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Abstract

Active learning aims to maximize the learning performance of the current hypothesis

by drawing as few labels as possible from an input distribution. To build a near-optimal

hypothesis, halfspace learning improved the generalization of a perceptron vector over

a unit sphere, presenting model guarantees for the reliable (practical) active learning, in

which the error disagreement coefficient controls the hypothesis update via pruning the

hypothesis class. However, this update process critically depends on the initial hypoth-

esis and the coefficient. Their improper settings may improve the bounds on the label

complexity, which estimates the label demands before achieving a desired error for the

hypothesis. One question thus arises: how to reduce the label complexity bounds? In a

worse situation, estimating updates of hypothesis using error lacks feasible guarantees,

if the initial hypothesis is a null (insignificant) hypothesis. Another question also arises:

how to control the hypothesis update without errors, when estimating the error disagree-

ment is infeasible? For error disagreement, most of its generalizations regarding to hy-

pothesis update, either make strong distribution assumptions such as halfspace learning,

or else they are computationally prohibitive. How to improve the performance of deep

active learning based on the theoretical results of active learning of halfspace?

This thesis tries to answer the three questions from shattering, disagreeing, and match-

ing over distributions. With halfspace learning, the first work presents a novel perspective

of shattering the input distribution that, guaranteeing from a lower bound on Vapnik-

Chervonenkis (VC) dimension, further reduces the label complexity of active learning.

When estimating errors is infeasible, the second work proposes a distribution disagree-

ment graph coefficient, which estimates hypothesis from distribution, yielding a tighter

bound on typical label complexity. The constructed hyperbolic model, generalizing dis-

tribution disagreement by focal representation, shows effective improvements compared

to generalization algorithms of error disagreement. On deep learning settings for active

learning, the Bayesian neural network shows expressive distribution matching on the mas-

sive training parameters, which allows estimating error disagreement can work effectively.

We thus integrate the error and distribution disagreements to establish a uniform frame-

work, which matches the geometric core-set expression of the distribution, interacting

with a deep learning model.
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Chapter 1

Introduction
The motivation of this thesis is firstly depicted, following the background and related

work. The three research questions throughout the entire structure of the thesis are natu-

rally proposed. Corresponding solutions covering the contributions are highlighted. Or-

ganizations describe the framework of the thesis.

1.1 Motivation
Active learning [Settles, 2009], leveraging abundant unlabeled data to improve the

generalization performance of a classifier, has been widely adopted in various machine

learning tasks, such as regression analysis [Wu, 2018], label-scarce classification [Qiu

et al., 2016], dynamic data stream processing [Mohamad et al., 2016], multi-task learning

[Harpale and Yang, 2010; Fang et al., 2017], curriculum learning [Matiisen et al., 2019],

etc. By employing an active learning algorithm, human experts (annotators) strategically

query some “highly informative” data [McCallumzy and Nigamy, 1998] to reduce the er-

ror rate of the current learning model in different classification tasks. Figure 1.1 describes

this learning loop. However, a natural question that arises is the following: if we con-

tinuously increase the size of the active query set, does the error rate of prediction keep

decreasing? Furthermore, can we finally find a hypothesis whose error rate is close to

what we desire?

Active learning of halfspace [Gonen et al., 2013] also called halfspace learning* stud-

ied these questions from a set of hypothesis class. Over a unit sphere, active learning

explored the theoretical guarantees on error rate and label complexity † [Gonen et al.,

2013]. To enhance the generalization of the halfspaces learning, Hanneke et al. [2014]

developed an error disagreement coefficient that measures how well (or not well) the

informative samples satisfy the hypothesis update via a greedy search [Dasgupta et al.,

2005]. This is a fundamental metric that can be generalized into various different types

of error, such as the best-in-class-error [Cortes et al., 2019c], all-in-class error [Beygelz-

imer et al., 2009a], etc. A common policy of determining which samples to send for

human annotation is to select the data that maximize the error disagreement between the

current hypothesis and its subsequent update [Zhang and Chaudhuri, 2014]. Therefore,

with active learning, a complete sampling process effectively equates to optimizing the

minimum cut of the graph [Blum and Chawla, 2001] that covers all feasible hypotheses

*Halfspace learning has more broad concepts in learning theory as regression [Kalai et al., 2008],

Fourier-transform based algorithms [Linial et al., 1993], kernel SVM and kernel ridge regression [Shalev-

Shwartz et al., 2011], etc. In this thesis, it specifically refers to generalizing halfspace with active learning.
†The number of labels requested before achieving a desired error.



2

Human Annotator

Machine Learning 
Model

Labeled Set

Unlabeled Set

Figure 1.1 : Active learning queries unlabeled data selected by the machine learning

model. The querying loops stop until the model achieved a desired generalization perfor-

mance.

over a version space [Cortes et al., 2019c].

Estimating the disagreement of errors advises the selection of those informative sam-

ples, which give the highest rewards to an active learning algorithm, such that these largely

update the current learning model. However, only using informative samples produces

highly-skewed results [Gao et al., 2020] in the absence of sufficient human supervision,

e.g. few labels, improper classifier parameters, etc. The first research question thus arises:

how to reduce the bounds of label complexity?

Moreover, many traditional active learning strategies based on error disagreement are

not efficient in deep learning settings, because the computational cost of performing a

greedy search in an unlabeled data pool, requiring expensive deep network training, is

intolerable. Caught between an infeasible computation overhead and an infeasible man-

ual annotation overhead, representative sampling has become a key alternative strategy.

Ensuring the model is trained on a set of samples that fairly reflects the distribution of

the data minimizes the annotation budget and improves the network architecture without

the supervision of any hypothesis class, as core-set selection [Sener and Savarese, 2018a]

and sparse subset approximation of batch active learning [Pinsler et al., 2019]. The second

research question arises: how to estimate the hypothesis update without the errors?

In deep active learning, Deep neural networks (DNNs) lack the ability of learning from

limited (insufficient) labels, which degenerates its generalizations to new tasks. Recently,

leveraging the abundance of unlabeled data has become a potential solution to relieve this

bottleneck whereby the expert knowledge is involved to annotate those unlabeled data. In

such setting, the deep learning researchers introduced the active learning [Gal et al., 2017],

which solicit experts’ annotations from the informative or representative unlabeled data
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by maximizing the model uncertainty [Ashukha et al., 2019; Lakshminarayanan et al.,

2017] of a learning model. During this active learning process, the learning model tries

to achieve a desired accuracy performance using the minimal data labeling. The recent

shift of the model uncertainty in many fields shows that the deep Bayesian active learn-

ing [Pinsler et al., 2019; Kirsch et al., 2019] derives more and more new scenarios, e.g.

Bayesian neural networks [Blundell et al., 2015], Monte-Carlo (MC) dropout [Gal and

Ghahramani, 2016], and Bayesian core-set construction [Sener and Savarese, 2018b], etc.

Bayesian active learning [Golovin et al., 2010; Jedoui et al., 2019] presents an expres-

sive probabilistic interpretation on model uncertainty [Gal and Ghahramani, 2016]. Theo-

retically, for a simple regression model such as linear, logistic, and probit, active learning

can derive their closed-forms on updating one sparse subset that maximally reduces the

uncertainty on the posteriors over the regression parameters [Pinsler et al., 2019]. How-

ever, for a DNN model, optimizing massive training parameters is not easily tractable.

Moreover, the similarity or consistency of those acquisitions to the previously acquired

samples, brings redundant information to the model and decelerates its training. The third

question arises: how to improve the performance of deep active learning based on the

theoretical results of active learning of halfspace?

In summarize, this thesis aims to solve the following three research questions:

• How to reduce the typical theoretical bounds of label complexity?

• How to control hypothesis update without errors when estimating the error dis-

agreement is infeasible?

• How to improve deep active learning based on the theoretical results of halfspace

learning?

The remainder of this chapter is organized as follows. Section 1.2 introduces the

background. Section 1.3 presents the related work. Section 1.4 summarizes the contri-

butions. The thesis organizations and publications are presented in Sections 1.5 and 1.6,

respectively.

1.2 Background
1.2.1 Active Learning of Halfspace

Active learning [Cohn et al., 1994] can be traced back to the early probability support

vector machine (SVM) that acquires data with minimum margin to effectively update the

support vectors. To find a hypothesis whose error rate is close to what we desire, agnos-

tic active learning [Balcan et al., 2006] presents a series of algorithmic paradigms with a

fixed or bounded version space [Cohn et al., 1994] covering a possible hypotheses class

[Vapnik and Chervonenkis, 2015]. Candidates from this class is assigned with a goal of

minimizing the queries from the unlabeled pool, where the desired one is with the opti-

mal querying budget. To build a near-optimal querying algorithm in real world, agnostic

active learning [Dasgupta et al., 2008; Balcan et al., 2006] improved the generalization

of a realizable-theoretical model with prior labels selected from various distributions and
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l 

Candidate informative data region 

Figure 1.2 : Halfspace learning over a unit sphere with a radius of R, where +,− denote

different class labels. The error disagreement-based active learning strategy prunes the

hypothesis set (reduce the number of candidate hypotheses, i.e., the diameters across the

colored regions) via querying data distributed in the colored pool.

diverse noise conditions [Yan and Zhang, 2017]. Those generalized active learning al-

gorithms involved with pruning the hypothesis set of the version space can be regarded

as a hypothesis-pruning strategy ‡. For example, halfspace learning [Cohn et al., 1994]

is one active learning problem over a unit sphere to explore the theoretical guarantees

on error rate and label complexity [Gonen et al., 2013]. Its goal is to learn a halfspace

which accurately classifies binary classes. We here use halfspace learning to visualize the

querying process of active learning.

Figure 1.2 describes halfspace learning. Over a binary classification task in a two-

dimensional sphere (circle) with a uniform distribution, an arbitrary halfspace can gener-

ate a linear classifier. To reduce the error rate of the initial hypothesis, an active learning

algorithm usually samples a number of informative points from the colored candidate

pools that can largely update the current classifier.

From the perspective of version space in SVM, the querying process of active learning

is equivalent to searching a subspace that characterizes the same hypothesis with a lower

bound on the Vapnik-Chervonenkis (VC) dimension [Cortes et al., 2019b; Dasgupta,

2011]. With each query, the disagreement between the initial and desired hypotheses

is expected to shrink. Thus, the disagreement between the initial and optimal hypotheses

can be used as a measure to determine the distribution of the candidate hypothesis class in

a version space. However, the label complexity of querying unseen samples is sensitive to

this measure. That is, a poor initial hypothesis, which is far from the desired hypothesis,

results in an increase of their generalized disagreement. The label complexity of query-

ing increases rapidly as well. Therefore, the query samples heavily depend on the initial

hypothesis.

Most previous work regarding pruning the hypothesis class either makes strong dis-

tribution assumptions such as halfspace learning [Gonen et al., 2013], or else it is com-

putationally prohibitive [Brightwell and Winkler, 1991]. For any data distribution, Cortes

et al. [2019b] remove the hypotheses whose connected edges are labeled with any dis-

‡Hypothesis-pruning is a high level description of active learning from the view of hypothesis class,

where error disagreement-based active learning can be generalized as one hypothesis-pruning strategy.

Therefore, hypothesis-pruning is a more broad expression of conceptual learning.
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agreements larger than a given threshold. Their goal is to decrease the dependency of

the initial hypothesis by a group of representative hypotheses. In their work, the version

space [Cohn et al., 1994] which includes all feasible hypotheses, is embedded as a graph

in a high-dimensional space. After pruning with this graph, any hypothesis in the original

version space would be characterized with a lower bound on VC dimension. Then, the

upper bound of the label complexity is reduced. However, hypothesis-pruning strategy

has the following limitations:

1. performing hypothesis-pruning in the candidate data pool could reduce the influ-

ence of the initial hypothesis but it does not completely eradicate its dependence;

2. hypothesis-pruning strategies with the hypothesis class need a special distribution

assumption, but it cannot be applied in arbitrary input distributions, though this

theoretical description has attracted a lot of attention from researchers.

Therefore, it is desirable to develop a novel shattering strategy which achieves the same

goal as the hypothesis-pruning strategy and deals with the input distribution in real-world

tasks. To this end, we attempt to bridge the connection between the version space and

input distribution.

1.2.2 Error Disagreement
Error disagreement [Hanneke, 2014] is a class of coefficients used to guide the infor-

mative sampling in active learning. Generally, an error disagreement coefficient estimates

a feasible update to the current hypothesis and selects the best data for a human to annotate

so as to maximize this update.

Theoretically, the assumption behind these coefficients is that the hypothesis class H
is covered by an embedded graph G [Cortes et al., 2019c] with finite vertices, where each

vertex denotes one hypothesis, and the geodesic distance between any pair of vertices

reflects the level of disagreement with the hypothesis. The annotation process of active

learning then becomes one of shrinking the candidate hypothesis set over the version

space, by estimating the edges between the current and next hypotheses. The final goal is

to minimize the cuts of an initial vertex to a desired one over this graph.

Usually, a generalized error disagreement is used to define the length of any pair of hy-

pothesis edges. A classic generalized type of error disagreement is presented below. This

one comes from the “importance weighted active learning (IWAL)” algorithm [Beygelz-

imer et al., 2009a]. Let X be an input dataset, Y be its output label set, and H be a

hypothesis class over the marginal distribution D of X , for any hypothesis pair {h,h′},

L(h(x), h′(x)) denotes the hypothesis disagreement (distance), where x ∈ X . Corre-

spondingly, in graph G, L(h(x), h′(x)) denotes the length between the vertices of h and

h′. We here define this hypothesis disagreement as:

L(h(x), h′(x)) = ∣max
y∈Y �(h(x), y) − �(h′(x), y)∣, (1.1)

where � denotes the loss function of mapping X to Y and y ∈ Y . When maximizing the

disagreement of the losses on a single class in Eq. (1.1), we know L(h(x), h′(x)) is a

generalization of the best-in-class error on Y .
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To find a plausible hypothesis candidate, the learner uses an error disagreement coef-

ficient to prune H. Given r > 0, let B(h∗, r) denote a ball centered in h∗ ∈ H with a radius

r: B(h∗, r) = {h′ ∈ H ∶ L(h∗, h′) ≤ r}, where h∗ is the best hypothesis of H. The error

disagreement coefficient is defined as the minimum value of θ for any r > 0:

θ ≥ E
x∼D [ max

h∈B(h∗,r)
L(h∗(x), h(x))

r
]. (1.2)

Given the current hypothesis h, within a given hypothesis radius r which already bounds

the loss disagreement of h to its posterity, if h is far away from the optimal hypothesis

h∗, θ will be a large value. It means the algorithm will make large number of queries to

approximate its desired. Also, the sampling is a rough process. A simple expression for

the sampling policy is as follows.

• Any subsequent hypothesis with an error disagreement smaller than θ would be a

null hypothesis, i.e. insignificant update.

• Any subsequent hypothesis with an error disagreement larger than θ would be a

significant update.

Therefore, the value of θ in Eq. (1.2) decides the lower bound of the label complexity for

pruning the current hypothesis set into its best posterity.

However, in multi-class settings, using this error type leads to class biases, which then

means the pruning process roughly shrinks the volume of the version space. It then results

in a sub-optimal solution [Hoang et al., 2014] on minimizing the cuts of active learning

over graph G.

Recently, Cortes et al. [2019c] provided a tighter and more provable coefficient θ′,
where the length of the hypothesis edge w.r.t. Eq. (1.1) is re-expressed as the average loss

of all-in-class errors, i.e. ρ(h,h′),

ρ(h,h′) = E(x,y)∼D [∣�(h(x), y) − �(h′(x), y)∣]. (1.3)

Concisely, Cortes et al. [2019c] controlled the hypothesis disagreement (distance) to re-

duce θ by replacing the loss function L(⋅, ⋅)with ρ(⋅, ⋅). By applying Eq. (1.3) in the graph

pruning, B(h∗, r) is re-expressed as: B′(h∗, r) = {h ∈ H ∶ ρ(h,h∗) ≤ r, r ≥ 0}. Then, θ is

updated to θ′:

θ′ ≥ E
x∼D [ max

h∈B′(h∗,r)
L(h∗(x), h(x))

r
]. (1.4)

Those types of error disagreement always assume the X is with a uniform distribution

over the unit sphere or a log-concave distribution [Balcan and Feldman, 2013]. When the

learner who has no knowledge to access its hypothesis class, the above coefficients would

be not applicable e.g. teaching a black-box learner [Dasgupta et al., 2019]. However, θ′
successfully shrinks θ via reducing the volume of B(h∗, r) with provable bounds.



7

Halfspacee Learning

Theoretical Analysis

Generalization Performance

Tighter Label Complexity Bounds 

Distribution n Disagreement t Graph Coefficient

Hyperbolic Focal Representation

Deep Active  Learning Framework

Figure 1.3 : Halfspace learning presents guarantees for the theoretical analysis and gener-

alization performance of distribution-based active learning. Theoretical analysis includes

contributions of tighter label complexity bounds of Chapter 1.4.1 and distribution dis-

agreement graph coefficient of Chapter 1.4.2. Generalization performance includes hy-

perbolic focal representation which generalizes distribution disagreement in hyperbolic

geometry (related work in Chapter 1.3.2), and deep active learning framework of Chapter

1.4.3 (related work in Chapter 1.3.3).

1.3 Related Work
Figure 1.3 firstly presents the connections of the related work and subsequent contri-

butions.

1.3.1 Halfspace Learning
To reduce the dependence of the labeled set, active learning tries to find a near-optimal

[Chen et al., 2017; Golovin et al., 2010] hypothesis from the hypothesis class in the ver-

sion space. In this theoretical learning task, learners are given access to a stream of

unlabeled data drawn i.i.d. from a fixed distribution. The proposed algorithm paradigms,

which have already achieved a dramatic reduction in label complexity, are loosely termed

hypothesis-pruning.

Substantial hypothesis-pruning frameworks under various assumptions of classifiers

and labeled sets were proposed in past decades. For example, the query by committee

algorithm [Freund et al., 1997] assumes that a correct Bayesian prior exists on the hy-

pothesis class. To find a desired hypothesis, the committee members vote to eliminate the

updated hypothesis with maximal disagreement between them. For any hypothesis class,

Dasgupta [2006] presents the sufficient and necessary conditions for active learning such

as classifier setting and initial labeled set, etc. When there exists a perfect separator in

classification tasks, any hypothesis-pruning algorithm could directly improve the current

classifier in a rapid fashion such as uncertainty evaluation [Yang et al., 2015], expected

error rate change [Roy and McCallum, 2001], etc. Over this assumption, the learning al-

gorithms do not need to consider the distribution it induces. Any inconsistent hypothesis

such as a subsequent hypothesis with higher error rate can then be pruned by a single or

group of querying samples. With the increase in the number of queries, the VC bound of
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any hypothesis in the candidate hypothesis class would be shrunk continuously, regardless

from which distribution this query comes.

Since the optimal hypothesis is in respect to the input distribution, some learners gen-

erate the distribution under a fixed case, such as [Balcan et al., 2006], [Beygelzimer et al.,

2010], etc. Of these, halfspace learning [Gonen et al., 2013] becomes a special setting

over a unit sphere with uniform distribution. This problem takes a binary classification

issue as an example to study label complexity and error rate change after sampling, where

a halfspace is either of the two convex sets into which a hyperplane divides the sphere.

The goal is to find the optimal halfspace over a unit sphere. For example, in Figure 1.2,

researchers try to reduce the vector angle θ between the initial and optimal hypotheses as

rapidly as possible, in which θ decides the VC dimension of the current hypothesis. Under

this training assumption, two methods are presented to reduce the label complexity: (1)

halving [Hanneke, 2007b] the volume of the candidate pool to obtain a sparse space, and

(2) binary search for halving. By halving, the learner can rapidly reduce the hypothesis

capacity of the version space to decrease the label complexity of querying since a part of

the hypotheses would be removed. Therefore, the hypothesis-pruning strategy is an effec-

tive solution in active learning theory. However, most of these active learning algorithms

either make strong distribution assumptions such as separability, uniform input distribu-

tion or are generally computationally prohibitive [Dasgupta et al., 2008], thus they cannot

effectively be applied in active learning tasks with input distribution.

1.3.2 Hyperbolic Geometry
Hyperbolic space is a construct of non-Euclidean geometry that is d-dimensional Rie-

mannian manifold with a constant negative curvature [Nickel and Kiela, 2018]. Due to

its property of preserving tree-likeness orders of element anatomy, hyperbolic space is an

effective way of embedding a representative structure in hierarchical data. In this form

of geometry, it simply convinces any Euclidean algorithm with a vector structure and a

closed-form inner product metric. Hence, the key theorems of Euclidean space still hold.

Applications such as hyperbolic neural networks [Ganea et al., 2018], clustering [Monath

et al., 2019], and graph embeddings [De Sa et al., 2018] further demonstrate the advan-

tages of this type of approach for embedding the representativeness of any geometric

structure. To date, the most common model of hyperbolic space has been a Poincaré ball.

However, recently, Nickel and Kiela [2018] studied alternative types of models and found

that the Lorentzian (hyperboloid) model is substantially more efficient than the Poincaré

ball for learning embeddings. Following this conclusion, Law et al. [2019] further proved

that formulating the centroid with respect to the squared Lorentzian distance can be writ-

ten in closed-form solution.

1.3.3 Deep Active Learning
In deep learning community, active learning was introduced to improve the training of

a DNN model by annotating unlabeled data, where the data which maximize the model

uncertainty [Ashukha et al., 2019; Lakshminarayanan et al., 2017] are the primary acqui-

sitions. For example, in ensemble deep learning, out-of-domain uncertainty estimation

[Malinin and Gales, 2018] selects those data which do not follow the same distribution

as the input training data; in-domain uncertainty [Ashukha et al., 2019] draws the data
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from the original input distribution, producing reliable probability estimates. Gal et al.

[2017] use Monte Carlo dropout (MC-dropout) to estimate predictive uncertainty for ap-

proximating a Bayesian convolutional neural network. Lakshminarayanan et al. [2017]

estimate predictive uncertainty using a proper scoring rule as the training criteria to fed a

DNN.

Taking a Bayesian perspective [Golovin et al., 2010], active learning can be deemed

as minimizing the Bayesian posterior risk with multiple label acquisitions over the input

unlabeled data. A potential informative approach is to reduce the uncertainty about the

parameters using Shannon’s entropy [Tang et al., 2002]. This can be interpreted as seeking

the acquisitions for which the Bayesian parameters under the posterior disagree about the

outcome the most, so this acquisition algorithm is referred to as Bayesian active learning

by disagreement (BALD) [Houlsby et al., 2011].

Since Bayesian DNN presents effective matching on the distribution of the training

parameters, active learning using error disagreement, generalizing as model uncertainty

in deep learning, is feasible and highly effective. Therefore, Gal et al. [2017] proposed

to cooperate BALD with a Bayesian DNN to improve the training. The unlabeled data

which maximizes the model uncertainty provides positive feedback. However, it needs

to repeatedly update the model until the acquisition budget is exhausted. To improve the

acquisition efficiency, batch sampling with BALD is applied [Kirsch et al., 2019; Pinsler

et al., 2019]. In BatchBALD, Kirsch et al. [2019] developed a tractable approximation

to the mutual information of one batch of unlabeled data and current model parameters.

However, those uncertainty evaluations of Bayesian active learning whether in single or

batch acquisitions all take greedy strategies, which lead to computationally infeasible,

or excursive parameter estimations. Pinsler et al. [2019] thus approximated the poste-

rior over the model parameters by a sparse subset, i.e. core-set construction. Applying

Frank-Wolfe optimization [Vavasis, 1992], batch acquisitions of large-scale dataset can

be efficiently derived, thereby interpreting closed-form solutions for core-set construction

on linear and probit regression functions. As a consequence, non-deep models obtained

theoretical guarantees from this optimization solver due to tractable model parameters.

For deep Bayesian active learning, lacking of interaction to DNNs may not maximally

drive their model performance. In applications, BALD was introduced into natural lan-

guage processing [Siddhant and Lipton, 2018], text classification [Burkhardt et al., 2018],

decision making [Javdani et al., 2014], data augmentation [Tran et al., 2019], etc.

1.4 Contributions
1.4.1 Tighter Label Complexity Bounds

As discussed in [Balcan et al., 2010], the VC dimension with respect to the optimal

hypothesis in the version space affects the number of querying candidate hypotheses, and

plays an important role in its distribution description. We propose a fresh proposition

that the version space could be shattered by the number density § of the input distribu-

tion. Then, any hypothesis can be characterized with a lower bound on VC dimension.

Especially for any input distribution with a bounded space, the more data located in the

input space, the more hypotheses the version space would have. Moreover, the input dis-
§https://en.wikipedia.org/wiki/Number density



10

tribution induces a natural topology on the version space, and a local hypothesis would
easily capture its relevant local distribution [Dasgupta et al., 2008]. Hereafter, we would

perform the shattering on the number density of the input distribution with the following

advantages: (1) it provides theoretical guarantees in relation to reducing the generalized

bounds of label complexity and error disagreement as hypothesis-pruning; (2) it breaks

the curse of the initial hypothesis; and (3) it provides model guidance for distribution-

shattering algorithms in real-world active learning tasks.

Based on the above insights, the first work generalizes the distribution-shattering strat-

egy in an input distribution. Firstly, we halve the number density of the input distribu-

tion to obtain a shattered distribution. We then compare the generalization bounds be-

tween the shattered distribution and input distribution on error disagreement and label
complexity for any hypothesis class under arbitrary data distributions. Our theoretical

results show that the shattered distribution has lower generalization bounds in terms of

the above two properties. Thus, we continuously split the shattered distribution to find a

representation structure. This process is guided by a derived algorithm termed Shattered

Distribution-based Active Learning (SDAL), which optimizes a group of local sphere

centers as representative samples. Based on the analysis of the performance disagreement

over hypothesis-pruning and distribution-shattering, we explore a series of scenarios in-

cluding active querying with a limited labeled set, adversarial examples and noisy labels,

where the first scenario is in regard to the poor initial hypothesis, and the last two scenarios

are involved with the hypothesis update. The contribution of the first work is summarized

as follows.

• We model the version space and input distribution by number density, which char-

acterizes the generalized capacity of any hypothesis in a natural and direct way.

We present a theoretical guarantee of the improvement on error disagreement and

label complexity for shattering the number density of the input distribution. A de-

rived algorithm named SDAL, which is independent of the initial labeled set and

classifier, achieves lower error performance than the hypothesis-pruning algorithms

when querying with limited labels, adversarial examples and noisy labels.

1.4.2 Distribution Disagreement
Typically, representations of data structure can relieve the dependency on error dis-

agreement such as Euclidean centroids of an enclosed geometric space over the data.

Core vector machine [Tsang et al., 2005b], geometric enclosing networks [Le et al., 2018],

and adversarial training [Cranko et al., 2019] are examples of this type of geometric ap-

proaches. Based on this observation, we propose a Distribution Disagreement Graph

Coefficient (DDGC) ¶ (written as θG) to replace the classic error disagreement coefficient

used in non-deep active learning. We theoretically prove that distribution disagreement

coefficient can produce a tighter bound on label complexity than that of error disagree-

ment coefficient.

