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Abstract

Active learning aims to maximize the learning performance of the current hypothesis

by drawing as few labels as possible from an input distribution. To build a near-optimal

hypothesis, halfspace learning improved the generalization of a perceptron vector over

a unit sphere, presenting model guarantees for the reliable (practical) active learning, in

which the error disagreement coefficient controls the hypothesis update via pruning the

hypothesis class. However, this update process critically depends on the initial hypoth-

esis and the coefficient. Their improper settings may improve the bounds on the label

complexity, which estimates the label demands before achieving a desired error for the

hypothesis. One question thus arises: how to reduce the label complexity bounds? In a

worse situation, estimating updates of hypothesis using error lacks feasible guarantees,

if the initial hypothesis is a null (insignificant) hypothesis. Another question also arises:

how to control the hypothesis update without errors, when estimating the error disagree-

ment is infeasible? For error disagreement, most of its generalizations regarding to hy-

pothesis update, either make strong distribution assumptions such as halfspace learning,

or else they are computationally prohibitive. How to improve the performance of deep

active learning based on the theoretical results of active learning of halfspace?

This thesis tries to answer the three questions from shattering, disagreeing, and match-

ing over distributions. With halfspace learning, the first work presents a novel perspective

of shattering the input distribution that, guaranteeing from a lower bound on Vapnik-

Chervonenkis (VC) dimension, further reduces the label complexity of active learning.

When estimating errors is infeasible, the second work proposes a distribution disagree-

ment graph coefficient, which estimates hypothesis from distribution, yielding a tighter

bound on typical label complexity. The constructed hyperbolic model, generalizing dis-

tribution disagreement by focal representation, shows effective improvements compared

to generalization algorithms of error disagreement. On deep learning settings for active

learning, the Bayesian neural network shows expressive distribution matching on the mas-

sive training parameters, which allows estimating error disagreement can work effectively.

We thus integrate the error and distribution disagreements to establish a uniform frame-

work, which matches the geometric core-set expression of the distribution, interacting

with a deep learning model.
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