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ABSTRACT

MULTIPLE-CAMERA MULTIPLE-OBJECT 3D LOCALIZATION IN

SPORTS VIDEOS

by

Yukun Yang

Sports video analysis and object 3D detection are extensively studied problems

in computer vision. As one of the most important scenarios of object detection in

3D, multiple-camera multiple-object 3D localization (MCMOL) in sports videos has

recently drawn much attention in the research community due to the growing trend

of object detection from monocular to multiview, i.e., from 2D to 3D.

Due to heavy occlusion in crowded sports scenes and high-speed moving targets

in sports games, MCMOL for sports objects tends to be extremely challenging. Ex-

isting solutions generally apply foreground extraction as input, design statistical or

Convolutional Neural Network (CNN) models commonly to all visible targets to ob-

tain objects’ coordinates and/or location encoding. However, ambiguous foreground

masks and heavy occlusion limit their performance by a large margin. Moreover,

the obtained coordinates cannot be associated or retrieved back to the particular

objects. There is no one-to-one relationship between the outcomes and the objects

to be detected. Thus, the false-positive and false-negative rates increase.

To deal with the above-mentioned issues, in this thesis, we conduct comprehen-

sive studies about the MCMOL problems in sports videos. Due to the challenges

mentioned above, we develop three multi-camera multi-object 3D localization ap-

proaches that provide accurate, reliable, and distinguishable results. Firstly, we

apply Convolutional Neural Network with Initialization Settings over the Probabilis-

tic Occupancy Map (i.e., POM+CNN+IniSet). This approach applies CNN-based

monocular segmentation jointly on multiple cameras and develops an indicative



parameter initialization scheme for the Bayesian iteration model. Afterward, we

propose the POM with Identification (PomID) method and introduce the Deep-

Player model including a Cascade Mask-RCNN model and a pose-guided partial

feature embedding to conduct segmentation and identification simultaneously for

multiple players. This method separately estimates locations for individuals with

identified labels and the rest of the objects without specific identities. Finally, we

propose the Probabilistic and Identified Occupancy Map (PIOM) method and de-

velop an Image&ID model to mathematically describe the segmentation pixels and

identification estimation as the likelihood probabilities. This method then creates a

multi-dimensional Bayesian model to estimate the localization results as posterior

occupancy probabilities with unique ID labels. Given the pre-defined prior proba-

bilities, the Bayesian model is optimized by an efficient iterative convergence. Our

work is the first attempt to take advantage of CNN-based object identification for

object 3D localization applications.

Experimental results demonstrate that our proposed framework improves the

localization performance by a large margin and outperforms the state-of-the-art in

MCMOL sports video scenarios.
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Chapter 1

Introduction

1.1 Background

Sports video analysis is a technique used to get information about moving ob-

jects from sports videos. Examples of this include gait analysis, sports replays,

speed and acceleration calculations, and in the case of team or individual sports,

task performance analysis [1, 2, 3]. The technique of sports video analysis usually

involves a high-speed camera and a computer that has software allowing frame-by-

frame playback of the video. Multi-camera sports video analysis is one of the most

important applications in the field of video analysis and has received increasing in-

terest in recent years. Various studies have been conducted in this area, including

enhancing sports video broadcast [4, 5, 6], reconstructing 3D matches [7, 8, 9], and

providing interactive content for audiences [10, 11, 12].

Object detection is an extensively studied computer vision problem, but most of

the research has focused on object 2D prediction [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Object 3D detection can capture an object’s size, position, and orientation, lead-

ing to various applications in robotics, self-driving vehicles, image retrieval, and

augmented reality. Object 3D detection has been applied in both monocular and

multiview scenarios in recent years [23, 24, 25, 26, 27]. Approaches for object 3D de-

tection process monocular or multiview image sequences as the input. Intermediate

steps such as 3D world definition, camera calibration, monocular or multiview 2D

detection, and localization algorithms designing are necessary and essential [28, 29].

These methods finally output the object’s 3D world coordinates or discrete location
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encoding as outcomes.

Being considered one of the most important scenarios of sports video analysis

and object 3D detection, multiple-camera multiple-object 3D localization (MCMOL)

[30] in sports videos has recently drawn much attention in the research community

due to the growing trend of object detection from monocular to multiview, from 2D

to 3D [31, 32, 33].

MCMOL for sports players aims to estimate the locations for all the players

standing on the sports ground. The input of MCMOL methods usually contains

image sequences extracted from multi-camera sports videos. Some other methods

include more sensors such as stereo cameras and LiDAR scanners to solve this task.

The outcomes of the MCMOL approaches typically consist of sports players’ 3D

bounding boxes, location coordinates, or location encoding.

3D localization of multiple sports players in multiview sports videos is quite

different from the traditional scenarios because of the following characteristics: [34,

35]:

1. Multiple cameras applied in sports scenarios

2. The huge data volume of sports videos and images

3. High-speed moving objects

4. Complicated and changing background contents

5. Heavy occlusion in crowded sports scenes

Thus, 3D localization is more challenging because it applies object detection from

2D to 3D, from monocular to multiview. The 3D localization results of multiple

sports players are often inputted into multi-object tracking algorithms that rely on
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tracking-by-detecting strategies to optimize continuous trajectories for each sport

player, respectively [36].

Due to heavy occlusion and rapid-moving players in crowded sports scenes, MC-

MOL for sports players tends to be extremely challenging. In order to tackle the

task of MCMOL for sports players, most existing methods utilize the information

across multiple views, which generally have overlapping fields of view captured from

different orientations [37, 38]. Precise camera calibration is required to calculate

and project between the image pixels and the corresponding 3D world points in the

sports space. The calibration outcomes associate visual information from multiple

views and link the image input with the 3D location coordinates that are generally

considered the algorithms’ output. [39, 40]. In order to keep the consistency of the

2D input evidence from different views, image sequences are extracted from the orig-

inal sports videos according to a timestamp calculator, which ensures that images

from different views with the same timestamp indicate the consistent sports game

status. Some of these methods pre-process RGB images from different views and ex-

tract the moving players as foreground masks [41, 42, 43], which are lately inputted

into the statistical models [44, 45] or CNN-based detection networks [46, 47, 48].

In comparison, some state-of-the-art methods apply different types of sensors such

as ToF cameras and LiDAR to obtain RGB-D images [49, 32, 50, 51, 52] or point

clouds [53, 54, 55, 56, 57], which can deliver accurate distance information from

targets to the sensors.

Those methods mentioned above can generally achieve satisfactory precision

and recall. However, traditional methods that use foreground extraction usually

generate ambiguous segmentation masks, which increases the false-positive results.

Besides, RGB-D or point-cloud-based methods are often limited by high costs of

equipment [58, 59]. Moreover, all these approaches cannot provide distinguishable

and unique outcomes among multiple objects. They cannot significantly increase
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the true-positive rate and avoid false-positive detection.

1.2 Significance and Challenges

Multi-camera multi-object 3D localization is significant. MCMOL helps develop

public transportation systems, industrial office security, and pedestrian protection

applications for video surveillance systems. For object tracking tasks, it provides the

most important input and significantly impacts the tracking performance. More im-

portantly, MCMOL for sports players plays a crucial role in the research of multiple

player tracking, sports event analysis, and sports event prediction.

Existing approaches for MCMOL in sports videos mentioned above have been

widely studied and applied in many applications. However, ambiguous 2D extrac-

tion, tiny pixel blobs in remote views, high speed moving targets always limit their

localization performance by large margins. In addition, depth images and point

clouds require extremely high-cost equipment. More importantly, a critical influ-

encing factor on MCMOL performance is the heavy occlusion in extremely crowded

sports scenes such as basketball and football.

Meanwhile, current methods can only provide a set of estimated locations for all

the visible players. This kind of outcome can not be associated or retrieved back to

the particular player who is proved to be detected at the given location. Therefore,

we explore the player identification in order to obtain distinguishable results that

every estimated location is unique among each other. Given the localization results

with unique player identities, we can significantly improve the localization perfor-

mance by eliminating false-positive results, hence overcome the limitation caused

by heavy occlusion. Besides, it has great potential to eliminate the negative impact

caused by identity switches in some multi-target trackers using tracking-by-detecting

schemes.
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What is more, player identification is even more challenging in real-world sports

videos. Unlike pedestrians [60] and vehicles [61, 62] that have relatively predictable

motion patterns, sports players tend to confuse their opponents with abrupt moves in

directions and unexpected changes in velocity. Meanwhile, compared with person re-

identification, commonly used features for re-id, e.g., color and gait, become invalid

in the scenario of player identification.

In order to analyze the current methods and address the existing problems afore-

mentioned, we summarize the following challenges with respect to the MCMOL tasks

for sports players:

1. Huge data volume of sports videos and image sequences, temporal synchro-

nization of multi-camera sourced image frames

2. Inaccurate sports space calibration, installation, and arrangement of multiple

cameras.

3. Ambiguous sports players segmentation inputs, changing background contents

of sports courts.

4. Player’s jersey number encounters severe deformation due to the movement.

Low resolution and variant image size also make the jersey number difficult to

recognize.

5. Player’s similar appearance due to the similar uniform, body shape variation,

erratic motion, spectator interference, and the illumination variation makes it

difficult to track and identify players reliably.

6. Player’s heavy occlusion caused by extremely crowded sports scenes widely

exists and brings high-level false-positive and false-negative rates. Ambiguous

extraction input, tiny pixel blobs in remote views, rapid-moving targets also

limit the localization performance.
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7. Player’s locations estimated by existing methods cannot be associated and re-

trieved back to the particular player. These types of localization outcomes are

not distinguishable and unique, therefore generate more false-positive results

and more identity switches for the further trackers who intend to take benefits

from 3D localization as input.

We have conducted comprehensive research about the MCMOL problems for

sports players and illustrated the proposed methods in Chapter 4, Chapter 5, and

Chapter 6 to solve these challenges. Challenge No. 1 and 2 are discussed in Chapter

4, challenge No. 3 is solved in Chapter 5, while challenge No. 4 to 7 are studied in

Chapter 6.

1.3 Research Objectives and Contributions

As we have concluded the challenges for the problem of MCMOL in sports videos,

therefore, we illustrate the research objectives for this thesis as follows:

1. To eliminate the unclear input and ambiguous foreground masks for the local-

ization algorithms and enrich the prior evidence for the localization algorithms

from the fisheye camera detection, we implement CNN-based segmentation and

apply prior parameter initialization from fisheye cameras.

2. To overcome heavy occlusion in crowded scenes, reduce false-positive and false-

negative rates, and to obtain distinguishable and unique location results, we

introduce object segmentation and identification into the localization algo-

rithms and conduct computation for individual objects and uncertain objects

separately.

3. To overcome heavy occluded sports scenes, overcome special sports conditions,

obtain distinguishable and unique localization results that can be retrieved
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back to the particular object, and establish an integral and robust localization

framework, we introduce object segmentation and identification jointly into a

multi-dimensional Bayesian localization model.

Existing approaches cannot comprehensively solve those challenges mentioned in

Section 1.2. There is a lack of an integral and reliable solution for sports players’

MCMOL tasks in both academia and industry. Therefore it is desirable to propose a

framework that studies multi-camera multi-object 3D localization for sports players

and can provide accurate, reliable, and distinguishable 3D localization results.

Considering the problems mentioned above and the limitation caused by the

previous solutions, in this thesis, we conduct a comprehensive research about the

MCMOL problems for sports players and proposed three stages of frameworks cor-

responding to the research objectives concluded above in order to tackle the tasks

and challenges mentioned in Section 1.2. Our main contributions are concluded as

follows.

1. POM+CNN+IniSet 3D localization method (see Figure 4.2). This method

applies the CNN-based monocular segmentation jointly on multiple cameras

in order to remove the ambiguous results generated by the ordinary back-

ground extraction and eliminate missed foreground masks. Additionally, we

develop a generic Bayesian model with an indicative parameters initialization

scheme for the localization iteration from the fisheye detection input. This

approach enriches the localization system’s input information, removes unde-

sired segmentation masks, improves the precision and recall of the localization

outcomes, and boosts the 3D localization performance.

2. PomID 3D localization method (see Figure 5.3). This method proposes a

DeepPlayer model including a Cascade Mask-RCNN model and a pose-guided

partial feature embedding to conduct object segmentation and identification
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for multiple sports objects. The DeepPlayer model produces both the indi-

viduals’ foreground masks and their identities, which are treated as the given

evidence for the 3D localization algorithms. This method then separately esti-

mates the likely location for each player who has a certain and correct identity

and jointly calculates the results for the rest targets without ID labels. Final

outcomes are then refined by a set of reasonable constraints. This approach

includes multiple objects’ identities as evidence to estimate the likely occu-

pied locations, making the localization results distinguishable and unique to

be associated with the particular objects. This method can accurately locate

multiple objects and effectively avoid identity switches for multiple-object de-

tection and tracking tasks. To our best knowledge, this is the first attempt to

introduce object identification into MCMOL approaches.

3. PIOM 3D localization method (see Figure 6.1). This method firstly takes 2D

segmentation and identification from all camera views as input. It then devel-

ops an Image&ID model to visually describe the status of an object’s presence

and identity in a specific location. It associates the binary pixel input with the

mathematical format of occupancy and identification probabilities. Afterward,

we develop a multi-dimensional Bayesian model and construct a loss function

as the K − L divergence between an estimated probability distribution and

the true posterior probability. The prior probabilities are initialized at the

beginning of the iteration, while the likelihood probabilities are approximated

by the normalized image distance. Finally, an efficient iterative process is de-

signed to minimize the loss function and obtain the optimal solutions. The

PIOM method generates accurate locations with correct identities for every

object that is visible in the detection space. As the localization outcomes

are unique and distinguishable for each player, this method can effectively

overcome the challenges mentioned above. Meanwhile, it still keeps excellent
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performance in some extreme conditions such as super heavy occlusion, partial

body occlusion, and high moving speed body gestures.

1.4 Thesis Organization

In this section, we introduce a brief overview of our thesis. This thesis is orga-

nized as follows:

• Chapter 2: In this chapter, we present a survey of the existing approaches

for 3D multiview object localization and object identification tasks, especially

for multiview sports video scenarios. We also investigate the state-of-the-art

methods and their applications.

• Chapter 3: In this chapter, we introduce the sports video recording and data

preparation, including temporal synchronization for sports videos and image

sequences, multi-camera arrangement and calibration, and five sports video

datasets we collected and processed. Then we present the problem formulation

for 3D multiview multiple-object localization, which includes the sports space

modeling and statistical modeling for multi-object localization.

• Chapter 4: In this chapter, we illustrate our proposed POM+CNN+IniSet

3D localization method, including multi-camera 2D segmentation and initial

setting for Bayesian iteration. Then we conduct the experiments based on the

APIDIS dataset and compare the results with the baseline POM.

• Chapter 5: In this chapter, we present our proposed PomID 3D localization

method, which includes the DeepPlayer model and PomID localization scheme.

Afterward, we conduct the experiments based on the public dataset APIDIS

and our collected dataset STU and evaluate the performance of our proposed

method.
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• Chapter 6: In this chapter, we introduce our proposed PIOM 3D localiza-

tion method, including the multi-dimensional Bayesian model, the Image&ID

model, the calculation of the posterior probabilities, and an efficient itera-

tive process. Then we conduct the experiments based on two of our collected

football datasets LH0716v2 and LH0928, and compare the outcomes with the

baseline POM and two of our proposed methods mentioned above.

• Chapter 7: In this chapter, we present a brief summary of the thesis contents

and our contributions to the MCMOL tasks in sports videos. Discussion for

future work is presented as well.
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Chapter 2

Literature Review

In this chapter, we provide an introduction to the related work for the MCMOL

tasks. Firstly we present a comprehensive investigation about the existing MCMOL

methods in Section 2.1, which can be roughly divided into four categories: back-

projection-based localization, statistical modeling-based localization, deep learning-

based localization, and depth image and point clouds-based localization. The back-

projection-based localization and statistical modeling-based localization are the most

traditional approaches for the MCMOL tasks. Deep learning-based localization and

depth image and point clouds-based localization are two types of the most recent

studies.