Naturally, generalizing DDGC by geometric centroids is a straightforward approach.

However, centroid formulation requires the data space to have a strong spherical distribu-

tion; in the real world, the boundary surface over the data space is usually aspherical and
¶DDGC is a generalization of distribution disagreement over graph.
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Figure 1.4 : A uniform framework consists generalizations of distribution and error dis-

agreements.

most of the data resides densely on one side of this fitted surface. Thus, the focal points

of enclosed aspherical space are more characteristic of the representation boundaries than

Euclidean centroids. We then embed active learning onto a non-Euclidean hyperbolic ge-

ometry, in which the centroid representation is shifted towards the boundary by replacing

the Euclidean norm with the Lorentzian norm [Nickel and Kiela, 2018; Law et al., 2019].

With this change, the version space of Euclidean is shrunk into tighter Lorentzian space

that, deriving the focal point representation, further can be a generalization of DDGC. The

used squared Lorentzian distance [Law et al., 2019], which yields a closed-form update

formula on focal points. The last element to our strategy is a splitting approach for the

Lorentzian representation based on tree-likeness [Hamann, 2018] that significantly speeds

up the learning process. Concretely, contribution of the second work is that:

• We derive a more general distribution disagreement expression to replace the typical

error disagreement for active learning, yielding tighter bound on label complexity.

For the generalizations of distribution disagreement, we find that Lorentzian focal
|| points of hyperbolic space present more effective representations than Euclidean,

Gaussian kernelized, and Poincaré centroids on aspherical distributions.

1.4.3 A Unified Framework
In deep active learning, we propose an improved Geometric Bayesian Active Learn-

ing by Disagreement (GBALD) framework over the geometric interpretation of BALD

that, interpreting BALD with core-set construction on an ellipsoid, match an effective

distribution representation to drive a Bayesian model. The goal is to seek for significant

accuracy improvements against an uninformative prior and redundant information. In the

first stage of GBALD, geometric core-set construction on an ellipsoid initializes effective

distribution matching to start a DNN model regardless of the uninformative prior. Taking

the core-set as the input features, the next stage of GBALD ranks the batch acquisitions

of model uncertainty according to their geometric representativeness, and then solicits

some highly-representative examples from the batch. With the representation constraints,

the ranked acquisitions reduce the probability of sampling nearby samples of the previ-

ous acquisitions, preventing redundant acquisitions. Contribution of the third work is as

follows.
||Hyperbolic focal adopts Lorentzian norm, it is therefore also called Lorentzian focal.
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Chapter 5: Conclusion and Future Work

Figure 1.5 : The skeleton of the thesis.

• GBALD, a geometry-driven Bayesian active learning framework that matches the

distribution on ellipsoid, deriving the deep learning model into highly informative

and representative acquisitions.

Figure 1.4 presents the structure of GBALD framework, which consists of core-set

construction and model uncertainty estimation. In a generalization view, the core-set is

generalized from distribution disagreement of Chapter 3 and model uncertainty is gener-

alized from error disagreement of Chapter 2.

1.5 Thesis Organizations
This thesis studies the distribution-based active learning from halfspace theory to deep

learning applications. Figure 1.5 presents the skeleton of the thesis. The structure of the

remaining chapters is organization as follows.

1. Chapter 2 introduces the active learning by shattering the number density of the

input distribution, deriving tighter theoretical bounds for label complexity, where

shattering is implemented from halving to splitting.
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2. Chapter 3 introduces the Lorentzian focal representation to generalize the distribu-

tion disagreement in hyperbolic geometry, which presents a novel alternative for

infeasible estimations on error disagreement.

3. Chapter 4 introduces a geometrical Bayesian deep active learning framework which

matches the core-set expression of the distribution, interacting with model uncer-

tainty estimation of a Bayesian neural network model.

4. Chapters 5 concludes this thesis.
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Chapter 2

Distribution Shattering
This chapter discusses the first question of the thesis: “how to reduce the typical theoreti-

cal bounds of label complexity?”. From a perspective of hypothesis class, we summarize

the current active learning approaches involved with hypothesis updating as a hypothesis-

pruning strategy, where error disagreement is a typical coefficient to control the feasible

updates. However, those updates heavily depend on the initial hypothesis regard to classi-

fier and labeled set. An improper initialization inevitably degenerates the pruning process

of the hypothesis, which then rapidly increases the label complexity bounds.

To reduce the typical theoretical bounds of label complexity, we present a distribution-

shattering strategy that shatters the number density of the input distribution without es-

timations on hypotheses. For any hypothesis class, we halve the number density of the

input distribution to obtain a shattered distribution, which characterizes any hypothesis

with a lower bound on VC dimension. Our analysis shows that sampling in a shattered

distribution reduces label complexity and error disagreement. With this paradigm guar-

antee, in an input distribution, a Shattered Distribution-based Active Learning (SDAL)

algorithm is derived to continuously split the shattered distribution into a number of rep-

resentative samples. An empirical evaluation on benchmark datasets further verifies the

effectiveness of the halving and querying abilities of SDAL in real-world active learning

tasks with limited labels. Experiments on active querying with adversarial examples and

noisy labels further verify our theoretical insights on the performance disagreement of the

hypothesis-pruning and distribution-shattering strategies

The remainder of this chapter is organized as follows. Section 2.1 introduces the

main theoretical insights. Section 2.2 models hypothesis and distribution by number den-

sity. Section 2.3 proposes the distribution-shattering strategy. Section 2.4 presents the

experiments. Section 2.5 presents the discussions. Conclusion of this chapter is drawn in

Section 2.6.

2.1 Main Theoretical Insights
Section 2.1.1 presents the preliminaries for one fundamental learning policy of the

hypothesis-pruning strategy, which uses a disagreement coefficient to control the sam-

pling of active learning. Specifically, the concept of the sparse hypothesis class which pro-

vides the foundation for the distribution-shattering is introduced in Section 2.1.2. Then,

Section 2.1.3 analyzes the hypothesis-pruning and distribution-shattering active learning

by halfspace learning and discusses their performance disagreements.
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Figure 2.1 : Error disagreement of halfspace learning over a unit sphere with a radius of

R, where + and − symbols denote the positive and negative class labels, respectively. The

error disagreement-based active learning strategy prunes the hypothesis set via updating

a subsequent hypothesis with large ϑ; the initial hypothesis has an error of 1/2, and the

subsequent hypothesis has an error of ϑ/π, thereby the error disagreement is 1/2 − ϑ/π.

2.1.1 Error Disagreement of Hypothesis-pruning
The hypothesis-pruning active learning algorithm queries the label of one example

based on the empirical rule of error rate difference after assigning a positive or negative

label. To describe the basic model of hypothesis-pruning, we present some preliminaries

in this section.

Given a data set X with binary class labels, and D is the distribution over X × {±1},

we divide X into two groups: L and U , in which L contains the labeled set of X , and

U contains the unlabeled set. Let err(X ,L) denote the error rate of predicting X by

training the labeled set L, {x̂,−1} and {x̂,+1} denote the queried data with negative or

positive labels, x̂ ∈ X , t denote the tth query, Lt denote the labeled set in the tth query,

and k denote the total number of queries. We present the policy for querying by the error

disagreement Δt [Dasgupta et al., 2008],

∣err(h−1,Lt ∪ {x̂,−1}) − err(h+1,Lt ∪ {x̂,+1})∣ >Δt

s.t. {x̂,±1} ⊂ U , t = 1,2,3,⋯, k, (2.1)

where h−1 and h+1 denote the classification hypotheses after assuming x̂ with a negative

and positive label, respectively. By employing this policy, the active learners pick up those

data whose error disagreements of ∣err(h−1,Lt∪{x̂,−1})−err(h+1,Lt∪{x̂,+1})∣ are larger

than the given coefficient Δt. If the error disagreement of one data is far greater than the

coefficient, it updates the current classification hypothesis significantly. Otherwise, the

influence on the current hypothesis of adding the data to L is insignificant. Figure 2.1

explains the error disagreement over halfspace learning.

The theoretical guarantees for this policy can be expressed in terms of the generalized

disagreement coefficient [Hanneke, 2007a] over a fixed assumption. Given a hypothesis

class H over X , let h∗ be the optimal hypothesis which satisfies h∗ = arginfh∈H errD(h),
ν = errD(h∗), and h(x) ≠ h∗(x), where errD(h) denotes the error of hypothesis h
with respect to distribution D. Let B(h∗, r) [Dasgupta, 2011] be a ball centered with

h∗, given a radius r limits the volume of the candidate hypotheses around h∗, we define
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B(h∗, r) = {h′ ∈ H ∶ �(h∗, h′) < r}, where �(⋅, ⋅) denotes the metrical distance between

the two hypotheses. Generally, �(⋅, ⋅) can be generalized as the error disagreement of Eq.

(2.1). Assume there exists a descried error rate ε, the generalized disagreement coefficient

[Cortes et al., 2019b] is defined as the minimum value of θ such that for any r:

θ = sup{Prx∼D[∃h ∈ B(h
∗, r)]

r
∶ r ≤ ε + ν} , (2.2)

where Pr denotes the probability mass in B(h∗, r) such as the candidate hypothesis dis-

agreement or misclassified data amount.

The generalized types of Pr are typically used in various hypothesis-pruning active

learning: Dasgupta [2006] presents an upper bound of label complexity using maximum

disagreement between any hypothesis inH; Cortes et al. [2019b] tight this bound by using

the best-in-class error disagreement, etc.

2.1.2 Sparse Hypothesis Class
To find the instance with the highest informativeness, the hypothesis-pruning active

learning algorithms using error disagreement select the data which maximally splitH, and

then shrink the number of candidate hypothesis. However, the general error disagreements

need a linear classifier or fixed distribution and it is only a special metric over hypothesis

disagreement. In this section, we study the hypothesis distribution which is independent

of the structural assumption of fixed distribution.

Without a given distribution, we assume the hypothesis class is distributed in an un-

seen graph structure G and each node denotes a hypothesis. Then, B(h∗, r) denotes a ball

centered with h∗ and radius r in G. Afterwards, finding a sparse hypothesis class is the

most important splitting factor.

Let ht be the current hypothesis, xi and xj be two candidate sampling points in X .

Assume ht,xi
and ht,xj

are the updated hypotheses after sampling xi and xj , respectively,

the disagreement coefficient can be the infimum value of θ′

max
h∈B(h∗,r)�(h

∗, ht,xi
) + �(h∗, ht,xj

) ≤ 2θ′r,∀r > 0, (2.3)

where ht,xi
is assumed to be the hypothesis with the maximum disagreement to ht,xj

in a

given radius setting r. In B(h∗, r) of G, ht,xj
denotes the node which is the farthest from

the node of ht,xi
.

Let m be the number of unlabeled data in the candidate pool, the constrained hypoth-

esis relationship set is descried as

H′ = {(ht,x1 , h
′
t,x1

), (ht,x2 , h
′
t,x2

), ..., (ht,xm , h
′
t,xm

)}, (2.4)

where h′t,xi
denotes the hypothesis that is the furthest from ht,xi

. By employing the hy-

pothesis disagreement function �(⋅, ⋅) of Eq. (2.3), learners can remove a part of the hy-

potheses by a margin distance θ′. Then, we obtain a sparse hypothesis class H∗. With

this splitting strategy, characterizing any hypothesis in H with a lower VC bound may be

possible. Therefore, the key study of this paper is to prune the original hypothesis class
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Figure 2.2 : Shattering distribution of a unit sphere with a radius of R, where +,− denote

the class labels. Distribution-shattering halves the number density of an input distribution

w.r.t. 12
πR2 into a shattered distribution w.r.t. 6

πR2 . Any hypothesis generated from the

original distribution is charactered with a lower bound on VC dimension. Thereby, we can

find a representation structure that induces a tighter label complexity without estimating

the hypothesis.

into a sparse structure from the distribution view. Figure 2.2 describes this process.

2.1.3 Performance Disagreement
Halfspace learning provides a clear visualization to describe the hypothesis relation-

ship. Based on this advantage, in this section, we describe the performance disagreement

of the hypothesis-pruning and distribution-shattering active learning by halfspace learn-

ing. We firstly describe different cases of learning a halfspace over a unit sphere.

Case 1. Halfspace learning. Learning a halfspace c∗ [Alabdulmohsin et al., 2015;

Chen et al., 2017] in a united sphere is to estimate an unknown vector μ that takes the

sphere center as the start point,

c∗={x∈ ∣⟨μ,x⟩≥0}, s.t. sign(⟨xi, μ⟩) ∈ {+1,−1} . (2.5)

In this case study, the goal of halfspace learning is to estimate the optimal c∗ using

the lowest number of queries as possible. However, the label complexity of the unseen

sampling process heavily depends on the initial hypothesis. Suppose that the points which

could maximize the hypothesis or distribution update are the primary sampling data, we

utilize label complexity to observe the difference of hypothesis-pruning and distribution-

shattering active learning of the halfspace.

To explain the notion of label complexity, we take the label complexity of the passive

(random) learning of halfspace as prior knowledge.

Case 1.1. Passive learning of halfspace. Let D be the distribution over a unit sphere

with 1/ε data, then the label complexity of passive sampling is O(1ε ).
Let vt be the vector classifier on the tth query, and θt be the angle between vt and μ,

we give the following case studies.
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Figure 2.3 : Number density models the relationship of hypothesis and distribution, i.e.

VC dimension increases proportionally as the number density. If number density= 4
a3 and

the hypothesis is generated from i samples, the VC bound ≤ ∑4
i=1 (4i) = 16; given the

number density= 6
a3 , the VC bound ≤ ∑6

i=1 (6i) = 64. Note the version space of number

density= 6
a3 only presents 32 hypotheses, where the red nodes are the newly added ones

from the version space of number density= 4
a3 , and each blue node denotes one feasible

hypothesis, respectively.

Case 1.2. Hypothesis-pruning active learning of halfspace. Let D be the distribution

over a unit sphere with 1/ε data, the label complexity of obtaining a lower error rate

compared to the initial hypothesis is O( θt
πε). Even using the halving algorithm, the label

complexity is O(log θt
πε).

To reduce the error of the initial hypothesis, we need to query the labels of the data

distributed between vt and μ (colored area in Figure 2.1). Over a unit sphere with 1/ε
data, the candidate pool which can reduce the error of the initial hypothesis has θt

πε data.

If we use the halving algorithm such as binary search in the candidate pool, the label

complexity would be O(log θt
πε). Different from the hypothesis-pruning active learning,

the distribution-shattering active learning that requires the unseen sampled data is inde-

pendent of the initial hypothesis.

Case 1.3. Distribution-shattering active learning of halfspace. Let D be the distribu-

tion over a unit sphere with 1/ε data, the label complexity of obtaining a lower error rate

compared to the initial hypothesis is O(1).
The above cases compare the sampling policies of the hypothesis-pruning and distribution-

shattering active learning strategies over the unit sphere. The performance of the hypothesis-

pruning active learning strategy heavily depends on the initial hypothesis. In real-world
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active learning tasks, the querying results of active learning depend on the input labeled

set and updating of the training model. For example, an limited labeled set and misguided

model update will degenerate the performance of the subsequent sampling. However, the

final estimation on error rate of the proposed distribution-shattering strategy depends on

the representation structure of the input distribution. In simple terms, learning the repre-

sentation structure of the distribution could help to address the limitation of hypothesis-

pruning with a certain sampling selection. In a real active learning task, the queried

samples of any generalized distribution-shattering algorithm will be independent of the

input training set.

2.2 Hypothesis and Distribution
In Section 2.2.1, we firstly present the monotonic property of the active query set to

show the uncertain error rate change after querying. Then, we discuss the bottleneck of

informative active learning and describe our splitting rule by representation sampling in

Section 2.2.2. Finally, we discuss the relationship between error rate and number density

of input distribution in Section 2.2.3.

Based on these theoretical analysis, we are motivated to undertake the splitting in input

distribution. The goal is to eliminate the hypothesis supervision by learning the structure

of the input distribution. Proofs are presented in Appendix A. Figure 2.3 presents the

motivation of number density.

2.2.1 Monotonic Property of the Active Query Set
To observe the error rate change after increasing the size of the active query set, we

follow the perceptron training (see Figure 2.1) to analyze the hypothesis relationship. In

our perspective, training the updated hypothesis will result in two uncertain situations:

(1) the error rate declines after querying, and (2) the error rate shows negative (or slow)

improvement when querying a lot of unlabeled data. Therefore, the monotonic property of

the active query set size and error rate are unknown. The following proposition provides

a mathematical description for this discovery.

Proposition 1. The monotonic property of active query set and error rate is unsatisfied or
negative. Suppose εt and εt+1 respectively are the error rates of training the active query
sets Dεt and Dεt+1 . There must hold an uncertain probability relationship which satisfies
Pr(εt+1 ≤ εt∣Dεt ⊂ Dεt+1) < 1.

Proposition 1 describes the first perspective of this paper about the relationship be-

tween the performance of the hypothesis and the active query set size. It shows that the

probability of reducing the current error rate by increasing the size of the active query set

is unpredictable and answers the question that we proposed in the beginning of this paper.

In the following, we observe the error rate change by shattering the number density of the

candidate pool.

2.2.2 Error Rate Change by Shattering Number Density
Following the perceptron training in the unit circle with uniform distribution, we find

the error rate grows with the number density of the input distribution. This study also
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Figure 2.4 : The assumption of distribution-shattering with a sparse hypothesis class.

Each node denotes one realizable hypothesis, and the lengths of the red lines denote

the hypothesis disagreement. Hypothesis-pruning updates the initial hypothesis w.r.t. h0

into hε with a desired error ε in the original hypothesis class (Fig. 2.4(a)). Distribution-

shattering optimizes a group of local hypothesis spheres (Fig. 2.4(b)). Shattering by those

sphere centers, the original hypotheses are transformed into a sparse hypothesis class

(Fig. 2.4(c), thereby finding hε can achieve a lower label complexity than in its original

hypotheses.

appears in active learning of halfspace.

Proposition 2. Assume θt+1 > θt, we know err(Dεt)−err(Dεt+1) = (θt+1 − θt)Den(B)
n (w.r.t.

the volume of the circle is π), where Den(⋅) denotes the number density of the distribution.

Error rate disagreement denotes the distance between two arbitrary hypotheses. By

observing the above propositions, we find that number density affects the hypothesis dis-

agreements. Furthermore, we know the number density roughly decides the VC dimen-

sion bound of the optimal hypothesis since Vcdim(B) = ∑n
k=1 (nk) = 2n = 2πDen(B). For

these two reasons, number density is a direct way to describe the hypothesis distribution

in version space. Therefore, we are motivated to shatter the number density of the input

distribution to both reduce the VC bound and find a lower label complexity. In addition,

we define Den(B) for the real active learning tasks in Section 2.3. In the following, we

discuss the bottleneck of querying informative samples and present our solution to this

issue.

2.2.3 Bottleneck of Hypothesis-pruning
In hypothesis-pruning, the generalized algorithm updates the initial hypothesis w.r.t.

h0 into hε with a desired error ε in the original hypothesis class over version space (Fig.

2.4(a)). The informative samples are the primary querying targets. However, estimating

the hypothesis disagreement is challenging. In particular, when the initial hypothesis is

set improperly (far from the optimal hypothesis in version space), the path of finding the

optimal hypothesis might be difficult. Thus, there exists a bottleneck for the active learn-

ing sampling by querying informative samples, i.e., the hypothesis disagreement from the
initial hypothesis to the descried hypothesis is uncertain.

Since the VC dimension greatly affects the path finding process for the optimal hy-

pothesis, splitting the hypothesis class of version space into a sparse structure can al-

leviate the bottleneck of querying the informative samples. In our assumption, we use
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distribution-shattering to optimize a group of hypothesis spheres (Figure 2.4(b)). Shatter-

ing by those sphere centers, the original hypotheses are transformed into a sparse hypoth-

esis class, thereby finding hε can achieve a lower label complexity than in that original

hypotheses (Fig. 2.4(c)). To implement this proposal, we perform the splitting idea on the

input distribution by finding k local balls constrained by the following rules.

Solution. Given BD is a ball which tightly encloses D, and {B1,B2, ...,Bk} are the k
local split balls with the condition of ∀i,Bi ⊂ D. Let Vol(⋅), r(⋅) define the volume and

radius of the input hypothesis object, respectively, the splitting must satisfy the following

conditions: (1) the volume of arbitrary split ball Bi is smaller than that of BD, i.e., ∀Bi,
Vol(Bi) < Vol(BD), (2) the sum of the volumes of all the split balls Bi is smaller than

that of BD, i.e., ∑k
i=1Vol(Bi) < Vol(BD), (3) the radius of an arbitrary ball is smaller

than the radius of BD, i.e., ∀Bi, r(Bi) < r(BD), and (4) the distance between any two

local hypothesis balls is bigger than the sum of their radii, i.e., �(ci, cj) > r(Bi) + r(Bj),
where �(⋅, ⋅) denotes the distance between the two inputs, and ci denotes the center of the

ith split ball.

The above splitting rules provide an algorithmic paradigm for distribution-shattering

strategy. A generalized algorithm termed SDAL is then presented in Section 2.3.

Remark 1. The policy of �(ci, cj) > r(Bi) + r(Bj) is the key of the theoretical solution
that avoids overlapping in representations of local hypothesis spheres. It is generalized
in the convergence condition w.r.t. Line 15 of SDAL algorithm.

2.3 Distribution-shattering for Active Learning
Section 2.3.1 explains how to shatter the input distribution from halving to splitting.

Using a heuristic greedy selection, we halve the number density of the input distribution to

obtain a shattered distribution in Section 2.3.2. Then, we discuss its theoretical advantages

in Section 2.3.3. With these guarantees, Section 2.3.4 splits the shattered distribution of

the input distribution into a certain number of local balls to find a representation structure.

Proofs are presented in Appendix.

2.3.1 Shattering: From Halving to Splitting
Shattering the input distribution is proposed to eliminate the dependence of the hy-

pothesis. In the last section, halving the number density of the colored candidate pool

yields exponential reduce on the label complexity of halfspace learning. To prove the

positive help of shattering, we propose to implement the halving algorithm against the in-

put distribution. The theoretical estimations on the generalized label complexity and error

rate difference reveal the effectiveness of shattering. If all feasible change can converge

uniformly with the shattering percentages, we split the shattered distribution into several

representation regions and use their central points as the query samples of active learning.

2.3.2 Halving Number Density for Shattered Distribution
By sorting the hypothesis disagreement of each pair in H′ of Eq. (2.4), we use a

splitting threshold θ′ to halve the number density of the input space under arbitrary data

distributions. The cutting rule is: let ht is centered with its update ht,xi
on xi, for any
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xj ∈ X , if �(ht,xi
, ht,xj

) ≥ θ′, we remove xj from X . After the cutting, H′ will be reduced

to H∗ over a shattered distribution.

In hypothesis classH, the VC dimensions ofH andH∗ can be written as Vcdim(H) ∶=
d = ∑m

i=1 (mi ) = 2m and Vcdim(H∗) ∶= d′ = ∑m/2
i=1 (m/2

i
) =

√
2
m

[Cao et al., 2018]. Based

on these assumptions, let us discuss the advantages of shattered distribution on label com-

plexity and the upper bound of the querying.

Lemma 1. Label complexity. Let each hypothesis hold for a probability at least 1− δ, the
label complexity m(ε, δ,H∗) is

m(ε, δ,H∗) = 64

ε2
( 1
√
2
m−2 In

12

ε
) + In(4

δ
) <m(ε, δ,H). (2.6)

Lemma 2. Upper bound of queries. Following [Balcan et al., 2006], let us assume 0 <
ε < 1/2, < 0 < δ < 1/2, then the active learning will make at most 2m(ε, δ′H∗ ,H∗) <
2m(ε, δ′H,H) queries, where δ′H is denoted as δ′H = δ

N(ε,δ,H)2+1 .

Based on the above discussion, we can easily observe that the values of the two prop-

erties of the hypothesis class of the shattered distribution are lower than that of the original

hypothesis class since it characterizes any hypothesis with a lower bound on VC dimen-

sion.

2.3.3 Advantages of Shattered Distribution
To observe the advantages of the shattered distribution, we 1) analyze the bounds of

error disagreements between the hypotheses with positive or negative labeling assump-

tions, 2) discuss the upper bound of the error rate by fall-back analysis which requires a

change in different assumptions that can hold for the same algorithm, and 3) present the

label complexities in η-bounded and v-adversarial noise conditions.

2.3.3.1 Bounds of Error Disagreement in Shattered Distribution

In this learning process, we continue to use the greedy strategy of halving to split the

local unit ball B(h∗, r). Before splitting, here we present the halving guarantees of error

rate difference on the shattered distribution.

Theorem 1. Let D′ be the distribution over H∗, {hi, h′i} ∈ H, h′i be furthest from hi in
H, F be a family of functions f ∶ Z → {0,1}, S(H, n) be the nth shatter coefficient
with infinite VC dimension, αt =

√
(4/t)In(8S(H,2t)2)/δ, EZf be the empirical average

of f over a subset Z ⊂ Z ⊂ X with probability at least 1 − δ. Then, we have Δ′ =
(err(hi,D′) − err(hi,D)) − (err(h′i,D′) − err(h′i,D)) ≤ 0.

Using this lemma, the error rate of the shattered distribution guarantees the decrease.

However, it has a relationship with the size of D. To obtain the structure of the version

space, we continue to use the halving approach to splitH into k local balls with a fall-back

and bounded noises-tolerant guarantees.



24

2.3.3.2 Fall-back Analysis in Shattered Distribution

Fall-back analysis [Dasgupta et al., 2008] helps us to observe the upper bound of

error rate in the shattered distribution. Before analyzing the fall-back of querying, we

need some technical lemmas.

Lemma 3. With an assumption of normalized uniform, Δt of Eq. (2.1) could be defined
as: Δt ∶= β2

t + βt(
√
errt(h+1) +

√
errt(h−1)) [Dasgupta et al., 2008], where βt follows a

PAC slack of βt =
√
(4/n)In(8(n2 + n)S(H∗,2n)2δ).

Lemma 4. With the assumptions of errt(h+1)−errt(h−1) >Δt, errt(h+1)−errt(h−1) > 2β2
t

1−βt

and it is consistent with the labeled set Lt for all t ≥ 0.

With Lemma 4, we then produce the upper bound of error of sampling in a shattered

distribution.

Theorem 2. Assume there exists a hypothesis hf which satisfies errD′(hf) ≤ errD(h∗).
If the active learning algorithm is given by k queries with probability of 1 − δ, let ν =
errD′(h∗), the error rate of shattered distribution is at most (√ν + βk)2.

From the above analysis, sampling in a shattered distribution can still converge safely.

The upper bound of error of sampling in a shattered distribution is further proven to be

tighter than sampling in the input distribution without halving. It shows sampling in a

shattered distribution may save sampling consumption and a continuous splitting algo-

rithm may further reduce this bound uniformly. Next, let us analyze the bounds of the

label complexity in the noise settings.

