SDS2 security controller configures the virtual security 

functions through Sec-Manage protocol and security messages. The virtual security 
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functions are configured based on interaction parameters. They include information 

regarding the configuration table, forwarding table, and VSF services. The VSFs can 

be configured to monitor the interactions (figure 7.27a). It forwards data back to the 

security controller for further decisions (figure 7.27b). The VSFs table lists VSFs 

functions and their associated status and location to monitor the interaction (figure 

7.27c).  The config and forward table contain parameters required to configure a VSF 

and define forwarding action in relation to an interaction—each parameter is 

described in detail in chapter five. 

 As you can see, figure 7.27 shows the security service table entries for each 

assigned VSF. For example, VSF 7 shows that VSF function is still running with 

remaining time to live equal to 50s allocated in a VM to monitor interactions. 
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Figure 7.27 SDS2 security functions 

 

 



 

230 | P a g e  

 

7.5.2 SDS2 platform – Performance  

In this section, we carry out service provisioning tasks and evaluate the proposed SDS2 

performance through two performance measures: security orchestration time and 

security reaction time. Security orchestration time is referred to as the time required 

for the security controller to orchestrate and configure VSFs according to interaction 

parameters. Security reaction time is the security action time that measures the time 

to detect security violations and predict future interaction violation parameters. Figure 

7.28 signifies the SDS2 service timing diagram. As demonstrated in the figure, the 

orchestration time is T3, which is comprised of T1 and T2—the total security reaction 

time measured based on T4, T5, T6, T7, T8, and T9. The T6 demonstrates the time 

that SDS2 system requires to detect violations using the algorithms.  

 
Figure 7.28 SDS2 time diagram 
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The orchestration times consider both orchestration of VSFs and the time it 

requires to configure the functions. We examined the efficiency of the SDS2 service 

through the parameters mentioned above. During the orchestration phase, the SDS2 

platform analyzes the interaction and triggers new or existing VSFs to monitor the 

interaction and configure/update the VSFs according to validate interaction 

parameters. To evaluate it, we consider two prominent cases 1) orchestrate new VSFs, 

2) re-orchestrate existing VSFs. In the first case, system orchestration time increased 

as this requires the initiation of the new VSF. The reason relies on the time the security 

controller requires to initiate, assign the resources, and run a new VSF. The SDS2 

security controller needs to assign new resources to the VSFs, which takes a long time 

to communicate with VIM to get the VSF resources. We examine the security 

orchestration of the system in both cases. A considerable number of interactions have 

been sent to the security controller. The interaction can be of any type of interaction. 

As displayed in figure 7.29, the time required for the cases orchestrations increases 

with a rising number of interactions within the system. Remarkably, the maximum 

amount of time for responding to 60 concurrent requested interactions is slightly 

above the 4s while this amount is less for re-orchestrating the existing VSFs. This is 

because case two 1) reuses the existing VSFs which already have assigned resources, 

and 2) reduces the time to configure the VSFs for the same interaction. Case one does 

not consider these factors; hence it requires to orchestrate and configure the new VSF 

for each incoming interaction. 
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Figure 7.29 Orchestration time Case 1 and Case 2 

The security reaction time is expressed as when the SDS2 service requires to 

respond to an interaction. The response time measures are based on two main factors: 

1) detection time and 2) prediction time. To evaluate the performance of the SDS2 

service, we consider two cases: 1) non-smart SDS2 service, and 2) smart SDS2 service. 

We run numerous interactions for each case. The first case demonstrates the required 

time to detect the security violations without previous prediction parameters (Figure 

7.30).  

In this case, the SDS2 service each time measures the average detection time for 

various interactions without considering predicted potential interaction parameters 

violations. The second case enables the SDS2 service to reduce the time by accessing 

prediction parameters (Figure 7.31). The detection processing time will be reduced as 

a result of considering prediction parameters as the first stage of detection for an 

interaction. The SDS2 shows a considerable decrease in detection processing time 

where predicted interaction parameters reflect future threats for an incoming 

interaction. In such cases, the SDS2 security services first will deliberate on the 

detection process considering previously predicted violation interaction parameters. 

So, it optimizes the processing time during the detection period by considering 
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previously predicted parameters. As demonstrates in Figures 7.30 and 7.31, the 

detection process time that the SDS2 requires to detect security violations within the 

system reaches its peak by an increased number of interactions to 60.  