Additionally, as we develop person re-identification models for sports players in

Chapter 5 and 6, we review some person re-identification methods applied in sports

video scenarios in Section 2.2.

2.1 Multi-Camera Multi-Object Localization

Traditional methods that address multi-camera multi-object 3D localization are

RGB image-based back-projection and statistical modeling-based algorithms.

These methods generally utilize the information across multiple views, which

have overlapping fields of view captured from different orientations. Precise camera

calibration is required to calculate and project between the image pixels and the

corresponding 3D world points in the detection space. The calibration outcomes

associate visual information from multiple views and link the image input with the
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3D location coordinates that are generally considered the algorithms’ output. In

order to keep the consistency of the 2D input evidence from different views, image

sequences are extracted from the original videos according to a timestamp generator,

which ensures that images from different views with the same timestamp indicate

consistent content.

These methods generally pre-process the RGB images from different views and

extract the moving targets such as pedestrians or sports players to generate fore-

ground masks. The foreground masks are typically considered the most critical

input of the 3D localization algorithms. These approaches can be roughly divided

into two groups.

2.1.1 Back-projection-based localization

The first group of those traditional methods is called back-projection-based local-

ization. Those solutions use foreground subtraction and accurate camera calibration

data as input. Localization algorithms are developed to back-project the foreground

masks into one or several reference planes [41, 43, 63, 64, 65]. The reference planes

are usually selected to be parallel with the ground plane of the detection space.

With back-projected blobs including intersecting parts on these planes, models are

constructed to analyze interconnected masks and occlusions. Localization results

are then obtained based on geometric computations of the masks on the reference

planes.

Some methods such as [41] back-projected the foreground masks from multi-

view onto a reference plane with head level, using the head segmentation to locate

pedestrians’ coordinates. Khan and Shah [43] selected several reference planes with

multiple heights, developed a planar homographic occupancy constraint that fuses

foreground masks from multiview to resolve occlusion.

Ge and Collins [63] used a Gibbs point process stochastic process to model the
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generation of multiview images of random crowd configurations. The optimal crowd

configuration was estimated by sampling a posterior distribution to find the MAP

estimate for which the model best fits the image observations.

Utasi and Benedek [64] assumed that the scene is monitored by multiple cali-

brated cameras and the extracted foreground masks are available. The foreground

pixels were projected on the ground and multiple parallel planes. This method

extracted two similar pixel-level features in each 2D position: one on the ground

plane and one on each head plane. The extracted features were used in a stochastic

optimization process with geometric constraints to find the optimal configuration of

multiple people.

Lo et al. [65] developed a vanishing point-based line sampling technique for dense

people localization in real-time and multiple camera tasks. For each camera view,

they projected sample lines originated from a vanishing point of the foreground

objects on the ground plane. Ground regions containing a high density of projected

lines were then used to find people locations.

Hsu et al. [66] introduced a torso-high reference plane because in general the

torso part is more intact and stable than the other parts of a human body and

thus can predict potential people locations more reliably. They then proposed a

bit-wise-operation scheme to predict people locations at the intersection regions of

foreground line samples from multiview. Rule-based validation was then used to

obtain and visualize people’s locations on a real-world plane.

Those methods typically achieve acceptable performance with high efficiency

when the scene is not crowded. However, their performance is limited for crowded

and complex scenarios such as pedestrians and sports players.
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2.1.2 Statistical modeling-based localization

The second group of those approaches mentioned above is statistical modeling-

based localization. Those solutions consider foreground masks and camera cali-

bration data as input as well. In contrast, those approaches directly model the

objects’ locations and occlusion using statistical algorithms such as Bayesian mod-

els [34, 42, 67, 44, 45, 68]. The iterative process is commonly used to intend to

achieve optimal occupancy probabilities.

For example, Fleuret et al. [42] (POM) extracted multiview foreground masks as

input, constructed a Bayesian model to estimate the occupancy probabilities as the

posterior probabilities. The prior probabilities of the Bayesian model are configured

at the beginning of the iterative process. Because the generative model explicitly

calculates the occlusion, POM is robust and performs typically well. However, it

relies on foreground masks as the only input, which is not discriminative enough

when the objects’ density increases. Thus it often produces false-positive outcomes.

Additionally, its localization results cannot be associated and retrieved back to the

particular players. Therefore it would generate more false-positive locations.

Peng et al. [67] proposed a multiview Bayesian network model to detect pedes-

trians from multi-camera surveillance videos. They discretized the ground plane in

a predefined set of locations and modeled the potential occlusion relationship of all

locations in all views. A set of Boolean parameters were then estimated to denote

whether a pedestrian occurs at the corresponding location.

Based on their previous research, Peng et al. [44] then developed a multi-camera

pedestrian detection approach with a multiview Bayesian network model. They

used the model to describe both the occlusion relationship and the homography

correspondence. This approach is robust because it can effectively remove phantoms

from pedestrian candidates. However, this method constructs the Bayesian model
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for all pedestrian candidates and their occlusion relationship in all views, making it

considerably tricky and time-consuming to calculate the highest probabilities.

Yan et al. [68] warped each foreground intersection region back to the original

camera view and associated the region with a candidate box of the average size

of pedestrians at the location. They then calculated a joint occupancy likelihood

for each intersection region. Afterward, essential candidate boxes were identified

first, each of which covered at least a part of the foreground that is not covered by

another candidate box. The non-essential candidate boxes were selected to cover

the remaining foregrounds in the order of their joint occupancy likelihoods.

Klinger et al. [69] developed a joint probabilistic data association framework for

the assessment of similarities between detection and tracked targets. They proposed

a dynamic model which is based on Gaussian Process Regression. They formulated

a new co-variance function taking the spatial distance and the angular displacement

of two trajectories into account. The output of the co-variance function was used as

a measure for the interaction between pedestrians. The 2D image coordinates were

related to the world coordinates by the col-linearity equations.

Rubino et al. [45] proposed a method that uses 2D detection to recover objects’

3D position and occupancy. They formulated the problem as estimating a quadric

in 3D given a set of 2D ellipses fitted to the object detection bounding boxes in

multiview. A non-linear optimization scheme was devised to cope with the possible

ill-conditioning of the problem. However, this approach cannot deal with heavy

occlusion such as crowded pedestrians and sports games. Especially when the objects

are tiny on the camera views, the performance is severely limited.

The statistical modeling-based methods typically model the objects’ locations

and their occlusion relationship based on statistical models such as the Bayesian

model. They usually achieve good performance for multiview tasks without high-
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level density objects. However, the processing time for their localization algorithms

is considerably extended, and the calculation is very tricky.

2.1.3 Deep learning-based localization

As CNN-based methods have achieved significant progress in the area of Com-

puter Vision, especially in the field of Object Detection and Segmentation, a sig-

nificant number of researchers have paid attention to the Deep Learning methods

to address the multi-camera multi-object localization and tracking issues. Since

the year 2016, many deep learning-based approaches have been proposed, including

network construction and data training [30, 32, 46, 48, 70, 71]. Most of these meth-

ods construct two networks that include a 2D monocular detection network and

a 3D multiview localization network. The 2D monocular detection network is im-

plemented to detect 2D information of objects, which usually include segmentation

masks, bounding boxes, and image view coordinates. Afterward, the 3D multiview

localization network is developed to fuse the results of the 2D detection network

from multiview and estimate the 3D coordinates of multiple objects. The local-

ization results are typically produced as the exact 3D coordinates or the location

encoding.

For example, Zhang et al. [72] investigated the perfect single frame detector for

pedestrian 3D localization. They studied the impact of training annotation noise

on the detector performance, analyzed failure cases of top performance pedestrian

detectors, and diagnosed what should be changed to further push performance. They

addressed the high false-positive rate by improving the training set alignment quality

by manually sanitizing the Caltech training annotations and using algorithmic means

for the remaining training samples.

Chen et al. [70] proposed a 3D object detection approach for autonomous driv-

ing. This method generated a set of candidate class-specific object proposals that
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are then run through a standard CNN pipeline. They proposed an energy minimiza-

tion approach that scores each object candidate box via several intuitive potentials

encoding semantic segmentation, contextual information, size and location priors,

and typical object shape.

Mousavian et al. [46] proposed a method that estimates the pose and the dimen-

sions of an object’s 3D bounding box from a 2D bounding box using the constraints

provided by projective geometry and estimates of the object’s orientation and size

regressed using a deep CNN. They regressed the orientation and object dimensions

before combining these estimates with geometric constraints to produce a final 3D

pose.

Bagautdinov et al. [71] proposed a CNN that simultaneously solves multi-person

detection, individual action recognition, and collective activity recognition. This

method relies on joint multi-scale features that are shared among all the tasks. It

used a probabilistic inference scheme to refine the detection hypotheses.

Baqué et al. [30] developed an architecture that combines CNN and Conditional

Random Fields (CRF) to model the ambiguities and the potential occlusion explic-

itly. It produced probabilities of presence on the ground plane, which can be linked

into full trajectories.

Kim et al. [73] proposed a deep learning network composed of a detection network

and a localization network. An attentional pass filter was introduced to pass a

detection candidate that may be a pedestrian. The optimal results were achieved

through the min-cost network flow approach.

Chavdarova and Fleuret [74] fine-tuned one of their previous object detection

network on monocular pedestrian detection and combined several instances of the

early layers of this network into a multiview deep network whose outer layers are

trained for multiview appearance-based joint detection on a relatively smaller multi-
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camera dataset.

Wang et al. [47] proposed a multi-level important salient feature detection ap-

proach based on data-adapting convolution filters and a data-driven algorithm.

They aggregated the important saliency map with color features to formulate an

appearance model. They then developed a support-vector-machine-based incremen-

tal learning method by using modified regularization terms to build and update the

appearance model online and recognize the object based on a classification method.

The proposed method can effectively discriminate new target objects that were never

learned in the primary model and simultaneously improve the matching accuracy of

old objects.

However, none of those methods have been implemented based on sports video

datasets. Currently, the suitable datasets that are publicly available are not suffi-

cient to support the implementation of data training and experiments for CNN-based

methods. Moreover, the localization performance is still limited when the multiview

2D detection results are fused to fit the 3D localization network.

2.1.4 RGB-D and point clouds-based localization

Since the year 2017, researchers have begun to develop approaches using depth

images and LiDAR point clouds to solve multi-camera multi-object 3D localization.

The most state-of-the-art approaches that apply RGB-D images and point clouds

are proposed to tackle the problems of autonomous driving and pedestrian detection

[31, 53]. The depth image is an image or image channel that contains information

relating to the distance of the surfaces of scene objects from a viewpoint. The

point cloud is a set of data points in space. Point clouds are generally produced

by 3D scanners or by photogrammetry software, which measures many points on

the external surfaces of objects around them. These methods that use RGB-D or

point clouds can acquire more accurate distance information of the objects from the
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viewpoints. They generally combine the traditional RGB images with the depth

dimension or with LiDAR point clouds to extract hand-crafted features, using R-

CNN to propose 2D RoI and regress the objects’ coordinates. The most recent

studies were proposed to directly model the 3D locations using discretized 3D voxel

grid representation other than 2D pixels with depth [54].

For example, Chen et al. [75] solved the problem of generating high-quality 3D

object proposals in the context of autonomous driving as minimizing an energy

function encoding object size priors, ground plane as well as several depth informed

features that reason about free space, point cloud densities, and distance to the

ground.

Based on their previous studies, Chen et al. [31] afterward proposed a sensory-

fusion framework that takes both LiDAR point clouds and RGB images as input

and predicts oriented 3D bounding boxes. They developed a network that generates

3D candidate boxes from the bird-eye view representation of 3D point clouds. A

deep fusion scheme was introduced to combine region-wise features from multiview

and enable interactions between intermediate layers of different paths.

Engelcke et al. [53] developed an approach to detect objects natively in 3D point

clouds using CNN. They exploited feature-centric voting to build CNNs to detect

objects in 3D point clouds without projecting the input into a lower-dimensional

space first or constraining the search space of the detector. This enables the CNNs to

learn high-capacity and non-linear models while providing constant-time evaluation

at test-time.

Li [76] used a 3D fully convolutional network (FCN) to enhance the performance

of object detection in the point cloud. The method they proposed detects objects

and estimates oriented object bounding boxes in an end-to-end manner.

Qi et al. [50] extracted the 3D bounding frustum of an object by extruding 2D
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bounding boxes from image detectors. Within the 3D space trimmed by each of the

3D frustums, they consecutively performed 3D object instance segmentation and

amodal 3D bounding box regression using two variants of Point-Net. The 3D mask

of the object of interest was predicted by the segmentation network, and the amodal

3D bounding box was estimated by the regression network.

Xu and Chen [77] proposed a framework for 3D object detection by estimating

the object class, 2D location, orientation, dimension, and 3D location based on a

single monocular image in an end-to-end fashion. A region proposal network was

utilized to generate 2D proposals in the image. Two more branches were added for

jointly learning of orientation and dimension. For 3D object dimension, typical sizes

made up of length, width, and height were accessed by analyzing the training labels

for each class.

Xu et al. [78] developed a deep network for 3D object box regression from im-

ages and sparse point clouds. The network consisted of an off-the-shelf CNN that

extracts appearance and geometry features from input RGB image crops, a variant

of PointNet that processes the raw 3D point cloud, and a fusion sub-network that

combines the two outputs to predict 3D bounding boxes. The network then used a

learned scoring function to select the best prediction.

Zhou and Tuzel [54] proposed a 3D detection network that unifies feature ex-

traction and bounding box prediction into a single-stage, end-to-end trainable deep

network. This network divides a point cloud into equally spaced 3D voxels and

transforms a group of points within each voxel into a unified feature representation

through the voxel feature encoding layer. The point cloud is encoded as a descriptive

volumetric representation, which is then connected to an RPN to generate detection.

Ku et al. [79] proposed a neural network architecture using LiDAR point clouds

and RGB images to generate features that are shared by two subnetworks: a re-
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gion proposal network and a second stage detector network. The region proposal

network used an architecture capable of performing multimodal feature fusion on

high-resolution feature maps to generate reliable 3D object proposals for multiple

object classes in road scenes. They used a 3D bounding box encoding that conforms

to box geometric constraints, allowing for higher 3D localization accuracy. The pro-

posed neural network architecture exploited 1×1 convolutions at the region proposal

network stage, allowing high computational speed and a low memory footprint.

Wang and Jia [80] developed a method termed Frustum ConvNet (F-ConvNet)

for amodal 3D object detection from point clouds. This framework first generates

a sequence of frustums to group local points. F-ConvNet aggregates point-wise

features as frustum-level feature vectors and arrays these feature vectors as a feature

map for the use of its subsequent component of a fully convolutional network, which

spatially fuses frustum-level features and supports an end-to-end and continuous

estimation of oriented boxes in the 3D space.

Li et al. [32] developed a 3D object detection method for autonomous driving by

fully exploiting the sparse and dense, semantic and geometry information in stereo

imagery. This method extends Faster R-CNN [17] for stereo inputs to simultaneously

detect and associate objects in the left and right images. Extra branches were added

to predict sparse key points, viewpoints, and object dimensions, which are combined

with 2D left-right boxes to calculate a coarse 3D object bounding box. The accurate

3D bounding box was recovered by a region-based photo-metric alignment using the

left and right RoIs.

However, the RGB-D and point clouds-based approaches have not been devel-

oped to tackle the issues of sports player detection so far. Most scenarios that apply

RGB-D and point clouds are autonomous driving and pedestrian detection, which

typically use a monocular camera or a single LiDAR device. For sports video scenar-
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ios, multiple cameras and devices are essential to the localization implementation.