2.3.3.3 Bounded Noise Analysis of Shattered Distribution

Under the uniform assumption, noises affect the unseen queries. Here we discuss the

label complexities of the shattered distribution in η-bounded and v-adversarial noise

settings [Yan and Zhang, 2017].

Theorem 3. For some η ∈ [0,1/2] with respect to μ ( w.r.t. Case 1), if for any xi ∈ D′,
Pr[Y ≠ sign(μ⋅xi)∣X = xi] ≤ η, we say the distribution of D′ is η-bounded [Massart et al.,
2006]. Under this assumption, (1) there are at most Õ( d′(1−2η)3ε) unlabeled data, and (2)

the number of queries is at most Õ( d′(1−2η)2 In 1
2ε), where Õ(f(⋅)) ∶= O(f(⋅)lnf(⋅)).

Theorem 4. For some v ∈ [0,1] with respect to μ, if for any xi ∈ D′, Pr[Y ≠ sign(μ ⋅
xi)∣X = xi] ≤ v, we say the distribution of D′ is v-adversarial noise condition [Awasthi
et al., 2014]. Under this assumption, (1) there are at most Õ( d′2ε) unlabeled data, and (2)

the number of queries is at most Õ(d′In 1
2ε).

Compared to the original input distribution, the shattered distribution has lower label

complexity since the VC bound of any hypothesis is shattered into a shaper value.
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2.3.4 Distribution-shattering for Active Learning Tasks
Shattered distribution provides theoretical advantages without special distribution as-

sumptions since number density is independent of arbitrary distribution situation. There-

fore, in real-world active learning tasks, we firstly halve the number density of the input

distribution to learn a shattered distribution via an active scoring strategy. After obtaining

the shattered distribution, we split the shattered distribution into k balls via the distribution

density. Then, we propose the SDAL algorithm for active learning querying.

2.3.4.1 Active Scoring for Halving
Active scoring is used to measure the local representativeness of arbitrary data, in

which the score value monotonically grows with the representativeness. By removing

some data with the lowest representativeness (i.e., halving the number density of the input

distribution), we try to shatter the unlabeled data pool. This reduces the label complexity

of the subsequent active learning sampling. Here we use the experimental design [Yu

et al., 2006] to finish the operation of halving.

Considering a linear function f(x) = wTx from measurements yi = wTxi + ξi, where

w ∈�, and ξi ∼ N(0, σ2). The halving algorithm is to optimize a set V={(v1, y1), (v2, y2),
..., (vm, ym)} to represent x, where m = ⌊n/2⌋. Therefore, the maximum likelihood esti-

mate of w is obtained by

argmin
w∗

{J (w) =
n

∑
i=1
(wTvi − yi)} (2.7)

and the error rate is e = w −w∗, s.t. μ(e) = 0,D(e) = σ2Cw, where μ(⋅) denotes the mean

value of the input variable, D(⋅) denotes the covariance matrix of the input object, and

Cw = (
∂2J
∂wwT

)
−1
= (VVT )−1. (2.8)

Then the average expected square predictive error over X can be written as

E(yi −w∗Txi) = σ2 + σ2Tr(X TVVTX). (2.9)

In order to minimize the average expected square predictive error, we need to min-

imize Tr(X TVVTX). With mathematical derivations, the minimization issue changes

into:

argmin
V,A

n

∑
i=1
∣∣xi −VTαi∣∣ + μ∣∣αi∣∣,

V ⊂ X ,A = [α1, α2, ..., αn],
(2.10)

where u is the penalty factor of the global optimization.

After mapping the original input space into a non-linear kernel space, we iteratively

project the top-(⌊n/2⌋) data with the highest confidence scores to a shattered space*. To

*Shattered space is a generalization from shattered distribution in real-world.
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solve this equation, Yu et al. [2006] use sequential optimization to iteratively select the

data with high representativeness in kernel space. In this paper, we follow their results

and use the confidence score function to define the representativeness of one data:

Score(xi) =
∣∣K(κ, ∶)K(∶, κ)∣∣2

K(κ,κ) + u
,∀i,

s.t. K =K − K(∶, κ′)K(κ′, ∶)
K(κ′, κ′) + u

,

(2.11)

where K denotes the kernel matrix of X , κ denotes the sequence position of xi in X , and

κ′ denotes the sequence position of the data with the current highest confidence score in

X . Generally, sequential optimization costs a time calculation of O(n2) with a greedy

strategy. For a large-scale data set, we can adopt the kernel relevant component analysis

trick [Tsang et al., 2005a] to reduce the calculation complexity.

2.3.4.2 Splitting by Distribution Density

Implementing splitting in the input distribution by number density has already been

proved effective in agnostic distributions (unknown assumptions). However, in d̂-dimensional

space, calculating the number density of a high dimensional-bounded space is challeng-

ing. To approximately generalize number density, we propose to use the exponential

value of the distribution density to quickly split the input distribution due to their positive

proportional relationship. Here we nearly generalize the number density as

Den(Bi) =
1

mi
∑

xj ,xl∈Bi

f d̂(xj, xl, h), (2.12)

where f d̂(⋅) denotes the exponential value of the distribution density, f(⋅) can be general-

ized by arbitrary kernel function K(⋅) with a bandwidth setting of K(xj−xl

h ), h denotes the

kernel bandwidth, and mi denotes the data number in Bi. Then, we propose the splitting

rule:

min ∑
B1,B2,...,Bk

∑
xj ,xl∈Bi

1

mi

f d̂(xj, xl, h). (2.13)

To solve the above minimum optimization problem, we use the (1+ε)-approximation

[Tsang et al., 2005b] approach to increase the ball radius to make it converge, where ε is

set by the empirical threshold.

2.3.4.3 Querying by SDAL

How to query unlabeled data is an important step for active learning tasks. In this

section, we propose a Shattered Distribution-based Active Learning algorithm (SDAL) to

implement the proposed distribution-shattering strategy by following the splitting rule in

Section IV.B. The algorithm has two steps. Step 1 (Lines 2 to 10) is to find a shattered

distribution which contains the optimal data sequences by the active scoring using Eq.

(2.11). Step 2 (Line 11 to 25) is to solve the optimization of Eq. (2.13). Finally, the

output data of the algorithm are used as the active learning queries.
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Algorithm 1: SDAL algorithm

1 Input: dataset X , radius r, approximation ratio ε, number of epochs T .
2 while l = 1 < ⌈n/2⌉ do
3 for i=1,2,3...,n do
4 Calculate the score of xi: Ω(i) = ∣∣K(κ,∶)K(∶,κ)∣∣

2

K(κ,κ)+u)
.

5 end
6 Find the sequence κ′ with the maximum value in Ω: κ′ = argmax

i
Ω(i).

7 Add xi to X ∗.
8 Update matrix K =K − K(∶,κ′)K(κ′,∶)

K(κ′,κ′)+u
.

9 l = l + 1.
10 end
11 Initialize k data points as the ball centers from X ∗ using k-means.

12 f0 = ∑B1,B2,...,Bk
∑xj ,xl∈Bi

1
mi

f d̂(xj , xl, h).
13 while t = 1 ≤ T do
14 ft = ∑B1,B2,...,Bk

∑xj ,xl∈Bi

1
mi

f d̂(xj , xl, h)
15 if ft − ft−1 → 0 ∣ ∣ ∣∣ci − cj ∣∣2 ≤ 2r,∃i, j then
16 break;
17 else
18 Update ball centers {c1, c2, c3, ..., ck}, where ci = 1

mi
∑xj∈Bi

xj .

19 Update ball radius r = r(1 + ε).
20 Update {B1,B2, ...,Bk} by new radius setting.
21 end
22 end
23 t = t + 1.
24 end
25 Update ci by their nearest neighbor in Bi,∀i < k.
26 Output: {c1, c2, c3, ..., ck}.

The detailed process is as follows. Lines 2 to 10 iteratively halve the number density

of input data set X by removing a half of the data. The remaining data X ∗ with high

representativeness denote the data of shattered distribution of X . It reduces the label

complexity for the subsequent sampling. In the (1 + ε)-approximation, Lines 11 and 12

firstly initialize k balls with the input radius setting. The approximation converges when

the balls overlap or the splitting function stops updating (see Line 15). Otherwise, Lines

18 to 20 iteratively update the centers, balls, and radius. The code is released at GitHub †.

2.4 Experiments
2.4.1 Experimental Setup

In this section, we investigate the halving and querying performance of the SDAL

algorithm on three groups of experiments:

1. comparing the error rates of passive sampling in input and shattered spaces;

2. comparing the optimal error rates of different baselines;

3. comparing the average error rates of different baselines on six real-world datasets,

where the datasets used in the querying tests have limited labels.
†https://github.com/XiaofengCao-MachineLearning/Shattering-Distribution-for-Active-Learning
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To defend our theoretical insights on the performance disagreement of hypothesis-pruning

and distribution-shattering strategies, we compare their error performance on querying

with adversarial examples and noisy labels. In these experiments, the LIBSVM(3.22

version) [Chang and Lin, 2011] and convolutional neural network (CNN) are set as the

default classification tools. The error rate and mean±std are used as evaluation standards,

where error rate is over the entire input set.

There exists two main steps in SDAL algorithm: halving and splitting. In step 1,

halving introduces the sequential optimization to score the representativeness of the data,

which relates transductive experimental design (TED). In step 2, splitting uses (1+ε)-

approximation to find a group of representative spheres, which is related to Hierarchical

clustering-based active learning algorithm. We thus select these two approaches as our

baselines. GEN is a comprehensive approach that introduces the representative measure

in the process of estimating the hypothesis update. It is different with traditional estima-

tion methods. Self-paced active learning is a generalization of hypothesis-pruning that

estimates the hypothesis update with error loss and representativeness. Besides this, we

present two generalizations of the k-means clustering approaches with different label es-

timation schemes. The details of these algorithms are described as follows.

• Hiera(Hierarchical clustering-based Active Learning): Dasgupta and Hsu [2008]

utilize the prior knowledge of hierarchical clustering to actively annotate more un-

labeled data by an established probability evaluation model, but it is sensitive to

cluster structure.

• TED(Transductive Experimental Design): Yu et al. [2006] prefer data points that

are not only hard to predict but also representative for the rest of the unlabeled pool.

It is also called T-optimization.

• GEN(a GENeral active learning framework): Du et al. [2017] pay attention to the

data which minimizes the difference between the distribution of the labeled and

unlabeled sets.

• k-meansN: update the final k-means cluster centers into their Nearest neighbors and

then queries the labels.

• k-meansA: estimate the label of each final k-means cluster center by rounding the

Average label value of its cluster members.

• Self-Paced(Self-Paced active learning): Tang and Huang [2019] optimize the least

squared loss and maximum mean discrepancy for finding an instance with informa-

tiveness and representativeness.

• SDAL(Shattered Distribution-based Active Learning algorithm): the proposed al-

gorithm in this paper.

Note all features of the input data are rescaled into [0,1] before the experiments.
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Figure 2.5 : Error rate changes of undertaking passive sampling in input and shattered

spaces on different datasets.

2.4.2 Effectiveness of Halving
To verify the halving ability of SDAL, we undertake passive sampling in input and

shattered spaces to compare their prediction abilities over the input data. The tested

datasets are four UCI real datasets: german (1,000 examples), iris (150 examples), monk1

(124 examples), and vote (435 examples). In the experimental process, we undertake pas-

sive sampling 10 times to obtain the mean error rate under different querying numbers in

the two different spaces. Figure 2.5 presents the test results, where LIBSVM follows a

parameter setting of [-c 1].

Shattering removes some “low informative points” deriving small influence to training

model, thereby querying in a shattered space always has lower error rates than that of

the original input space as learning curves in Figure 2.5. Assume that there exists p
“highly informative points” that determine the final learning model in the input space,

with a limited sampling budget k, do not consider the influences of the classifiers and

parameter settings, the probabilities of obtaining a descried hypothesis in the two spaces

are Pr(D) = (k
p
)

(k
n
) and Pr(D′) = (k

p′
)

( k
n/2
) , respectively, where p′ denotes the number of the

highly-informative points in the shattered space. If p−p′ is small enough, Pr(D) < Pr(D′)
must hold.

2.4.3 Optimal Error of Querying
The experiments on halving have shown that the shattered space could have a better

passive sampling performance compared to the original input space. It provides a guar-

antee for performing active learning querying by the distribution-shattering strategy in a

shattered space. However, most of the active learning work require the supervision from

a labeled set. To run these hypothesis-pruning algorithms in a warm start, we set the size

of the initial training set as the class category via randomly selecting one datum from

each class of the input datasets. Because these active learning algorithms always show

negative performance when the start labeled set is insufficient, we minimize the influence

of the labeled set by tunning their best parameters (related tunning is described in Section

2.4.4). Under different settings on the querying numbers, we collected the their optimal

prediction results by initializing the start labeled set 100 times.
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Figure 2.6 : The error rate performances of the seven active learning approaches on the

active learning test. (a)-(d) are four UCI datasets; (e)-(k) are that on the selected sub

datasets of letter, where the class number of them are 12, 16, 20, and 26.

Figure 2.6 presents the error rate curves of the seven active learning approaches on

different tested datasets these being german, iris, monk1, vote, and four subsets of the

letter data set. Note that A-T denotes the instances of letter A to T. The classifier toolbox

is LIBSVM that follows a parameter setting of [-c 1]. Although we have maximized

the model performance of the hypothesis-pruning active learning algorithms, the SDAL

algorithm is still better than others in terms of optimal error.

To analyze the paradigm differences of these algorithms, we begin the discussions: (1)

The idea of Hieral is active annotation. It depends on the cluster assumption from version

space. Classification ability of it in unstructured datasets such as the subsets of letter thus

is unstable. This makes the recorded error rates of Hieral be higher than that of other

approaches, although we have increased the test number. Moreover, active annotation has

a negative influence on the subsequent querying once the clustering result is not correct

as its error rate curves in Figure 2.6(a). In other words, actively annotating the labels of

a given budget have to undertake the positive or negative influences of pre-clustering. (2)

TED tends to select those points with large norms, which might be hard to predict, but

they do not best represent the whole data set. Also, the noises or low informative data

are sampled in its querying process. So the reported classification results are good but

not the best. (3) GEN always presents disappointing results at the beginning of training

in all the tested datasets. Its error rate declines rapidly with the increase of the number

of queries. The reason is that the established objective function prefers the data located

at the center area of classes, which does not reflect the whole class structure well. (4)

The performance of k-meansN is at middle level amongst all compared baselines because

of the intuitive cluster structures of the tested datasets. While the error rate cannot de-
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crease rapidly as other baselines. Besides this, the performance of k-meansA presents the

worst performance of this group of experiments since averaging the labels of the cluster

members cannot provide a correct estimation. (5) The performance of Self-Paced active

learning optimizes the hypothesis update with a constrain on distribution representation.

When the initial hypothesis is set improperly, the update will lead to an biased selection

or random index. Thus, the performance of it is similar with GEN. (6) Compared to the

above algorithms, the SDAL algorithm halves the number density of the data distribution

into a shattered distribution, which removes most of the redundant points. The remaining

points, which represent the local data distributions, help the learner to obtain the struc-

ture of the original data distribution. In the reported error rate curves, this represented

structure shows effective sampling guidance when the number of queries is insufficient.

2.4.4 Average Error of Querying
The optima error of querying reflects the best sampling performance of different ac-

tive learning algorithms. To tightly analyze their performance dependency on the ini-

tialized hypothesis (labeled set), this section presents their average error rates on three

UCI datasets namely Phishing (11,055 examples), Satimage (4,435 examples), and one

handwritten digit dataset MNIST (60,000 examples). ‡ Parameter settings are:1) vary

the pruning budget of Hieral from 100 to 1000 with a step of 100; 2) kernel bandwidth

parameter of TED is set as σ=1.8, then vary the kernel ridge regression λ from 0.01 to

1 with a step of 0.01; 3) vary the trade-off parameter of Self-Paced active learning from

1 to 1000 with a step of 10; 4) vary the paced learning parameter from 0.01 to 1 with

a step of 0.01; 4) number of queries are set as the clustering number of k-meansA and

k-meansN; 5) for SDAL, the used kernel in the sequential optimization is RBF, where

the hyper parameter h is set as 1.8, and the hyper parameter μ is set as 10e-4, we then

vary the ball radii from 0.01 to 0.51 with a step of 0.05 and ε from 0.01 to 0.51 with a

step of 0.05. To run Hieral, TED, GEN and Self-Paced algorithms, we respectively se-

lect one datum with label from each class of the six datasets as their initialized labeled

sets. The classifier toolbox is LIBSVM with following parameter settings: 1) [-c 1 -g 25]

for N ≤ 600, [-c 1 -g 20] for N > 600 on Phishing, 2) [-c 1] on Satimage, 3) [-c 2] for

N ≤ 300 and [-c 4 -g 0.0015 -r 91.1 0.001] for N > 300 on MNIST, where N denotes the

number of queries. The diver settings make the derived errors of active learning process

decrease slowly but finally achieve the optimal; better observation on learning changes by

adding perturbations of classifier. The mean and standard deviation (std) errors of the that

algorithms on these datasets are reported in Table I with the results showing that SDAL

significantly outperforms the others indicated in bold.

As shown in Table 2.1, (1) on all settings of the querying numbers, the SDAL algo-

rithm achieves the lowest error rates over other baselines; (2) with the experience setting

on parameters, all baselines achieve an average error below 0.5 after querying 300 data

from the unlabeled data; (3) the SDAL algorithm produces significantly less errors when

the numbers of querying are less than 600, benefiting from the representative structure

of the input space; (4) for Hieral, TED, GEN and Self-Paced, the initial selection of the

labeled set greatly affects their subsequent sampling; (5) on all settings, all algorithms ob-

tain an average error below 0.3 after querying 600 data from the unlabeled data; (6) with

‡http://yann.lecun.com/exdb/mnist/
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Table 2.1 : The statistical results (mean±std in %) of error of different active learning

baselines on six real-world datasets

Datasets Algorithms
Number of queries

100 200 300 400 500 600 700 800 900

Phishing Hiera 49.6±3.0 45.0±7.2 42.5±2.3 38.5±1.7 33.2±2.1 22.6±1.4 19.3±1.2 18.0±1.1 14.6±0.7

TED 39.0±1.9 39.1±0.9 34.9±0.3 34.1±0.6 31.2±0.7 28.5±0.5 27.9±0.5 18.6±0.5 13.8±0.8

GEN 47.4±3.6 45.4±2.2 38.6±3.8 32.8±2.9 31.7±2.1 22.6±3.2 19.8±3.6 16.8±2.1 14.5±2.2

k-meansN 37.0±0.1 36.1±1.2 34.9±0.1 32.1±0.1 30.2±0.5 27.5±0.0 25.9±0.4 16.6±0.3 14.8±0.7

k-meansA 58.0±0.6 56.3±0.8 52.2±0.1 52.1±1.1 50.7±1.0 47.6±1.2 45.4±1.5 42.1±0.8 40.2±0.4

Self-Paced 47.4±2.7 44.4±2.8 41.2±2.8 36.8±3.4 35.7±2.8 35.6±2.9 22.8±2.8 17.8±3.2 15.5±2.8

SDAL 36.5±1.7 36.5±1.2 30.4±2.8 30.0±2.8 27.4±2.2 19.1±1.7 16.5±1.7 12.6±1.8 11.2±2.1
Satimage Hiera 22.1±0.9 19.9±0.6 18.9±1.1 18.5±1.0 18.4±1.1 18.4±2.3 17.3±1.2 16.7±1.0 15.9±0.6

TED 20.4±0.7 19.6±0.1 18.4±0.4 17.8±0.6 17.6±0.2 17.4±0.2 17.2±0.1 16.8±0.3 16.0±0.1

GEN 21.9±4.0 20.1±2.7 18.5±0.5 18.4±0.3 18.1±1.2 18.0±1.5 17.8±0.7 16.5±0.9 16.4±2.0

k-meansN 22.2±1.1 22.0±0.1 19.8±0.7 18.7±1.2 18.2±0.9 17.5±0.8 17.0±0.7 17.1±0.0 17.2±0.1

k-meansA 34.2±1.0 32.0±1.1 30.8±1.2 28.5±1.2 26.3±1.1 25.4±0.0 22.8±0.8 19.6±1.0 19.2±0.9

Self-Paced 24.7±2.8 23.1±2.7 20.5±0.5 18.2±0.3 17.3±1.2 17.8±1.5 17.1±0.7 16.4±0.9 16.2±2.0

SDAL 18.4±1.5 17.5±1.2 17.4±2.3 16.8±0.1 16.4±1.3 15.1±2.2 14.9±1.2 14.1±1.3 14.1±1.9
MNIST Hiera 51.2±2.7 46.0±1.7 37.3±2.4 21.3±2.8 20.1±2.3 11.9±2.2 9.6±1.5 9.3±1.3 9.0±1.0

TED 63.3±1.2 40.7±2.3 21.5±3.2 21.7±0.8 8.9±0.5 8.3±0.9 8.3±0.2 8.2±0.5 7.8±0.6

GEN 57.3±5.7 50.7±1.9 30.1±1.6 20.7±1.3 14.9±1.6 11.0±0.6 9.2±0.6 8.1±1.4 8.0±0.1

k-meansN 65.7±0.7 52.7±1.3 32.4±1.2 29.8±0.2 16.4±0.3 12.5±0.2 11.6±0.1 10.7±0.1 7.8±0.4

k-meansA 82.6±1.2 75.4±1.1 64.4±0.8 57.8±0.6 46.7±0.6 42.2±0.4 34.7±0.2 28.9±0.4 26.3±0.5

Self-Paced 78.6±4.3 54.8±2.7 42.2±3.2 35.5±2.1 26.4±2.3 22.6±3.7 10.6±1.9 9.3±1.7 9.4±0.9

SDAL 44.2±2.4 37.0±2.8 19.8±3.8 11.5±1.9 9.0±1.2 8.1±0.9 7.9±0.8 7.7±0.6 7.6±0.3

an increase of the querying percentages, the differences between each algorithm begin to

narrow since the number of their overlapped data increases. Therefore, we conclude that

our proposed SDAL algorithm, an approach derived from distribution-shattering strategy,

breaks the curse of the initial hypothesis.

2.4.5 Querying with Adversarial Examples
In the machine learning community, the training models may misclassify the adver-

sarial examples [Goodfellow et al., 2014] generated from the distribution of the correctly

classified examples. The degradation of the performance in supervision training, caused

by adversarial examples, is already not a mystery: the adversarial perturbation affects the

precision of the features. In particular, the linear models are vulnerable to adversarial

perturbation, such as regression and SVM models. In our study, the general hypothesis-

pruning active learning strategies which need the support of the classifiers preferably pick

up the adversarial examples. The underlying reason is that the adversarial examples make

disagreement between the current and subsequent models more obvious than the exam-

ples without perturbation (clear data). Therefore, active querying with adversarial ex-

amples significantly describes the performance disagreement of hypothesis-pruning and

distribution-shattering active learning strategies, and further defends our theoretical in-

sights.

The experiments are tested on the MNIST dataset and we respectively generate 9,000

adversarial samples by the Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2014]

attack method under different perturbation parameter ε: 0.1, 0.3, 0.5. For each param-

eter, such as ε= 0.1, we randomly choose 1,000 legitimate images from the MNIST test
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Figure 2.7 : Illustration of the produced adversarial examples by FGSM with different

perturbation parameters, where the marked examples are clean data without feature per-

turbations.

dataset, and 100 images for each class. For each image, we generate 9 adversarial samples

with different labels. For example, for an image with label 0, we generate 9 adversarial

samples with labels 1 to 9. Figure 2.7 presents a group of illustrations of adversarial ex-

amples, where each illustration marks three clean examples. To intuitively observe the

influence of the adversarial examples in active learning querying, we use the 9,000 ex-

amples with ground truth labels as the unlabeled set of active learning and the 9,000 data

with misclassified labels as the adversarial set. The features are extracted by the LeNet

model and the classification model is CNN. To accelerate the experiments, we adjust the

umber of epochs: 1) epoch=1 for N≤2000, 2) epoch=5 for 2000≤N<2500, 3) epoch=20

for N>2500, where N denotes the number of queries. This way defers the decrease of

error rate that benefits the observation on the influences of subsequent perturbations from

adversarial examples. Parameters of baselines follow their best tunning in Section 2.4.4.

In a dynamic view, we add a different number of adversarial examples to see the

error change of different algorithms in the querying process. Before the querying test,

we randomly select 20 data from the training set as the initial (start) labeled set for

the hypothesis-pruning active learning algorithms including Hiera, TED, GEN and Self-

Paced. Figure 2.8 draws the error rate change of predicting the labels of the entire training

set under different settings on the perturbation parameter, number of added adversarial ex-

amples (Nadv), and the number of queries.

With the dynamic views on Figures 2.8(a) to 2.8(d), 2.8(e) to 2.8(h), and 2.8(i) to

2.8 (l), we find that the three hypothesis-pruning active learning algorithms significantly

degenerate their error rates. Because the added adversarial examples misclassify the clas-

sifier using fraudulent labels, they significantly affect the update of the training model

largely. By mixing more adversarial examples into the training set, the current training

model has a greater chance to select the adversarial examples. However, our proposed

SDAL algorithm which utilizes the distribution-shattering strategy is not sensitive to the

classifier. Thus, its error rates only slightly reduce when querying the same number of

unlabeled data, even adding more adversarial examples. In another view of setting differ-

ent perturbation parameters, i.e., from the comparison of Figures {2.8(b), 2.8(e), 2.8(i)},
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(b) ε=0.1, Nadv=100
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(c) ε=0.1, Nadv=500
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(d) ε=0.1, Nadv=1000
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(e) ε=0.3, Nadv=100
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(f) ε=0.3, Nadv=500
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(g) ε=0.3, Nadv=1000
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(h) ε=0.3, Nadv=2000
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(i) ε=0.5, Nadv=100
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(j) ε=0.5, Nadv=500
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(k) ε=0.5, Nadv=1000
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(l) ε=0.5, Nadv=2000

Figure 2.8 : The performance of error rate on active learning querying with adversarial

examples, where the adversarial examples are produced by FSGM with different pertur-

bation parameter settings.

{2.8(c), 2.8(f), 2.8(j)}, {2.8(d), 2.8(g), 2.8(k)}, and {2.8(h), 2.8(l)}, we find the error rates

of these hypothesis-pruning active learning algorithms also reduce significantly with an

increase of ε.

