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ABSTRACT

Efficient and Reproducible Automated Deep Learning

by

Xuanyi Dong

Deep learning has shown its power in a large number of applications, such as

visual perception, language modeling, speech recognition, video games, etc. To de-

ploy a deep learning model successfully, inevitable manual tuning is required for each

component, such as neural architecture design, the choice of optimization strategy,

data selection, augmentation, etc. Such manual tuning costs expensive computa-

tional resources and is labor-intensive. Moreover, this paradigm is not scalable when

the model size or the data size significantly increases. Fortunately, AutoDL brings

hope to alleviate this problem by making the tuning procedure automated. Despite

the recent success of AutoDL, efficiency and reproducibility for AutoDL algorithms

remain a tremendous challenge for the community.

In this thesis, we address this challenge in the following aspects. We comprehen-

sively review the current state of AutoDL and set up six step-by-step objectives to

further develop AutoDL. To achieve these objectives, we propose a series of efficient

approaches to learning to search (1) neural architecture topology, (2) neural archi-

tecture size, and (3) hyperparameters by gradient descent. In addition to common

empirical analysis on vision and NLP datasets, we build a systematical benchmark

for neural architecture topology and neural architecture size. This benchmark aims

to provide a fair and easy-to-use environment for our proposed algorithms as well

as other AutoDL participants.

Dissertation directed by Professor Bogdan Gabrys

Advanced Analytics Institute, Faculty of Engineering and IT, University of Tech-

nology Sydney
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