 

Figure 7.30  Non-Smart SDS2 service 
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Figure 7.31 Smart SDS2 service 

As shown in Figure 7.32, we can observe a performance improvement of 

upwards of 90%. With the lower number of interactions, the performance 

improvement is around 99%, and as the number of interactions increase, we can see 

the improvement stabilize upwards of 90%. This is predictable as with an increase in 

the number of interactions, so does the average detection time, however using the 

Smart SDS2 service, we can have a better prediction model and maintain a steady 

performance improvement over time. 



 

235 | P a g e  

 

 
Figure 7.32 SDS2 service - performance improvement 

As illustrated in Figure 7.33, the SDS2 service spent more time during the 

detection discovery phase for interactions triggered by users. The discovery time for 

SDS2 related to user interactions maximizes as interactions reach 90 concurrent 

requested interactions compared to other types. In the other cases, this time is less as 

SDS2 uses existing stored data, its local security DB. The SDS2 service requires more 

computation time to process a user requests since new data has been presented which 

there is no record in DB for involved entities. 
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Figure 7.33 SDS2 service performance evaluation - in case of different simulated 

interactions 

7.6 Summary  

This chapter has introduced our SDS2 platform to provide on-demand security 

services to protect cloud resources. The SDS2 model aims to introduce a proactive 

system to limit virtual environment challenges on provisioning and programming 

underlying virtual security functions. We attempt to incorporate the SDS2 security 

model within an integrated cloud/SDN/NFV system for dynamic protection against 

interaction security violations. We have deployed the proposed model's primary 

functionality and have enabled the SDS2 service to control and manage virtual security 

functions according to their purpose. We discuss several experiments to demonstrate 

SDS2 model functionality and to provide the proposed model operation in 

provisioning on-demand virtual security functions. We present the feasibility and 

efficiency of the proposed model through the design and implementation of the SDS2 

platform. We evaluate the system performance through numerous simulated 

interactions. 
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Chapter 8 
 

8 Conclusion and Future Work 

8.1 Research Remarks 

This chapter summarizes this research and outlines the significant contributions. 

We suggest future work in association with the research achievements. 

Cloud computing has evolved into a key structure for IT industries for providing 

users with on-demand services. Cloud architecture enables users to access cloud 

services over the Internet at any time regardless of their location through application 

software like web browsers. Rapidly cloud services and their on-demand virtual 

functions have become an indispensable technology involved in many aspects of 

human life, educational system, healthcare, industry, government, and social 

enterprises. However, the cloud environment adoption and its services have been 

slowly moving forward as it becomes more vulnerable to traditional and new security 

threats related to its structure and elements. Moreover, the integration of new 

emerging technologies like software-defined networking and Network Function 

Virtualization provoked security cloud services and their virtual functions. According 

to the National Institute of Standards and Technologies (NIST), security, portability, 

and interoperability have been declared the main obstacles to adopting the cloud 

environment.  
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Cloud, SDN, and NFV technologies and their associated software-defined 

infrastructures rely on virtualization technology to provide their virtual resources and 

offer them as services to users. However, the complexity of security issues in virtual 

cloud infrastructure is more complicated than traditional infrastructure since 

resources/functions are shared and virtualized between numerous cloud users. In 

multi-tenant cloud architecture, isolation is introduced as a crucial concept for both 

security and infrastructure management. Isolation should be considered at functional 

entity levels and appropriate abstraction levels of the infrastructure. However, virtual 

boundaries amongst cloud virtual functions/components are not always well defined 

and rather often undefined, and hence they are not visible/controllable by security 

mechanisms or cloud providers.  

In this research, we discovered a number of significant security challenges of 

the current cloud and its integrated technologies. The first challenge is finding 

effective mechanisms for constructing dynamic isolation boundaries for securing 

cloud assets at different cloud infrastructure levels. This challenge prompted the need 

to provide overall visibility on virtual boundaries within a cloud infrastructure. The 

second challenge is to deliver a competent, proactive security technique to detect and 

predict security violations to protect cloud resources. The third issue is to automate 

and provision virtual security functions whenever they are required.  

To address the challenges, we propose a software-defined security service 

model and its associated techniques to provision on-demand security service to protect 

cloud resources. 

In particular, on dynamic connectivity and networking among virtual security 

functions, software-defined networking (SDN) has transformed the physical 

underlying network infrastructure into programmable and virtualized networks. The 

SDN controller enables automatic connectivity among virtual network functions 

through its logically centralized overview of network function dynamics. However, 

using SDN in cloud security is still not common as it is still developing and facing 

security challenges. This research aims to use SDN to enable connectivity among 
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virtual security functions through a direct connection between the security controller 

and VSFs.  