Moreover, the LiDAR devices are usually too expensive for the sports video datasets.

The localization performance is still restricted because of the low accuracy of depth

estimation and high error-sensitive point clouds.

Unlike other approaches mentioned above, in this thesis, we take advantage

of the Bayesian model and CNN-based object detection to output discriminative

segmentation masks and precise location encoding. Furthermore, we apply CNN-

based object detection and person re-identification simultaneously to the sports

players and fuse this information from multiview into a multi-dimensional Bayesian

framework that explicitly models the occlusion, the players’ coordinates, and their

identities.

Different from other solutions that use CNN to extract feature representation and

model the 3D bounding boxes, our proposed method is the first attempt to leverage

sports players’ identities to obtain distinguishable locations. Thus, the output of

our developed method is also different from the others.

2.2 Person Re-Identification for Sports Players

Person re-identification algorithms for sports players are concentrated on a close-

up single camera view and multiple camera views. Under the close-up camera views,

players can be identified by jersey number recognition [81, 82, 83] and face recogni-

tion [84].

For jersey number recognition, these approaches try to directly recognize the

jersey numbers followed by character recognition without detecting the number re-

gions. Ye et al. [82] employed a K-NN (K Nearest Neighbour) classifier with the

Zernike moment features to detect jersey numbers for sports players. Gerke et al.

[81] first introduced CNNs into football jersey number recognition. Without any
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character detectors, Li et al. [83] developed CNN models to classify jersey numbers

on the images where the players are detected. The method in [85] combined the

textual cues with the visual face information to try to identify players.

Somewhat against the trend, in terms of multiple cameras, facial information is

often limited. Lu et al. [86] first attempted to track and identify basketball players

by recognizing the entire body instead of the face or jersey numbers. They designed

a sports player’s appearance representation by low-level hand-crafted features, in-

cluding scale-invariant feature transform, maximally stable extremal regions, and

color histograms.

Differently, we leverage deep convolutional features guided by pose estimation to

model the players’ representation. Recently, Gerke et al. [81] treated jersey number

recognition as an image classification task using deep convolutional neural networks.

They directly cropped the top half of the sports images as the jersey number re-

gions. In [87], players’ jersey numbers and group information were used to associate

tracklets of the same player. In this thesis, we develop a coarse-to-fine-grained deep

convolutional neural network to simultaneously detect and recognize the jersey num-

bers and team classes for the sports players. Senocak et al. [88] used convolutional

neural network features to represent the player regions and formulate the identifi-

cation task as a classification problem. Compared with this method, we pay more

attention to how to find the difference among multiple players.

Some other studies perform sports player identification by using the position of

players. In [89], the players’ location information is utilized as the spatial constella-

tion apart from the jersey number recognition. As players’ trajectories are known,

the problem is formulated as an assignment problem. Lu et al. [86] leveraged both

detection and tracking to build a conditional random field model for all the players.

In contrast, we do not perform the player identification using any temporal infor-
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mation, which means that the identification process can be performed in any frame

at any moment.
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Chapter 3

Data Collection and Problem Formulation

3.1 Sports Video Recording and Data Preparation

Being considered as an important application of video processing, multiple-

camera multiple-object 3D localization (MCMOL) has recently drawn much atten-

tion in the research community due to the high demand for multiview sports video

analysis.

In order to solve the problems of MCMOL for sports objects, most existing meth-

ods utilize the information across multiple views, which generally have overlapping

fields of view captured from different orientations. Precise camera calibration is

required for each camera to calculate and project between the image pixels and the

corresponding 3D world points in the sports space. The calibration outcomes can

associate visual information from multiple views and link the captured images from

different views with the particular 3D coordinates of objects. In order to keep the

consistency of the video content from different views, image sequences are extracted

from the original sports videos according to a timestamp calculator. The timestamp

calculator can record one accurate timestamp for each frame, ensuring that frames

from different views with the same timestamp indicate the consistent sports game

status.

Thus, sports video acquisition, temporal synchronization for sports image se-

quences, multi-camera arrangement, and camera calibration are critical for solving

the problems of MCMOL for sports objects.

In this section, we introduce a temporal synchronization scheme for sports videos
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and image sequences, a multi-camera arrangement and calibration method with an

example implementation for a football court, and an introduction to the datasets

we have collected and processed for our sports video research.

3.1.1 Temporal synchronization for sports videos and image sequences

For the 3D localization of multiple objects on the sports court, we acquire the

original sports videos from several wide-angle high-resolution video cameras. We

use a timestamp calculator to unify the filming time and duration for all installed

cameras. The timestamp calculator controls the starting time and ending time

jointly for all cameras. Furthermore, it will record the current time of the original

video streaming, which makes it easy to double-check if the image sequences from

different cameras remain consistent.

From the original sports videos to the corresponding image sequences, we extract

image frames from all camera videos with a unified setting, including fps, resolution,

starting timestamp, and ending timestamp. However, errors are inevitable when we

extract the image frames from sports videos. These errors would cause inconsistent

content for different views. For rapid-moving sports scenarios, even extremely slight

errors would cause severe negative results.

Thus, we only select the image sequences that indicate the sports game was

ongoing and abandon those frames when the sports game was in a pause or was

having half-time. Additionally, we collect the accepted image sequences into several

groups, and we call them periods. Each period keeps the same amount of image

sequences from each camera view. The starting frame and ending frame remain

consistent among all camera views.
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3.1.2 Multi-camera arrangement and calibration

In order to appropriately capture the overlapping fields of view of the sports

court, multiple cameras need to be arranged around the court with appropriate

settings of position and height. In our collected datasets, we installed eight cameras

around the court with a typical player height (1.8m). Note that all the cameras

should be arranged to cover all visible areas on the sports court. Otherwise, if a

player is presented on any invisible location, the localization algorithm cannot detect

his position.

An example of the multicamera arrangement based on a basketball court is

Figure 3.1 : An example of the sport court and its multicamera arrangement

method, based on a basketball court.

Precise camera calibration is required for each camera to calculate and project

shown in Figure 3.1.
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between the image pixels and the corresponding 3D world points in the sports space.

The calibration outcomes can associate visual information from multiple views and

link the captured images from different views with the particular 3D coordinates of

objects.

Generally speaking, camera calibration consists of intrinsic parameter calibration

and extrinsic parameter calibration. Currently, high-quality cameras manufactured

by the industry have fixed intrinsic parameters that vary from different brands and

models. However, in order to accurately obtain the intrinsic parameters, we apply a

camera calibration toolbox based on [39] to conduct the estimation of the intrinsic

parameters.

Regarding the extrinsic parameters, they are associated with the spatial relation-

ship between cameras and sports courts. If the position, orientation, or height of a

camera is modified, the extrinsic parameters of that camera are then consequently

changed. Thus, if the extrinsic parameters are calibrated, the position, orientation,

and height of a camera’s arrangement cannot be changed.

To estimate the extrinsic parameters, we mark the 3D coordinates of a number

of distinguished points on the sports court, then capture one image for each cam-

era. Afterward, we identify the 2D image pixel coordinates of these marked points

for every camera and pair the 2D coordinates with their corresponding 3D world

coordinates. Finally, we use these pairs of coordinates to calculate the extrinsic

parameters for every camera.

An example of the marked distinguished points on the sports court is shown in

Figure 3.2, which is based on a football dataset.
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Figure 3.2 : An example of the marked distinguished points on the sport court,

based on a football dataset. We take the points of the black and white grids as

the distinguished points, and mark their 3D world coordinates and 2D image pixel

coordinates for each camera.

3.1.3 Sports video datasets collection

In order to implement our proposed 3D localization method, we have collected

and processed five sport video datasets, including two basketball datasets and three

youth football datasets. All these datasets are acquired by a set of wide-angle high-

resolution video cameras. The spatial relation between all cameras and the sports

court is accurately calibrated based on the method mentioned above.

The sport courts are discretized into various numbers of grids due to various sizes

of different courts in order to keep each grid have the same size as a typical player

standing on the court. The different dataset has different parameters of cameras and

sports video extracting. The characteristics of these datasets and the corresponding

parameters can be seen in Table 3.1.

Note that the grid size should be a typical player size (for example, 0.5× 0.5m)
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Dataset Camera Resolution fps Frame Players Grids Size(m)

STU 8 1280× 720 24 8,000 10 112× 60 0.4× 0.4

STU0928 8 1920× 1080 24 8,000 10 112× 60 0.4× 0.4

LH0716 8 2560× 1920 25 10,000 10 140× 76 0.5× 0.5

LH0716v2 8 2560× 1920 25 10,000 10 140× 76 0.5× 0.5

LH0928 8 1920× 1080 20 10,000 16 140× 76 0.5× 0.5

Table 3.1 : The characteristics of our collected datasets and the corresponding

parameters.

when the player is standing on the sports court. For different sports courts, the

numbers of grids are generally different to keep the size equal.

The camera arrangement methods of these datasets are illustrated in Figure 3.1.

An example of the STU basketball dataset is shown in Figure 3.3. An example of

the LH0716v2 youth football dataset is shown in Figure 3.4.

3.2 Problem Formulation for 3D Localization

In this section, we intend to formulate the problem of 3D localization for multiple

objects in a pre-defined sports field or space. This formulation will be widely applied

in sports scenarios such as basketball, football, and volleyball.

In order to accurately estimate the 3D locations for multiple objects, we first

define a 3D world coordinate system for the sports space, which is common to all

sports players and has coincident content for all cameras. This coordinate system

uses accurate camera calibration to associate objects’ pixel coordinates with their

likely 3D locations. Afterward, we define a set of discrete random variables to de-

scribe the status of targets’ presence or absence on all discretized locations. Finally,

we model the objects’ occupancy probabilities as the posterior probabilities by ap-
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Figure 3.3 : An example of the original image frames of our collected STU basketball

dataset. Here shows four out of eight camera views. The camera arrangement

method is illustrated in Figure 3.1.

Figure 3.4 : An example of the original image frames of our collected LH0716v2

youth football dataset. Here shows eight camera views. The camera arrangement

method is illustrated in Figure 3.1.
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plying the Bayesian algorithm under the given image sequences as the likelihood

probabilities and a set of initialized values as the prior probabilities.

3.2.1 Modeling the sports space

We limit targets’ moving area to a fixed 3D space, with perfectly calibrated

cameras installed above the head height. These cameras capture multiple views of

video streaming with overlapping fields based on a unified timestamp generator.

We let C,C = {1, 2, ..., C} to denote the index of cameras.

In order to accurately locate the 3D positions of these targets, we construct a 3D

world coordinate system for the sports space. We define a ground plane for this 3D

space with fixed size and orientation on where targets are standing. Based on this

plane, we discretize the area common to all views into a certain number of square

grids G,G = {1, 2, ..., G} with a fixed widthW . An example of these grids k, k ∈ G

can be seen in Figure 3.5.

When a target is standing on the ground plane, we use one grid that has the

minimum distance from it to describe the target’s 3D coordinate. Suppose we add an

average human height for the target. In that case, the grid when becomes a 3D cube

with coordinate (X ,Y ,W ,Z), where (X ,Y) denotes the center point coordinate of

the grid, and Z represents this average human height. An example of the 3D cube

can be seen in Figure 3.6.

We let this cube visually represent a target’s occupancy. We select a plane that

is parallel above the ground plane to be the head plane, and its height equals the

average human height we defined.

When we back-project the 3D cube to each camera view, this cube on the grid

k can be seen as several rectangles in some of these camera views (We would

have C rectangles if the cube is visible in all camera views). In each camera
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Figure 3.5 : Top view of the ground plane and the discretized grid cells, every square

grid has the same width W , the number of these grids is G. The number of cameras

varies from different datasets.

Figure 3.6 : The 3D world coordinate system with a cube. We use (X ,Y ,W ,Z) to

denote the 3D coordinate of the cube.
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view where the rectangle is visible, the rectangle has a 4element 2D coordinate:

Xmin, Ymin, Xmax, Ymax, which demonstrates the relation between the 3D cube and

its corresponding 2D rectangle, as illustrated in Figure 3.7.

Figure 3.7 : Backprojection of the cube on location k in camera view c. The

ground plane is shown inside the blue lines. The occupancy of a target is described

as a rectangle at the corresponding location. Note that some cubes’ backprojected

rectangles may not be visible if the camera views don’t include the field where the

location belongs.

This 2D coordinate can be obtained based on accurate camera calibration. Notice

that if a camera view cannot cover all the fields of the ground plane, some cubes

may not be visible in that view, i.e., the corresponding rectangles are invisible in

that view.

After multiple cameras film the video streaming, we extract single frames from

all views based on the same timestamp t, yielding a set of image sequence It =

{I1t , I2t , ..., ICt }. Based on these extracted image sequences, we aim to estimate the

probabilities of all the targets with specific identification who are occupying those

grids.
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3.2.2 Statistical modeling for locations of sports objects

In order to model the status of presence or absence of a defined grid occupied

by a sports object, we introduce a statistical model to describe this problem. If all

the existing grids are modeled, we will obtain the status of multiple objects that we

aim to estimate.

Firstly we denote a set of discrete random variable X = {Xk|k ∈ G}, where

Xk ∈ {0, 1}. We let the Boolean random variable Xk represent the presence and

absence of an individual standing on location k. Xk = 1 represents the presence,

while Xk = 0 represents the absence. Thus, the probability of an individual standing

on location k can be written as P (Xk = 1). While absence of the location k is

P (Xk = 0).

Let B = {B1, B2, ..., BC} denote the information that is processed from the

synchronized sport image sequences from all cameras C,C = {1, 2, ..., C}, we then

define the presence of an individual stand at location k as the conditional probability

P (Xk = 1|B).

From common sense, we conclude that individuals in the sports space do not

take into account the presence of other individuals in their vicinity when moving

around. Additionally, all statistical dependencies between different views are due to

the presence of individuals in the sports space. Thus this implies that as soon as

the presence of all individuals is known, the views become independent.

As a result, by providing the prior probability P (X), the likelihood probability

P (B|X), we apply the Bayesian algorithms and obtain the posterior probability

P (X|B) = P (X)P (B|X) (3.1)

Thus the posterior probability becomes tractable and easy to calculate, as long

as we obtain the prior probability P (X), and the likelihood probability P (B|X).
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Chapter 4

POM+CNN+IniSet Localization Method

The Probabilistic Occupancy Map (POM) [42] algorithm has achieved good per-

formance in 3D pedestrian detection and localization. Many other tracking-by-

detecting methods were then developed based on this framework. Those approaches

apply traditional background subtraction methods for multiple cameras and rely on

accurate camera calibration to discretize the pre-defined ground plane into separate

locations. They typically construct a simple Bayesian model for each location and

estimate occupancy probabilities for these locations. However, those methods still

rely on background subtraction as the most critical input, which is usually not dis-

criminative enough to produce transparent foreground masks, especially when the

background pixels keep varying, or the foreground density increases.

Furthermore, exact camera calibration results are significant to the detection

performance. If cameras are inappropriately arranged, or the overlapping fields of

view are not wide enough, false-positive detection would severely increase. Besides,

the Bayesian models proposed in those methods tend to be increasingly complex,

reducing the computational efficiency.

In order to tackle the problems mentioned above, in this chapter, we develop the

POM+CNN+IniSet (POM+Convolutional Neural Network+Initialization Settings)

localization method for sports videos. Since the ordinary background subtraction

methods cannot provide discriminative foreground masks, we apply the CNN-based

monocular object detection method jointly on multiple cameras to generate clear

and correct foreground masks. We use those foreground masks containing players’
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segmentation and coordinates to replace pixel-wise binary background subtraction.