To tighten the above analysis, Table 2.2 calculates the mean and std values of querying

1,000 legitimates when varying the number of adversarial examples with different ε. By

observing the statistical results, we can clearly find that SDAL presents a slight change on

error rate even when adding a different number of adversarial examples or setting different

perturbation parameters. However, the estimation of hypothesis update on an adversarial

example is highly-skewed than a clear example. It then leads to sensitive perturbations for

GEN and Self-Paced algorithms. Moreover, the approaches involved with representative

examples such as Hiera, TED, k-meansN, and k-meansA also present small perturbations.
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Table 2.2 : The statistical results (mean±std in %) of active learning with adversarial

examples of different algorithms

Parameter ε Algorithm
Number of added adversarial examples (Nadv)

0 100 500 1,000 2,000

0.1 Hiera 29.3±27.3 31.4±28.7 37.4±7.3 42.4±5.5 39.0±7.1

TED 26.8±26.7 29.0±7.5 30.5±7.9 32.0 ±7.9 35.7±7.0

GEN 30.2±31.6 31.3±10.3 56.6±8.1 58.5±6.7 60.1±6.0

k-meansN 30.0±1.0 31.3±0.8 32.5±0.5 33.5±0.9 34.1±1.2

k-meansA 47.9±1.4 31.3±0.7 49.7±0.6 51.6±1.0 53.1±1.3

Self-Paced 30.6±28.5 31.3±8.7 56.3±9.3 66.0±8.3 70.1±7.2

SDAL 23.6±24.6 24.5±6.2 26.0±6.6 26.7±6.9 28.9±5.9

0.3 Hiera 29.3±27.3 31.2±8.4 44.7±5.9 39.8±7.3 41.2±8.0

TED 26.8±26.7 29.9 ±7.6 34.3 ±8.9 34.6±7.9 37.6±8.1

GEN 30.2±31.6 32.0±9.8 59.8 ±7.1 61.2±6.5 62.3±6.2

k-meansN 30.0±1.00 30.2±1.3 31.3±0.9 35.7±0.6 36.3±0.8

k-meansA 47.9±1.4 49.2±1.2 31.3±0.6 52.7±0.7 52.5±1.1

Self-Paced 30.6±28.5 59.5±12.5 67.6±9.3 58.5±8.9 68.7±11.4

SDAL 23.6±24.6 25.4 ±6.2 28.0±5.9 29.2±6.5 31.9±6.7

0.5 Hiera 29.3±27.3 31.9±8.4 44.7±5.9 41.9±6.9 49.4±6.1

TED 26.8±26.7 31.3±6.8 35.0±7.8 39.0±9.0 38.8±7.6

GEN 30.2±31.6 32.0±9.8 61.6±6.5 63.8±6.4 63.8±6.0

k-meansN 30.0±1.0 33.3±1.3 33.5±0.9 36.4±0.5 37.2±0.8

k-meansA 47.9±1.4 49.9±1.2 50.7±0.7 52.6±0.6 53.2±1.1

Self-Paced 30.6±28.5 33.2±12.5 59.0±9.3 68.8±8.9 70.1±9.7

SDAL 23.6±24.6 25.4 ±6.2 29.6 ±7.2 30.9±6.7 33.3±6.3

2.4.6 Querying with Noisy Labels
In many learning issues, the cost of obtaining the ground truth labels is expensive. A

group of good annotation results on the unlabeled set is difficult to obtain due to manual

error or simply a lack of precision of the original data [Natarajan et al., 2013]. This also

makes the queried labels in active learning noisy. When hypothesis-pruning querying

meets the noisy labels, these examples will generate an unprepared perturbation for the

estimation of model change of a hypothesis-pruning active learning. Further, querying

with noisy labels zooms the performance disagreement of the hypothesis-pruning and

distribution-shattering active learning. Therefore, the experiment results can be a group

of evidence to defend our theoretical insights.

We firstly collect the Fashion-Mnist dataset §. With a similar experiment setting, we

respectively revise the original labels of the first 10, 500, 1000 data with noisy labels such

as revising the label ‘0’ to ‘1’. Figure 2.9 describes the error rate change of adding a dif-

ferent number of noisy labels (Nnoi), where the classifier also is a CNN model following

Section 2.4.5, and parameters of baselines follow their best tunning in Section 2.4.4. In

the drawn curves, the noisy examples have a negative influence on active learning query-

ing since they may misclassify a lot of unlabeled data after adding them in to the labeled

set. Thus, they are also picked up as the primary sampling objects in the estimation of

the model chance policy of hypothesis-pruning active learning methods. However, the

distribution-shattering approach avoids the perturbations. Only if the percentage of the

noisy labels are large, the influence on the SDAL algorithm is obvious. Besides this,

GEN shows a biased selection with the noisy setting. The noise perturbation to it is the

§https://github.com/zalandoresearch/fashion-mnist
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Figure 2.9 : The performance of error rate on active learning querying with noisy labels.

most sensitive among the compared baselines. The others keep clear perturbation but not

so series as GEN. The inherent reason follows the analysis of Section 2.4.5.

2.4.7 Calculation Complexity
The proposed SDAL algorithm (Algorithm 1 on Page 26) has two steps: halving and

splitting, where Lines 2-10 describe the halving process using Eq. (2.11), and Lines 11-

24 split the shattered distribution into k geometrical balls using Eq. (2.13). Generally, the

halving step costs a calculation complexity of O(n3) and the splitting step costs a time

complexity of O(nk). Therefore, the total calculation complexity of SDAL algorithm

is O(n3). For any generalized hypothesis-pruning algorithm, estimating the hypothesis

update needs to retrain the classification models, which results an uncertain calculation

complexity. For example, GEN and SPAL algorithms repeatedly train a SVM model to

select the samples which can maximize the error update, in the experiments. Generally,

sampling k data will retrain and repredict the classifier kn′ times, where n′ denotes the

unlabeled data number that is usually close to n. Then, the calculation complexity is

almost O(kn3) to O(kn4) since SVM costs a calculation complexity of O(n2) to O(n3).
In addition the two generalized k-means algorithms approximately cost O(kn). The TED

approach costs O(n2) due to a greedy selection. The Hierarchical clustering-based active

learning costs O(n3) due to the pre-clustering.

2.5 Discussions
Experiments of Section 2.4 have demonstrated that, the derived SDAL algorithm from

distribution-shattering, achieved lower errors than the generalized hypothesis-pruning al-

gorithms. SDAL also yields a shattered distribution, which is highly related to experimen-

tal design optimization [Yu et al., 2006]. We thereby begin to discuss their relationships.

2.5.1 Distribution-shattering and Experimental Design
Two experimental design active learning algorithms are compared to SDAL on three

tested datasets of Section 2.4.3, i.e. Phishing, Satimage and MNIST.

• MAED(Manifold Adaptive Experimental Design)¶ [Cai and He, 2012]: perform
¶Code: http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Table 2.3 : The statistical results (mean±std in %) of error of experimental design active

learning baselines and SDAL on three real-world datasets

Datasets Algorithms
Number of queries

100 200 300 400 500 600 700 800 900

Phishing MAED 44.3±0.0 44.3±0.1 38.2±0.2 32.3±0.0 27.3±0.3 18.7±0.7 17.0±0.6 12.9±0.2 11.8±0.1

ALNR 42.8±2.7 37.5±1.9 33.9±1.6 33.1±1.5 30.2±1.2 27.4±1.1 22.9±1.4 14.3±1.1 12.1±1.3

SDAL 36.5±1.7 36.5±1.2 30.4±2.8 30.0±2.8 27.4±2.2 19.1±1.7 16.5±1.7 12.6±1.8 11.2±2.1
Satimage MAED 43.3±0.8 36.1±0.3 28.7±0.5 22.5±0.1 17.1±0.3 15.8±0.4 15.4±0.1 15.2±0.1 15.0±0.2

ALNR 26.7±1.8 24.1±2.1 22.9±1.8 19.1±1.6 18.1±1.7 17.4±1.1 16.9±0.8 15.6±0.7 14.5±0.6

SDAL 18.4±1.5 17.5±1.2 17.4±2.3 16.8±0.1 16.4±1.3 15.1±2.2 14.9±1.2 14.1±1.3 14.1±1.9
MNIST MAED 48.4±2.4 41.9±1.3 28.5±4.7 18.5±2.7 16.1±1.8 15.4±1.6 14.5±1.3 14.2±1.1 14.0±0.8

ALNR 50.1±3.2 42.1±2.9 31.9±0.3 21.1±2.6 12.2±2.7 11.5±1.5 10.8±2.1 10.0±2.2 9.6±2.8

SDAL 44.2±2.4 37.0±2.8 19.8±3.8 11.5±1.9 9.0±1.2 8.1±0.9 7.9±0.8 7.7±0.6 7.6±0.3
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Figure 2.10 : Representative samples of MAED using different λ.

experimental design in the data manifold adaptive kernel space. MAED boils down

to TED if the regularization parameter λ = 0.1. We vary λ from 0.001 to 0.101 with

a step of 0.001 following the suggestion of [Cai and He, 2012].

• ALNR(Active Learning via Neighborhood Reconstruction) [Hu et al., 2013]: re-

construct the target (representative) data with its nearer neighbors optimized in ex-

perimental design process, not the linear combination of all the selected points as

TED. Two trade-off parameters are induced: μ controls the locality and λ controls

the sparsity. We vary μ from 0.4 to 0.8 with a step of 0.04, and λ from 0.1 to 1 with

a step of 0.09 following the suggestion of [Hu et al., 2013].

Table 2.3 presents the statistical results of MAED, ALNR, and SDAL following the

experimental settings of Section 2.4.4, where parameters of MAED and ALNR follow the
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Figure 2.11 : Representative samples of SDAL using different initializations (r = 0.25,

ε = 0.1).

above settings expect the number of queris are 500, 600 on Phishing. The results show

that SDAL still achieves lower average errors than that of MAED and ALNR. The main

reason is that finding the representative data over the original input space may have a

large probability to target low-informative/under-representative subregions, which makes

the output representations degrade into a local optimum such as MAED on MNIST. Fig-

ure 2.10 presents the representative samples of MAED using different λ on a 2-D dataset.

It intuitively shows that MEAD may degrade into local representations, which may lead

to highly-nearby samples. ALNR also has similar local convergence conditions. Techni-

cally, MAED and ALNR combined the local representativeness into experimental design

optimization. This improves the optimal solution of experimental designs, but also may

increase the risk of falling back into local optima, where the individual drawn samples

may be redundant. Moreover, MAED may need more experienced tunning on parame-

ters.

In Figure 2.11, the representative samples of SDAL are spread over each subregion,

covering the original distribution without any redundant samples, due to global shattering

and local (1 + ε)-approximation. Therefore, shattering the distribution into a shattered

space can remove a part of low-informative/under-representative samples, reducing the

chance to optimize representations in those regions. Theoretically, shattering can present

a tighter upper bound on error as shown in the statements of Theorems 3 and 4 in label

complexity analysis.
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Figure 2.12 : Error rate changes of undertaking sequential sampling in the shattered space

and original input space.

2.5.2 Learning Curves of Sequential Sampling in Shattered
Space

We reveal why our shattering strategy can achieve significant performance in the

above experiments. Figure 2.12 presents a group of learning curves of undertaking se-

quential sampling in shattered space and input space over the three datasets, where the

sampling budget is 900, i.e. given a start index p, sequential sampling continuously se-

lects the data with an index collection of {p,p+1, ...,p+899}. The shattering step adopts

the halving step (lines 2 to 10) of SDAL algorithm.

As the figure shown, sampling in a shattered space has lower errors than sampling

in its original input space. An inherent reason is that shattering has already removed a

half of low-representative or redundant samples from the input space. The probability of

achieving a desired error in shattered space is improved. This explains the effectiveness

of our distribution-shattering strategy from the practical perspective.

2.6 Summary of This Chapter
Active learning algorithms provide strong theoretical guarantees on supervision sam-

pling under fixed distribution and noise conditions. However, the label complexity bounds

of the general hypothesis-pruning methods heavily depend on the initial hypothesis. This

generates a challenging gap between the theoretical guarantee and application perfor-

mance of active learning algorithms.

To bridge this gap, this chapter proposes a distribution-shattering strategy from a theo-

retical perspective of number density. With lower generalization error and label complex-

ity in the shattered distribution, we implement the proposed theoretical strategy against an

arbitrary distribution by the SDAL algorithm in real-world querying tasks. The empirical

results demonstrate the effectiveness of the halving and querying abilities of SDAL algo-

rithm. Moreover, the active querying with adversarial examples and noisy labels further

demonstrate the performance disagreement of the hypothesis-pruning and distribution-

shattering strategies. Based on these theoretical analyses, empirical evaluation, and ex-

periment results, we conclude that the hypothesis-pruning active learning strategies de-

generate their performance when querying with limited labels, adversarial examples, and

noisy labels since they heavily depend on the initial labeled set and classifier. However,
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the proposed distribution-shattering strategy only presents slight perturbations in these

querying scenarios.
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Chapter 3

Distribution Disagreeing
This chapter discusses the second question of the thesis: “how to control hypothesis up-

date when estimating the error disagreement is infeasible?”. Usually, error disagreement-

based active learning selects the data that maximally update the error of a classification

hypothesis. However, poor human supervision (e.g. few labels, improper classifier param-

eters) may weaken or clutter this update; moreover, the computational cost of performing

a greedy search to estimate the errors using a deep neural network is intolerable.

In this chapter, a novel disagreement coefficient (DDGC) based on distribution, not er-

ror, provides a tighter bound on label complexity, which further guarantees its generaliza-

tion in hyperbolic space. The focal points derived from the squared Lorentzian distance,

present more effective hyperbolic representations on aspherical distribution from geom-

etry, replacing the typical Euclidean, kernelized, and Poincaré centroids. Experiments

on different deep active learning tasks show that, the focal representation adopted in a

tree-likeness splitting, significantly perform better than typical generalization baselines

of centroid representations and error disagreement, dramatically accelerating the learning

process. Our motivation on DDGC is presented at Figure 3.1.

The rest of this chapter is organized as follows. In Section 3.1, we establish a graph

channel with DDGC for active learning. Section 3.2 begins by generalizing DDGC as

Lorentzian focal representation and presents the focal approximation algorithm adopted

in tree-likeness splitting. Experiments are presented in Section 3.3 and discussions are

presented in Section 3.4. We conclude this chapter in Section 3.5.

3.1 Distribution Disagreement Graph Coefficient
3.1.1 Graph Coefficient

In this section, we generalize the disagreement of error on distribution via a graph

channel and we call the new coefficient “distribution disagreement graph coefficient”

(DDGC).

Our DDGC is developed based on an alternative assumption over a disagreement

based on distribution, which is that the optimal subgraph of the source distribution tightly

approximates the optimal hypothesis of H. We then present some theoretical analysis and

proofs for the label complexity based on this assumption. This section concludes with the

establishment of a graph channel to define the distribution disagreement.

Suppose G is defined as G = {G1,G2, ...GV C(H)}, where Gi denotes one subgraph

of G and V C(H) denotes an upper bound on the Vapnik-Chervonenkis (VC) dimension
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22 22 22 22
Figure 3.1 : Motivation of distribution disagreement graph coefficient over halfsapce

learning. As the decrease of number density, the graphs covering all feasible hypothe-

ses keep consistent structures, where each vertex denotes one hypothesis and each edge

denotes the hypothesis disagreement (distance) of the two connected vertices. Learning a

halfspace with graph coefficient can completely replace the error disagreement.

[Blumer et al., 1989] ofH. Our alternative assumption is to replace the error disagreement

coefficient θ′ with a measure of distribution disagreement.

Assumption 1. Let h∗ be uniquely associated with the optimal training set X ∗, G∗ be the
subgraph of G over X ∗’s hypothesis set, and f(⋅, ⋅) be a distance metric function against
a node level in G. Assume that the expected error disagreement using the estimation of
the loss �(⋅, ⋅) is uniquely approximated with the distribution graph metric f(⋅, ⋅), we hold

E
h∗∈H �(h

∗(x), y) ∶= E
x∼G,x′∼G∗ [f(x, x

′)], (3.1)

where any graph Gi ∈ G over the hypothesis class H must have an inherent topology
[Dasgupta, 2005; Cao and Tsang, 2020] on X , thereby analyzing Gi can be observed
from the data level of X .

Specifically, the expected error disagreement E
h∗∈H �(h

∗(x), y) is a population risk [Jin

et al., 2018] but derivable function that satisfies �(h∗(x), y) ∝ f(x, x′), that is, there exists

a dualistic function R(h∗,G∗) = �(h∗(x),y)
f(x,x′) , indicating there must exist an optimal subgraph

G∗ ∈ G deriving h∗ from H. To generalize Assumption 1, Section 3.1.2 then presents the

empirical case study with regard to tightening the approximation of Theorem 5.

Besides Assumption 1, we still need an intuitive distribution metric over the graph

level, not the node level as f(⋅, ⋅).
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Definition 1. For any hypothesis h′ ∈ H that is uniquely associated with the graph G′ ∈ G,
we define the distribution metric L(⋅, ⋅) for any G and G′:

L(G,G′) = E
x∼G,x′∼G′ [f(x, x

′)], (3.2)

where f(x, x′) denotes a distribution metric over x and x′, i.e. a node level, and L(G,G′)
denotes a distribution metric over G and G′, i.e. a graph level.

To specify our assumption, we connect the distribution metric w.r.t. Eq. (3.2) to the

average loss of all-in-class errors w.r.t. ρ(h,h′) of Eq. (1.3), there coming with the fol-

lowing proposition.

Proposition 3. For any hypothesis h′ ∈ H that is uniquely associated with the graph
G′ ∈ G, let L(⋅, ⋅) be the distribution metric for any G and G′, we hold

L(G,G′) = E
x∼G,x′∼G′ [f(x, x

′)] ∶= ρ(h,h′), (3.3)

where ρ(h,h′) is defined in Eq. (1.3), deriving θ′ of Eq. (1.4).

We denote B(G∗, rG) as the ball with a radius of rG ≥ 0: B(G∗, rG) = {G′ ∈ G ∶
L(G∗,G′) ≤ rG, rG ≥ 0}. The new distribution disagreement can then be generalized as

the minimum value of θG such that for any rG > 0

θG ≥ EG′∈B(G∗,rG)
[ max
h∈B(G∗,rG)

L(G∗,G′)
rG

]. (3.4)

This assumption provides a solution to supervise a learner who does not disclose any clues

about its hypothesis class. Then, we come with the following IWAL scenario.

Considering that there exists such an IWAL [Beygelzimer et al., 2009a] scenario: we

define a set of observationsF on the sampling process,Ft={(x1, y1, p1,Q1), (x2, y2, p2,Q2),
..., (xt, yt, pt,Qt)} be the observations on the t-th sampling, where xt be the sampled data

in the t-th sampling with a probability of pt such that

pt = max
f,g∈Ht

L(f(xt), g(xt)), (3.5)

Ht denotes the t-time hypothesis class Ht, yt be the label of xt, and Qt = {0,1} be the

parameters of Bernoulli distribution. Note g denotes another loss function in Ht that

maps X into Y . This means that, any selected sample xt with Qt = 1, will be assigned

a weight 1
pt

. Then, the weighted loss at t-time is defined as 1
pt
�(h(xt), yt). With this

importance weighting skeleton, estimating the error disagreement θ is expressed as an on-

line type, that is, for any t-time updated hypotheses {ht, h′t}, their weighted hypothesis

disagreement of Eq. (1.1) is expressed as

L(ht(x), h′t(x)) =
t

∑
s=1

Qt

pt
∣max
ys∈Y �(h(xs), ys) − �(h′(xs), yt)∣. (3.6)

The weighted hypothesis disagreement of Eq. (1.3) also follows this expression.
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Proposition 4. With Eq. (3.6), the expected label requesting probability at t-time, written
as E

x∼D[pt∣Ft−1], then can be inferred as E
x∼D[maxf,g∈Ht L(f(xt), g(xt))] that satisfies

max
f,g∈Ht

L(f(xt), g(xt))] ≤ 2[max
h∈Ht

L(h(x), h∗(x))], (3.7)

that is, the maximum hypothesis disagreement in Ht yields within its diameter of the
hypothesis class, where [maxh∈Ht L(h(x), h∗(x))] denotes the radius of Ht, generalized
from the hypothesis disagreement of the optimal hypothesis h∗ and any h ∈ Ht.

IWAL assumes Qt = 1 if pt exists. It is thus E
x∼D[pt∣Ft−1] reflects the label complexity

in terms of hypothesis disagreement against an agnostic active learning sampling progress.

Following this conclusion, we next use the distribution graph metric function to replace

the error loss in the sampling process. With this alternative generalized loss function, we

show that it can still converge with a more favorable label complexity, in terms of θG ≤ θ.

Before presenting Theorem 5, we need a technical lemma about the importance-

weighted empirical risk minimization on ρ(ht, h∗). The involved techniques refer to

Corollary 4.2 of Langford et al. in Langford [2005], or Theorem 1 in of Sahyoun, C.,

et al Beygelzimer et al. [2009a].

Lemma 5. Let R(h) be the generalization expected loss (also called learning risk) that
stipulates R(h) = Ex∼D[�(h(x), y)], and R∗ = R(h∗) be its minimizer. ρ(ht, h∗) then
can be bounded by ρ(ht, h∗) ≤ R(ht) −R(h∗) that stipulates Ht ∶= {h ∈ Ht−1 ∶ R(ht) ≤
R(h∗) + 2Δt−1}, where Δt−1 adopts a form [Cortes et al., 2019a] of

1

t − 1

⎡⎢⎢⎢⎢⎣

1
223[

t−1
∑
s=1

ps]log[
(t − 1)∣H∣

δ
] + log[(t − 1)∣H∣

δ
]
⎤⎥⎥⎥⎥⎦
,

where ∣H∣ denotes the number of hypothesis in H, and δ denotes a probability threshold
requiring δ > 0. Since ∑t−1

s=1 ps ≤ t − 1, Δt−1 can then be bounded by

Δt−1 =
√
( 2

t − 1
)log(2t(t − 1)∣) ∣H∣

2

δ
),

which denotes the loss disagreement bound to approximate a desired target hypothesis
such that R(ht) −R(h∗) ≤ 2Δt−1.
Theorem 5. Let R(h) be the generalization expected loss (also called learning risk) that
stipulates R(h) = Ex∼D[�(h(x), y)], and R∗ = R(h∗) be its minimizer. For any δ > 0, with
a probability of at least 1−δ, we have the following generalized distribution disagreement
graph coefficient θG for all t that approximately satisfies:

θ ≥ θG ≥
E

x∼D[pt∣Ft−1]
4Δt−1

, (3.8)

where Δt−1 =
√
( 2
t−1)log(2t(t − 1)∣) ∣H∣2δ ) denotes the loss disagreement bound to approx-

imate a desired target hypothesis such that R(ht) − R(h∗) ≤ 2Δt, and ∣H∣ denotes the
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number of hypothesis in H. Note that Δt comes from the sample complexity bound [Bal-
can et al., 2010] adopted in a PAC-style *. Related descriptions refer to Corollary 4.2 in
Langford [2005], or Theorem 1 in Beygelzimer et al. [2009a].

3.1.2 Tightness of Approximation
We study the tightness of the approximate inequality of Eq. (3.8) by generalizing

the coefficients of error disagreement θ and distribution disagreement θG over practical

active learning. Our analysis techniques follow the generalizations of A-distance and

H-divergence in domain adaption theory [Ben-David et al., 2007], that is, specifying re-

alizable variables and functions.

Datset Selection of Case Study. The empirical case study is used to observe the

performance disagreement of the error disagreement (θ)-based active learning and our

proposed distribution disagreement (θG)-based active learning. The policy of the dataset

selection requires a nearly-zero learning risk, that is R(h∗) ≈ 0. We consider three bench-

mark datasets usually used in deep active learning: MNIST, CIFAR-10, and CIFAR-100.

Amongst them, MNIST is actually the simplest dataset but can derive a nearly zero learn-

ing risk: the best-in-class (w.r.t. Eq. (1.1)) classification accuracy trained by a convolu-

tional neural network (CNN) is 0.9980 that stipulates the learning risk (w.r.t. error) of

h∗: R(h∗) = 1 − 0.9980 ≈ 0, where the optimal hypothesis h∗ is consistent with the full

training over the 60,000 training data. For CIFAR-10 and CIFAR-100, their learning risks

are far away from a zero risk, which cannot be properly used in the specification of θ and

θG. Therefore, soliciting MNIST as the case study is an optimal selection amongst the

three benchmark datasets.

Case Study of Generalization. Here, we use MNIST as the dataset X for the case

study of generalization, which has 60,000 training data and 10,000 test data. We use

a convolutional neural network with one block of [convolution, dropout, max-pooling,

relu], with 32, 3x3 convolution filters, 5x5 max pooling, and 0.5 dropout rate, as the clas-

sifier. To generalize the proposition of Eq. (3.3) on G and G∗, the distribution disagree-

ment L(G,G∗) is defined as the hypothesis disagreement ρ(h,h∗), which is assumed to be

tighter than the another disagreement metric of L(h,h∗). That is, L(G,G∗) ∶= ρ(h,h∗) <
L(h,h∗). Here, we know the test accuracy α = 1 − ρ(h,h∗). To satisfy the above in-

equality, we have: ρ(h,h∗) = 1 − α < L(h,h∗). Here, we set α = 0.9900 in this case

study.

Protocol of Case Study. After that, we begin the active learning on MNIST using θ
and θG. For error disagreement-based active learning, the algorithm continuously selects

those samples which can generate an error disagreement larger than θ. Specifically, the

algorithm begins the sampling from x1 to xp until the error (risk) disagreement of R(h)−
R(h′) ≥ θ, where h′ denotes the updated hypothesis after adding those p unlabeled data.

The next sampling iteration begins from xp+1. Note, the larger the value of θ, the smaller

iteration steps the algorithm costs, the more coarse-grained the sampling process will

be. When θ is large enough, the active learning process will degenerate into passive

*Probably approximately correct (PAC) learning [Haussler, 1990] requires the learner to receive sam-

ples and must select a generalization hypothesis from its hypothesis class. The goal is that, with high

probability, the selected hypothesis will be approximately correct with low generalization error. In compu-

tational learning theory, IWAL is a typical framework of PAC learning.



46

0 500 1000 1500 2000 2500

Number of labelled images

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Te

st
 a

cc
ur

ac
y

(a) θ

0 500 1000 1500 2000 2500

Number of labelled images

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Te
st

 a
cc

ur
ac

y

(b) θG

0 2 4 6 8 10

Radius of hypothesis class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n 
te

st
 a

cc
ur

ac
y

(c) Mean accuracy

Figure 3.2 : Generalization test over MNIST dataset using θ and θG.

Table 3.1 : Mean±standard deviation of the breakpoints of the generalization test over

MNIST using θ and θG

Radius of hypothesis class
Mean±standard accuracy

θ θG
r = 1 0.1135±0.0000 0.9682±0.0360

r = 2 0.1135±0.0000 0.9676±0.0295

r = 3 0.1135±0.0000 0.9665±0.0341

r = 4 0.8514±0.3015 0.9681±0.0286

r = 5 0.8588±0.2955 0.9671±0.0317

r = 6 0.8628±0.2942 0.9673±0.0330

r = 7 0.8785±0.2733 0.9694±0.0279

r = 8 0.8687±0.2843 0.9653±0.0352

r = 9 0.9156±0.2181 0.9666±0.0373

r = 10 0.8716±0.2819 0.9656±0.0394

(random) sampling. For distribution disagreement-based active learning, sampling by θG
is independent of the training model.