 We introduce a new technique to provide dynamic visibility on security 

boundaries for cloud entities during a triggered request on the dynamic construction 

of security isolation. For this purpose, we investigate various algorithms and 

mechanisms for security isolation. 

On security violation detection and prediction mechanism, we try to deliver an 

exceptional, innovative technique when an interaction occurs within the system. To 

achieve that goal, we explore security breaches and methods in different domains for 

security violation services.   

As for communication and management protocol, it is worth noting that virtual 

security functions (VSFs) are not routing network functions where heavy protocols 

for programming network flows in virtual network functions are not entirely 

applicable to virtual security functions. In a security model less, an effort has been 

made to address these challenges. This study investigates the deployment of a new 

simple protocol to transfer essential required security parameters.  

Regarding the creation and orchestration of virtual functions, Network function 

virtualization (NFV) aims to virtualize an entire class of network component functions 

using virtualization technologies. NFV enables network functions to be realized and 

executed as software instances in a VM on single or multiple hosts instead of 

customized hardware appliances. However, efforts to utilize virtual functions in 

creating efficient but straightforward virtual security functions are limited. We 

explore network function virtualization mechanism to deploy virtual security 

functions with simple functionality and capability to be used in a security model in a 

cloud environment.   

The contribution of this research has been summarized as follows.  
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We proposed a software-defined security service model that enables the 

provision of on-demand security services via orchestration of virtual security 

functions over cloud infrastructure. This model enables the programmability of 

numerous virtual security functions for provisioning on-demand security services. 

The model consists of novel security violation techniques to construct dynamic 

security boundaries related to interaction among cloud entities.  

We introduced an innovative policy-based interaction model that enables the 

dynamic construction of security boundaries for cloud entities involved during a real-

time interaction. The model governs interaction security among entities in a virtual 

cloud environment. The model provides a framework for incorporating system 

security policies and entity constraints in constructing interaction boundaries and 

defining a security dictionary of expected/unexpected cloud entities 

expected/unexpected behavior when they access resources in the cloud environment. 

We presented new algorithms and techniques to detect and predict security 

violations during a triggered interaction. We deploy an automatic detection and 

prediction algorithm called ISVDP to identify security breaches related to interaction 

parameters. The algorithm also maps out possible future attacks based on expected 

violations of the currently defined interaction parameters.  

We proposed a novel control and management protocol for programming virtual 

security functions. The proposed protocol enables direct communication between the 

SDS2 security controller and its VSFs. The main purpose is to transfer the parameters 

pertinent to the security aspects of objects’ interaction, between a VSF and the security 

controller, to monitor an interaction's parameters to detect and predict security 

violations. 

We proposed a software-defined security service system that can be a part of 

cloud infrastructure protecting virtual resources/functions. The proposed architecture 

via its centralized security controller enables dynamic programmability of the 

underlying virtual security function. The virtual security functions can be controlled, 
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orchestrated, managed, and configured by centralizing security control with overall 

visibility on entities security boundaries.  

We design and implement the software-defined security platform to present its 

capability and performance in provisioning on-demand virtual security functions to 

protect the cloud resources. The proposed platform demonstrates a new software-

defined security system for integrating cloud, SDN, and NFV concepts in cloud 

security and a specific method to detect and predict security violations.  

On security connectivity between the security controller and virtual security 

functions, we adopted SDN functionalities to provide connectivity. We demonstrated 

the use of a software-defined networking domain in security through the SDS2 model. 

On virtual security function, we introduce a simple VSF to monitor interactions 

between cloud resources. The security function enhanced on-demand security 

monitoring within cloud infrastructure due to the dynamicity of interactions.  

On control and management protocol, we designed and deployed a novel, 

simple protocol as Sec-Manage protocol, specifically designed to transfer interaction 

parameters and policies between the security controller and virtual security functions.  

On security isolation, we introduced a new isolation domain via interaction. A 

novel interaction model governs the protection of cloud resources through dynamic 

security interaction boundaries. We presented major interaction parameters for the 

construction of security boundaries during triggered interactions.  

We design and deploy an innovative policy-based interaction model and its 

associated techniques and an algorithm to construct a proactive security mechanism. 

We introduced an original security violation detection and prediction method 

according to interaction parameters and policies governing the interaction and entities.  