As a result, ambiguous and false-positive detection results caused by unclear fore-

ground input are successfully eliminated. Moreover, we take advantage of two fisheye

cameras arranged above the head of the sports court and develop a generic Bayesian

model to initialize a set of indicative parameters. We use the foreground masks

produced by the two fisheye cameras to pre-define those parameters with higher or

lower initial values. This scheme can effectively avoid false-positive detection.

We divide the POM+CNN+IniSet method into two contributions and present

the contributions in Section 4.1 and Section 4.2, respectively. We then conduct

experiments and discuss the results in Section 4.3.

The first contribution of this method is that we apply a CNN-based monocular

object detection method jointly on multiple cameras to generate clear and correct

foreground masks. We use foreground masks containing players’ segmentation and

coordinates to replace pixel-wise binary background subtraction. The outcomes of

our detection method consist of bounding boxes, segmentation masks, and pixel

coordinates for each player. Compared with the traditional foreground subtraction

methods that only provide pixel-wise binary foreground masks, our method enriches

the input evidence of the 3D localization algorithms. We then add a refinement

scheme to select detection results by removing undesired segmentation masks and

creating a complete foreground image for each camera.

The second contribution of the method is that we take advantage of two fisheye

cameras arranged above the head of the sports court and develop a generic Bayesian

model to initialize a set of indicative parameters. We use the foreground masks

produced by the two fisheye cameras to pre-define those parameters with higher or

lower initial values. We found that from fisheye camera detection results, we can

preliminarily define a certain number of grids that are most likely to be occupied.
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The most important reason to use fisheye camera detection is that, from the fisheye

cameras, the grids are more easily to be modeled according to the top view location

settings (see Section 3.2). By inputting the prior probabilities of those pre-defined

grids into the Bayesian model, we can improve the setting of prior probabilities and

obtain more reliable posterior probabilities. The convergent speed is also improved.

4.1 2D Monocular Segmentation for Multiple Sports Players

For some typical sports datasets such as basketball and football, the foreground

masks generated from multiple cameras produced by the conventional background

extraction approaches usually have large-scale noises because of the motion of off-

court people, the reflection of high-intensity headlights, and switching of billboards

around the court. These results significantly reduce the accuracy of 2D detection

and 3D localization.

Furthermore, those conventional approaches usually rely on pixel-wise foreground

masks and multi-camera calibration as the only input. However, these pixel-wise

foreground masks do not include any 2D locations, which can be obtained by 2D

segmentation and significantly improve the 3D localization performance.

To address the problems mentioned above, we implemented 2D object detec-

tion and segmentation jointly on multi-camera image sequences to obtain clear and

accurate foreground masks and their 2D bounding box information.

To do this, firstly, we implement Mask-RCNN [20] based monocular detection

algorithms to process the original image frames from multiple cameras that are

generated from the pre-processed sports videos. We then obtain sports players’ 2D

detection and segmentation results of each frame from each camera view. Secondly,

from those detection results, we only select valid results classified as the ”person”

and ignore all the other classes. At the same time, we eliminate those detection
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results which appear to be presented outside of the court. Finally, we use these

selected 2D detection and segmentation results to generate transparent, accurate

foreground masks for each frame and each camera. At the same time, all the empty

areas are set to be the background. This procedure is illustrated in Figure 4.1.

Camera 1

Camera 2

Camera C

remove 
undesired 
detection 

and 
generate 

joint 
masks 

monocular
detection

implemented
jointly on 
multiple 
cameras

select 
detection 

results

Bayesian 
Model 

Input

clear and 
more accurate 

localization 

Output
Our proposed methods

Figure 4.1 : This figure is an illustration of the implementation of 2D monocular

segmentation for multiple sports players. We use CNN-based object segmentation to

generate clear and correct foreground masks for the sports players that are captured

by multi-camera. The outcomes of this method contain sports players’ segmentation

masks and bounding boxes. Those masks are removed when the players are standing

outside of the sports courts.

This implementation removes the noises of background extraction and avoids

missed foreground masks. Moreover, the outcomes of this implementation consist

of detection results of every object, which are bounding box, segmentation mask,

and pixel coordinate. Compared with the previous method, which only has pixels

extracted from the background, we can enrich the inputs of the 3D localization

system. After implementing CNN detection, the localization system selects detection
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results by removing undesired segmentation and then generates a joint foreground

input with transparent masks. This input was lately calculated by a Bayesian model

to obtain clear and accurate localization results.

4.2 IniSet for The Bayesian Iteration

We found that from the fisheye detection results, we can preliminarily define a

certain number of grids that are most likely to be occupied. The most important

reason to use fisheye detection is that, from the fisheye camera, the grids are more

easily to be modeled according to the top view location settings. By inputting the

prior probabilities of those pre-defined grids into the Bayesian model, we can not

only improve the setting of prior probabilities but also obtain more certain posterior

probabilities. The convergent speed is also improved.

In the iteration process of the previous algorithms, a consistent initial value

of estimated probabilities, i.e., the prior probabilities on all locations, need to be

pre-set. The algorithms use this value to start the first step to compute a set of

average synthetic images and then consequently compute the distance between these

synthetic images and the original binary foreground masks.

Considering the 2D detection results, we can obtain accurate 2D detection from

every single camera, including bounding boxes and foreground masks of each player.

Thus, we can use this detection information to pre-set those probabilities for all lo-

cations mentioned above in order to improve 3D localization accuracy by eliminating

false positive detection on empty locations and avoiding true-negative detection on

occupied locations.

Furthermore, binary masks from the fisheye cameras of the implemented basket-

ball dataset have not been used in this stage because of inaccurate detection results

implemented on these fisheye cameras. However, this information can effectively re-
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duce the impact of occlusions between players. Thus, we use the fisheye cameras to

pre-set a set of initial probabilities of locations as the prior probabilities and imple-

ment experiments to evaluate the possibility of improvement. We take our proposed

method mentioned above to generate the algorithm’s input data incorporating the

initialized probabilities.

Firstly, we discretize the whole basketball court into a group of grids with a

consistent amount. Each grid has a statistic value that presents the probability of

the player’s presence on that grid. For input foreground image It = {I1t , I2t , ..., ICt }

and location k ∈ G,G = {1, 2, ..., G}, a consistent value ranged from 0 to 1 (typically

0.01) is initialized to each prior probability qk at the first step of the iteration process.

With this initialized value, algorithms are designed to pursuit an optimal result in

the following iteration.

By considering foreground masks from fisheye cameras, we identify each input

image with a certain number of grids by locating the 3D coordinate of foreground

blobs with those corresponding grids nearby. We mark these locations as {i, j, ..., p}.

That is, by processing foreground masks of the fisheye cameras, we use these fore-

ground blobs to identify a number of locations k ∈ {i, j, ..., p} which are possibly

occupied by players. For these locations ks, we initialize a considerably higher value

(0.05, for example) to the corresponding qk in the first step of the iteration process.

At the same time, all the other qks where k /∈ {i, j, ..., p} are set to be 0. With ini-

tialized prior probabilities, the average synthetic images in the first step of iteration

are then computed.

In the following steps, the probability of each grid qk is re-computed until an opti-

mal solution is found. With these initialized probabilities containing prior knowledge

of players, we not only accelerate the computation but also improve the accuracy of

results, as can be seen in Figure 4.2.



42

 input initialized value to first step

foreground masks from two fisheye cameras

improved
results

improve localization by
eliminating large-scale miss-detection

!"#$%!&' )#*#+,- -./,%!.$) %. !$!%!,-!0#

Bayesian
  Model

Figure 4.2 : Illustration of the IniSet model with indicative values, localization

results are improved by eliminating large-scale miss-detection.

Note that this initialized value should typically be set considerably small to

avoid false positive detection on absent locations. However, if being set extremely

small, the algorithms may lose convergence, or take an extremely long time to get

convergence in the iteration process, thus cause efficiency reduced.

4.3 Experimental Evaluation

In this section, we implement our proposed method POM+CNN+IniSet [34]

and conduct experiments based on the APIDIS dataset. This dataset is a publicly

available basketball dataset for multi-camera multi-target detection, localization,

and tracking tasks. The experimental results are then compared with the baseline

POM [42] based on the same dataset.
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4.3.1 Datasets and metrics

We conduct our experiments on the APIDIS dataset. An example of the original

image frame of this dataset is shown in Figure 4.3. This dataset is a publicly

available basketball dataset for multi-camera multi-target detection, localization,

and tracking tasks. This dataset includes five ordinary wide-angle cameras and

two fisheye cameras. Those cameras are installed around the basketball court with

various heights. In specific, the five ordinary cameras are set around 3 meters in

height, while the other two fisheye cameras are installed considerably higher in order

to obtain larger sights. The basketball court has the size of 2797 × 1499cm, being

discretized into 128×72 totally 9216 grids. For each grid, the corresponding cube is

designed to be 50×50×185cm, with a 1.85m head plane. The basketball videos are

acquired as 22 fps, 1600× 1200 resolution. The five ordinary cameras are calibrated

using the Bouguet Calibration Toolbox, while the other two fisheye cameras use the

Kannala approach.

Figure 4.3 : An example of the original image frames of the APIDIS basketball

dataset. Here shows seven camera views.

We give the experimental results as the probabilities of locations occupied by
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players, which are very peaky. We therefore simply treat the location where the

probability of presence is higher than 0.75 as a proposal. Comparing selected pro-

posals with the given ground-truth locations, we use bird-eye view distance (BV) as

the threshold to select the positive results.

Practically, as the APIDIS dataset discretizes the basketball court with many

500 × 500mm grids on the ground plane, the distance between two neighboring

locations is set to be 500mm, which is a usual distance when two players are standing

close. Consequently, we usually set the threshold BV to be 500mm to meet this

criterion when selecting proposals. By applying the threshold with specific values,

We count all produced proposals and obtain the number of correct proposals as true-

positive (TP), missing proposals as false-negative (FN), and incorrect proposals as

false-positive (FP). Note that we can apply various values to the threshold to obtain

different sets of TP, FN, FP proposals. Given these, we can evaluate:

• Precision/Recall (P/R), which are taken to be TP / (TP+FN) and TP /

(TP+FP), respectively.

• Multiple Object Detection Accuracy (MODA) [90], which will be provided as a

function of the three selected thresholds. MODA assesses the accuracy aspect

of system performance, and it utilizes the missed detection and false-positive

counts:

MODA = 1−
∑Nframes

t=1

(
cm(mt) + cf (fpt)

)∑Nframes

t=1 N
(t)
G

(4.1)

Where the number of misses is indicated by mt and the number of false posi-

tives is indicated by fpt for each frame t, cm and cf are the cost functions for

the missed detects and false positives and N t
G is the number of groundtruth

objects in the tth frame. cm and cf are used as scalar weights and can be

varied based on the specific application. They were both equal (=1) in this

evaluation.
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• Multiple Object Detection Precision (MODP) [90], which uses the spatial over-

lap information between the ground-truth and the system output to compute

the mapped overlap ratio:

MODP =

∑Nframes

t=1
MappedOverlapRatio

N
(t)
mapped

Nframes

(4.2)

Where the Mapped Overlap Ratio is:

Mapped Overlap Ratio =

N
(t)
mapped∑
i=1

| G(t)
i ∩D

(t)
i |

| G(t)
i ∪D

(t)
i |

(4.3)

Where G
(t)
i denotes the ith groundtruth object in the tth frame, Dt

i denotes

the detected object for Gt
i, and N t

mapped is the number of mapped object pairs

in frame t.

4.3.2 Results

Compared with POM that takes ordinary background subtraction as input, we

implement 2D object segmentation to obtain accurate pixel-wise extraction and

detection information jointly as input. Monocular segmentation is applied separately

on the five ordinary cameras, while the segmentation results from each frame are

jointly collected and then processed. To be specific, we implement the Mask-RCNN

[20] approach to segment pixel-wise masks. The source code is based on Keras and

Tensorflow, built on FPN and ResNet101 backbone. The model is trained by the

MS COCO dataset.

After the processing of 2D segmentation, we then post-process the detection

results. Firstly, only those players classified by class ”person” are selected, and

then their 2D coordinates are extracted. Afterward, abandon those players whose

bounding box is out of the basketball court boundary. Finally, use remaining players

to generate foreground masks, and at the same time, input their 2D coordinates.

As shown in Figure 4.4, compared with previous methods, unclear masks from the
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ordinary background subtraction are eliminated, so are the consequently inaccurate

localization results. Results produced by POM often have missed, duplicated, and

complete false locations due to false foreground pixels. These issues are effectively

solved by our proposed method.

We then identify a specific amount of regions where the players are likely to

occupy. In order to connect the pixels of foreground masks with the encoding of

those specific regions, calibration information of the two fisheye cameras is required.

After those regions of interest are selected, we initialize a considerably small value

to the probabilities affiliated with those corresponding grids in the iteration process.

This process can generate a set of synthetic images which are more similar and

closed with the original foreground masks. The examples of experimental results

can be seen in detail in Figure 4.5. Note that the green lines present localization

results with probabilities higher than 0.8, this kind of result is mostly accepted in the

tracking process in future research. While the red lines describe probabilities range

from 0.2 to 0.8, which are likely occupied by players but might be miss-detected or

false-detected by algorithms.

As shown in period 1, frame 262, and frame 270, large-scale miss-detected results

of the POM method are greatly improved. This issue appears commonly when the

overlapping fields of view of those cameras are inadequate. While in period 3,

frame 1810 and frame 1820, miss-detected results that appear in extremely crowded

scenes are considerably improved. This example proves that our method reduces

the impact caused by occlusion. In period 3, frame 1993, and period 4, frame 357,

positive detection with low probabilities is refined to obtain satisfying outcomes; this

reduces the inaccuracy and uncertainty of the POM localization methods. Thus,

the performance of the POM approach is significantly improved by our proposed

method.
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Figure 4.4 : Examples of experimental results of our proposed method. The green

masks show where the players are presented. The black rectangles represent lo-

calization with qualified probabilities, while the blue areas denote likely occupied

locations.
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previous methods our proposed methods

period 1               
frame 262

period 1               
frame 270

period 1               
frame 300

period 3               
frame 1810

period 3               
frame 1820

period 3               
frame 1993

period 4               
frame 357

Figure 4.5 : Examples of experimental results of our proposed method, the left

column is the implementation of the POM method, while the right side is ours.

Different rows present for different frames selected from various periods. The green

lines denote qualified localization with probabilities higher than 0.8, while the red

lines represent locations that are less likely to be occupied, with probabilities ranging

from 0.2 to 0.8.
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Afterward, controlled experiments and quantified evaluation are implemented on

the previous POM method and our proposed methods with ablation studies. The

ground-truth data is obtained from the APIDIS dataset. The ground-truth data has

1000 synchronized frames taken from the seven cameras, with annotated locations

of all the identified players in each frame.

Comparing with the ground-truth, we apply three sets of experiments on the

POM method and our proposed method with two sets of ablation studies, which are

POM+CNN and POM+CNN+IniSet. We analyze and select the localization results

by three categories: True Positive (TP), False Positive (FP), and False Negative

(FN).

Note that we identify a detection result as a positive detection only if the distance

of its location from the ground-truth is less than r = 0.5m, and the selected threshold

is 0.8. That is, we selected detected locations with probabilities higher than 0.8 as

the true-positive detection results. The analysis of three experiments can be seen in

detail in Table 4.1.

Methods TP FP FN

POM 6770 900 4355

POM+CNN 8820 170 2305

POM+CNN+IniSet 9630 125 1495

Table 4.1 : The amount of TP, FP, FN detection results from three methods imple-

mented on 1000-frame groundtruth data.

By using those data analyzed above, we use Precision, Recall, F-measure, the

Multiple Object Detection Accuracy (MODA), and the Multiple Object Detection

Precision (MODP) [90] as measurements to evaluate these multiple approaches.