Generalization of Assumption 1. Based on Assumption 1, the expected loss over

h∗ satisfies E
h∗∈H �(h

∗(x), y) ∶= E
x∼G,x′∼G∗ [f(x, x

′)], and we then know ρ(h,h∗) = 1 − α ∝

L(G,G∗). With the specification of Assumption 1, R(h∗,G∗) = �(h∗(x),y)
f(x,x′) ∝ 1−ρ(h,h∗)

1 ∝
E

x∼X ,x′∼X′
t

(∥x−x′∥2)
L(G,G∗)) , that is, the ratio of the accuracy ‘1 − α’ to the optimal accuracy ‘1’ ap-

proximates the ratio of the distribution disagreement of X ′t i.e. E
x∼X ,x′∼X ′t

(∥x − x′∥2) to

the optimal distribution disagreement L(G,G∗). Given a budget B = 100, each iterative

sampling seeks the best subset X ′t with B data to minimize the distribution disagreement:

minX ′t⊂X ∣ E
x∼X ,x′∼X ′t

[(∥x − x′∥2/L(G,G∗)) ∗ α − θG]∣. However, there is randomness dur-
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Table 3.2 : Label complexities of the generalization test over MNIST using θ and θG
(Radius denotes “radius of hypothesis class”)

Radius

Accuracy threshold

80% 85% 90% 95%

θ, θG θ, θG θ, θG θ, θG
r = 1 infeasible, [20,120] infeasible, [120,220] infeasible, 220 infeasible, [520,620]

r = 2 infeasible, [20,120] infeasible,120 infeasible, [120,220] infeasible, [520,620]

r = 3 infeasible, [20,120] infeasible,120 infeasible, [220,320] infeasible, 520

r = 4 [73,517], [20,120] [517,995],[20,120] [517,995],[20,120] [517,995], [520,620]

r = 5 [112,727], [20,120] [112,727],[20,120] [727,1037],220 [727,1037],520

r = 6 [133,1011], [20,120] [133,1011],[120,220] [133,1011],[120,220] 1011,520

r = 7 [202,1104], [20,120] [112,727], [20,120] [112,727], [120,220] 1104,520

r = 8 [167,1064], [20,120] [167,1064],[120,220] [167,1064], [220,320] 1064,620

r = 9 [177,1046], [20,120] [177,1046],[120,220] [177,1046], 220 1046, 620

r = 10 [173,1206], 120 [173,1206],[120,220] [173,1206], 220 1206, 620

ing the sampling process. A brute-force method is employed to search the minimizer by

randomly sampling 100,000 times. The experiment process stops until 2,500 data are im-

ported to the neural network (2500 is the sampling budget). Therefore, the number of the

AL loops of error disagreement is decided by the value of θ; distribution disagreement

has a fixed learning loop of 2,500/B = 25. The details of specification of θ and θG can be

found in Appendix C.

Generalization Results. As the reported experiment results in Figure 3.2, active

learning using θG achieves higher test accuracies than that of θ on any of the same number

of labelled images. Table 3.1 reports the mean±standard deviation of the breakpoints of

the learning curves over the generalization test. Together the analysis with Figure 3.2(c),

sampling using θG achieves more stable and higher accuracies than that of θ. Table 3.2

reports the label complexities of achieving a desired accuracy of 80%, 85%, 90%, and

95%, respectively. The results show θG costs much lower than θ. It consistently verifies

Theorem 5 here. Moreover, the error disagreement determines how many active learning

loops will perform against a given sampling budget. As a result, the error disagreement-

based active learning becomes a multiple-step iterative algorithm; while the distribution

disagreement drives the active learning to converge at one-step.

Remark on Case Study. Based on above generalization test results, the approximate

inequality of our main theoretical result, i.e. Eq. (3.8), is tight. We thus begin to gen-

eralize θG into a proper function that induces a highly-representative subgraph over the

distribution.

3.1.3 Why Hyperbolic Geometry?
Guaranteed from the distribution disagreement-based active learning, our implemen-

tation of active learning sampling with Lorentzian representation that starts by relaxing

the hypothesis class in hyperbolic space. Then, the focal expression based on Lorentzian
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Table 3.3 : Summary of distance metrics and centroid expressions in the Euclidean space,

RKHS, and hyperbolic space.

Euclidean Space Reproducing Kernel Hilbert Space Hyperbolic Space

Metrics
dR(xi, xj) = ∥xi − xj∥2

dH(xi, xj) = exp( − ∥xi−xj∥2
2σ2 )

dP(xi, xj) = arccosh(1 + 2
∥xi−xj∥2(1−∥xi∥2)(1−∥xj∥2))

d2R(xi, xj) = ∥xi − xj∥22 d2L(xi, xj) = −2B − 2⟨xi, xj⟩L

Centroid
argminμ∈�d ∑n

i=1wi∥xi − μ∥2
argmaxμ∈�d ∑n

i=1wiexp( − ∥xi−μ∥2
2σ2 )

argminμ∈�d ∑n
i=1wiarccosh(1 + 2 ∥xi−μ∥2(1−∥xi∥2)(1−∥μ∥2))

argminμ∈�d ∑n
i=1wi∥xi − μ∥22 argminμ∈�d ∑n

i=1wi( − 2B − 2⟨xi, μ⟩L)
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(d) Lorentzian centroids,

Test accuracy=0.98125

Figure 3.3 : Euclidean, Gaussian kernelized, Poincaré and Lorentzian centroids on a noisy

spherical Gaussian dataset. The minimization or maximization on the centroids are per-

formed with 30 iterations against k-medoids algorithm.

centroid is introduced for aspherical distributions.

We consider three typical geometric structures: Euclidean space, reproducing kernel

Hilbert space (RKHS), and hyperbolic space, where Hilbert space is a generalization of

Euclidean space with any finite or infinite dimensions [Young, 1988; Quang et al., 2014].

By synthesizing a Gaussian-mixture dataset with varying densities [Bratieres et al., 2014;

Ertöz et al., 2003], we present a case study to explore the characteristics of these repre-

sentation spaces on spherical distributions.

Figure 3.3 shows a dataset with three Gaussian clusters, where the noises around

the boundary connect them and each dimension of the points is synthesized with a unit

of 10−5. The selected metrics are Euclidean, squared Euclidean, Gaussian kernel, and

Poincaré distances, which further derive their centroid expressions based on Proposition 5.

Proposition 5. Given a point set X = {x1, x2, ...., xn} and xi ∈ �d,∀i. A centroid of
μ ∈�d that minimizes the following problem minμ∈�d ∑n

i=1widX (xi, μ), where dX denotes
the metric over X , wi denotes the weight coefficient of xi and wi > 0.

Table 3.3 presents the detailed expressions of the centroids using different distance

metrics derived from Proposition 5, where dR(⋅, ⋅) denotes the Euclidean distance, d2R(⋅, ⋅)
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(b) Lorentzian Centroids vs. Gaus-
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(c) Lorentzian Centroids vs.

Poincaré Centroids

Figure 3.4 : Test accuracies of Euclidean, squared Euclidean, Gaussian kernelized,

Poincaré and Lorentzian centroids with varying parameters.

denotes squared Euclidean distance, dH(⋅, ⋅) denotes the Gaussian kernel distance, dP(⋅, ⋅)
denotes the Poincaré distance, and d2L(⋅, ⋅) denotes the squared Lorentzian distance w.r.t.

Eq. (3.10). On their centroid expressions, we set wi = 1 for any i to do unbiased estima-

tion (see the third row of Table 3.3). The minimization or maximization of the centroids

on those distance metrics need to adopt a gradient solver, which cannot guarantee con-

sistent convergence conditions for them. To fairly compare these metrics, we revise the

constraint of μ ∈ into μ ∈ X , yielding alternative expressions over the data. With this

approximation method, the k-medoids algorithm is employed to estimate the centroids of

different distance metrics.

Figures 3.3(a), 3.3(b), and 3.3(c) estimate nine approximate centroids using k-medoids

algorithm with different geometric distance metrics. The Lorentzian centroids shown in

Figure 3.3(d) are derived by the squared Lorentzian distance and optimized in a hierar-

chical way, that is, iteratively performing k-medoids in the clusters of the last clustering.

The predictive accuracy on those centroids are made by a SVM [Chang and Lin, 2011]

classifier†. It is interesting that the Lorentzian centroids are first identified on three points

distributed in the central regions of the three spherical clusters. These three points further

enforce the subsequent centroids to update towards the cluster boundaries, and so bet-

ter classification results are manifested. While other centroids derived from Euclidean,

squared Euclidean, and Gaussian kernel distances, are distributed spread across each sub-

region but not uniformly, in which some of them are a bit far away from the decision

boundaries between the clusters.

Figure 3.4 presents the test accuracies of training different numbers of centroids by

the SVM model, where the Gaussian kernel and Lorentzian distances are performed with

different parameters. The results show that the squared Lorentzian distance has much

slighter parameter perturbations than other metrics in terms of the test accuracies. How-

ever, the Gaussian kernel function shows sensitive parameter perturbations to the accura-

cies. The Euclidean, squared Euclidean, and Poincaré distances keep consistent results,

performing in an unsupervised way, that show a bit lower accuracies than the Lorentzian

†LIBSVM toolbox with its default hyperparameters is used for the SVM.
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Figure 3.5 : The Lorentzian version space (�A′BC, �D′EF ) vs. Euclidean version space

(�ABC, �DEF ). Lorentzian norm shrinks the volume of Euclidean version space by

shifting Euclidean centroids (A,D) into Lorentzian focal points (A′, D′) that are close to

the boundary region. As such, sampling from regions ABA′C and DED′F is ineffective,

which means any active learning model in the Lorentzian version space has a tighter

bound on label complexity.

centroids derived from a hierarchical way. Therefore, we are motivated to generalize the

distribution disagreement in hyperbolic geometry and hierarchical splitting is considered

to optimize those representation points.

3.2 Hyperbolic Focal Representation
With the guarantee from the distribution disagreement coefficient, our implementation

of active learning sampling with the Lorentzian focal representation that starts by relaxing

the hypothesis class in hyperbolic space. Then, the focal expression based on Lorentzian

centroid is introduced for aspherical distributions. Our motivation is presented in Fig-

ure 3.5.

3.2.1 Squared Lorentzian Distance
The Lorentzian distance function dL [Nickel and Kiela, 2018] has been proved to

be an expressive tool for embedding the hyperbolic representation. Law et al. [2019]

further proved that the squared Lorentzian distance d2L, coupled with an upper bound B
on the Lorentzian inner product, can effectively shift the centroid position of a given set

of points, i.e. adjusting B can offset the centers of the samples in an enclosed data space.

Therefore, following [Law et al., 2019], we generalize DDGC as the squared Lorentzian

distance.

Beginning with the definition of dL as background, let u,v be any two vectors in a d-

dimensional hyperboloid model Hd,B ⊆ d+1 that contains embedded Lorentzian norms,

the Lorentzian distance metric is defined as follows:

dL(u,v) ∶= ⟨u,v⟩L = −u0v0 +
d

∑
i=1

uivi ≤ −B, (3.9)
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where u = [u0, u1, ..., ud] and v = [v0, v1, ..., vd], Hd,B ∶= {u = (u0, u1, ..., ud) ∈ �d+1,
s.t. ⟨u,u⟩L = −B, u0 > 0,B > 0}. With this definition, we know ∥u∥2L = −B and u0 =√
B +∑d

i=1 u2
i . The squared type of Lorentzian distance then can be written as:

d2L(u,v) ∶= ∥u − v∥2L = −2B − 2 ⟨u,v⟩L . (3.10)

Compared to the negative characteristics of the Lorentzian distance, its squared type pro-

duces a more nature metric over any Euclidean vectors due to d2L(u,v) ≥ 0,∀u,v. In a

high dimensional hyperboloid model, the squared Lorentzian distance further avoids the

numerical instabilities‡ and exploding gradients § [Law et al., 2019; Kanai et al., 2017].

3.2.2 Geometric Centroids
Geometric centroid [Tsang et al., 2005b] is an important concept in feature represen-

tation. We next compare the geometric centroid formulations of dR, dP in a given set of

points, where dR denotes the Euclidean distance and dP denotes the Poincaré distance

[Nickel and Kiela, 2017], another common function in hyperbolic space.

Theorem 6 firstly presents the centroid formulation of dR in Euclidean space.

Theorem 6. Given a set of points X = {x1, x2, ...., xn} and xi ∈ �d,∀i. A centroid
of μ ∈ �d maximizes the following problem maxμ∈�d ∑n

i=1wi ⟨xi, μ⟩R, where wi is the
weight coefficient of xi and wi > 0. With the inner product constraint of ⟨u,u⟩R ≤ B in
�d, the centroid μ is formulated as:

μ =
√
B ∑n

i=1wixi

∥∑n
i=1wixi∥R

. (3.11)

We next discuss the geometric centroid of a Poincaré ball Pd in hyperbolic space.

Theorem 7. Given a point set X = {x1, x2, ...., xn} and xi ∈ Pd,∀i. A centroid of μ ∈ Pd

that minimizes the following problem minμ∈Pd ∑n
i=1widP(xi, μ), where wi is the weight

coefficient of xi and wi > 0. The Poincaré centroid μ has no closed-form solution.

Because the centroid formulation based on a Poincaré norm cannot be written in

closed-form, a further claim is needed as follows:

Claim 1. To produce an alternative expression for Poincaré centroid over the data,
minμ∈X ∑n

i=1widP(xi, μ) is a feasible scheme via replacing μ ∈ Pd with μ ∈ X .

In our investigation, there exists manifold gradient solvers to obtain an approximate

centroid under finite learning loops e.g. exponential and logarithmic mapping [Lou et al.,

2020b]. We do not introduce these optimization tricks since different distance metrics

cannot keep consistent convergence conditions in seeking their centroids.
‡In a numerically instable algorithm, errors from irrational inputs cause a considerably more significant

mistakes in the final outputs.
§Large error gradients accelerate the updates of the model weights during the training, possibly resulting

larger errors.
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3.2.3 Lorentzian Focal Point Approximation
Lorentzian centroids are not well representative for the aspherical distributions. We

thus introduce its focal expression.

Our formulation of an approximate focal point of a hyperboloid model Hd,B based on

Lorentzian centroid is outlined below.

Proposition 6. Given a set of points X = {x1, x2, ...., xn} and xi ∈ Hd,B,∀i. A center of
μ ∈ Hd,B that maximizes the following problem maxu∈Hd,B ∑n

i=1wi ⟨xi, μ⟩L, where wi is
the weight coefficient of xi and wi > 0. With an inner product constraint of ⟨u, v⟩ ≤ −B in
Hd,B, a closed-form expression of the Lorentzian center μ can be written as:

μ =
√
B ∑n

i=1wixi

∥∑n
i=1wixi∥L

, (3.12)

where wi controls the positions of the center.

The formulation of Lorentzian center can be used in hard clustering if wi = 1/n,∀i.
Here Theorem 3.3 of [Law et al., 2019] gives rise to an additional claim on Lorentzian

centroid based on Proposition 6.

Claim 2. The center μ of Eq. (3.12) can also minimize minμ∈Hd,B ∑n
i=1wid2L(xi, μ), that

is, μ =
√
B ∑n

i=1 wixi∥∑n
i=1 wixi∥L can also be one feasible generalized centroid of the squared

Lorentzian distance.

The Euclidean norm of Lorentzian centroid decreases as B decreases, which yields

an effective approximation to the focal point. However, the approximation cannot only

depend on B due to uncertain parameter perturbations. That is to say, approximating focal

expression by adjusting B may be ideally better but possibly worse. We thus control the

another parameter wi to implement the focal approximation

wi =
d2L(xi, μ)

∑n
i=1 d2L(xi, μ)

. (3.13)

With the constraints of wi, the Lorentzian centroid will be shifted into a more natural

position over the data, not only the geometry, to capture the aspherical distribution. Then,

we present a specified description on the focal point.

Proposition 7. Approximation of Lorentzian focal. Given a set of pointsX = {x1, x2, ...., xn}
and xi ∈ Hd,B,∀i. A focal point of μ ∈ Hd,B that minimizes the following problem
minμ∈Hd,B ∑n

i=1wi ⟨xi, μ⟩L, where wi is the weight coefficient of xi and wi > 0. With
an inner product constraint of ⟨u, v⟩ ≤ −B in Hd,B, a Lorentzian focal point μ can be
approximately formulated as

μ =
√
B ∑n

i=1wixi

∣∥∑n
i=1wixi∥L∣

, (3.14)

where wi follows Eq. (3.13).
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Data Poincaré centroid Euclidean centroid

Lorentzian focal points

Figure 3.6 : Geometric centroids of Euclidean, Poincaré, and focal points of squared

Lorentzian distances in a given set of points. Lorentzian norm updates the focal points

of the embedded half-sphere toward the surface as the parameter B decreases w.r.t.

Eq. (3.14).

The formulation of Lorentzian focal point can be used in soft or fuzzy clustering of

hyperbolic space. To more easily compare the Euclidean centroid, Poincaré centroid,

and Lorentzian focal point, Figure 3.6 depicts a sphere with the positions of each cen-

troid/focal point in a set of synthetic data embedded in a half-sphere. There are seven

green data points distributed within this half-sphere. As shown, the centroid based on the

Euclidean norm (pink) is centered among all seven points, while the Poincaré formulation

has simply selected one of the data points as its centroid based on Claim 1 (the circled

one). However, the squared Lorentzian focal point(s) (red) has moved away from the

center region of the embedded half-sphere according to the decrease of B.

3.2.4 Lorentzian Focal Representation
Our focal representation is calculated from Lorentzian norms following [Nickel and

Kiela, 2018] and [Law et al., 2019]. The parameter B shifts the position of the original

Euclidean centroid toward the geometric boundary and, ideally, to (or close to) the fo-

cal point. The key step of optimizing the Lorentzian focal representation is to generalize

DDGC w.r.t. Eq. (3.4) in hyperbolic space, where this process is performed in the hyper-

boloid geometry with Lorentzian norm. Specifically, we optimize the input dataset X by

producing a group of subgraphs Gi(i = 1, ...,K) in hyperbolic space. The disagreements

between the nodes within one graph is measured by f(u,v). The goal is to minimize the

distribution disagreement between any pair of subgraphs, i.e. min
G1,..,GK

E
μk∼Gk,xi∼Gk

f(μk, xi)
which can further be defined as

min
G1,..,GK

E
μk∼Gk,xi∼Gk

f(μk, xi) ∶= min
G1,..,GK

1

n

K

∑
k=1

∑
xi∼Gk

f(μk, xi), (3.15)

where μi denotes the focal point of graph Gi, U denotes the focal point of a collec-

tion of the K subgraphs, i.e. U = {μ1, μ2, ..., μK}. Only the data xi achieves the min-

imum distance to the focal point of Gk, can it be divided into this subgraph, i.e. xi ∈
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Algorithm 2: Lorentzian Focal Approximation

1 Input: Data set X , number of subgraphs K, maximum number of iteration T .

2 Initialization: randomly select K focal points from X to initialize

U0 = {μ0
1, μ

0
2, ..., μ

0
K}, t = 1, F = ∅.

3 while t ≤ T do
4 Split X into K subgraphs {Gt−1

1 ,Gt−1
2 , ...,Gt−1

K } based on the condition of

5 xi ∈ Gt−1
k iff d2L(xi, μt−1

k ) < d2L(xi, μt−1
k′ ),∀k′,0 < k, k′ ≤K,k′ ≠ k.

6 Update F (t − 1) = ∑K
k=1∑xi∈Gk

d2L(μt−1
k , xi).

7 Update U t = {μ1, μ2, ..., μK} by μt
k = ∑xi∈Gt−1

k

d2L(xi,μ)
∑∥Gt−1

k
∥0

i=1 d2L(xi,μ)
xi, 0 < k ≤K.

8 Update F (t) = ∑K
k=1∑xi∈Gk

d2L(μt
k, xi).

9 if F (t) − F (t − 1) = 0 then
10 break.

11 end
12 t = t + 1.

13 end
14 Output: final update on U .

Gk iff f(xi, μk) < f(xi, μk′),∀k′,0 < k, k′ ≤ K,k′ ≠ k. The node distribution disagree-

ment of any two nodes within one subgraph is defined as f(⋅, ⋅), i.e. f(u,v) ∶= d2L(u,v).
With Proposition 6 and Claim 2, we know the focal points can solve the minimization of

Eq. (3.13).

Updating Lorentzian focal points. To fast solve Eq. (3.15), the parameters in Eq. (3.14)

for our Lorentzian focal representation was set to B = 1. Following the update policy in

Eq. (3.14), the focal point μt is updated at the t-th iteration of Gk (also write as Gt
k) with

μt
k = ∑

xi∈Gt−1
k

d2L(xi, μ)

∑∥G
t−1
k
∥0

i=1 d2L(xi, μ)
xi, (3.16)

where ∥Gt−1
k ∥0 denotes data number of Gt−1

k . Then, with the t-th update on U t w.r.t.

μt
k,1 ≤ k ≤K, Gt

i, ∀i is updated, following the constraints of Eq. (3.15).

Algorithm 2 presents an unsupervised solver to the minimization of Eq. (3.15). The

while loop stops if the focal point collection U has no further updating. The computational

complexity of the algorithm is O(nd). To strength the hierarchical characteristics of

squared Lorentzian distance, the active learning strategy is splitting the Lorentzian focal

points with a tree structure.

3.2.5 Tree-likeness Splitting
Given an annotation budget of K, our deep active learning method will pick up K

Lorentzian focal points from the input features as its output representations. To select

those data, we optimize the focal points following a tree paradigm that hierarchically

splits data set X . Details of the splitting steps are as follows.
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Figure 3.7 : Illustration of tree-likeness splitting. The first layer nodes are k global focal

points. A binary tree splitting strategy begins from the second layer of the tree.

• Initialization: establish a virtual root node U0 to begin the splitting;

• Begin splitting: the first split follows a global strategy that finds k Lorentzian focal

points employing Algorithm 2, collects them in U1, and hangs them on the first

layer of the tree;

• Apply the conditions for splitting: at t-time of splitting, for any newly updated

node μi ∈ U t−1, its associated subgraph Gi can be split into two subtrees T ′1 and T ′2
only if Gi has more than M data. Then, we update U t−1 into U t. If U t has more

than K nodes, the splitting stops;

• Select the optimal samples and conduct training: select the top K focal points

from U as the set of Lorentzian focal collection to be sent for human annotation.

Once annotated, add them to network training set.

Figure 3.7 illustrates the splitting process. At the initial splitting, we have a remark to

split the root node of the tree by:

Remark 2. The first splitting of the tree-likeness splitting algorithm adopts an unsu-
pervised Lorentzian focal approximation, which is a typical unsupervised representation
learning strategy. The splitting setting can refer to the selection of k of unsupervised clus-
tering [Pham et al., 2005], and the multi-class splitting rule [Buntine and Niblett, 1992]
of decision tree [Fayyad and Irani, 1992], etc. To uniformly draw the distribution of the
input data of X , k is usually set as the class number of X to split the root node, which
conducts the first layer of the tree, i.e. ∥U1∥0 = k. Note that the first splitting of the tree
may stop with inconsistent results in a large-scale data set. With multi-layer splitting, the
bottom of the tree with more leaf nodes, will converge into more similar results.

By adopting Algorithm 2, Algorithm 3 presents the tree-likeness splitting to imple-

ment the steps of the above procedure, in which the output focal points will be trained by

a deep neural network; other classifiers are also feasible. Specifically, ∥G∥0 denotes the

number of its collected subgraphs.
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Algorithm 3: Tree-likeness Splitting

1 Input: Data set X , splitting threshold M.

2 Initialization: A tree U with a virtual root node U0, j = 1, T ′,T ′1 ,T ′2 = ∅.

3 Splitting X into k subgraphs G = {G1,G2, ...,Gk} by adopting Algorithm 1 and

collecting the k focal points into U1.

4 while j ≤ T do
5 for i = 1,2, ..., ∥G∥0 do
6 if ∥Gi∥0 ≥M then
7 Split subgraph Gi into T ′1 and T ′2 by adopting Algorithm 1.

8 Collect focal points μ′1 of T ′1 and μ′2 of T ′2 into U j+1, respectively.

9 Remove μ′1, μ′2 from T ′1 , T ′2 , respectively.

10 Collect T ′1 ,T ′2 into T ′.
11 T ′1 ,T ′2 = ∅.

12 end
13 end
14 G = T ′, T ′ = ∅, j = j + 1.
15 if ∥U j+1∥ ≥K then
16 break.

17 end
18 end
19 Update each node of U into its nearest data in X .

20 Output: final update on U .

3.3 Experiments
We tested our method with four benchmark datasets, each of them is designed for

different image classification tasks.

In Section 3.6.1, we describe the tested datasets and baselines. In Section 3.6.2, we

compare the centroid and focal representations on MNIST dataset. Section 3.6.3 com-

pares the classification results of training ResNet20 with different representation features

generated from different baselines. Section 3.6.4 presents the learning curves and statisti-

cal results of the trained epochs. In Section 3.6.5, we visualize the Lorentzian focal points

on CIFAR-10 dataset. In Section 3.6.6, we present the batch performance of deep active

learning tests.

3.3.1 Experimental Setup
The four selected datasets were MNIST, CIFAR-10, CIFAR-100, and SVHN. MNIST

is an image dataset of handwritten digits with 60,000 images over 10 classes. CIFAR-

10 is built for a coarse-grained image classification task with 60,000 images across 10

classes. CIFAR-100 contains 60,000 images distributed over 100 classes for a fine-grained

image classification task. SVHN contains 99,289 images of numbers distributed across

10 coarse-grained classes.
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Our work focuses on geometric exploration of deep active learning in hyperbolic

space. The main compared experimental baselines also keep consistent geometric in-

terests. Besides this, generalization baselines of error disagreement is necessary to verify

our theoretical results. We thus firstly selected four geometric approaches involved with

centroid representation as baselines for comparison: k-means, k-medoids, greedy core-

set [Sener and Savarese, 2018a], and hierarchical tree clustering. Descriptions of these

baselines are as follows.

• The k-means approach on active learning setting estimates the label of some queried

unlabeled data by rounding the average labels of the members of a cluster, applying

its unsupervised results.

• Core-set is nonparametric and we employ a greedy selection strategy of k-center to

produce its best performance following [Sener and Savarese, 2018a].

• Hierarchical clustering is with a tree-likeness splitting manner, highly relate to our

approach. Only the number of desired queries (also known as querying budget) is

set as the clustering number or stopping criteria of sampling.

• In addition, we selected a generalized error disagreement, i.e. error entropy-based

deep active learning [Gal et al., 2017]. Error Entropy is also nonparametric as the

above four baselines.

• Another generalization of error disagreement-based active learning is to maximiz-

ing the variation ratios [Gal et al., 2017] that further be used in the batch perfor-

mance of deep active learning tests. It is referred to as Error Variation in experi-

ments.

• For our tree-likeness splitting algorithm, splitting threshold M is set as 50.