In brief, we trust that this research thesis delivers an affirmative response to the 

posed question in chapter 1, “How to secure and protect cloud resources against 

security isolation breaches using new technologies based on SDN/NFV, and can the 
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proposed model be realized in the practical environment?”. Our security model and 

its innovative elements and algorithms can be used to provide on-demand security 

service to protect cloud’s resources.  

This research's novelty lies in its novel software-defined security service 

platform for provisioning on-demand security services, its unique mechanisms in 

constructing dynamic security boundaries, and its innovative method in detecting and 

predicting security violations in relation to the proposed policy-based interaction 

model. The proposal includes a novel software-defined security architecture that is 

constructed using SDN and NFV technologies. The proposed architecture introduces 

a logically centralized security controller with overall visibility of security boundaries. 

The significance of this study is that it allows the orchestration and 

programmability of virtual security functions in provisioning on-demand security 

service to protect cloud resources. This research enables i) cloud providers to 

dynamically provide security interaction isolation to protect cloud resources, ii) cloud 

providers to develop innovative 0n-demand virtual security functions to improve 

dynamicity of security monitoring over virtual cloud environments iii) clouds and 

tenants security developers to enhance security methods in detecting and predicting 

security violation over virtual functions, iv) security admins to dynamically program 

and orchestrate underlying virtual security function against any types of interaction 

violation breaches.  

8.2 Future Work 

Usage of SDN and NFV in cloud security is still a developing research area. In 

this section, we outline some potential future works and research directions for cloud 

security.  

 This research investigates technologies, security architectures, virtual function 

capabilities, security protocols, security isolation mechanisms, and programmable and 
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orchestration of virtual security functions within a cloud infrastructure. This thesis 

opens up new research directions in integrating SDN and NFV in the cloud 

environment to provide on-demand security services. Even though this research 

presented significant outcomes, there remain several limitations.  

The SDS2 security platform can be considered a crucial platform for future 

investigation on new mechanisms associated with QoS-driven network among virtual 

security functions and security platform elements. This research mainly focuses on 

constructing a dynamic but straightforward network security connection between VSF 

and SC. In the future, billions of virtual security functions can transfer security data 

and messages, which may cause a heavy load on network transportation. In the future, 

we consider the QoS and design QoS techniques to prevent the above-mentioned issue 

and enhance software-defined security service orchestration in provisioning on-

demand virtual security functions.  

Currently, the proposed SDS2 security model focuses on constructing VSFs 

according to network function virtualization concepts. The VSFs are implemented 

from pre-defined scripts/templates written in Jason/TOSCA templates. The security 

controller places them according to the placement of triggered interaction. In future 

work, we plan to work on allocation optimization of VSFs within a cloud 

infrastructure. We plan to investigate intelligent location discovery algorithms and 

integrate them within the security controller.  

The proposed model includes the Sec-Manage protocol to control and manage 

virtual security functions. The Sec-Manage transfers specific interaction parameters 

between the security controller and VSFs. Currently, protocol mainly focuses on 

forwarding a limited number of specific parameters and functioning the behavior of 

VSFs to monitor the interactions. We can develop this further to includes QoS-specific 

parameters considering the limitation of virtual security functions and security 

controllers. 
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Currently, the SDS2 security model concentrates mostly on validating the 

security model's efficiency within a single cloud node. However, we plan to test the 

model in an integrated cloud infrastructure, including various nodes and domains.  

An interaction can be considered as a simple/complex interaction. As previously 

discussed in chapter 4, an interaction can involve numerous internal interactions 

before achieving its goal, which can involve a hierarchy of dependent resources. 

However, in this research, the proposed SDS2 security model emphasizes only simple 

interaction among two resources. The security system bypasses the complexity of the 

interaction in terms of nested internal interactions and dependable resources. We are 

currently investigating interaction complexity in terms of nested interactions and plan 

to enhance our policy-based interaction mechanism which will satisfy such 

interactions within the virtual cloud environment.  

In our proposed interaction model, the relational position parameter is entangled 

with role-based security policies. Role-based policies are considered as significant 

access policies in each security domain. However, they are not easy to be calculated 

in a complex and dynamic environment such as a cloud. In our study, we mainly focus 

on three main role-based policy levels. We consider improving the complexity of our 

security model by deploying complex dynamic role-based security policies. We aim 

to use nested role-based security policies to enhance the discovery time in our security 

model. 
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