Statistical results can be seen in detail in Table 4.2. For Precision, Recall, and
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F-1, we had significant improvements compared with the previous POM methods,

especially when the occlusion plays a fundamental role in object detection.

Methods Precision Recall F-1 MODA MODP

POM 88.27% 60.85% 72.04% 52.76% 45.62%

POM+CNN 98.11% 79.28% 87.70% 77.75% 46.73%

POM+CNN+IniSet 98.72% 86.56% 92.24% 85.44% 47.04

Table 4.2 : Analysis results of the three control experiments. Precision/Recall and

the F-1 for different methods when r = 0.5m, threshold is 0.8. The MODA and

MODP are computed throughout the 1000-frame performance.

What is more, when the multiple cameras are not appropriately installed, the

overlapping fields of view are inadequate for multiview targets, the previous POM

method cannot achieve satisfying performance. In contrast, our proposed IniSet

scheme reaches better results. As for the MODA and MODP, compared with

the POM method, our proposed approaches have considerably better performance.

Compared with the POM+CNN scheme, the POM+CNN+IniSet even achieves bet-

ter performance under those metrics.

Also, we select various threshold BV (ranging from 0.1 to 0.99) to evaluate the

Precision and Recall of those three schemes and present the Precision-Recall curve

shown in Figure 4.6. As can be seen, our proposed methods have considerably

higher Precision and Recall than POM, and the P-R curve shows that our methods

are more robust than POM.

4.4 Conclusion

In this chapter, we proposed the POM+CNN+IniSet 3D localization method.

This approach applies the CNN-based monocular object detection method jointly on
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Figure 4.6 : Precision and Recall curves in terms of the different thresholds. The

first column is Precision versus different thresholds of three methods. The second

column demonstrates Recall various from different thresholds. Additionally the third

column is the Precision-Recall curves of these three methods.

multiple cameras to generate clear and correct foreground masks. We use those fore-

ground masks containing players’ segmentation and coordinates to replace pixel-wise

binary background subtraction. As a result, ambiguous and false-positive detection

results caused by unclear foreground input are successfully eliminated. Moreover, we

take advantage of two fisheye cameras arranged above the head of the sports court

and develop a generic Bayesian model to initialize a set of indicative parameters.

We use the foreground masks produced by the two fisheye cameras to pre-define

those parameters with higher or lower initial values.

We then implement our proposed method POM+CNN+IniSet and conduct ex-

periments based on the APIDIS dataset. The experimental results are then com-

pared with the baseline POM based on the same dataset. Experimental evaluation

demonstrates that our proposed method outperforms the baseline POM by a large

margin. This method enriches the localization system’s input information, removes

undesired segmentation masks, improves the precision and recall of the localization

outcomes, and boosts the localization performance.
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Chapter 5

PomID Localization Method

POM+CNN+IniSet localization method proposed in Chapter 4 can eliminate am-

biguous and false detection results caused by unclear foreground input, effectively

avoid false-positive location results, improve the localization performance. We ap-

ply a CNN-based monocular object detection method jointly on multiple cameras to

generate clear and correct foreground masks and take advantage of the two installed

fisheye cameras to initialize a set of indicative parameters for the Bayesian inference

model.

However, after a large amount of literature review, we concluded that traditional

localization methods, which do not consider the targets’ identities, also know as the

non-ID localization methods, have significant drawbacks for the localization perfor-

mance and multi-object tracking tasks. These drawbacks include heavy occlusion

in extremely crowded sports scenes, ambiguous extraction input, tiny pixel blobs in

remote views, and rapid-moving targets in sports games.

Most importantly, these non-ID localization approaches cannot be associated and

retrieved back to the particular objects. Their localization results are not distin-

guishable and not unique, thus would cause more false-positive results. Additionally,

these methods cannot solve the identity switches when multiple players are standing

close and moving around.

In order to overcome these drawbacks, we develop the PomID (POM Identity)

method in this Chapter and afterward the PIOM (Probabilistic and Identified Oc-

cupancy Map) method in Chapter 6. The PomID method applies a DeepPlayer
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model, including a Cascade Mask-RCNN model and a pose-guided partial feature

embedding to conduct object segmentation and identification for multiple sports

objects. The DeepPlayer model produces both the individuals’ foreground masks

and their identities, which are treated as the given evidence for the 3D localiza-

tion algorithms. This method then separately estimates the likely location for each

player who has certain and correct identity input and jointly calculates the results

for the rest targets without ID labels. Final outcomes are then refined by a set

of reasonable constraints. The PomID method includes multiple objects’ identities

as evidence to estimate the likely occupied locations, making the localization re-

sults distinguishable and unique to be associated with the particular objects. This

method can accurately locate multiple objects and effectively avoid identity switches

for multiple-object detection and tracking tasks.

The PomID localization method consists of two parts. Firstly we develop a

DeepPlayer model including a Cascade Mask-RCNN model and a pose-guided partial

feature embedding to conduct object segmentation and identification for multiple

sports players. Afterward, we take outcomes of the DeepPlayer model as the given

evidence for the PomID localization algorithm, which separately estimates the likely

location for each player who has a confident identity and processes the other players

together whose identities are uncertain. Finally, we apply a refinement scheme to

obtain optimal results.

In Section 5.1, we introduce the DeepPlayer model for multi-object segmentation

and identification. Then we illustrate the PomID localization scheme in Section 5.2.

Experimental evaluation is presented in Section 5.3.

5.1 DeepPlayer Model

The DeepPlayer model is proposed to obtain each player’s identity. This model

contains two parts:
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1. the Cascade MaskRCNN for coarsegrained player segmentation and fine

grained jersey number recognition

2. the player segmentation embedding into a deep representation through posed

guided partial feature embedding (PoseID)

As shown in Figure 5.1, the Cascade MaskRCNN model firstly detects each player

and classifies the player by the team, and then segments the player’s instance mask.

Then the model recognizes the jersey number from the detected player bounding

box. In a nutshell, we obtain the team class and number class of the detected player

if the jersey number can be detected. Otherwise, we extract the deep representation

of the detected player by PoseID. Finally, we combine the jersey number class, the

Figure 5.1 : The architecture of the DeepPlayer model. This model consists of two

parts: (1) the Cascade MaskRCNN for coarsegrained player detection(Cascade

MaskRCNNP) and finegrained jersey number recognition(Cascade MaskRCNN

J); (2) the player mask embedding into the deep representation using PoseID. Fi

nally, the player identity is decided by the jersey number class, the team class, and

the deep representation.

team class, and the poseguided partial feature embedding to infer the player ID 

after fully connected layers.

Cascade Mask-RCNN-P

Cascade Mask-RCNN-J
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5.1.1 Cascade Mask-RCNN

In terms of a player with a readable jersey number, we formulate player identi-

fication as player jersey number detection and classification since the jersey num-

ber/class can provide unique ID information. If a rough detector is employed to

detect players and jersey numbers directly, it will produce inaccurate region propos-

als and miss-association of player and jersey numbers.

Therefore, we extend and modify the Mask-RCNN [20], which is a CNN-based

detector for detection and instance segmentation. We propose a Cascade Mask-

RCNN model, which includes two parts: (1) Cascade Mask-RCNN-P for player

detection and instance segmentation under coarse granularity, (2) Cascade Mask-

RCNN-J for jersey number detection and recognition under fine granularity.

Firstly, we detect all players from multiview images to obtain the bounding box,

the team categories, and the instance segmentation of each player. Then, the player

bounding boxes are put into a jersey number localization model to detect number

location, followed by a number classification model to recognize the jersey number.

To reduce the duplicate calculation, both RPN of the player and RPN of the jersey

number share the CNN feature map of the input image. Finally, we save the team

class (a 3-dimensional vector) and the jersey number (a 24-dimensional vector) for

subsequent processes.

We leverage a ResNet-50 [18] model to extract CNN feature of input frames and

share the feature to Player region proposal network (P-RPN) and Jersey number

region proposal network (J-RPN), to generate Region of Interest (RoI) feature map

of the player by Anchor. Then, the player bounding box (bbox) is predicted by

regression, and the team class is predicted by classification. The player mask is a

one-hot m∗m binary key-point where the pixels that belong to the mask are labeled

as foreground. The team class contains two teams and a referee. The background
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and audience are defined as background. Lcls(pci , gci ) is the loss of team classification,

and gci · Lloc(pli, gli) is the loss of player bounding box regression, and Lmask(pmi , gmi )

is the loss of player mask. The loss of player Lply is defined as:

Lply =
∑
i

Lcls(pci , gci ) +
∑
i

gci · Lloc(pli, gli) +
∑
i

Lmask(pmi , gmi ) (5.1)

Where gci and pci indicate ground-truth and predicted classification of the pro-

posal region. pli is the predicted vector representing the offset between the ith

proposal and its corresponding ground-truth bounding box, and gli is the true offset

value between them. gmi and pmi represent ground-truth and predicted mask of the

proposal region. We use Softmax as the loss function of Lcls and SmoothL1 as the

loss function of Lloc, respectively. Compared with Euclidean distance, SmoothL1

can reduce the outlier effect and make the model converge faster.

After the player detection, the J-RPN calculates the jersey number bbox from

the detected player bbox, and classifies the jersey number bbox. In this work, we

treat jersey number recognition as a detection problem. We model all occurring

jersey numbers as a separate class. In this case, this is a 24-class classification

problem, as not all numbers appear in the dataset. For positive samples, there is a

restriction that the jersey number bounding box must be included in the responding

player bounding box. The loss of jersey number Ljrs is defined as:

Ljrs =
∑
i

Lcls(jci , hci) +
∑
i

hci · Lloc(jli, hli) (5.2)

Where hci and jci indicate ground-truth and predicted the classification of the

proposal region. jli and hli are the predicted offset and true offset values between

the ith proposal region and its corresponding ground-truth bounding box.

Our full objective for an image is defined as:

L = λ1Lply + λ2Ljrs (5.3)
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The hyper-parameter λ1 and λ2 control the balance between the two losses. Note

that we train the P-RPN module only on fully labeled data, while we train the J-

RPN module on both weakly labeled data and fully labeled data. The weak labels

are player bounding boxes, and the full labels are jersey number bounding boxes.

This kind of weakly supervised learning [84] can improve the efficiency of the network

training compared to supervised learning.

5.1.2 Pose-guided partial feature embedding

Besides the jersey number and team class, we develop a posed-guided partial

feature to represent a specific player to assist player identification.

To find the regions that distinguish a player from his teammates, we implement

GRAD-CAM [91] on the player bounding box classification. We directly train an

Inception V4 model, and the class is the identity of the player. We compute the

gradient of the class output value with respect to the feature map. Then, we weigh

the output feature map with the computed gradient values and average the weighed

feature map along the channel dimension resulting in a heat map. Through observing

the heat map, we reach a conclusion similar to [88]. Discernible details always appear

in similar positions for each player. Similarly, the head part, sleeves, socks, and

shoes look distinctive to the players. This is interpretable. Therefore, we propose

the pose-guided partial feature embedding (PoseID) for player identification.

Player occlusion may cause multiple players to appear in one bounding box

detected by the body key-points detector. This may lead to incorrect pose estimation

owing to the player bounding boxes with impurities. Different from others’ pose

estimation by using detected player bounding box [88, 92], we localize the key-points

from the pure player mask generated by our Cascade Mask-RCNN. This will avoid

the incorrect pose estimation because the player mask is instance segmentation,

which contains only one object. We adopt the off-the-shelf model of OpenPose [93],
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which is an effective tool to detect the 2D pose of people in an image. We leverage

25-key-point body/foot key-point estimation. A set of 25 body joints are detected,

i.e., face, neck, left and right shoulders, left and right elbows, left and right wrists,

left and right hips, left and right knees, left and right ankles, and left and right feet,

as shown in Figure 5.2.

According to the aforementioned player mask and pose estimation, we build a

set of PoseBox, as shown in Figure 5.2. The PoseBox can eliminate background

noise and correct the pose variations.

• PoseBox 1. This type is designed by Zheng et al. [92]. It includes the torso,

two arms, and two legs. An arm consists of the upper and lower arms. A leg

is comprised of the upper and the lower leg submodules.

• PoseBox 2. On the basis of PoseBox 1, we add the face. In our experiment,

we show that PoseBox 2 is superior to PoseBox 1, thanks to the enriched

information brought by the face.

• PoseBox 3. Based on PoseBox 2, we put subtract the torso box. We find that

the subtraction of the torso brings performance increase. In our case, this

increase is explicable because of the same jersey color.

After constructing the PoseBox, we adopt the ResNet-50 to extract the convo-

lutional feature and then flatten it into a 2048-dimensional vector.

5.1.3 Obtain players’ identification

To the end, we obtain the team class, jersey number class, and pose-guided

partial feature embedding. The team class can be described as a 3-dimensional

vector z1 containing each class with its probability. The jersey number class is a

24-dimensional vector z2 containing each class with its probability. The pose-guided
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PoseBox1 PoseBox2 PoseBox3Mask Pose

Figure 5.2 : PoseBox construction. Given a mask, the player pose is estimated by

OpenPose. PoseBox1 = torso + arms + legs; PoseBox2 = head + torso + arms +

legs; PoseBox3 = head + arms + legs.

partial feature can be described as a 2048-dimensional vector z3, an embedding of

the PoseBox.

We combine these three vectors as the input and construct a Softmax classifier

with two fully connected layers to predict player identity. Since the confidence of

the three vectors is different, the input vector is defined below:

z = µ1z1 + µ2z2 + µ3z3 (5.4)

Where µ1, µ2, µ3 control the weights of team class z1, jersey number class z2,

pose-guided partial feature z3, respectively. In our case, we set µ1 = 1, µ2 = 0.5,

µ3 = 0.25, as the error increases progressively.

5.2 PomID Localization Scheme

In order to provide players’ 3D locations with identities, we develop an effective

model, PomID, by applying object segmentation and identification jointly on mul-

tiple cameras. This model not only provides objects’ 3D locations but also gives

distinguishable ID information for every target. This kind of localization result

can be associated and retrieved back to the particular object that is believed to be
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presented at the specific location.

As the aforementioned DeepPlayer model predicts the probabilities of the players’

identities, some identities might be ambiguous when the estimated probabilities

are considerably low. At the same time, the identities with high confidence of

results have distinctive identification evidence. Thus, we develop the PomID model

using two different strategies to process the identity estimation from the DeepPlayer

model. The PomID model consists of two parts: (1) PomID localization scheme with

identified ID labels for the individuals with high confidence of estimation; (2) PomID

localization scheme with ambiguous ID labels for the individuals with ambiguous

estimation results.

An overview of the PomID model can be seen in Figure 5.3. We develop the

PomID model by taking the outcomes of the DeepPlayer model as input.

Figure 5.3 : Overview of the PomID model. The input of the PomID model includes

objects’ segmentation masks and ID labels. The 3D localization algorithm processes

the players with identified ID and the players with ambiguous ID, respectively,

followed by a postprocess procedure with a set of experimentally defined thresholds.

The output is the final 3D locations with distinguished identities.

The players’ segmentation masks can be denoted as Bi|c ∈ C − Cam, while i
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indicates the identification label, C denotes multiple cameras, and Cam represents

the camera where the identity estimation is ambiguous for ID i.

By inputting these segmentation masks Bi, with identification i, we implement

the 3D localization algorithm to calculate the probability of player i standing at

location k, which can be presented as Pk(X, Y, Z, i), where (X, Y, Z) denotes the

player’s 3D coordinate, i denotes the player’s identity. Note that we use the dis-

cretized ground plane for the definition of the 3D world coordinate system. Thus

the 3D coordinate Z is typically set to be 0.