All experiments were performed on a 2x 2.4GHz Intel Xeon E5-2680 v4 (14 Cores)

with a 35MB L3 Cache 9.6GT/s QPI (Max Turbo Freq. 3.3GHz, Min 2.9GHz) and 2x

NIVDIA Quadro P5000 16GB Graphics Card (GPUs) (2560 Cores). The compiler envi-

ronments are Matlab 2016 and Python 3.6, where Error Entropy and Error Variation call

the deep neural network model at each iteration of sampling.

3.3.2 Centroid vs. Focal Representations
We compare the Euclidean, Gaussian kernelized, and Poincaré centroids and our

Lorentzian focal representations on MNIST with aspherical distributions. The selected

distance metrics follow Table 3.3 and their parameter settings follow Section 3.4. To ob-

serve more differential parameter perturbations, we select SVM as the classifier, not a

deep neural network, where LIBSVM is used to implement the SVM model following its

default parameter setting. (Deep neural network narrows their performance disagreements

due to expressive modeling on MNIST.)

With a similar setting of Section 3.4 , Euclidean, squared Euclidean, Gaussian ker-

nelized and Poincaré centroids use k-medoids to optimize the centroid representations.

Lorentzian focal points use Algorithm 3 to split the MNIST dataset. Figure 3.8 presents
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(b) Lorentzian Focal vs. Gaussian

Kernelized Centroids
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(c) Lorentzian Focal vs. Poincaré

Centroid

Figure 3.8 : Test accuracies of Euclidean, squared Euclidean, Gaussian kernelized,

Poincaré centroids and our Lorentzian focal points with varying parameters on MNIST.

the active learning curves of training the centroids and focal points derived from different

distance metrics. The results clearly show that our focal points achieve much higher test

accuracies than the other centroid expressions due to its better representation on bound-

aries of aspherical distributions. Moreover, the adopted tree-likeness splitting ensures the

subsequent split focal points can uniformly match each cluster over the input dataset. Pa-

rameter perturbations of Gaussian kernelized centroids and Lorentzian focal are similar

after querying sufficient training data. However, test accuracies of Gaussian kernelized

centroids are lower than Euclidean centroids and its squared type.

3.3.3 Deep Active Learning with ResNet20
Our experimental settings for the image classification tasks were as follows. We used

ResNet20 as the deep leaning model with its default hyperparameters, i.e., batch size=32,

epochs = 200, depth =20, learning rate=0.001, filter number=16, etc. The network ar-

chitecture was implemented in Keras 2.2.3. With each dataset, we initiated the Entropy

baseline with the first 20 samples.
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(c) SVHN

Figure 3.9 : Test accuracies of training ResNet20 with different active learning outputs on

CIFAR-10, CIFAR-100, and SVHN.
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The active learning results for each of the baselines for each of the three classification

tasks are shown in Figure 3.9. k-means produced the least accurate results all round since

nonoe of the three datasets offer an intuitive clustering structure. The centers generated in

the clustering optimization process are virtual points that may not properly fit the real data

distribution. Then, the tightness of the subsequent fitting over each cluster likely degrades

with each iteration. The reason is that k-means rounds the average value of the ground-

truth labels of each member in the cluster and annotates the label of the virtual center with

that estimation. So, if the initial clusters do not roughly reflect the actual distribution, the

estimated annotations will be wrong, which feeds misleading information into the next

iteration and the cycle continues. The test accuracies of the k-medoids baseline was much

higher than that of k-means on all three datasets. This is because the global optimization

process of the k-medoids algorithm samples the nearest neighbor of each cluster center

and queries all the ground-truth labels for the final update of the cluster center. More

simply put, k-medoids does not estimate its owned label and asks for one from a human.

Geometrically, both k-means and k-medoids are based on Euclidean centroids. However,

the feature space of the image datasets are non-Euclidean. As a result, the baselines built

on hierarchical tree structures performed better than these two.

Error entropy is typical of active learning approaches based on error disagreement.

However, if there are not enough labels when training begins, the estimated prediction of

an unlabeled sample will always tend toward a certain class label, which means the sam-

ples selected for human annotation have a higher probability of representing that class.

With estimating entropy, what begins as a small deviation can degenerate into either a bi-

ased or a random selection index. In our experiment settings, the number of the initialized

labels to start Entropy is 20. The core-set approach returns a collection of global represen-

tation examples for the deep model. However, these three image datasets have very high

dimension feature spaces at 3072, which may drive sampling update toward the boundary

of the feature space. As a result, some isolated or noisy data will always be selected.

Our Lorentzian tree-likeness algorithm appeared to select informative and representative

samples with good representations of the distribution at both the global and local levels

from the beginning. Thus, the test accuracies of the Lorentzian centroids were the highest

on all three datasets.

3.3.4 Learning Curves of ResNet20
Figure 3.10 shows the learning curves at each epoch of training with different active

learning outputs on each of the three datasets. Initially, at a learning rate of 0.001, all

baselines were unstable. However, at the 80th epoch of the training process (learning

rate>0.1), most had reached optimal test accuracy. Hence, the drawn learning curves

in Figure 3.10 show that the active learning outputs of all baselines had achieved their

best performance under this parameterized ResNet20 model. The training losses at each

epoch appear in Figure 3.11. Again, it took around 80 epochs to reach the minimum loss.

The mean±standard deviation for the classification accuracy and training loss after the

80th epoch, averaged over three runs, are provided in Tables 3.4 and 3.5. Specifically, test

accuracy/training loss of each epoch is averaged over 3 runs; the ‘mean’ accuracy/training

loss denotes the averaged test accuracy/training loss of the 80th, 81th,...,200th epoch;

the ‘standard deviation’ is over the test accuracies/training looses of these epochs. Our
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(a) CIFAR-10
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(c) SVHN

Figure 3.10 : Test accuracies of each epoch of training ResNet20 with different active

learning outputs on CIFAR-10, CIFAR-100, and SVHN. (Before 80 epochs, the learning

rate is 0.001, and afterwards it is 0.1.)
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(c) SVHN

Figure 3.11 : Training losses of each epoch of training ResNet20 with different active

learning outputs on CIFAR-10, CIFAR-100, and SVHN. (Before 80 epochs, the learning

rate is 0.001, and afterwards it is 0.1.)

Lorentzian focal points had the highest mean values and the lowest training losses, which

we attribute to the powerful representation ability of Lorentzian focal points.

3.3.5 Visualization of Lorentzian Focal Representations
To illustrate the distribution of the Lorentzian focal representations, Figure 3.12 vi-

sualizes the focal points for CIFAR-10 in its first-two dimensional feature space. The

blue points represent the original features of CIFAR-10, and the green squares repre-

sent the Lorentzian focal points. Figure 3.12(a) shows that all the initially-selected focal

points are distributed around the central regions of the feature space with very high global

representativeness. These first nodes of the tree then continue to split with most of the

newly-generated focal points, which still are distributed tightly around the central region

of the input feature space (see Figures 3.12(c) and 3.12(d)).
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Table 3.4 : Mean±standard deviation of the test accuracies on CIFAR-10, CIFAR-100 and

SVHN after 80 epochs over 3 runs.

Datasets
Algorithms

k-means k-medoids Hierarchical Tree Error Entropy Core-set Lorentzian Focal

CIFAR-10 0.7199± 0.0055 0.7778±0.0097 0.7466±0.0077 0.7779±0.7639 0.7837±0.0086 0.8184±0.0105
CIFAR-100 0.4444±0.0097 0.5149±0.0129 0.4573±0.0108 0.5176±0.0125 0.5353±0.0100 0.5503±0.0130

SVHN 0.6881±0.0100 0.8396±0.0053 0.8160±0.0100 0.8647±0.0070 0.8728±0.0084 0.9233±0.0043

Table 3.5 : Mean±standard deviation of the training losses on CIFAR-10, CIFAR-100 and

SVHN after 80 epochs over 3 runs.

Datasets
Algorithms

k-means k-medoids Hierarchical Tree Error Entropy Core-set Lorentzian Focal

CIFAR-10 1.3450±0.0575 1.1756±0.0479 1.3016±0.0361 1.1756±0.0479 1.1300±0.0457 0.9926±0.0496
CIFAR-100 3.1748±0.0890 2.6738±0.1052 3.0602±0.0858 2.6273±0.0923 2.5915±0.0787 2.4948±0.0948

SVHN 1.5436±0.0927 0.8720±0.0578 0.9149±0.0446 0.7289±0.0378 0.6691±0.0258 0.5169±0.0156
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Figure 3.12 : Projection of Lorentzian focal points in the first two dimensional feature

space of CIFAR-10.
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(a) Batch budget=100
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(b) Batch budget=200
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(c) Batch budget=300

Figure 3.13 : Lorentzian focal vs. batch performance of error entropy and error variation

on CIFAR-10.

3.3.6 Batch Performance of Deep Active Learning
We next compare the performance of Lorentzian focal points and batch settings of

error disagreement-based active learning algorithms. Note, batch active learning [Guo

and Schuurmans, 2008] is another different topic involved with diverse sampling. The

general active learning algorithms can be extended into batch returns to accelerate the

sampling, but they are not special-purpose batch sampling strategies.

In this task setting, the selected error disagreement baselines are Error Entropy and

Error Variation. The deep network architecture follows a three-layer perceptron (MLP)

with three blocks of [convolution, dropout, max-pooling, relu], with 32, 64, and 128 3x3

convolution filters, 5x5 max pooling, and 0.5 dropout rate. The network architecture still

was implemented in Keras 2.2.3. The labeled set to start the error disagreement-based

active learning algorithms are 20 random samples drawn from the training sets of the

input datasets.

The learning curves of batch performance of deep active learning on CIFAR-10 are

presented in Figure 3.13, where the batch budgets are set as 100, 200, and 300, respec-

tively. For error disagreement-based active learning, the test accuracies do not keep

consistent results to the batch budgets since the error estimations with different budget

settings make the hypothesis update coarsely. Table 3.6 presents their mean±standard

deviation of the test accuracies against the learning breakpoints. Observing the standard

deviation finds that, the larger budget settings have more obvious perturbations to the

querying process of active learning (see deviation change). However, the distribution

disagreement-based focal representation approach does not estimate the hypothesis up-

date. Therefore, it has no perturbations to the batch budget settings. This can be one

advantage of our focal representation.

3.4 Discussions
3.4.1 Deep Active Learning with Weak-supervision

With active learning methods based on error disagreement, the initial state of the

trained model directly affects the subsequent sampling process. In our experiments, we
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Table 3.6 : Mean±standard deviation of the test accuracies of different baselines with

batch settings on CIFAR-10.

Batch budget
Algorithms

Error Entropy Error Variation Lorentzian Focal

100 0.6644±0.0091 0.7070±0.0098 0.7394±0.0124

200 0.6687±0.0110 0.7053±0.0112 -

300 0.6694±0.1115 0.7007±0.1145 -

Table 3.7 : Time computations of selecting 10,000 examples from CIFAR-10 using dif-

ferent baselines.

Datasets
Algorithms

k-means k-medoids Hierarchical Tree Error Entropy Error Variation Core-set Lorentzian Focal

CIFAR-10 30 mins 5 hours 8 hours 3 days 2.5 days 2 days 20 mins

selected 20 labeled samples as a prior training set. However, had we began with full super-

vision on all classes and generated sufficient prior labels, the error-disagreement baselines

would have shown better performance, if not the best performance. However, this would

not be a fair comparison since the other baselines do not utilize prior labels. Therefore,

there exists an open question of how to properly start the error disagreement-based active

learning baselines. This is also the reason of why we do not introduce more generalization

baselines of error disagreement in our experiments.

3.4.2 Limitations of Our Approach
Our tree splitting process is very fast, but, as Figure 3.12 shows, the first layer of

the established tree has a significant influence over the subsequent splitting positions.

Therefore, beginning the splits from an inappropriate starting position will degenerate

performance

3.4.3 Computational Complexities
It costs O(nd) time to establish the first layer of the tree. Then the algorithm con-

tinues to split each subtree in a shorter time. It is thus, the total time complexity of the

proposed algorithm is O(nd). For the compared baselines, k-means has a time complex-

ity of O(nd), and k-medoids has a time complexity of O(n2). Core-set selection with a

greedy search costs about O(n3). Hierarchical tree costs O(n2). Further, the total time

taken to select 10,000 samples from CIFAR-10 with each of the baselines are reported in

Table 3.7. As the results show, the function of Lorentzian focal representation optimized

with the tree splitting is the fastest.
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3.5 Summary of This Chapter
This chapter presents a new direction to embed active learning onto a non-Euclidean

hyperbolic geometry. The proposed distribution disagreement graph coefficient (DDGC),

based on distribution, was derived to present a tighter bound on label complexity than typi-

cal error disagreement coefficient; a generalization test subsequently verified the tightness

of the approximate inequality relationship of the bounds. With these theoretical guaran-

tees, the Lorentzian focal representation was proposed as a generalization of DDGC in

practical active learning tasks, where the squared Lorentzian distance is used to derive a

closed-form update on the focal points. The overall deep active learning approach which

derives the Lorentzian focal points, then shows effective accuracy improvement against

the centroid representation methods and generalized error disagreement algorithms in

three image classification datasets.
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Chapter 4

Distribution Matching
This chapter discusses the third question of the thesis: “how to improve deep active learn-

ing based on the theoretical results of halfspace learning?”. Specifically, we present geo-

metric Bayesian active learning by disagreements (GBALD), a framework that performs

BALD on its geometric interpretation, matching the distribution to interact with a deep

learning model. There are two main components in GBALD: initial acquisitions based on

core-set construction and model uncertainty estimation with those initial acquisitions. Our

key innovation is to construct the core-set on an ellipsoid, not typical sphere, preventing

its updates towards the boundary regions of the distributions.

The main improvements over BALD are twofold: relieving sensitivity to uninfor-

mative prior and reducing redundant information of model uncertainty. Experiments on

acquisitions with several scenarios demonstrate that, yielding slight perturbations to noisy

and repeated samples, GBALD further achieves significant accuracy improvements than

BALD, BatchBALD and other baselines.

The rest of this chapter is organized as follows. In Section 4.1, we elaborate BALD

and its two interpretations. In Section 4.2, we present our GBALD framework. Exper-

imental results are presented in Section 4.3. Finally, we conclude this chapter in Sec-

tion 4.4.

4.1 Bayesian Active Learning by Disagreements
Bayesian active learning by disagreements (BALD) [Houlsby et al., 2011] expresses

the information gain in terms of the predictive entropy over the model. It has two inter-

pretations: model uncertainty estimation and core-set construction. To estimate the model

uncertainty, a greedy strategy is applied to select those data that maximize the parame-

ter disagreements between the current training model and its subsequent updates as [Gal

et al., 2017]. However, naively interacting with BALD using uninformative prior leads to

unstable biased acquisitions [Gao et al., 2020]. Moreover, the similarity or consistency of

those acquisitions to the previous acquired samples, brings redundant information to the

model and decelerates its training.

Core-set construction [Campbell and Broderick, 2018] avoids the greedy interaction

to the model by capturing characteristics of the data distributions. By modeling the com-

plete data posterior over the distributions of parameters, BALD can be deemed as a core-

set construction process on a sphere [Kirsch et al., 2019], which seamlessly solicits a

compact subset to approximate the input data distribution, and efficiently mitigates the

sensitivity to uninformative prior and redundant information. From the view of geometry,
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BALD

GBALD

Model uncertainty estimation Corere-e-set construction

Input Stage 

Stage 

Sphere 

Ellipsoid 

Figure 4.1 : Illustration of two-stage GBALD framework. BALD has two types of ex-

pression: model uncertainty estimation and core-set construction where the deeper the

color of the core-set elements, the higher the representation; GBALD integrates them to

an uniform framework. Stage 1©: core-set construction is with an ellipsoid, not typical

sphere, representing the original distribution to indicate the input features of DNN. Stage

2©: model uncertainty estimation of DNN then derives the subsequent highly informative

and representative samples.

updates of core-set construction is usually optimized with sphere geodesic as [Nie et al.,

2013; Wang et al., 2019]. Once the core-set is obtained, deep active learning immedi-

ately seeks annotations from experts and starts the training. However, data points located

at the boundary regions of the distribution, usually win uniform distribution, cannot be

highly-representative candidates for the core-set. Therefore, constructing the core-set on

a sphere may not be the optimal choice for deep active learning.

This chapter presents a novel active learning framework, namely Geometric BALD

(GBALD), over the geometric interpretation of BALD that, interpreting BALD with core-

set construction on an ellipsoid, initializes an effective matching on distribution to drive

a DNN model. The goal is to seek for significant accuracy improvements against an un-

informative prior and redundant information. Figure 4.1 describes this two-stage frame-

work. In the first stage, geometric core-set construction on an ellipsoid initializes effective

matching on the distributions to start a DNN model regardless of the uninformative prior.

Taking the core-set as the input features, the next stage ranks the batch acquisitions of

model uncertainty according to their geometric representativeness, and then solicits some

highly-representative examples from the batch. With the representation constraints, the

ranked acquisitions reduce the probability of sampling nearby samples of the previous

acquisitions. It is thus the ranking rejects unnecessary redundant acquisitions.

4.1.1 Interpretations
BALD has two different interpretations: model uncertainty estimation and core-set

construction. We simply introduce them in this section.
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4.1.1.1 Model Uncertainty Estimation

We consider a discriminative model p(y∣x, θ) parameterized by θ that maps x ∈ X
into an output distribution over a set of y ∈ Y . Given an initial labeled (training) set

D0 ∈ X × Y , the Bayesian inference over this parameterized model is to estimate the

posterior p(θ∣D0), i.e. estimate θ by repeatedly updating D0. Active learning adopts this

setting from a Bayesian view.

With AL, the learner can choose unlabeled data from Du = {xi}Nj=1 ∈ X , to observe

the outputs of the current model, maximizing the uncertainty of the model parameters.

Houlsby et al. [2011] proposed a greedy strategy termed BALD to update D0 by estimat-

ing a desired data x∗ that maximizes the decrease in expected posterior entropy:

x∗ = arg max
x∈Du

H[θ∣D0] −Ey∼p(y∣x,D0)[H[θ∣x, y,D0]], (4.1)

where the labeled and unlabeled sets are updated by D0 = D0 ∪{x∗, y∗},Du = Du/x∗, and

y∗ denotes the output of x∗. In deep AL, y∗ can be annotated as a label from experts and

θ yields a DNN model.

4.1.1.2 Core-set Construction

Let p(θ∣D0) be updated by its log posterior logp(θ∣D0, x∗), y∗ ∈ {yi}Ni=1, assume the

outputs are conditional independent of the inputs, i.e.

p(y∗∣x∗,D0) = ∫
θ
p(y∗∣x∗, θ)p(θ∣D0)dθ,

then we have the complete data log posterior following [Pinsler et al., 2019]:

Ey∗[logp(θ∣D0, x
∗, y∗)] = Ey∗[logp(θ∣D0) + logp(y∗∣x∗, θ) − logp(y∗∣x∗,D0)]

= logp(θ∣D0) +Ey∗[logp(y∗∣x∗, θ) +H[y∗∣x∗,D0]]

= logp(θ∣D0) +
N

∑
i=1
⎛
⎝
Eyi[logp(yi∣xi, θ) +H[yi∣xi,D0]]

⎞
⎠
.

(4.2)

Core-set. The key idea of core-set construction is to approximate the log posterior of

Eq. (4.2) by a subset of D′u ⊆Du such that:

EYu[logp(θ∣D0,Du,Yu)] ≈ EY ′u[logp(θ∣D0,D′u,Y ′u)],

where Yu and Y ′u denote the predictive labels of Du and D′u respectively by the Bayesian

discriminative model, that is,

p(Yu∣Du,D0) = ∫
θ
p(Yu∣Du, θ)p(θ∣D0)dθ,

and

p(Y ′u∣D′u,D0) = ∫
θ
p(Y ′u∣D′u, θ)p(θ∣D0)dθ.
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(a) Sphere geodesic (b) Ellipsoid geodesic

Figure 4.2 : Optimizing BALD with sphere and ellipsoid geodesics. Ellipsoid geodesic

rescales the sphere geodesic to prevent the updates of the core-set towards the bound-

ary regions of the sphere where the characteristics of the distribution cannot be cap-

tured. Black points denote the feasible updates of the red points. Dash lines denote

the geodesics.

Here D′u can be indicated by a core-set [Pinsler et al., 2019] that highly represents Du.

Optimization tricks such as Frank-Wolfe optimization [Vavasis, 1992] then can be adopted

to solve this problem.

Motivations. Eqs. (4.1) and (4.2) provide the Bayesian rules of BALD over model

uncertainty and core-set construction respectively, which further attract the attention of

the deep learning community. However, the two interpretations of BALD are limited

by: 1) redundant information and 2) uninformative prior, where one major reason which

causes these two issues is the poor initialization on the prior, i.e. p(D0∣θ). For example,

unbalanced label initialization on D0 usually leads to an uninformative prior, which fur-

ther conducts the acquisitions of active learning to select those unlabeled data from one

or some fixed classes; highly-biased results with [Gao et al., 2020] redundant information

are inevitable. Therefore, these two limitations affect each other.

4.2 Framework
GBALD consists of two components: initial acquisitions based on core-set construc-

tion and model uncertainty estimation with those initial acquisitions.

4.2.1 Geometric Interpretation of Core-set
Modeling the complete data posterior over the parameter distribution can relieve the

above two limitations of BALD. Typically, finding the acquisitions of active learning is

equivalent to approximating a core-set centered with spherical embeddings [Sener and

Savarese, 2018b]. Let wi be the sampling weight of xi, ∥wi∥0 ≤ N , the core-set construc-

tion is to optimize:

min
w

WWWWWWWWWWW

N

∑
i=1

Eyi[logp(yi∣xi, θ) +H[yi∣xi,D0]]
\^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`L

−
N

∑
i=1

wiEyi[logp(yi∣xi, θ) +H[yi∣xi,D0]]
\^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`L(w)

WWWWWWWWWWW

2

,

(4.3)
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where L and L(w) denote the full and expected (weighted) log-likelihoods, respectively.

Specifically, ∑N
i=1H[yi∣xi,D0] = −∑yi p(yi∣xi,D0)log(p(yi∣xi,D0), where p(yi∣xi,D0) =

∫θ p(yi∣xi, θ)p(θ∣D0)dθ. Note ∥ ⋅ ∥ denotes the �2 norm.

The approximation of Eq. (4.3) implicitly requires that the complete data log poste-

rior of Eq. (4.2) w.r.t. L must be close to an expected posterior w.r.t. L(w) such that

approximating a sparse subset for the original inputs by sphere geodesic search is feasible

(see Figure 4.2(a)). Generally, solving this optimization is intractable due to cardinal-

ity constraint [Pinsler et al., 2019]. Campbell and Broderick [2019] proposed to relax

the constraint in Frank–Wolfe optimization, in which mapping X is usually performed

in a Hilbert space (HS) with a bounded inner product operation. In this solution, the

sphere embedded in the HS replaces the cardinality constraint with a polynomial con-

straint. However, the initialization on D0 affects the iterative approximation to Du at the

beginning of the geodesic search. Moreover, the posterior of p(θ∣D0) is uninformative,

if the initialized D0 is empty or not correct. Therefore, the typical Bayesian core-set

construction of BALD cannot ideally fit an uninformative prior. The another geometric

interpretation of core-set construction, such as k-centers [Sener and Savarese, 2018b],

is not restricted to this setting. We thus follow the construction of k-centers to find the

core-set.

k-centers. Sener and Savarese [2018b] proposed a core-set representation approach

for active deep learning based on k-centers. This approach can be adopted in core-set

construction of BALD without the help of the discriminative model. Therefore, the unin-

formative prior has no further influence on the core-set. Typically, the k-centers approach

uses a greedy strategy to search the data x̃ whose nearest distance to elements of D0 is the

maximal:

x̃ = arg max
xi∈Du

min
ci∈D0

∥xi − ci∥, (4.4)

then D0 is updated by D0 ∪ {x̃, ỹ}, Du is updated by Du/x̃, where ỹ denotes the output of

x̃. This max-min operation usually performs k times to construct the centers.

From the view of geometry, k-centers can be deemed as the core-set construction via

spherical geodesic search [Bādoiu et al., 2002; Har-Peled and Mazumdar, 2004]. Specif-

ically, the max-min optimization guides D0 to be updated into one data, which draws the

longest line segment from xi,∀i across the sphere center. The iterative update on x̃ is then

along its unique diameter through the sphere center. However, this greedy optimization

has large probability that yields the core-set to fall into boundary regions of the sphere,

which cannot capture the characteristics of the distribution.

4.2.2 Initial Acquisitions based on Core-set Construction
We present a novel greedy search which rescales the geodesic of a sphere into an ellip-

soid following Eq. (4.4), in which the iterative update on the geodesic search is rescaled

(see Figure 4.2(b)). We follow the importance sampling strategy to begin the search.

Initial prior on geometry. Initializing p(D0∣θ) is performed with a group of internal

spheres centered with Dj,∀j, subjected to Dj ∈ D0, in which the geodesic between D0

and the unlabeled data is over those spheres. Since D0 is known, specification of θ plays

the key role for initializing p(D0∣θ). Given a radius R0 for any observed internal sphere,
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p(yi∣xi, θ) is firstly defined by

p(yi∣xi, θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, ∃j, ∥xi −Dj∥ ≤ R0,

max

⎧⎪⎪⎨⎪⎪⎩

R0

∥xi −Dj∥

⎫⎪⎪⎬⎪⎪⎭
, ∀j, ∥xi −Di∥ > R0,

(4.5)

thereby θ yields the parameter R0. When the data is enclosed with a ball, the probability

of Eq. (4.5) is 1. The data near the ball, is given a probability of max{ R0∥xi−Dj∥} constrained

by min∥xi −Dj∥,∀j, i.e. the probability is assigned by the nearest ball to xi, which is

centered with Dj . From Eq. (4.3), the information entropy of yi ∼ {y1, y2, ..., yN} over

xi ∼ {x1, x2, ..., xN} can be expressed as the integral regarding p(yi∣xi, θ):

N

∑
i=1

H(yi∣xi,D0) = −
N

∑
i=1∫θ

p(yi∣xi, θ)p(θ∣D0)dθlog(∫
θ
p(yi∣xi, θ)p(θ∣D0))dθ, (4.6)

which can be approximated by −∑N
i=1 p(yi∣xi, θ)log(p(yi∣xi, θ)) following the details of

Eq. (4.3). In short, this indicates an approximation to the entropy over the entire outputs

on Du that assumes the prior p(D0∣θ) w.r.t. p(yi∣xi, θ) is already known from Eq. (4.5).

