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ABSTRACT

MULTIPLE-CAMERA MULTIPLE-OBJECT 3D LOCALIZATION IN

SPORTS VIDEOS

by

Yukun Yang

Sports video analysis and object 3D detection are extensively studied problems

in computer vision. As one of the most important scenarios of object detection in

3D, multiple-camera multiple-object 3D localization (MCMOL) in sports videos has

recently drawn much attention in the research community due to the growing trend

of object detection from monocular to multiview, i.e., from 2D to 3D.

Due to heavy occlusion in crowded sports scenes and high-speed moving targets

in sports games, MCMOL for sports objects tends to be extremely challenging. Ex-

isting solutions generally apply foreground extraction as input, design statistical or

Convolutional Neural Network (CNN) models commonly to all visible targets to ob-

tain objects’ coordinates and/or location encoding. However, ambiguous foreground

masks and heavy occlusion limit their performance by a large margin. Moreover,

the obtained coordinates cannot be associated or retrieved back to the particular

objects. There is no one-to-one relationship between the outcomes and the objects

to be detected. Thus, the false-positive and false-negative rates increase.

To deal with the above-mentioned issues, in this thesis, we conduct comprehen-

sive studies about the MCMOL problems in sports videos. Due to the challenges

mentioned above, we develop three multi-camera multi-object 3D localization ap-

proaches that provide accurate, reliable, and distinguishable results. Firstly, we

apply Convolutional Neural Network with Initialization Settings over the Probabilis-

tic Occupancy Map (i.e., POM+CNN+IniSet). This approach applies CNN-based

monocular segmentation jointly on multiple cameras and develops an indicative



parameter initialization scheme for the Bayesian iteration model. Afterward, we

propose the POM with Identification (PomID) method and introduce the Deep-

Player model including a Cascade Mask-RCNN model and a pose-guided partial

feature embedding to conduct segmentation and identification simultaneously for

multiple players. This method separately estimates locations for individuals with

identified labels and the rest of the objects without specific identities. Finally, we

propose the Probabilistic and Identified Occupancy Map (PIOM) method and de-

velop an Image&ID model to mathematically describe the segmentation pixels and

identification estimation as the likelihood probabilities. This method then creates a

multi-dimensional Bayesian model to estimate the localization results as posterior

occupancy probabilities with unique ID labels. Given the pre-defined prior proba-

bilities, the Bayesian model is optimized by an efficient iterative convergence. Our

work is the first attempt to take advantage of CNN-based object identification for

object 3D localization applications.

Experimental results demonstrate that our proposed framework improves the

localization performance by a large margin and outperforms the state-of-the-art in

MCMOL sports video scenarios.
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