In the case of the extreme occlusion, the accuracy of players’ identification es-

timation, especially for the occluded players, may be unavailable in some camera

views c ∈ Cam. For those players whose estimated identities are ambiguous, we use

Bam = {B1
am, B

2
am, ..., B

c
am} to represent their segmentation masks and identification

estimation. We then implement the 3D localization algorithm based on that input

information to extract the probability of occupancy of the player with ambiguous

identity on location k, which is Pk(X, Y, Z, am).

Finally, we post-process those probabilities with ID by setting a threshold (ex-

perimentally 0.85) to extract a certain number of occupancy probabilities. To the

end, the PomID model outputs the 3D locations and players’ ID labels.

5.3 Experimental Evaluation

In this section, we implement our proposed method PomID [35] and conduct

experiments based on the publicly available dataset APIDIS and one of our collected

basketball datasets STU. Then we analyze the performance of PomID based on those

two datasets.
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5.3.1 Datasets and experimental configuration

The information about the publicly available dataset APIDIS can be found in

Section 4.3. Here we introduce one of our collected basketball datasets STU. This

dataset is a university basketball match dataset we collected at Shantou University.

It is a temporal synchronization dataset with eight wide-angle cameras. The video

files are recorded at 24 fps in 1280 × 720 resolution in the format of MPEG-4. We

have implemented our experiments on five periods of image sequences, which include

almost 8,000 image frames. The basketball court is 28× 15m. There are 16 players

on the court, including two referees and two eight-player teams.

We use two different sets of experimental settings for those two datasets, respec-

tively.

For the APIDIS dataset, we discretize the basketball court into rectangle grid

cells with a size of 128× 72, each of which is named as location k (from index 0 to

9215). For each grid cell, the corresponding 3D cube is designed to be 50 × 50 ×

185cm, with the head plane as 1.85m height.

For the STU dataset, we discretize the basketball court into rectangle grid cells

with a size of 112× 60, each of which is named as location k (from index 0 to 6719).

For each grid, the corresponding 3D cube is designed to be 40 × 40 × 185cm, with

the head plane as 1.85m height.

5.3.2 Results

We firstly implement the PomID 3D localization method based on the APIDIS

dataset. As shown in Figure 5.4, we back-project the obtained localization results

onto the original image frames. Different colors indicate different team classes, while

the labels of numbers indicate the different identities of multiple players across all

the frames.
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Figure 5.4 : Illustration of the PomID 3D localization results. The results are

back-projected onto the original image sequences. Different colors indicate different

team classes, while the labels of numbers indicate the different identities of multiple

players across frames.

As can be seen in Figure 5.4, 3D localization results are accurately back-projected

into original images from not only those ordinary cameras but also two fisheye cam-

eras. Each estimated location has a unique ID label, which makes the localization

results distinguishable and associated with the corresponding players. Thus, with

this kind of localization results, we would know which player is believed to be pre-

sented on a known location and which location is proved to be occupied by a par-

ticular player. 3D localization results with exact ID labels across all the frames can

effectively eliminate false-positive and false-negative locations and avoid duplicated

locations.

Additionally, as the two referees are not considered into the problems of multiple

players localization, we can use the identification label to ignore the useless estimated

locations. This process is significantly essential for the sports video scenarios because

it is considerably common that players who are out of the sports court stand close

to the court boundaries.

As shown in Figure 5.5, we highlight the extremely crowded position both in

ordinary view and fisheye view, inside the green boundaries. From the figure, we can
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see that in the extremely crowded position, the PomID localization can effectively

avoid identity switches among player 11, player 14, and player 15. Identity switches

are widely existing in crowded sports scenes, which brings more challenges to the

multiple object localization and tracking tasks.
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Figure 5.5 : Illustration of the APIDIS dataset in Camera 3 and 6 indicates that

the proposed method can avoid identity switches among Player 11, Player 14, and

Player 15 in the dashed box.

3D localization results with identified labels are unique among all the objects

in one single frame and can keep the consistency across continuous image frames.

Thus, our proposed PomID localization framework can not only obtain accurate

localization results with unique identities but also avoid identity switches for further

multiple object tracking tasks.

We then implement our proposed method based on the STU dataset. The details

of the STU dataset are illustrated above.

We back-project the localization results with identity labels and illustrate the

problems of identity switches, as shown in Figure 5.6. The red and yellow dotted

bounding boxes are the back-projection of the locations estimated by the PomID

algorithm, and the digital numbers upon the bounding boxes are the ID labels for
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each player on the basketball court. Red and yellow, as well as green and light blue,

indicate different team classes.

#418 
Camera 1
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#438 
Camera 1
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#428 
Camera 4
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#418 
Camera 6

#428 
Camera 6
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Camera 6

Figure 5.6 : Illustration of our localization results on the STU dataset in Camera

1, 4, and 6. The blue dotted boxes show that our method avoids identity switch

between Player 6 of the white team and Player 11 of the black team.

Compared with the APIDIS dataset that uses higher installed cameras, the bas-

ketball court in the STU dataset is considerably smaller, and the basketball play-

ers are moving faster. Thus, occlusion tends to be more severe. This illustration

indicates that our proposed PomID localization framework can also obtain good

performance in the STU basketball dataset.

5.4 Conclusion

In this chapter, we proposed the PomID 3D localization method. This approach

applies a DeepPlayer model including a Cascade Mask-RCNN model and a pose-

guided partial feature embedding to conduct object segmentation and identification
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for multiple sports objects. The DeepPlayer model produces both the individuals’

foreground masks and their identities, which are treated as the given evidence for

the 3D localization algorithms. This method then separately estimates the likely

location for each player who has certain and correct identity input and jointly cal-

culates the results for the rest targets without ID labels. Final outcomes are then

refined by a set of reasonable constraints. The PomID method includes multiple

objects’ identities as evidence to estimate the likely occupied locations, making the

localization results distinguishable and unique to be associated with the particular

objects.

We then implement our proposed method PomID and conduct experiments based

on the publicly available dataset APIDIS and one of our collected basketball datasets

STU. Then we analyze the performance of PomID based on those two datasets.

Experimental evaluation demonstrates that our proposed method can accurately

locate multiple objects and effectively avoid identity switches for multiple-object

detection and tracking tasks.
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Chapter 6

PIOM Localization Method

The PomID localization method proposed in Chapter 5 jointly applies CNN-based

object segmentation and object identification for multiple sports players, develops a

Cascade Mask-RCNN model and a pose-guided partial feature embedding to obtain

individuals’ foreground masks and their identities. This method separately estimates

the likely location for each player who has certain and correct identity input and then

jointly calculates the results for the rest targets without ID labels. Final outcomes

are then refined by a set of reasonable constraints.

However, the PomID method also has lots of drawbacks.

Firstly, its performance is extremely sensitive to the quality of players’ iden-

tification. It is quite challenging to obtain all targets’ identities. Once a target’s

identity is confirmed ambiguous, the localization algorithm cannot take advantage of

the identification input of this target. Thus it is more likely to cause false-positive

or true-negative results, reducing the system’s performance. Afterward, it has a

high volume of data to be pre-processed. Every target’s segmentation and identi-

fication input from each image frame needs to be pre-processed. Thus it is very

time-consuming to process enormous amounts of data. Finally, it has high demand-

ing localization process that requires high CPU and GPU capacity. The localization

process iterates as many times as the number of targets in multiple views from image

sequences. It is extremely time-consuming to implement the localization algorithm

on sports video scenarios because sports videos often contain a long period of time

and over ten players to be detected.
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Therefore we develop the PIOM 3D localization framework. The PIOM 3D

localization method mainly contains three parts:

1. the Image&ID model and image distance norm for visually associating the im-

age pixels with the occupancy and identification probabilities, calculating the

errors between our synthetic images with ID modules and the given evidence

of pixel-level segmentation and identification.

2. the estimation of the posterior probabilities and computation of the loss func-

tion.

3. the iterative process and convergent computation for the optimal solutions.

An overview of this framework is shown in Figure 6.1.

Firstly, we use the DeepPlayer model (see Section 5.1) that consists of a Cascade

Mask-RCNN model and a PoseID model to extract the sports players’ segmentation

masks and identification labels at pixel-level.

At the same time, with the 3D world coordinate settings for the sports space

mentioned in Section 3.2, we introduce an Image&ID model and an image distance

norm to fuse the multiview pixel-wise segmentation and ID labels together with their

3D spatial relations. The Image&ID model consists of a set of synthetic images and

synthetic ID modules. The synthetic images link the occupancy probabilities with

the visible and computable image pixels, while the synthetic ID modules associate

the identification inputs from all camera views with accurate spatial coordinates.

Afterward, we develop a multi-dimensional Bayesian model and then construct a

loss function as the K−L divergence between an estimated probability distribution

and the true posterior probability. The prior probabilities are initialized at the

beginning of the iteration, while the likelihood probabilities are approximated by the

normalized image distances between the synthetic average images with ID modules
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Figure 6.1 : An overview of the PIOM 3D localization framework. Firstly, we use

the DeepPlayer model (see Section 5.1) that consists of a Cascade MaskRCNN

model and a PoseID model to extract the sports players’ segmentation masks and

identification labels at pixellevel. At the same time, with the 3D world coordinate

settings for the sports space mentioned in Section 3.2, we introduce an Image&ID

model and an image distance norm to fuse the multiview pixelwise segmentation

and ID labels together with their 3D spatial relations. The synthetic images link

the occupancy probabilities with the visible and computable image pixels, while the

synthetic ID modules associate the identification inputs from all camera views with

accurate spatial coordinates. With our proposed PIOM 3D localization algorithms,

we then obtain sports players’ 3D locations and their unique ID labels. The local

ization results are finally given as the probabilities of locations that are occupied by

the specifically labeled players. As shown above, different colors refer to different

ID labels.
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and the outcomes produced by the DeepPlayer model.

Finally, an efficient iterative process is designed to minimize the loss function

and obtain the optimal solutions efficiently.

The PIOM localization method generates accurate locations with correct identi-

ties for every object that is visible on the image sequences. As the 3D localization

outcomes are unique and distinguishable for each player, this method can effectively

overcome heavy occlusion in sports game scenarios. Meanwhile, for some extreme

conditions such as super heavy occlusion, partial body occlusion, tiny object seg-

mentation, and high moving speed body gestures, the PIOM approach still keeps

excellent performance.

6.1 Multi-Dimensional Bayesian Model

For all the discrete locations G, we initial a set of discrete random variables X =

{Xk|k ∈ G}, where Xk ∈ {0, 1}. We let the Boolean random variable Xk represent

the presence or the absence of an individual at location k. Xk = 1 represents

presence, while Xk = 0 represents absence. Thus, the probability of a specific

location k that is occupied by an individual can be written as

P (Xk = 1) (6.1)

To describe the target’s ID information, We initial a set of discrete random

variables Y = {Yk|k ∈ G}. Let Yk denote the index of the ID calculated at the

location k.

Thus, at location k, the probability of presence of an individual with ID index

Yk = ξ can be written as:

P (Xk = 1, Yk = ξ) = P (Yk = ξ|Xk = 1)P (Xk = 1) (6.2)

While absence of the location k is the marginal probability P (Xk = 0).
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Let B = {B1, B2, ..., BC} denote the evidence of presence we obtained from

the timing synchronized image sequences It = {I1t , I2t , ..., ICt }. This evidence of

presence contains targets’ segmentation, bounding boxes and ID indices. In this

given evidence, we define the presence of an individual with ID index Yk = ξ at

location k as the conditional probability

P (Xk = 1, Yk = ξ|B) (6.3)

We introduce two assumptions of independence about the given evidence and

the probabilities for the whole locations. Our first assumption is that an individual

in the location does not take into account the presence of the other individuals in

his vicinity when moving around, which is true as long as avoidance strategies are

ignored. This can be formalized as

P ((X1, Y1), (X2, Y2), ..., (XG, YG)|B) =
∏
k

P ((Xk, Yk)|B) (6.4)

The second assumption is that all statistical dependencies between views are due

to the presence of individuals in the sports space. This implies that as soon as the

presence of all individuals is known, the views become independent.

P (B1, B2, ..., BC |(X,Y)) =
∏
c

P (Bc|(X,Y)) (6.5)

However, for all locations G, the conditional probability P ((X,Y)|B) is in-

tractable. By providing the prior probability P (X,Y) and the likelihood probability

P (B|(X,Y)), tracking the posterior probability P ((X,Y)|B) becomes a Bayesian

problem.

P ((X,Y)|B) =
P (X,Y)P (B|(X,Y))

P (B)
(6.6)

= P (X,Y)P (B|(X,Y)) (6.7)
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6.2 Image&ID Model

In order to visually describe the occupancy of a target with a particular ID on

the location k, we introduce an image model and an ID model by creating synthetic

images and synthetic ID modules. The synthetic images associate the Boolean

variable Xks with a range of pixels that are visible and computable. At the same

time, the synthetic ID modules link the same range of pixels to the ID value Yks,

which makes it possible to calculate the occupancy and identification probabilities

mathematically. Additionally, we provide an approach to compute the distinction

(the distance) between two images, also known as the image norm.

For the rectangle at location k in camera view c, we let a synthetic unit image Ack

represent the range of the pixels it contains. Every synthetic unit image is unique

as its location and size are defined by the camera calibration and the ground plane

discretization. We multiply the synthetic unit image of location k with the Boolean

variable Xk, and then sum the results of all the locations G. The values of Xks are

then visually related with a synthetic image in view c, which is Ac =
⊕

kXkAck.
⊕

means the sum of multiple images. For all camera views with the same frame index,

the synthetic images are a set of variables A = {A1, A2, ..., AC}. Examples of the

synthetic unit image and synthetic image are shown in Figure 6.2.

Synthetic ID modules intend to describe the identification inputs visually. For

the rectangle at location k in camera view c, we let r = {r1, r2, ..., rMN} represent

all of the pixels it includes. We denote Rk as the synthetic unit ID at location k to

represent the ID attribute of this range of pixels. For the location k back-projected

from a number of camera views where it is visible, we give this equation to estimate

the synthetic ID module:

Rk = arg max
ξ

∑
c(Rc

k

∑MN
i=1 ri|Rc

k = ξ)∑
c(Rc

k

∑MN
i=1 ri)

(6.8)

Where M and N denote the resolution of the image. An example of the synthetic



Figure 6.2 : An example of the synthetic unit image, synthetic image and synthetic

average images. (a) A synthetic unit image at location k from camera view c,

the black area represents the backprojected ground plane grid on that location. (b)

indicates the synthetic image where X1,3 = 1 and X2 = 0. (c) and (d) are 2 examples

of the synthetic average images A
c

k,ζ , when qk has multiple values: q2 = 0.6, q3 = 0.8,

q4 = 0.2. But in (c) q1 = 1, while in (d) q1 = 0.
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(a) (b)

(c) (d)
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Figure 6.3 : An example of the synthetic ID module. Three different colors refer to

3 different ID attributes. The first column shows the three synthetic unit ID Rks

with different ID attributes from 3 different views at location k. The second column

is the identification inputs from these views that including ID attributes and pixel

information. The third column represents the calculated synthetic ID module Rk.

Here we present an efficient approach to compute the similarity and distinction

between two images. Let x, y be two M by N images, where x = (x1, x2, ..., xMN)

and y = (y1, y2, ..., yMN). xkN+l and ykN+l represent the gray levels at location

(k, l) of the image x, y. We denote Pi, Pj|i, j = 1, 2, ...,MN the image’s pixels. The

distance between two pixels is |Pi, Pj| =
√
(k − k′)2 + (l − l′)2, where Pi, Pj are at

location (k, l), (k
′
, l

′
). Then we define the distance between two images x, y is

D2(x, y) =
1

2π

MN∑
i,j=1

exp
(−|Pi, Pj|2

2

)
(xi − yi)(xj − yj) (6.9)

By using this approach, we can efficiently estimate the errors between the given

segmentation and identification inputs with the synthetic images with ID modules,

as each pixel that we process includes not only the pixel values but also its ID values.