Max-min optimization. Recalling the max-min optimization trick of k-centers in the

core-set construction of [Sener and Savarese, 2018b], the minimizer of Eq. (4.3) can be

divided into two parts: minx∗ L and maxw L(w), where D0 is updated by acquiring x∗.
However, updates of D0 decide the minimizer of L with regard to the internal spheres

centered with Di,∀i. Therefore, minimizing L should be constrained by an unbiased

full likelihood over X to alleviate the potential biases from the initialization of D0. Let

L0 denote the unbiased full likelihood over X that particularly stipulates D0 as the k-

means centers written as U of X which jointly draw the input distribution. We define

L0 = ∣∑N
i=1Eyi[logp(yi∣xi, θ) +H[yi∣xi,U]]∣ to regulate L, that is

min
x∗

∥L0 − L∥2, s.t. D0 = D0 ∪ {x∗, y∗},Du = Du/x∗. (4.7)

The other sub optimizer is maxw L(w). We present a greedy strategy following Eq. (4.1):

max
1≤i≤N min

wi

N

∑
i=1

wiEyi[logp(yi∣xi, θ) +H[yi∣xi,D0]]

=
N

∑
i=1

wilogp(yi∣xi, θ) −
N

∑
i=1

wip(yi∣xi, θ)logp(yi∣xi, θ),
(4.8)

which can be further written as: ∑N
i=1wilogp(yi∣xi, θ)(1 − logp(yi∣xi, θ)). Let wi = 1,∀i

for unbiased estimation of the likelihood L(w), Eq. (4.8) can be simplified as

max
xi∈Du

min
Dj∈D0

logp(yi∣xi, θ), (4.9)

where p(yi∣xi, θ) follows Eq. (4.5). Combining Eqs. (4.7) and (4.9), the optimization of
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Eq. (4.3) is then transformed as

x∗ = arg max
xi∈Du

min
Di∈D0

⎧⎪⎪⎨⎪⎪⎩
∥L0 − L∥2 + logp(yi∣xi, θ)

⎫⎪⎪⎬⎪⎪⎭
, (4.10)

where D0 is updated by acquiring x∗, i.e. D0 = D0 ∪ {x∗, y∗}.

Geodesic line. For a metric geometry M , a geodesic line is a curve γ which projects

its interval I to M : I → M , maintaining everywhere locally a distance minimizer [Lou

et al., 2020a]. Given a constant ν > 0 such that for any a, b ∈ I there exists a geodesic

distance d(γ(a), γ(b)) ∶= ∫
b

a

√
gγ(t)(γ′(t), γ′(t))dt, where γ′(t) denotes the geodesic

curvature, and g denotes the metric tensor over M . Here, we define γ′(t) = 0, then

gγ(t)(0,0) = 1 such that d(γ(a), γ(b)) can be generalized as a segment of a straight line:

d(γ(a), γ(b)) = ∥a − b∥.
Ellipsoid geodesic distance. For any observation points p, q ∈ M , if the spherical

geodesic distance is defined as d(γ(p), γ(q)) = ∥p − q∥. The affine projection obtains

its ellipsoid interpretation: d(γ(p), γ(q)) = ∥η(p − q)∥, where η denotes the affine factor

subjected to 0 < η < 1.

Optimizing with ellipsoid geodesic search. The max-min optimization of Eq. (4.10)

is performed on an ellipsoid geometry to prevent the updates of core-set towards the

boundary regions, where ellipsoid geodesic line scales the original update on the sphere.

Assume xi is the previous acquisition and x∗ is the next desired acquisition, the ellipsoid

geodesic rescales the position of x∗ as x∗e = xi + η(x∗ −xi). Then, we update this position

of x∗e to its nearest neighbor xj in the unlabeled data pool, i.e. arg minxj∈Du
∥xj − x∗e∥,

also can be written as

arg min
xj∈Du

∥xj − [xi + η(x∗ − xi)]∥. (4.11)

To study the advantage of ellipsoid geodesic search, Appendix B presents our generaliza-

tion analysis.

4.2.3 Model Uncertainty Estimation with Core-set
GBALD starts the model uncertainty estimation with those initial core-set acquisi-

tions, in which it introduces a ranking scheme to derive both informative and representa-

tive acquisitions.

Single acquisition. We follow [Gal et al., 2017] and use MC dropout to perform

Bayesian inference on the model of the neural network. It then leads to ranking the

informative acquisitions with batch sequences is with high efficiency. We first present the

ranking criterion by rewriting Eq. (4.1) as batch returns:

{x∗1, x∗2, ..., x∗b} = arg max
{x̂1,x̂2,...,x̂b}⊆Du

H[θ∣D0] −Eŷ1∶b∼p(ŷ1∶b∣x̂1∶b,D0)[H[θ∣x̂1∶b, ŷ1∶b,D0]], (4.12)

where x̂1∶b = {x̂1, x̂2, ..., x̂b}, ŷ1∶b = {ŷ1, ŷ2, ..., ŷb}, ŷi denotes the output of x̂i. The infor-

mative acquisition x∗t is then selected from the ranked batch acquisitions x̂1∶b due to the
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highest representation for the unlabeled data:

x∗t = arg max
x∗i ∈{x∗1 ,x∗2 ,...,x∗b}

⎧⎪⎪⎨⎪⎪⎩
max
Dj∈D0

p(yi∣x∗i , θ) ∶=
R0

∥x∗i −Dj∥

⎫⎪⎪⎬⎪⎪⎭
, (4.13)

where t denotes the index of the final acquisition, subjected to 1 ≤ t ≤ b. This also adopts

the max-min optimization of Eq. (4.4), i.e. x∗t = arg maxx∗i ∈{x∗1 ,x∗2 ,...,x∗b}minDj∈D0 ∥x∗i −Dj∥.
Batch acquisitions. The greedy strategy of Eq. (4.13) can be written as a batch ac-

quisitions by setting its output as a batch set, i.e.

{x∗t1 , ..., x∗tb′} = arg max
x∗t1 ∶tb′

⊆{x∗1 ,x∗2 ,...,x∗b}
p(y∗t1∶tb′ ∣x∗t1∶tb′ , θ), (4.14)

where x∗t1∶tb′ = {x∗t1 , ..., x∗tb′}, y∗t1∶tb′ = {y∗t1 , ..., y∗tb′}, y∗ti denotes the output of x∗ti , 1 ≤ i ≤ b′,
and 1 ≤ b′ ≤ b. This setting can be used to accelerate the acquisitions of active learning in

a large dataset. Algorithm 4 presents the two-stage GBALD algorithm.

4.2.4 Two-stage GBALD Algorithm
The two-stage GBALD algorithm is described as follows: 1) construct core-set on

ellipsoid (Lines 3 to 13), and 2) estimate model uncertainty with a deep learning model

(Lines 14 to 21). Core-set construction is derived from the max-min optimization of

Eq. (4.10), then updated with ellipsoid geodesic w.r.t. Eq. (4.11), where θ yields a geo-

metric probability model w.r.t. Eq. (4.5). Importing the core-set into D0 derives the deep

learning model to return b informative acquisitions one time, where θ yields a deep learn-

ing model. Ranking those samples, we select b′ samples with the highest representations

as the batch outputs using Eq. (4.14). The iterations of batch acquisitions stop until its

budget is exhaust. The final update on D0 is our acquisition set of active learning.

4.3 Experiments
4.3.1 Experimental Setup

In experiments, we start by showing how BALD degenerates its performance with

uninformative prior and redundant information, and show that how our proposed GBALD

relieves theses limitations.

Our experiments discuss three questions: 1) is GBALD using core-set of Eq. (4.11)

competitive with uninformative prior? 2) can GBALD using ranking of Eq. (4.14) im-

prove informative acquisitions of model uncertainty? and 3) can GBALD outperform

state-of-the-art acquisition approaches? Following the experiment settings of [Gal et al.,

2017; Kirsch et al., 2019], we use MC dropout to implement the Bayesian approximation

of DNNs. Three benchmark datasets are selected: MNIST, SVHN and CIFAR10.

To evaluate the performance of GBALD, several typical baselines from the latest deep

active learning literatures are selected.

• Bayesian active learning by disagreement (BALD) [Houlsby et al., 2011]. It has

been introduced in Section 4.4.3.
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Algorithm 4: Two-stage GBALD Algorithm

1 Input: Data set X , core-set size NM, batch returns b, batch output b′, iteration

budget A.

2 Initialization: α ← 0, core-set M←∅.

3 Stage 1© begins:
4 Initialize θ to yield a geometric probability model w.r.t. Eq. (4.5).

5 Perform k-means to initialize U to D0.

6 Core-set construction begins by acquiring x∗i ,

7 for i← 1,2, ...,NM do

8 x∗i ← arg maxxi∈Du
minDi∈D0

⎧⎪⎪⎨⎪⎪⎩
∥L0 − L∥

2

+ logp(yi∣xi, θ)
⎫⎪⎪⎬⎪⎪⎭
, where

L0 ← ∣∑N
i=1Eyi[logp(yi∣xi, θ) +H[yi∣xi,U]]∣.

9 Ellipsoid geodesic line scales x∗i : x∗i ← arg minxj∈Du
∥xj − [xi + η(x∗ − xi)]∥.

10 Update x∗i into core-set M: M← x∗i ∪M.

11 Update N ← N − 1.

12 end
13 Import core-set to update D0: D0 ←M∪U ′, where U ′ updates each element of U

into their nearest samples in X .

14 Stage 2© begins:
15 Initialize θ to yield a deep learning model.

16 while α < A do
17 Return b informative deep learning acquisitions in one budget:

{x∗1, x∗2, ..., x∗b} ← arg maxx∈Du
H[θ∣D0] −Ey∼p(y∣x,D0)[H[θ∣x, y,D0]].

18 Rank b′ informative acquisitions with the highest geometric

representativeness:

{x∗t1 , ..., x∗tb′} = arg maxx∗t1 ∶tb′ ⊆{x∗1 ,x∗2 ,...,x∗b} p(y
∗
t1∶tb′ ∣x∗t1∶tb′ , θ).

19 Update {x∗t1 , ..., x∗tb′} into D0: D0 ← D0 ∪ {x∗t1 , ..., x∗tb′}.

20 α ← α + 1.

21 end
22 Output: final update on D0.

• Maximize Variation Ratio (Var) [Gal et al., 2017]. The algorithm chooses the unla-

beled data that maximizes its variation ratio of the probability:

x∗ = arg max
x∈Du

{1 −max
y∈Y Pr(y∣, x,D0))}. (4.15)

• Maximize Entropy (Entropy) [Gal et al., 2017]. The algorithm chooses the unla-
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beled data that maximizes the predictive entropy:

x∗ = arg max
x∈Du

{ − ∑
y∈Y

Pr(y∣x,D0))log(Pr(y∣x,D0))}. (4.16)

• k-modoids [Park and Jun, 2009]. A classical unsupervised algorithm that represents

the input distribution with k clustering centers:

{x∗1, x∗2, ..., x∗k} = arg min
z1,z2,...,zk

{
k

∑
i=1

∑
zi∈Xk

∥xi − zi∥}, (4.17)

where X k denotes the k-th subcluster centered with zi, and zi ∈ X ,∀i..

• Greedy k-centers (k-centers) [Sener and Savarese, 2018b]. A geometric core-set

interpretation on sphere. See Eq. (4.4).

• BatchBALD [Kirsch et al., 2019]. A batch extension of BALD which incorporates

the diversity, not maximal entropy as BALD, to rank the acquisitions:

{x∗t1 , ..., x∗tb} = arg max
xt1 ,...,xtb

H(yt1 , ...., ytb) −Ep(θ∣D0)[H(yt1 , ....ytb ∣θ)], (4.18)

where H(yt1 , ...., ytb) denotes the entropy over all possible labels from yt1 to ytb
such that H(yt1 , ...., ytb) = Ep(yt1 , ...ytb)[−logp(yt1 , ...ytb], and the expected entropy

over Ep(θ∣D0)[H(yt1 , ....ytb ∣θ)] is estimated by MC sampling [Roy and McCallum,

2001] [Osborne et al., 2012] a subset from X which approximates the parameter

distributions of θ.

The parameter settings of Eq. (4.5) are R0 = 2.0e + 3 and η =0.9. Accuracy of each

acquired dataset size of the experiments are averaged over 3 runs.
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Figure 4.3 : Acquisitions with uninformative priors from digit ‘0’ and ‘1’.
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4.3.2 Uninformative Priors
As discussed in the introduction, BALD is sensitive to an uninformative prior, i.e.

p(D0∣θ). We thus initialize D0 from a fixed class of the tested dataset to observe its

acquisition performance. Figure 4.3 presents the prediction accuracies of BALD with an

acquisition budget of 130 over the training set of MNIST, in which we randomly select 20

samples from the digit ‘0’ and ‘1’ to initialize D0, respectively. The classification model

of active learning follows a convolutional neural network with one block of [convolution,

dropout, max-pooling, relu], with 32, 3x3 convolution filters, 5x5 max pooling, and 0.5

dropout rate. In the active learning loops, we use 2,000 MC dropout samples from the

unlabeled data pool to fit the training of the network following [Kirsch et al., 2019].

The results show BALD can slowly accelerate the training model due to biased ini-

tial acquisitions, which cannot uniformly cover all the label categories. Moreover, the

uninformative prior guides BALD to unstable acquisition results. As the shown in Fig-

ure 4.3(b), BALD with Bathsize = 10 shows better performance than that of Batchsize

=1; while BALD in Figure 4.3(a) keeps stable performance. This is because the ini-

tial labeled data does not cover all classes and BALD with Batchsize =1 may further be

misled to select those samples from one or a few fixed classes at the first acquisitions.

However, Batchsize >1 may result in a random acquisition process that possibly covers

more diverse labels at its first acquisitions. Another excursive result of BALD is that

the increasing batch size cannot degenerate its acquisition performance in Figure 4.3(b).

Specifically, Batchsize =10 ≻ Batchsize =1 ≻ Batchsize =20,40 ≻ Batchsize =30, where

‘≻’ denotes ‘better’ performance; Batchsize = 20 achieves similar results of Batchsize

=40. This undermines the acquisition policy of BALD: its performance would degenerate

when the batch size increases.

Different to BALD, the core-set construction of GBALD using Eq. (4.11) provides a

complete label matching against all classes. Therefore, it outperforms BALD with the

batch sizes of 1, 10, 20, 30, and 40. As the shown learning curves in Figure 4.3, GBALD

with a batch size of 1 and sequence size of 10 (i.e. breakpoints of acquired size are 10, 20,

..., 130) achieves significantly higher accuracies than BALD using different batch sizes

since BALD misguides the network updating using poor prior.

4.3.3 Improved Informative Acquisitions
Repeated or similar acquisitions delay the acceleration of the model training of BALD.

Following the experiment settings of Section 4.5.1, we compare the best performance of

BALD with a batch size of 1 and GBALD with different batch size parameters. Following

Eq. (4.14), we set b = {3,5,7} and b′=1, respectively, that means, we output the highest

representative data from a batch of highly-informative acquisitions. Different settings on

b and b′ are used to observe the parameter perturbations of GBALD.

Training by the same parameterized CNN model as Section 4.3.2, Figure 4.4 presents

the acquisition performance of parameterized BALD and GBALD. As the learning curves

shown, BALD cannot accelerate the model as fast as GBALD due to the repeated infor-

mation over the acquisitions. For GBALD, it ranks the batch acquisitions of the highly-

informative samples and selects the highest representative ones. By employing this spe-

cial ranking strategy, GBALD can reduce the probability of sampling nearby data of the
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Figure 4.4 : GBALD outperforms BALD using ranked informative acquisitions which

cooperate with representation constraints.

previous acquisitions. It is thus GBALD significantly outperforms BALD, even if we

progressively increase the ranked batch size b.

4.3.4 Active Acquisitions
GBALD using Eqs. (4.11) and (4.14) has been demonstrated to achieve successful im-

provements over BALD. We thus combine these two components into a uniform frame-

work. Figure 4.5 reports the active learning accuracies using different acquisition al-

gorithms on the three image datasets. The selected baselines follow [Gal et al., 2017]

including 1) maximizing the variation ratios (Var), 2) BALD, 3) maximizing the entropy

(Entropy), 4) k-medoids, and one greedy 5) k-centers approach [Sener and Savarese,

2018b]. The network architecture is a three-layer MLP with three blocks of [convolu-

tion, dropout, max-pooling, relu], with 32, 64, and 128 3x3 convolution filters, 5x5 max

pooling, and 0.5 dropout rate. In the active learning loops, the MC dropout still ran-

domly samples 2,000 data from the unlabeled data pool to approximate the training of the

network architecture following [Kirsch et al., 2019]. The initial labeled data of MNIST,

SVHN and CIFAR-10 are 20, 1000, 1000 random samples from their full training sets.

The batch size of the compared baselines is 100, where GBALD ranks 300 acquisi-

tions to select 100 data for the training, i.e. b = 300, b′ = 100. As the learning curves

shown in Figure 4.5, 1) k-centers algorithm performs more poorly than other compared

baselines because the representative optimization with sphere geodesic usually falls into

the selection of boundary data; 2) Var, Entropy and BALD algorithms cannot accelerate

the network model rapidly due to highly-skewed acquisitions towards few fixed classes at

its first acquisitions (start states); 3) k-medoids approach does not interact with the neural

network model while directly imports the clustering centers into its training set; 4) The ac-

curacies of the acquisitions of GBALD achieve better performance at the beginning than

the Var, Entropy and BALD approaches which fed the training set of the network model

via acquisition loops. In short, the network is improved faster after drawing the distri-
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Figure 4.5 : Active acquisitions on MNIST, SVHN, and CIFAR10 datasets.

Table 4.1 : Mean±std of the test accuracies of the breakpoints of the learning curves on

MNIST, SVHN, and CIFAR-10.

Datasets
Algorithms

Var BALD Entropy k-medoids k-centers GBALD

MNIST 0.8419± 0.1721 0.8645±0.1909 0.8498±0.2098 0.8785±0.1433 0.8052±0.1838 0.9106±0.1296
SVHN 0.8535±0.1098 0.8510±0.1160 0.8294±0.1415 0.8498±0.1294 0.7909±0.1235 0.8885±0.1054

CIFAR-10 0.7122±0.1034 0.6760±0.1023 0.6536±0.1038 0.71837±0.1245 0.5890±0.1758 0.7440±0.1087

bution characteristics of the input dataset with sufficient labels. GBALD thus consists

of the representative and informative acquisitions in its uniform framework. Advantages

of these two acquisition paradigms are integrated and present higher accuracies than any

single paradigm.

Table 4.1 reports the mean±std values of the test accuracies of the breakpoints of

the learning curves in Figure 4.5, where breakpoints of MNIST are {0,10,20,30,...,600},

breakpoints of SVHN are {0,100,200, ...,10000}, and the breakpoints of CIFAR10 are {
0,100,200,...,20000 }. We then calculate their average accuracies and std values over these

acquisition points. As the shown in Table 1, all std values around 0.1, yielding a norm

value. Usually, an average accuracy on a same acquisition size with different random

seeds of DNNs, will result a small std value. Our mean accuracy spans across the whole

learning curve.

The results show that 1) GBALD achieves the highest average accuracies; k-medoids

is ranked the second amongst the compared baselines; 2) k-centers has ranked the worst

accuracies amongst these approaches; 3) the others, which iteratively update the training

model are ranked at the middle including BALD, Var and Entropy algorithms. Table 4.2

shows the acquisition numbers of achieving the accuracies of 70%, 80%, and 90% on the

three datasets. The three numbers of each cell are the acquisition numbers over MNIST,

SVHN, and CIFAR10, respectively. The results show that GBALD can use fewer acqui-

sitions to achieve a desired accuracy than the other algorithms.
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Table 4.2 : Number of acquisitions on MNIST, SVHN and CIFAR10 until 70%, 80%, and

90% accuracies are reached.

Algorithms
Accuracies

70% 80% 90%

Var 140/1,700/5,700 150/2,200/>20,000 210/>10,000/>6,100

BALD 110/1,700 /8,800 120 /2,300/>20,000 190/7,100 / >20,000

Entropy 110/1,900/11,200 150/2,400/>20,000 200/8,600/>20,000

k-modoids 70/1,700/5,900 90/2,200/16,000 170/6,200 />20,000

k-centers 110/2,000/10,100 150/3,800/>20,000 280/>10,000/>20,000

GBALD 50/1,400/4,800 70/1,900/12,200 170/3,900/>20,000
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Figure 4.6 : Active acquisitions on SVHN with 5,000 and 10,000 repeated samples.

Table 4.3 : Mean±std of active acquisitions on SVHN with 5,000 and 10,000 repeated

samples.

Algorithms
Accuracies

0 repeated samples 5,000 repeated samples 10,000 repeated samples

Var 0.8535±0.1098 0.8478±0.1074 0.8281±0.1082

BALD 0.8510±0.1160 0.8119±0.1216 0.7689±0.1288

GBALD 0.8885±0.1054 0.8694±0.1032 0.8630±0.1002
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4.3.5 Active Acquisitions with Repeated Samples
Repeatedly collecting samples in the establishment of a database is very common.

Those repeated samples may be continuously evaluated as the primary acquisitions of

active learning due to the lack of one or more kinds of class labels. Meanwhile, this situa-

tion may lead the evaluation of the model uncertainty to fall into repeated acquisitions. To

respond this collecting situation, we compare the acquisition performance of BALD, Var,

and GBALD using 5,000 and 10,000 repeated samples from the first 5,000 and 10,000

unlabeled data of SVHN, respectively. In addition, the unsupervised algorithms which do

not interact with the network architecture, such as k-medoids and k-centers, have been

shown that they cannot accelerate the training in terms of the experiment results of Sec-

tion 4.3.4. Thus, we are no longer studying their performance. The network architecture

still follows the settings of the MLP as Section 4.3.4.

The acquisition results over the repeated SVHN datasets are presented in Figure 4.6

The batch sizes of the compared baselines are 100, where GBALD ranks 300 acquisitions

to select 100 data for the training, i.e. b = 300, b′ = 100. The mean±std values of these

baselines of the breakpoints (i.e. {0,100,200, ...,10000}) are reported in Table 4.3. Re-

sults demonstrate that GBALD shows slighter perturbations on repeated samples than Var

and BALD because it draws the core-set from the input distribution as the initial acquisi-

tion, leading small probability to sample from one or more fixed class. In GBALD, the

informative acquisitions constrained with geometric representations further scatter the ac-

quisitions spread in different classes. However, Var and BALD algorithms have no partic-

ular schemes against the repeated acquisitions. The maximizer on the model uncertainty

may be repeatedly produced by those repeated samples. In additional, the unsupervised

algorithms such as k-medoids and k-centers don not have these limitations, but cannot

accelerate the training since there has no interactions with the network architecture.

4.3.6 Active Acquisitions with Noisy Samples
Noisy labels [Golovin et al., 2010; Han et al., 2018] are inevitable due to human

errors in data annotation. Training on noisy labels, the neural network model will de-

generate its inherent properties. To assess the perturbations of the above acquisition algo-

rithms against noisy labels, we organize the following experiment scenarios: we select the

first 5,000 and 10,000 samples respectively from the unlabeled data pool of the MNIST

dataset and reset their labels by shifting {‘0’,‘1’,...,‘8’} to {‘1’,‘2’,...,‘9’}, respectively.

The network architecture follows MLP of Section 4.3.4. The selected baselines are Var

and BALD.

Figure 4.7 presents the acquisition results of those baseline with noisy labels. The

batch sizes of the compared baselines are 100, where GBALD ranks 300 acquisitions to

select 100 data for the training, i.e. b = 300, b′ = 100. Table 4.4 presents the mean±std

values of the breakpoints (i.e. {0,100,200, ...,10000}) over learning curves of Figure 4.7.

The results further show that GBALD has smaller noisy perturbations than other base-

lines. For Var and BALD, model uncertainty leads high probabilities to sample those

noisy data due to their greatly updating on the model.
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Figure 4.7 : Active noisy acquisitions on SVHN with 5,000 and 10,000 noisy labels.

Table 4.4 : Mean±std of active noisy acquisitions on SVHN with 5,000 and 10,000 noises.

Algorithms
Accuracies

0 noises 5,000 noises 10,000 noises

Var 0.8535±0.1098 0.7980±0.1203 0.7702±0.1238

BALD 0.8510±0.1160 0.8205±0.1185 0.7849±0.1239

GBALD 0.8885±0.1054 0.8622±0.0991 0.8301±0.0916

4.3.7 BatchBALD vs. GBALD
Batch active deep learning was recently proposed to accelerate the training of a DNN

model. In recent literature, BatchBALD [Kirsch et al., 2019] extended BALD with a

batch acquisition setting to converge the network using fewer iteration loops. Different to

BALD, BathBALD introduces diversity to avoid repeated or similar output acquisitions.

How to set the batch size of the acquisitions attracted our eyes before starting the

experiments. It involves with whether our experiment settings are fair and reasonable.

From a theoretical view, the larger the batch size, the worse the batch acquisitions will

be. Experiments results of [Kirsch et al., 2019] also demonstrated this phenomenon. We

thus set different batch sizes to run BatchBALD. Figure 4.8 reports the comparison results

of BALD, BatchBALD, and our proposed GBALD following the experiment settings of

Section 4.3.4. As the shown in this figure, BatchBALD degenerates the test accuracies

if we progressively increase the bath sizes, where BatchBALD with a batch size of 10

keeps similar learning curves as BALD. This means BatchBALD actually can accelerate

BALD with a similar acquisition result if the batch size is not large. That means, if the

batch size is between 2 to 10, BatchBALD will degenerate into BALD and maintains

highly-consistent results.

Also because of this, BatchBALD has the same sensitivity to the uninformative prior.

For our GBALD, the core-set solicits sufficient data which properly matches the input

distribution (w.r.t. acquired data set size ≤ 100), providing powerful input features to start

the DNN model (w.r.t. acquired data set size > 100). Table 4.5 then presents the mean±std
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Figure 4.8 : Comparisons of BALD, BatchBALD, and GBALD of active acquisitions on

MNIST with bath settings.

Table 4.5 : Mean±std of BALD, BatchBALD, and GBALD of active acquisitions on

MNIST with batch settings.

Algorithms Batch sizes Accuracies

BALD 1 0.8654±0.0354

BatchBALD 10 0.8645±0.0365

BatchBALD 40 0.8273±0.0545

BatchBALD 100 0.7902±0.0951

GBALD 3 0.9106±0.1296

of breakpoints ({0,10,20, ...,600}) of active acquisitions on MNIST with batch settings.

The statistical results show GBALD has much higher mean accuracy than BatchBALD

with different bath sizes. Therefore, evaluating the model uncertainty of DNN using

highly-representative core-set samples can improve the performance of the neural net-

work.

4.4 Discussions
4.4.1 Acceleration of Accuracy

Accelerations of accuracy i.e. the first-orders of breakpoints of the learning curve,

describe the efficiency of the active acquisition loops. Different to the accuracy curves, the

acceleration curve reflects how active acquisitions help the convergence of the interacting

DNN model.

We thus firstly present the acceleration curves of different baselines on MNIST, SVHN,

and CIFAR10 datasets following the experiments of Section 4.3.4. The acceleration

curves of active acquisitions are drawn in Figure 4.9. Observing those acceleration curves

of different algorithms clearly finds that, GBALD always keeps higher accelerations of
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(c) CIFAR10

Figure 4.9 : Accelerations of accuracy of different baselines on MNIST, SVHN, and

CIFAR10 datasets.
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Figure 4.10 : Accelerations of accuracy of active acquisitions on SVHN with 5,000 and

10,000 repeated samples.

accuracy than the other baselines against the three benchmark datasets. This revels the

reason of why GBALD can derive more informative and representative data to maximally

update the DNN model.