ID module is shown as Figure 6.3.
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6.3 The Posterior Probabilities

Let qk denote the marginal probability at location k. It indicates the probability

of presence at location k by a target.

qk = P (Xk = 1, Yk|B) (6.10)

Let Y ∗k denote the ID value at location k, when Yk = ξ, P (Yk) achieves the maximum

value.

Y ∗k = arg max
ξ

P (Yk = ξ) (6.11)

In order to estimate the posterior probability P (·|B), we define a joint distribu-

tion Q, that X,Y ∼ Q. We denote EQ as its expectation. Then we aim to look for

a set of marginal probabilities qks and the corresponding ID value Y ∗k |k ∈ G, which

can minimize the K − L divergence between the estimation Q we defined and the

true posterior probability P (·|B) that we are after. Apply partial derivative of the

K − L divergence with respect to the unknown qk, we have

∂

∂qk
KL
(
Q||P (·|B)

)
= log

qk(1− εk)
εk(1− qk)

+ EQ
(∑

c

D(Bc, Ac)
∣∣Xk = 1, Yk = Rk

)
− EQ

(∑
c

D(Bc, Ac)
∣∣Xk = 0, Yk = Rk

)
(6.12)

Where D denotes the distance between two images which is defined in Equation

(6.9).

Here we provide the differentiation process of partial derivative of the K − L

divergence. By applying the partial derivative of the K − L divergence between
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these two probability distributions with respect to the target qks, we have

∂

∂qk
KL
(
Q||P (·|B)

)
=

∂

∂qk
EQ
(

log
Q(X,Y)

P (·|B)

)
(6.13)

=
∂

∂qk
EQ
(

log
Q(X,Y)

P (X,Y)
+ logP (B)− logP (B|X,Y)

)
(6.14)

=
∂

∂qk
EQ

(∑
l

log
Q(Xl, Yl)

P (Xl, Yl)
− logP (B|X,Y)

)
(6.15)

=
∂

∂qk
EQ
(

log
Q(Xk, Yk)

P (Xk, Yk)
− logP (B|X,Y)

)
(6.16)

=
∂

∂qk
EQ
(

log
Q(Xk = 1, Yk)

P (Xk = 1, Yk)
− logP (B|X,Y)

∣∣Xk = 1
)

+
∂

∂qk
EQ
(

log
Q(Xk = 0, Yk)

P (Xk = 0, Yk)
− logP (B|X,Y)

∣∣Xk = 0
)

(6.17)

≈ log
qk
εk

+ 1− EQ
(

logP (B|X,Y)
∣∣Xk = 1, Yk = Y ∗k

)
− log

1− qk
1− εk

− 1 + EQ
(

logP (B|X,Y)
∣∣Xk = 0, Yk = Y ∗k

)
(6.18)

= log
qk(1− εk)
εk(1− qk)

− EQ
(

logP (B|X,Y)
∣∣Xk = 1, Yk = Y ∗k

)
+ EQ

(
logP (B|X,Y)

∣∣Xk = 0, Yk = Y ∗k
)

(6.19)

= log
qk(1− εk)
εk(1− qk)

+ EQ

(∑
c

D(Bc, Ac)
∣∣Xk = 1, Yk = Rk

)
− EQ

(∑
c

D(Bc, Ac)
∣∣Xk = 0, Yk = Rk

)
(6.20)

Equation (6.13) is the definition of the K − L divergence. (6.14) applies the

Bayesian model to the term of P (·|B). (6.15) is obtained under the first indepen-

dence assumption (6.4) we proposed. (6.16) removes the terms that are constant

with respect to qk. We condition the qk equal to 1 and 0 respectively and obtain

(6.17). (6.18) conditions the Yk equal to Y ∗k and applies the partial derivative, εk

means the initialized prior probability P (Xk = 1, Yk) at location k. We replace

the term of logP (B|X,Y) with synthetic ID image (6.8) and image distance (6.9)

proposed, and apply the second independence assumption (6.5) to obtain (6.20).
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Let the partial derivative equals to zero, we can have the optimal set of qks that

make the estimation Q mostly approximate to the true posterior. We then obtain

qk =

(
1 + exp

(
λk +

∑
c

EQ
(
D(Bc, Ac)

∣∣Xk = 1, Yk = Rk

)
− EQ

(
D(Bc, Ac)

∣∣Xk = 0, Yk = Rk

)))−1
(6.21)

Where λk = log 1−εk
εk

.

Unfortunately, the calculation of EQ
(
D(Bc, Ac)

∣∣Xk = ζ, Yk = Rk

)
is intractable.

However, since X,Y are under the distribution Q and they are independent, we

approximate the equation by applying ζ ∈ {0, 1} and then obtain:

EQ
(
D(Bc, Ac)

∣∣Xk = ζ, Yk = Rk

)
≈ D

(
Bc, EQ(Ac

∣∣Xk = ζ, Yk = Rk)
)

(6.22)

After the approximation we have

qk =

(
1 + exp

(
λk +

∑
c

D
(
Bc, EQ(Ac

∣∣Xk = 1, Yk = Rk)
)

−D
(
Bc, EQ(Ac

∣∣Xk = 0, Yk = Rk)
)))−1

(6.23)

=

(
1 + exp

(
λk +

∑
c

D
(
Bc, A

c

k,1

∣∣Yk = Rk

)
−D

(
Bc, A

c

k,0

∣∣Yk = Rk

)))−1
(6.24)

Where the synthetic average image A
c

k,ζ represents the EQ(Ac
∣∣Xk = ζ, Yk = Rk), we

provide its computation method as

A
c

k,ζ = EQ(Ac
∣∣Xk = ζ, Yk = Rk) (6.25)

=
G∑

l,l 6=k

Q(Xl)Acl
∣∣Yl,l 6=k + ζAck

∣∣Yk = Rk (6.26)

An example of the synthetic average image A
c

k,ζ is shown in Figure 6.2(c) and

6.2(d). As we define the Image&ID model, the likelihood probability P (B|(X,Y))
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is replaced with a normalized image distance between the given evidence of image

sequences and the synthetic average image A
c

k,ζ on the condition of the synthetic ID

module Rk. The synthetic average image and its ID module are functions of the qks

and Yks. By setting a set of initial values to the qks, the synthetic average image with

the corresponding ID module is firstly computed. Afterward, we use the outcomes

to calculate the distance from the inputted segmentation with identification. Then,

the values of qks are updated by re-computing the partial derivative of the K − L

divergence.

Intuitively, if the synthetic average image computed by qks is more similar with

the inputted segmentation, and the Y ∗k s fit more with the actual target’s identifi-

cation results, the score D
(
Bc, A

c

k,1

∣∣Yk = Rk

)
decreases while D

(
Bc, A

c

k,0

∣∣Yk = Rk

)
increases, which leading to higher qks. With regard to the occlusions, if a rectangle

at location k is occluded by another nearby, the computed synthetic unit image

at that location would approximate to zero, which makes the qk remain equal to

the prior. While from the other views where the rectangle is clearly visible, the

qk is calculated as usual. Thus, this approach can effectively overcome the heavy

occlusions.

6.4 An Efficient Iterative Process

In this subsection, we provide a quick and simple approach to iteratively compute

the qks and Y ∗k s based on Eq. (6.24) and Eq. (6.8). The iterative procedure is

illustrated below.

1. Set a uniform initial value to the qks, experimentally we set the initial value

to 0.01.

2. For all the locations k ∈ G, compute its ID value Y ∗k = Rk through every

camera, by using Eq. (6.8).
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3. This step needs to be done G times as it is for every location each iterative

step.

(a) For each location k, compute the synthetic average image A
c

k,ζ under the

condition of Yk = Rk, by using Eq. (6.26).

(b) For each location k, compute the distance between the input segmentation

and identification B = {Bc|c ∈ C} and the synthetic average images A
c

k,ζ ,

by using Eq. (6.9).

4. For all the locations k, re-compute the marginal probability qks by using Eq.

(6.24)

5. Repeat the step 3) and 4) until an optimal solution converges. Usually we do

this iteration in an order of 100.

6.5 Experimental Evaluation

In this section, we implement our proposed method PIOM and conduct exper-

iments based on our collected football datasets LH0716v2 and LH0928. We then

compare the experimental results with the baseline POM [42] and two of our previous

work POM+CNN [34] and PomID [35].

6.5.1 Datasets

We conduct the experiments based on two of our collected football datasets

LH0716v2 and LH0928.

The LH0716v2 dataset is a youth football match dataset we collected at Longhu

primary school, China. It is a temporal synchronization video and image dataset

recorded by eight wide-angle high-resolution cameras. The spatial relation between

the football court and the cameras is accurately calibrated. We discretize the football

court into 140×76 grids on the ground floor with a size of 500×500mm. Video files
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are acquired at 25 fps and 2560× 1920 resolution in the format of MPEG-4. There

are ten players, including two keepers, that are labeled using unique identifications.

We implement our localization framework over 10,000 frames and collect the results

comparing with the previous methods mentioned above.

The LH0928 dataset is collected at the same football field as LH0716v2 but with

different parameter settings and different football games. It is recorded by eight

1920× 1080 cameras with 16 players labeled by unique identities. We also conduct

experiments on around 10,000 image frames.

6.5.2 Metrics and baselines

We give the experimental results as the probabilities of locations occupied by

players with specific identifications, which are very peaky. We therefore simply

treat the location where the probability of presence is higher than 0.75 as a proposal.

Comparing selected proposals with the given ground-truth locations, we use bird-

eye view distance (BV), 2D IoU (IoU2d), and 3D IoU (IoU3d) as three thresholds to

select positive results.

Practically, as these two football datasets discretize the football court with many

500 × 500mm grids on the ground plane, the distance between two neighboring

locations is set to be 500mm, which is a usual distance when two football players are

standing close. Consequently, we usually set the three thresholds to be 500mm, 0.5,

and 0.25 to meet the criterion when selecting proposals. By applying the thresholds

with specific values, we count all produced proposals and obtain the number of

correct proposals as true-positive (TP), missing proposals as false-negative (FN),

and incorrect proposals as false-positive (FP). Note that we can apply various values

to the three thresholds to obtain different sets of TP, FN, FP proposals. Given

these, we can evaluate Precision/Recall, MODA, and MODP mentioned in Section

4.3. Additionally, we can also evaluate the Average Precision (AP) proposed by
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PASCAL VOC [94].

We will report P/R, MODA, MODP, and AP results under multiple threshold

settings. Note that these metrics are unforgiving of projection errors. Nevertheless,

we believe them to be the metrics for a multi-camera system that computes the 3D

location for objects.

In order to compare our proposed method PIOM, we implement the following

three baselines:

• POM [42], a traditional multi-camera multi-pedestrian detector that simply

uses the Gaussian mixture model to generate overall foreground masks for

multiple pedestrians.

• POM+CNN [34], a multi-camera multi-pedestrian detector developed from

the traditional POM method (see Chapter 4). Instead of the Gaussian model,

CNN was used to generate foreground subtraction for all pedestrians as the

input of the algorithms. For those two football datasets mentioned above, we

do not implement the IniSet scheme at this stage because fisheye cameras are

unavailable.

• PomID [35], our proposed multi-camera multi-player localization method in

Chapter 5, extending 3D detection to more challenging sport players scenarios.

This approach uses coarse-to-fine number recognition and pose-guided partial

feature embedding to generate both foreground masks and ID labels for each

player individually.

As two of the baselines POM and POM+CNN only process pixel-wise foreground

masks and do not take into account the players’ ID labels, we use different protocols

to calculate the TP, FN, and FP proposals for the baseline PomID and our proposed

approach PIOM.
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For POM and POM+CNN:

• TP, the calculated bird-eye distance is lower than, or 2/3D IoU is higher than

the given threshold;

• FN, no generated proposal nearby the given ground-truth location;

• FP, the calculated bird-eye distance is higher than, or 2/3D IoU is lower than

the given threshold;

While for PomID and PIOM:

• TP, must meet both of the following two conditions:

1. the ID label is identical;

2. the calculated bird-eye distance is lower than, or 2/3D IoU is higher than

the given threshold;

• FN, must meet one of the following two conditions:

1. no generated proposal nearby the given ground-truth location;

2. the generated proposal has unconfirmed ID label;

• FP, must meet one of the following two conditions:

1. the ID label is not identical;

2. the calculated bird-eye distance is higher than, or 2/3D IoU is lower than

the given threshold;

6.5.3 Algorithm implementation and configuration

We train the DeepPlayer model with SGD solver [95] in three steps, and follow

the image-centric sampling strategy in [17]. As shown in Table 6.1, the training
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sequence starts with Cascade Mask-RCNN-P, followed by Cascade Mask-RCNN-J,

after which is PoseID. We use the ResNet-50 pre-trained by the ImageNet 1000-

class dataset. Other layers are randomly initialized by a Gaussian distribution with

a standard deviation of 0.01 and a mean of 0. The ratio of positive and negative

anchors in each image is set as 1 : 3. In Eq. (5.3), we set λ1 = 0.55, λ2 = 0.45,

experimentally. On each GPU, the mini-batch size is 2. The whole training takes

20 hours on four NVIDIA 1080Ti Pascals under the Caffe framework.

Step size Learning rate γ Momentum Weight decay

Cascade Mask-RCNN-P 80,000 0.002 0.1 0.9 0.001

Cascade Mask-RCNN-J 60,000 0.001 0.1 0.9 0.0005

PoseID 40,000 0.05 0.1 0.9 0.0005

Table 6.1 : Training parameters of the DeepPlayer model in three steps.

In order to mathematically compute the Image&ID model, we develop an IdMap

scheme to extend the dimension of every input pixel. This scheme makes each

pixel contain not only foreground/background information but also distinguished

ID values. This model processes and stores both binary pixel values and multiple

ID values with the fixed dimension of width and height, which equivalent to the

original image sequences. For the two datasets mentioned above, experimentally, we

set the typical human height to 160mm, use 10 and 16 scalar values to retrieve ID

labels for the two datasets, respectively.

6.5.4 Results

We implement our method on the LH0716v2 dataset and back-project the gener-

ated locations onto original image sequences, shown in Figure 6.4. The four columns

show examples of four frames 221, 241, 261, and 281 of camera 1, 4, 5, and 8.
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Figure 6.4 : Illustration of our localization results implemented on LH0716v2

dataset. The red cube refers to the generated location, while the yellow label indi

cates the detected identification outcome. In row No. 5 and 6, different colors refer

to unique ID labels. Row No. 5 illustrates the localization results in 3D space, while

No. 6 shows the results on the ground plane of birdeye view.
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As can be seen from the first four rows, red cubes refer to the generated locations,

and yellow labels indicate the detected identification for each player. The fifth row

shows the 3D localization results with various colors, which are plotted according to

the calculated probabilities. Each color indicates one unique identification output.

The last row shows the heat-map of the 3D localization on the ground plane of

bird-eye view. Dots with different colors refer to the detected locations with specific

ID labels.

From this example, we can see that our method generates accurate locations

with correct identification outputs for every player that is visible on the image

sequences. As our 3D localization outcomes are unique and distinguishable for

each player, our method can effectively overcome heavy occlusion in sport game

scenarios. Additionally, our approach can also avoid ID switches (see the yellow and

green locations in the last row). Thus our method can help improve the performance

of some multi-object trackers which rely on tracking-by-detecting strategies.

In Figure 6.5, we implement our method based on the LH0928 dataset. Three

rows in the figure illustrate the back-projection of generated results from camera 2,

3, 6, and 7. It shows that our proposed method obtains accurate localization results

and correct ID labels for each player on this dataset.

We then selected several typical instances to illustrate that our proposed localiza-

tion method can overcome some extreme negative conditions, such as extreme heavy

occlusion, partial body occlusion, tiny player segmentation from video cameras, and

high moving speed body gestures, as these conditions are considerably common in

multiple sports players detection and localization scenarios. These examples are

implemented on the LH0716v2 dataset, as shown in Figure 6.6.