The acceleration curves of active acquisitions with repeated samples are presented

in Figure 4.10. As the shown in this figure, GBALD presents slighter perturbations to

the number of repeated samples than that of Var and BALD due to its effective ranking

scheme on optimizing model uncertainty of DNN. The acceleration curves of active noisy

acquisitions are drawn in Figure 4.11. Compared to Figure 4.7, it presents more intuitive

descriptions for the noisy perturbations to different baselines. With horizontal compar-

isons to acceleration curves of Var and BALD, our proposed GBALD has smaller noisy

perturbations due to 1) the powerful core-set which properly captures the input distribu-

tion, and 2) highly representative and informative acquisitions of model uncertainty.

4.4.2 Hyperparameter Settings
What is the proper time to start active acquisitions using Eq. (4.14) in GBALD frame-

work? Does the ratio of core-set and model uncertainty acquisitions affect the perfor-
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Figure 4.11 : Accelerations of accuracy of active noisy acquisitions on SVHN with 5,000

and 10,000 noisy labels.

Table 4.6 : Relationship of accuracies and sizes of core-set on SVHN.

Size of core-set
Accuracies

Start accuracy Ultimate accuracy Mean±std accuracy

NM = 1,000 0.8790 0.9344 0.9134±0.0169

NM = 2,000 0.8898 0.9212 0.9151±0.0148

NM = 3,000 0.8848 0.9364 0.9173±0.0138

NM = 4,000 0.8811 0.9271 0.9146±0.0165

NM = 5,000 0.8959 0.9342 0.9197±0.0117

mance of GBALD?

We discuss the key hyperparameter of GBALD here: core-set size NM. Table 4.6

presents the relationship of accuracies and the sizes of core-set, where the start accuracy

denotes the test accuracy over the initial core-set, and the ultimate accuracy denotes the

test accuracy over up to Q = 20,000 training data. Let b = 1000, b′ = 500 in GBALD, NM
be the number of the core-set size, the iteration budget A of GBALD then can be defined

as A = (Q − NM)/b′. For example, if the number of the initial core-set labels are set as

NM = 1,000, we haveA = (Q−NM)/b′ ≈ 38; ifNM = 2,000, thenA = (Q−NM)/b′ ≈ 36.

From Table 4.6, GBALD algorithm keep stable accuracies over the start, ultimate, and

mean±std accuracies when there inputs more than 1,000 core-set labels. Therefore, draw-

ing sufficient core-set labels using Eq. (4.11) to start the model uncertainty of Eq. (4.14)

can maximize the performance of our GBALD framework.

Hyperparameter settings on batch returns b and bath outputs b′. Experiments of

Sections 4.3.2 and 4.3.3 used different b and b′ to observe the parameter perturbations.

No matter what the settings of b′ and b are, GBALD still outperforms BALD. For single

acquisition of GBALD, we suggest b = 3 and b′ = 1. For bath acquisitions, the settings on

b′ and b are user-defined according the time cost and hardware resources.
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Hyperparameter setting on iteration budget A. Given the acquisition budget Q, let

b′ be the number of the output returns at each loop, NM be the number of the core-set

size, the iteration budget A of GBLAD then can be defined as A = (Q −NM)/b′.
Other hyperparameter settings. Eq. (4.5) has one parameter R0 which describes

the geometry prior from probability. The default radius of the intern balls R0 is used to

legalize the prior and has no further influences on Eq. (4.10). It is set as R0 = 2.0e + 3 for

those three image datasets. Ellipsoid geodesic is adjusted by η which controls how far of

the updates of core-set to the boundaries of the distributions. It is set as η = 0.9 in this

paper.

Advantages of GBALD. The aforementioned scenarios of active learning in Chap-

ters 2 and Chapter 3 are insufficient labels and null hypothesis, respectively. Therefore,

they are negative settings. For agnostic scenarios, GBALD may have advantages, i.e., it

performs robustly whether in setting of insufficient labels or null hypothesis.

Time complexity of GBALD. In the first stage of GBALD, the core-set construction

costs at most O(NNM). For the second stage, the time complexity of the Bayesian model

is decided by the parameterized network configuration.

4.4.3 Two-sided t-test
We present two-sided (two-tailed) t-test for the learning curves of Figure 4.5. Dif-

ferent to the mean± std of Table 4.1, t-test can enlarge the significant difference of those

baselines. In typical t-test, the two groups of observations usually require a degree of

freedom smaller than 30. However, the numbers of breakpoints of MNIST, SVHN, and

CIFAR10 are 61, 101, and 201, respectively, thereby holding a degree of freedom of 60,

100, 200, respectively. It is thus we introduce t-test score to directly compare the signifi-

cant difference of pairwise baselines.

t-test score between any pair group of breakpoints are defined as follows. Let B1 =
{α1, α2, ..., αn} and B2 = {β1, β2, ..., βn}, there exists t-score of

t − score =
√
n
μ

σ
,

where μ = 1
n ∑

n
i=1(αi − βi), and σ =

√
1

n−1 ∑n
i=1(αi − βi − μ)2.

In two-sided t-test, B1 beats B2 on breakpoints αi and βi satisfying a condition of

t−score > ν; B2 beats B1 on breakpoints αi and βi satisfying a condition of t−score < −ν,

where ν denotes the hypothesized criterion with a given confidence risk. Following [Ash

et al., 2019], we add a penalty of 1
e to each pair of breakpoints, which further enlarges their

differences in the aggregated penalty matrix, where e denotes the number of B1 beats B2

on all breakpoints. All penalty values finally calculate their L1 expressions.

Figure 4.12 presents the penalty matrix over learning curves of Figure 4.5. Column-

wise values at the bottom of each matrix show the overall performance of the compared

baselines. As the shown results, GBALD has significant performances than that of the

other baselines over the three datasets. Especially for SVHN, it has superior performance.
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(a) MNIST (b) SVHN (c) CIFAR10

Figure 4.12 : A pairwise penalty matrix over active acquisitions on MNIST, SVHN,

and CIFAR10. Column-wise values at the bottom of each matrix show the overall per-

formance of the compared baselines (larger value has more significant superior perfor-

mance).

4.5 Summary of This Chapter
This chapter introduced a novel Bayesian active learning framework, GBALD, from

the geometric perspective, which seamlessly incorporates representative (core-set) and in-

formative (model uncertainty estimation) acquisitions to accelerate the training of a DNN

model. Our GBALD yields significant improvements over BALD, flexibly resolving the

limitations of an uninformative prior and redundant information by optimizing the acqui-

sition on an ellipsoid. Compared to the representative or informative acquisition algo-

rithms, experiments show that our GBALD spends much fewer acquisitions to accelerate

the accuracy. Moreover, it keeps slighter accuracy reduction than other baselines against

repeated and noisy acquisitions.
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Chapter 5

Conclusion
5.1 Thesis Summarization

Active learning of halfspace provides theoretical guarantees for realizable supervi-

sion sampling with distribution and noise assumptions. The typical error disagreement

coefficient derives iterative pruning in the hypothesis class over the version space. How-

ever, the pruning process is limited by the initialization of the input hypothesis and the

estimation of the coefficient. This generates a challenging gap between those theoretical

guarantees and application performance of active learning. Three questions thus arising

from theoretical view to realizable framework were studied in this thesis.

• How to reduce the typical theoretical bounds of label complexity? Chapter 2

answered the first question by proposing a novel perspective of shattering the input

distribution, which characterizes any hypothesis using a lower bound on the VC di-

mension. With lower generalization error and label complexity in the shattered dis-

tribution, an shattering algorithm termed SDAL is proposed, which yields slighter

perturbations to adversarial and noisy samples than other typical active learning

algorithms.

• How to control hypothesis update without errors when estimating the error
disagreement is infeasible? Chapter 3 answered the second question by proposing

a novel distribution disagreement graph coefficient, which is a feasible alternative

against active learning without sufficient supervisions. Our theoretical results fur-

ther proved that the proposed coefficient yields tighter label complexity bound than

that of error disagreement. Generalization of distribution disagreement via focal

representation in hyperbolic space showed significant accuracy improvements than

the other related baselines.

• How to improve deep active learning based on the theoretical results of half-
space learning? Chapter 4 answered the third question by proposing a geometric

Bayesian active learning framework, which incorporates the core-set construction

and model uncertainty estimation, interacting with a deep learning model. Experi-

ment results showed that the derived two-stage GBALD algorithm can spend fewer

labels to achieve a desired accuracy than other state-of-the-art active deep learning

baselines.

5.2 Future Work
There still remains some potential work in future.
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• Active teaching: explain active learning from machine teaching. Performance

disagreements of hypothesis-pruning and distribution-shattering strategies should

be studied in different distribution assumptions and noise conditions. Closed-form

learning functions also can be produced to observe the potential bounds on error

and label complexity. This can be further studied by machine teaching [Liu et al.,

2018], which is an inverse problem of machine learning. In machine teaching, the

teacher steers the student learner towards its target hypothesis, which assumes the

teacher has already known the learning parameters of the model. Given the param-

eter distributions, machine teaching can help active learner to predict its feasible

error threshold and estimate the label complexity bounds. It is thus active teaching

can be a possible direction to improve our work in future.

• Safety guarantees of aspherical focal representation. The focal representations

adopted in a tree-likeness splitting manner can accelerate the training of a deep

neural network using fewer labels than centroid-based active learning algorithms.

However, the input distribution is assumed as aspherical, which lacks theoretical

guarantees. Moreover, the first splitting of the tree-likeliness algorithm affects the

subsequent splitting process, which needs more safety guarantees. Otherwise, the

splitting would be misled. In importance sampling, learning in surrogate represen-

tations of input distribution can keep consistent properties for the machine learning

model but eliminates the perturbations from low-informative samples. Theoreti-

cally, a desired safety guarantee [Beygelzimer et al., 2009b] expects that the perfor-

mance of a machine learning algorithm keeps a provable consistency on its inherent

optimal hypothesis. Therefore, developing a set of safety guarantee theories can re-

duce the gaps between aspherical focal and spherical centroid representations.

• Auto-active learning. What is the proper time to start the model uncertainty es-

timation of a deep learning mode? It also means that how to settle the size of the

initial core-set? Introducing auto-machine learning may derive an explicit discrim-

inator to maximize the potential performance of GBALD. This discriminator can

be generalized from automated machine learning [Feurer et al., 2015], which estab-

lishes a uniform framework to develop a complete pipeline from input distribution,

deriving the best model parameters, desired training set, etc. It is thus building

an auto-active learning pipeline can allow non-expert learners to intelligently se-

lect their desired annotations without the iterative querying from the unlabeled data

pool.
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Appendix
A. Proofs of Chapter 2

Proof of Lemma 1

Proof. The proof can be adapted from [Balcan et al., 2007] and [Dasgupta et al., 2005].

Proof of Lemma2

Proof. In the shattered distribution over H∗, let NH∗ = N(ε, δ,H∗). Then, we obtain

NH > NH∗ ≥ In( 1
2ε)In(16ε2 ( 1√

2
m−2 In(6ε ) + In(4N

2
H∗

δ )), in which NH is described in Balcan

et al. [2006]. Then, δ′H∗ < δ′H. The lemma is as stated.

Proof of Theorem 1

Proof. Following [Dasgupta et al., 2008], assume errD(hi,Z)−errD(h′i,Z) = G =
√
EZ[y+hi,h′i

]+
√
EZ[y−hi,h′i

] for any Z ×{+1,−1}, where G ∶= {G ∶ (hi, hi) ∈ H×H}, then the i.i.d sample

Z of size t from D satisfies

errD(hi,Z) − errD(h′i, Z) ≤ errD(hi) − errD(h′i)
+ α2

t + αt(
√
EZ[y+hi,h′i

] +
√
EZ[y−hi,h′i

]).
(A.1)

With a similar inequality in the shattered distribution, let α′t =
√
(8/n)In(8S(H∗,2t)2)/δ,

G′ ∶= {G′ ∶ (hi, hi) ∈ H∗ ×H∗},

Δ′ ≤ (errD′(hi, Z) − errD(hi, Z)))
\^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`

γ1

+ (errD′(h′i, Z) − errD(h′i,Z))\^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`
γ2

+(α2
t − α′2t )

\^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^`
γ3

+ (αtG − αtG′)
\^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^`

γ4

.

(A.2)

Let us rewrite the above equation as Δ′ ≤ γ1 + γ2 + γ3 + γ4 for the four parts, where

each part is within a pair of brackets. Considering the number density ofD′ is smaller than

that of D, there exists errD′(hi) ≤ errD(hi),∀i and errD′(h′i) ≤ errD(h′i),∀i. Therefore,

γ1, γ2 ≤ 0. For the VC dimension, since Vcdim(H∗) = d′ < Vcdim(H) = d, then we have

S(H∗,2n) ≤ O((2n)d′) ≤ S(H,2n) ≤ O((2n)d). Then, γ3 + γ4 ≤ 0.
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Proof of Lemma 4

Proof. Apply errt(h+1) − errt(h−1) > Δt in Lemma 4, we have errt(h+1) > β2
t . Then,

there exists the inequality of

errt(h+1) − errt(h−1) = (errt(h+1) − errt(h∗))
\^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`

ξ1

+ (errt(h∗) − errt(h−1))
\^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^`

ξ2

.
(A.3)

Let us rewrite this inequality as Δ′′ = ξ1 + ξ2, we then have

ξ1 >
√
errt(h+1)(

√
errt(h+1) −

√
errt(h∗))

> βt(
√
errt(h+1) −

√
errt(h∗)).

(A.4)

ξ2 = (errt(h∗) − errt(h+1)) + (errt(h+1) − errt(h−1))
>
√
errt(h+1)(

√
errt(h∗) −

√
errt(h+1) +Δt

> βt(
√
errt(h∗) −

√
errt(h+1) + β2

t +Δt.

(A.4)

Therefore,

ξ1 + ξ2 > 2β2
t + βt(

√
errt(h+1) +

√
errt(h−1))

> 2β2
t + βt(

√
errt(h+1) −

√
errt(h−1))

> 2β2
t + βt(ξ1 + ξ2).

(A.5)

Now, we have (1 − β)(ξ1 + ξ2) > 2β2
t . Then, the lemma follows.

Proof of Theorem 2

Proof. Using Lemma 4, we obtain errD′(h∗)−errD′(hf) ≥ β2
k+βk(

√
errk(h+1)+

√
errk(h−1)).

Let ν = errD′(h∗) then

errD′(hf) ≤ ν + β2
k + βk(

√
ν +

√
errk(hf))

≤ (
√
ν + βk)2.

(A.6)

B. Proofs of Chapter 3
Proof of Theorem 5.
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Proof. In the sampling process, Importance Weighted Active Learning (IWAL) algorithm

of [Beygelzimer et al., 2009a] provided the label complexity in terms of θ. The general-

ization type associated with the probability observations Ft is defined as:

θ ≥
E

x∼D[pt∣Ft−1]
4K�(R∗ + 2Δt−1)

, (B.1)

where K� is the slope asymmetry that satisfies K� = sup
x,x′

nnnnnnnnnnn

max
y∈Y

�(h(x),y)−�(h′(x),y)
min
y∈Y

�(h(x),y)−�(h′(x),y)
nnnnnnnnnnn
. Specifi-

cally, slope asymmetry describes the sensitive of loss function �(⋅, ⋅) to the label complex-

ity, that is, a sensitive loss usually derives a coarse estimation on updating hypothesis,

then requesting large number of labels to achieve a desired error.

By adopting the approximation condition of Assumption 1, we know:

L(G,G∗) ∶= E
h∈H �(h(x), y) − E

h∗∈H �(h
∗(x), y)

= R(h) −R(h∗).
(B.2)

Following the proof in IWAL, for any sampling time t, R(h∗) ≥ R(h) − 4Δt−1. We then

know:

L(G,G∗) ≤ 4Δt−1. (B.3)

Let B(G, rG) be the hypothesis ball over G, where rG denotes its hypothesis radius.

For any G embedded in B(G, rG), the disagreement between any pair of the hypothe-

ses is smaller than the hypothesis diameter of the ball, i.e. L(G,G∗) ≤ 2rG. We thus

use rtG = 2Δt−1 to define the radius of B(G, rG), which means that rG can be used in

a sampling process without hypothesis. Further the current hypothesis set Ht satisfies

Ht ∈ B(h∗, rt) ∶= B(G∗, rG). Hence for any t, we know:

E
x∼D[pt∣Ft−1] ≤ 2 E

t∼B(h∗,rt)
rt ∶= 2θGr

tG , (B.4)

which leads to the following inequality of

θG ≥
E

x∼D[pt∣Ft−1]
4Δt−1

. (B.5)

The second step is to prove the inequality relationship between θ and θG. Based on

Eq. (1.2) and (1.4), we know:

L(G,G′) ≤ L(h,h′) ≤ E
h∈H �(h(x), y) − E

h∗∈H �(h
∗(x), y)

= 2(R(h) −R(h∗)).
(B.6)
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In other word, the hypothesis diameter relations of B(G∗, rG) and B(h∗, r) satisfies:

DIA(B(G∗, rG)) < DIA(B(h∗, r)), where DIA(⋅) denotes the hypothesis diameter

function. Then, we know their volume relations: V OL(B(G∗, rG)) < V OL(B(h∗, r)),
where V OL(⋅) denotes the volume function. Thus, we know B(G∗, rG)) ⊂ B(h∗, r). By

the definition of θ, we know θ ≥ θG.

Proof of Theorem 6.

Proof. Given the linearity of Euclidean inner product, we transfer the maximization issue

of Theorem 2 into:

max
μ∈Rd

n

∑
i=1

wi ⟨xi, μ⟩R =max
μ∈Rd

n

∑
i=1
⟨wixi, μ⟩R . (B.7)

For any vector u,v ∈�d, ⟨u,v⟩R is maximized when u = v. Therefore, this maximization

issue is equivalent to find the linear relation of ∑n
i=1wi ⟨xi, μ⟩R and μ. Here we define a

parameter ψ to describe the above mapping: μ = (ψ∑n
i=1wixi). The maximization then

is to calculate a desired ψ that makes the inner product of ⟨∑n
i=1wixi, μ⟩R = B.

Given a vector u ∈ �d that satisfies ⟨u, u⟩R = B. We define another vector v = 1∥u∥Ru
which satisfies ⟨v, v⟩R = 1. Then, we know B ⟨v, v⟩R = ⟨

√
Bv,

√
Bv⟩R = B. Next, we

model ψ∑n
i=1wixi and μ by

√
Bv = ψ

n

∑
i=1

wixi = μ. (B.8)

Let us calculate the norms of
√
Bv and ψ∑n

i=1wixi: ∥
√
Bv∥R = ∥ψ∑n

i=1wixi∥R. We then

have
√
B∥v∥R = ψ∥∑n

i=1wixi∥R, i.e.
√
B ⟨v, v⟩R = ψ∥∑n

i=1wixi∥R =
√
B. We thus obtain

ψ =
√
B

∥∑n
i=1wixi∥R

. (B.9)

Then, we know the center is formulated as:

μ =
√
B ∑n

i=1wixi

∥∑n
i=1wixi∥R

. (B.10)

Proof of Theorem 7.

Proof. With the invertible mapping of h(u) = 1

1+√1+∑d
i=1 u

2
i

(u1, u2, ..., ud) ∈ Pd in a hyper-

boloid model, Nickel and Kiela [2018] provided an equivalent formulation of dP in the

unit hyperboloid mode using a mapping function h(u). When B = 1, the distance function
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of the hyperboloid model exists following equivalence from the Poincaré distance dP :

dH(u,v) = dP(h−1(u), h−1(v))
= cosh−1( − ⟨h−1(u), h−1(v)⟩L ).

(B.11)

Therefore, the minimizer of minμ∈Pd ∑n
i=1widP(xi, μ) equals minμ∈Pd ∑n

i=1wicosh−1(−
⟨h−1(xi),h−1(μ)⟩L ) with same constraints on μ. We can observe this minimization has

no closed-form solution due to cosh−1(⋅) is non-convex.

Proof of Proposition 5.

Proof. The proof follows Theorem 6 by revising v = 1

∥∣u∥L∣u which satisfies ⟨v, v⟩L = −B
due to the negative characteristics of the Lorentzian inner product.

C. Specification of θ and θG
Specification of θ. Suppose that the initialized labeled set is the first 20 samples of the

digit ‘1’ which has an the best-in-class accuracy of 0.1135 that stipulates the learning risk

of h as R(h) = 1−0.1135. Based on Eq. (3.2), we generalize the hypothesis disagreement

by the risks, that is, L(h∗(x), h(x)) = ∣(1 − 0.9980) − (1 − 0.1135)∣ = 0.8845.

To derive a realizable hyperparameter θ which estimates the error disagreements, we

design a set of r ∈ {1,2,⋯,10} to determine the minimum value of θ, and we then

have {(r, θ)} = {(1,0.8845), (2,0.4423), (3,0.2948), (4,0.2211), (5,0.1769), (6,0.1474),

(7,0.1264), (8,0.1106), (9,0.0983), (10,0.0885)}, where θ = 0.8845
r following Eq. (3.2).

Such diverse settings on the radius r make the AL sampling using θ can start properly.

Specification of θG. To derive a realizable θG, we use a simple Euclidean distance

to measure the distribution disagreement of the input and selected data. Let f(x, x′) =
∥x − x′∥2, then L(G,G′) = E

x∼G,x′∼G′ [∥x − x′∥2]. With Assumption 1, the optimal hypoth-

esis/subgraph is defined over the full training set. Following the specification of θ, G is

still defined over the first 20 training samples of digit ‘1’ in MNIST.

Based on the generalized function L(G,G′), we know: L(G,G∗) = 1.2965e + 03 and

L(G,G) = 1.2603e + 03. To generalize the proposition of Eq. (3.8) on G and G∗, the

distribution disagreement L(G,G∗) is defined as the hypothesis disagreement ρ(h,h∗),
which is assumed to be tighter than the another disagreement metric of L(h,h∗). That

is, L(G,G∗) ∶= ρ(h,h∗) < L(h,h∗). To satisfy the above inequality, following the spec-

ification of θ on L(h,h∗), we have: ρ(h,h∗) = 1 − α < L(h,h∗) = 0.8845. We thus set

α = 0.9900 to satisfy 1 − 0.9900 < 0.8845. Then L(G,G) is rescaled as

L̃(G,G) = (L(G,G)/L(G,G∗)) ∗ α = (1.2603e + 03/1.2965e + 03) ∗ 0.9900 = 0.9624.

Based on Eq. (3.3), L(G∗,G′) = α − L̃(G,G) = 0.9900 − 0.9624 = 0.0276.
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With the same setting of the radius rG = r, we obtain the following diverse settings on

(rG, θG), that is, {(rG, θG)} = {(1,0.0276), (2,0.0138), (3,0.0092), (4,0.0069), (5,0.0055),

(6,0.0046), (7,0.0039), (8,0.0034), (9,0.0031), (10,0.0028)}, where θG = 0.0276
r following

Eq. (3.4). It is thus θ ≥ θG for any r holds with the above test settings. This asserts that

our analysis is reasonable for the inequality in Eq. (3.8).


	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Active Learning of Halfspace
	1.2.2 Error Disagreement

	1.3 RelatedWork
	1.3.1 Halfspace Learning
	1.3.2 Hyperbolic Geometry
	1.3.3 Deep Active Learning

	1.4 Contributions
	1.4.1 Tighter Label Complexity Bounds
	1.4.2 Distribution Disagreement
	1.4.3 A Unified Framework

	1.5 Thesis Organizations
	1.6 Publications

	2 Distribution Shattering
	2.1 Main Theoretical Insights
	2.1.1 Error Disagreement of Hypothesis-pruning
	2.1.2 Sparse Hypothesis Class
	2.1.3 Performance Disagreement

	2.2 Hypothesis and Distribution
	2.2.1 Monotonic Property of the Active Query Set
	2.2.2 Error Rate Change by Shattering Number Density
	2.2.3 Bottleneck of Hypothesis-pruning

	2.3 Distribution-shattering for Active Learning
	2.3.1 Shattering: From Halving to Splitting
	2.3.2 Halving Number Density for Shattered Distribution
	2.3.3 Advantages of Shattered Distribution
	2.3.4 Distribution-shattering for Active Learning Tasks

	2.4 Experiments
	2.4.1 Experimental Setup
	2.4.2 Effectiveness of Halving
	2.4.3 Optimal Error of Querying
	2.4.4 Average Error of Querying
	2.4.5 Querying with Adversarial Examples
	2.4.6 Querying with Noisy Labels
	2.4.7 Calculation Complexity

	2.5 Discussions
	2.5.1 Distribution-shattering and Experimental Design
	2.5.2 Learning Curves of Sequential Sampling in Shattered Space

	2.6 Summary of This Chapter

	3 Distribution Disagreeing
	3.1 Distribution Disagreement Graph Coefficient
	3.1.1 Graph Coefficient
	3.1.2 Tightness of Approximation
	3.1.3 Why Hyperbolic Geometry?

	3.2 Hyperbolic Focal Representation
	3.2.1 Squared Lorentzian Distance
	3.2.2 Geometric Centroids
	3.2.3 Lorentzian Focal Point Approximation
	3.2.4 Lorentzian Focal Representation
	3.2.5 Tree-likeness Splitting

	3.3 Experiments
	3.3.1 Experimental Setup
	3.3.2 Centroid vs. Focal Representations
	3.3.3 Deep Active Learning with ResNet20
	3.3.4 Learning Curves of ResNet20
	3.3.5 Visualization of Lorentzian Focal Representations
	3.3.6 Batch Performance of Deep Active Learning

	3.4 Discussions
	3.4.1 Deep Active Learning withWeak-supervision
	3.4.2 Limitations of Our Approach
	3.4.3 Computational Complexities

	3.5 Summary of This Chapter

	4 Distribution Matching
	4.1 Bayesian Active Learning by Disagreements
	4.1.1 Interpretations

	4.2 Framework
	4.2.1 Geometric Interpretation of Core-set
	4.2.2 Initial Acquisitions based on Core-set Construction
	4.2.3 Model Uncertainty Estimation with Core-set
	4.2.4 Two-stage GBALD Algorithm

	4.3 Experiments
	4.3.1 Experimental Setup
	4.3.2 Uninformative Priors
	4.3.3 Improved Informative Acquisitions
	4.3.4 Active Acquisitions
	4.3.5 Active Acquisitions with Repeated Samples
	4.3.6 Active Acquisitions with Noisy Samples
	4.3.7 BatchBALD vs. GBALD

	4.4 Discussions
	4.4.1 Acceleration of Accuracy
	4.4.2 Hyperparameter Settings
	4.4.3 Two-sided t-test

	4.5 Summary of This Chapter

	5 Conclusion
	5.1 Thesis Summarization
	5.2 Future Work

	References
	Appendix