The first and third columns are the original back-projection of localization re-

sults, and we zoom the crowded areas of the images (within green borders) to column
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Figure 6.5 : Illustration of our localization results implemented on LH0928 dataset.

Three rows indicate back-projection of the localization results from frame 3361,

3401, and 3441 on camera 2, 3, 6, and 7. The red cube refers to the generated

location, while the yellow label indicates the detected identification outcome.
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(a) (b)

(c) (d)

Figure 6.6 : Illustration of our localization results implemented on LH0716v2 dataset

that can overcome some extreme negative conditions, such as extremely crowded

scenes, full/partial body occlusion, and inaccurate 2D detection from tiny objects.

The first and third columns show the original back-projection of our localization

results, while the second and fourth columns are obtained by zooming the crowded

scenes inside the green borders.
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No. 2 and 4, respectively. From the second and fourth columns, we can see that in

these extremely crowded scenes, the football players are typically fully or partially

occluded by each other. It is significantly difficult to obtain complete foreground

masks and correct identification, thus causes negative effects for 2D detection and

3D localization.

Additionally, in the original views, the players are standing far away from cam-

eras, which causes tiny and incomplete 2D detection results. This also brings nega-

tive impacts. While, as shown from the back-projection, our proposed approach can

effectively obtain correct and accurate locations and identification, eliminating the

impacts from full/partial body occlusion, tiny 2D detection results, and high-speed

moving players.

We afterward report the curves of Precision/Recall under various threshold set-

tings that mentioned above, as shown in Figure 6.7. Our method is implemented on

the LH0716v2 dataset and is compared with the PomID approach. Specifically, we

set the thresholds BV, IoU2d and IoU2d to the range of 200 ∼ 2000mm, 0.05 ∼ 0.95,

0.05 ∼ 0.95 respectively.

As can be seen in Figure 6.7 (a) and (d), our proposed method has a higher

index under all BV distance selections. Especially when distance equals to 500mm,

which roughly corresponds to the width of a human body, our proposed method

outperforms the PomID approach by a large margin. In Figure 6.7 (b) and (e), we

can see that when IoU2d is lower than 0.65, our proposed method achieves higher

scores while precision and recall drop dramatically when the threshold is higher than

0.65. Although PomID performs better when IoU2d is higher than 0.65, precision

and recall drop lower than 0.3, which is not practically acceptable.

From Figure 6.7 (c) and (f) we can obtain that, when IoU3d equals 0.25, which

can represent average sports players distance, our proposed method outperforms
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Figure 6.7 : Precision/Recall curves under multiple threshold settings. Results are

obtained by implementing both PomID and our PIOM method on the LH0716v2

dataset. (a) and (d), P/R curves under BV distances range from 200 ∼ 2000mm;

(b) and (e), P/R curves under IoU2d ratios range from 0.05 ∼ 0.95; (c) and (f), P/R

curves under IoU3d ratios range from 0.05 ∼ 0.95. It illustrates that our proposed

method PIOM outperforms the previous method PomID generally.
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primarily than PomID. PomID also performs better when the scores drop under

0.25, but this score is not applicable when selecting positive proposals. Note that

the curves are discrete because we use the 3D cubes to calculate IoU3d ratios.

Implementing the three baselines POM, POM+CNN, PomID and our proposed

method PIOM on the LH0716v2 dataset, we then report Precision/Recall and

MODA/MODP scores under various thresholds selections, which are: (1) BV equals

to 250mm and 500mm; (2) IoU2d ratio equals to 0.5 and 0.75; (3) IoU3d ratio equals

to 0.25 and 0.5, respectively. The scores are shown in Table 6.2 and Table 6.3.

Method
Precision/Recall(%)

bv=250mm bv=500mm IoU2d = 0.5 IoU2d = 0.75 IoU3d = 0.25 IoU3d = 0.5

POM 33.60/39.45 53.60/58.45 58.27/68.85 18.27/20.85 40.69/47.83 18.69/20.83

POM+CNN 42.48/46.50 69.48/70.50 70.65/75.82 20.65/22.82 51.87/53.66 21.87/22.66

PomID 48.75/52.41 75.60/81.41 76.79/82.69 22.79/28.69 54.76/58.97 24.76/26.97

PIOM 51.85/58.46 90.79/88.46 89.47/87.18 19.47/19.18 71.05/69.23 18.05/18.23

Table 6.2 : Quantitative comparison results of the proposed method with the other

three baselines on Precision/Recall scores, implemented on the LH0716v2 dataset.

Method
MODA/MODP(%)

bv=250mm bv=500mm IoU2d = 0.5 IoU2d = 0.75 IoU3d = 0.25 IoU3d = 0.5

POM 25.76/47.50 45.76/37.60 40.55/39.32 20.55/45.72 26.22/45.08 20.22/56.84

POM+CNN 31.75/49.24 47.75/39.75 46.35/40.60 26.65/53.40 30.75/48.75 26.75/59.43

PomID 34.06/57.25 52.22/41.88 48.91/44.53 32.46/72.67 34.06/57.25 32.46/72.67

PIOM 37.16/53.45 52.57/41.13 49.89/43.07 31.05/70.67 37.16/53.45 31.05/70.67

Table 6.3 : Quantitative comparison results of the proposed method with the other

three baselines on MODA/MODP scores, implemented on the LH0716v2 dataset.

From Table 6.2, our proposed method outperforms all the other approaches with

respect to the two BV selections, IoU2d = 0.5 and IoU3d = 0.25. It proves that our
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proposed method achieves state-of-the-art performance in general scenarios. Specif-

ically, when we choose the BV, IoU2d and IoU3d to be 500mm, 0.5 and 0.25, which

are practically applicable for 3D localization algorithm evaluation with discretized

location definition, our proposed method achieves the best performance than any

other methods by a large margin.

In Table 6.3, our proposed method generally achieves the best performance with

respect to MODA and MODP scores. It demonstrates that our proposed method has

more accurate system performance and a higher overlapping ratio with respect to the

positive locations. In specific, the MODA scores of our proposed method reach 0.52,

0.49, and 0.37 with the threshold settings mentioned above, which is considerably

higher, although we use strict constraints to report TP, FN and FP. Evaluation of

these four metrics proves that our proposed method has a more accurate and robust

performance than the other three baselines.

We also report various Average Precision (AP) scores under nine sets of threshold

settings by implementing the baselines and our proposed method on both LH0716v2

and LH0928 datasets, as shown in Table 6.4 and Table 6.5. The threshold set-

tings are: (1) BV = 250, 500, 750mm; (2) IoU2d = 0.25, 0.5, 0.75; (3) IoU3d =

0.25, 0.5, 0.75. Here we treat AP 500
bv , AP 0.5

2d and AP 0.25
3d as applicable mode, AP 250

bv ,

AP 0.75
2d and AP 0.5

3d as hard mode, because for 3D localization algorithm implementa-

tion in discretized sport space, the applicable mode is qualified enough to evaluate

the system performance, while the results of hard mode are considerably limited by

strict constrains.

As reported from Table 6.4 and Table 6.5, our proposed method outperforms

the other three baselines by a large margin, especially for the applicable mode,

reaching the number of 0.48/0.47, 0.78/0.76, and 0.61/0.61 for both datasets. Even

for the hard mode, our proposed method is proved to have better AP scores. It
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demonstrates that our proposed method has better overall 3D localization accuracy

under both 2D and 3D metrics.

LH0716v2 dataset

Method
AP(bird-view)(%) AP(IoU2d)(%) AP(IoU3d)(%)

AP 250
bv AP 500

bv AP 750
bv AP 0.25

2d AP 0.5
2d AP 0.75

2d AP 0.25
3d AP 0.5

3d AP 0.75
3d

POM 20.86 32.47 39.88 78.66 59.45 16.83 46.18 16.44 12.00

POM+CNN 24.89 37.93 49.05 85.55 68.24 18.95 51.14 19.15 18.23

PomID 28.03 39.09 49.73 92.61 71.10 19.34 51.56 19.34 18.56

PIOM 35.00 47.92 57.91 92.36 78.18 31.17 61.30 26.20 20.15

Table 6.4 : Quantitative comparison results of the proposed method with the other

baselines on AP scores, implemented on the LH0716v2 dataset.

LH0928 dataset

Method
AP(bird-view)(%) AP(IoU2d)(%) AP(IoU3d)(%)

AP 250
bv AP 500

bv AP 750
bv AP 0.25

2d AP 0.5
2d AP 0.75

2d AP 0.25
3d AP 0.5

3d AP 0.75
3d

POM 20.16 31.45 40.22 79.01 58.66 15.33 44.63 14.27 10.20

POM+CNN 24.44 37.91 49.65 85.66 67.82 18.64 51.40 18.91 17.22

PomID 26.64 37.96 49.02 92.24 70.18 17.98 52.03 18.18 15.66

PIOM 33.98 47.15 58.55 92.88 76.84 28.31 61.08 24.67 18.75

Table 6.5 : Quantitative comparison results of the proposed method with the other

baselines on AP scores, implemented on the LH0928 dataset.

6.6 Conclusion

In this chapter, we proposed the PIOM 3D localization method. This approach

uses the DeepPlayer model that consists of a Cascade Mask-RCNN model and a

PoseID model to extract the sports players’ segmentation and identification labels
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at the pixel level. At the same time, we introduce an Image&ID model and an

image distance norm to fuse the multiview pixel-wise segmentation and ID labels

together with their 3D spatial relations. The Image&ID model consists of a set of

synthetic images and synthetic ID modules. The synthetic images link the occupancy

probabilities with the visible and computable image pixels, while the synthetic ID

modules associate the identification inputs from all camera views with accurate

spatial coordinates. Afterward, we develop a multi-dimensional Bayesian model

and then construct a loss function as the K − L divergence between an estimated

probability distribution and the true posterior probability. The prior probabilities

are initialized at the beginning of the iteration, while the likelihood probabilities

are approximated by the normalized image distances between the synthetic average

images with ID modules and the outcomes produced by the DeepPlayer model.

Finally, an efficient iterative process is designed to minimize the loss function and

obtain the optimal solutions efficiently.

We then implement our proposed method PIOM and conduct experiments based

on our collected football datasets LH0716v2 and LH0928. We then compare the

experimental results with the baseline POM and two of our previous methods

POM+CNN and PomID. Experimental evaluation demonstrates that our proposed

method outperforms these three baselines.

The PIOM localization method generates accurate locations with correct identi-

ties for every object that is visible on the image sequences. As the 3D localization

outcomes are unique and distinguishable for each player, this method can effectively

overcome heavy occlusion in sports game scenarios. Meanwhile, for some extreme

conditions such as super heavy occlusion, partial body occlusion, tiny object seg-

mentation, and high moving speed body gestures, the PIOM approach still keeps

excellent performance.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

In this thesis, we conduct comprehensive research to solve the problems of

multiple-camera multiple-object 3D localization for sports video scenarios.

Firstly, we proposed the POM+CNN+IniSet 3D localization method. This ap-

proach applies the CNN-based monocular object detection method jointly on multi-

ple cameras to generate clear and correct foreground masks. We use those foreground

masks containing players’ segmentation and coordinates to replace pixel-wise binary

background subtraction. As a result, ambiguous and false-positive detection results

caused by unclear foreground input are successfully eliminated. Moreover, we take

advantage of two fisheye cameras arranged above the head of the sports court and

develop a generic Bayesian model to initialize a set of indicative parameters. We

use the foreground masks produced by the two fisheye cameras to pre-define those

parameters with higher or lower initial values. This method enriches the localiza-

tion system’s input information, removes undesired segmentation masks, improves

the precision and recall of the localization outcomes, and boosts the localization

performance.

Afterward, we proposed the PomID 3D localization method. This approach

applies a DeepPlayer model including a Cascade Mask-RCNN model and a pose-

guided partial feature embedding to conduct object segmentation and identification

for multiple sports objects. The DeepPlayer model produces both the individuals’

foreground masks and their identities, which are treated as the given evidence for
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the 3D localization algorithms. This method then separately estimates the likely

location for each player who has certain and correct identity input and jointly cal-

culates the results for the rest targets without ID labels. Final outcomes are then

refined by a set of reasonable constraints. The PomID method includes multiple

objects’ identities as evidence to estimate the likely occupied locations, making the

localization results distinguishable and unique to be associated with the particular

objects. This method can accurately locate multiple objects and effectively avoid

identity switches for multiple-object detection and tracking tasks.

Finally, we proposed the PIOM 3D localization method. This approach uses

the DeepPlayer model that consists of a Cascade Mask-RCNN model and a PoseID

model to extract the sports players’ segmentation and identification labels at the

pixel level. At the same time, we introduce an Image&ID model and an image dis-

tance norm to fuse the multiview pixel-wise segmentation and ID labels together

with their 3D spatial relations. The Image&ID model consists of a set of synthetic

images and synthetic ID modules. The synthetic images link the occupancy prob-

abilities with the visible and computable image pixels. The synthetic ID modules

associate the identification inputs from all camera views with accurate spatial coor-

dinates. Afterward, we develop a multi-dimensional Bayesian model and construct a

loss function as the K−L divergence between an estimated probability distribution

and the true posterior probability. The prior probabilities are initialized at the be-

ginning of the iteration, while the likelihood probabilities are approximated by the

normalized image distances between the synthetic average images with ID modules

and the outcomes produced by the DeepPlayer model. Finally, an efficient iterative

process is designed to minimize the loss function and obtain the optimal solutions

efficiently. The PIOM localization method generates accurate locations with cor-

rect identities for every object that is visible on the image sequences. As the 3D

localization outcomes are unique and distinguishable for each player, this method
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can effectively overcome heavy occlusion in sports game scenarios. Meanwhile, for

some extreme conditions such as super heavy occlusion, partial body occlusion, tiny

object segmentation, and high moving speed body gestures, the PIOM approach

still keeps excellent performance.

7.2 Discussion

There is still some limitation of our proposed 3D localization frameworks. The

POM+CNN+IniSet method does not apply to the situation without fisheye camera

installation. Fisheye cameras are more common in basketball datasets than other

sports games because the installation is more effortless in basketball gyms. Thus this

method cannot be applied in all sports scenarios. The PomID method requires high

CPU and GPU capacity and is extremely time-consuming to process sports image

sequences. Because sports video datasets usually require high fps configuration. At

the same time, the performance of the PIOM localization framework is sensitive to

the quality of estimated ID proposals. This method does not take into account the

depth information from RGB-D sensors, which are widely used recently.

The remaining challenges of MCMOL tasks still need to be solved. For the

basketball datasets, occlusion tends to be extremely severe because it is very common

that several players are standing close in tiny areas. Segmentation masks produced

by CNN do not usually contain the lower half of the players’ bodies occluded by

others. Those masks would cause incorrect localization outcomes. Meanwhile, for

some sports games that require large sports courts, the cameras are usually installed

far away from the players. This would produce tiny bodies captured by the cameras,

making it considerably challenging to recognize the players’ identities. Occluded

segmentation masks are also difficult to be processed.

In our future work, we will extend our proposed 3D localization frameworks to

address the current issues discussed above. We will apply our frameworks to more
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sports video datasets such as football and volleyball. The experimental configura-

tion, such as multi-camera installation, usually varies from different sports games.

Meanwhile, we will take into account the depth information from RGB-D image

sequences to extend our 3D localization framework. The depth information will

be processed at the same time as the segmentation and identification procedures.

The localization algorithms will be re-designed to produce the exact 3D coordinates

other than location encoding. We will also consider using point clouds datasets

in the future. Point cloud-based methods for autonomous driving have achieved

satisfying performance recently. We will construct point cloud-based sports video

datasets and conduct research in point clouds methods for sports video scenarios.
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