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DEVELOPMENT OF SEMI-QUANTITATIVE EARTHQUAKE RISK 
ASSESSMENT MODELS USING MACHINE LEARNING, MULTI-CRITERIA 

DECISION-MAKING, AND GIS 

By 

RATIRANJAN JENA 

October 2020 

Supervisor: Professor Biswajeet Pradhan,  

Abstract 

Catastrophic natural hazards, such as earthquakes, pose serious threats to properties and 

human lives in urban areas. Earthquake risk assessment (ERA) is specifically required for 

areas with complicated tectonics because of the catastrophic nature of mega-events that 

result in a massive death toll. Therefore, ERA is indispensable in disaster management. 

The prerequisite for earthquake risk estimation is probability, hazard and vulnerability 

assessment. Several research gaps such as failure to establish comprehensive GIS-based 

models, not much work on ERA has been done in city scale using integrated geospatial 

information system (GIS) techniques, use of limited conditioning factors, and little 

research on optimization of factors are specified in literature. Therefore, this study aims 

to develop models and estimate risk in city scale that is necessary to reduce future 

fatalities. The study evaluates the earthquake vulnerability by using the multi-criteria 

decision-making approach through a novel integrated analytical hierarchy process and 

VIseKriterijumska Optimizacija I Kompromisno Resenje method using a geographical 

information system in the first objective. This research develops an integrated model by 

using the artificial neural network–analytic hierarchy process for constructing the ERA 

map in the second objective. The third objective presents a novel combination of artificial 

neural network cross-validation (fourfold ANN-CV) with a hybrid analytic hierarchy 

process-Technique for Order of Preference by Similarity to Ideal Solution (AHP-

TOPSIS) method to improve the ERA and applied to Aceh, Indonesia to test. 

Firstly, in the objective 1, several factors were used to produce social vulnerability, 

structural vulnerability, and geotechnical vulnerability indices. Subsequently, the adopted 

approaches were integrated and applied to estimate the criteria weight, priority ranking, 
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and alternatives of criterion by applying the pair-wise comparison at all levels. Finally, 

vulnerability layers were superimposed to estimate the earthquake vulnerability index and 

produce the vulnerability map. The proposed method for earthquake vulnerability 

assessment (EVA) provides useful information that could assist in earthquake disaster 

mitigation. 

Secondly, in the objective 2, the aim of the ERA was to quantify urban population risk 

that may be caused by impending earthquakes. The ANN is used for probability mapping, 

whereas AHP is used to assess urban vulnerability after the hazard map is created with 

the aid of earthquake intensity variation thematic layering. The risk map is subsequently 

created by combining the probability, hazard, and vulnerability maps. Then, the risk 

levels of various zones are obtained. The validation process reveals that the proposed 

model can map the earthquake probability based on historical events with an accuracy of 

84%. The model is applied to the city of Banda Aceh in Indonesia, a seismically active 

zone of Aceh province frequently affected by devastating earthquakes. The findings of 

this research are useful for government agencies and decision-makers, particularly in 

estimating risk dimensions in urban areas and for future studies to project the 

preparedness strategies for Banda Aceh.  

Thirdly, in the objective 3, this study explored and specified the major indicators needed 

to improve the predictive accuracy in probability mapping. Previous studies have 

suggested that neural networks improve the probability mapping on a city scale. The 

network architecture design with the probability index remains unexplored in case of an 

earthquake-based probability study. First, probability mapping was conducted and used 

for hazard assessment in the next step. Second, a vulnerability map was created based on 

social and structural factors. Finally, hazard and vulnerability indices were multiplied to 

produce the ERA, and the population and areas under risk were calculated. The proposed 

model achieved an improve accuracy of 85.4%. The model’s performance changes based 

on the input parameters, indicating the selection and importance of input layers on 

network architecture selection. The proposed model was found to generalize better results 

than traditional and some existing probabilistic models.  

The proposed models are transferable to other regions by localizing the input parameters 
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that contribute to earthquake risk mitigation and prevention planning. Therefore, as a case 

study, the third model was implemented to estimate the earthquake risk based on 

probability and hazard in Palu region along with cross-correlation among the derived 

parameters, Silhouette clustering (SC), pure locational clustering (PLC) based on 

hierarchical clustering analysis (HCA). There is no specific or simple way of identifying 

risks as the definition of risk varies with time and space. The main aim of this study was 

to conduct the clustering analysis to identify the earthquake prone areas, to estimate 

probability based on ANN-CV technique, and to assess earthquake risk. Using ANN-CV 

model the probability assessment was conducted while SC and PLC were implemented 

to understand the spatial clustering, Euclidean distance among clusters, spatial 

relationship and cross-correlation among the estimated Mw, PGA and intensity including 

events depth. Finally, AHP was implemented for the vulnerability assessment. To this 

end, earthquake probability assessment (EPA) and earthquake vulnerability assessment 

(EVA) results were employed to generate risk. These results obtained from this research 

have important implications for future large-scale risk assessment, land use planning and 

hazard mitigation.  

The current research designs novel combination of multi-criteria decision making 

(MCDM), machine learning and GIS to develop models such as AHP-VIKOR, neural 

network-AHP and k-fold neural network cross-validation (Fourfold ANN-CV) with a 

hybrid AHP-TOPSIS method for probability, hazard, vulnerability, risk estimation and 

the ERA improvement in a city scale. 

Keywords: Earthquake, probability, hazard, vulnerability, risk, machine learning, multi-

criteria decision making, integrated models development 
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CHAPTER 1 

INTRODUCTION 

This chapter reflects a general introduction, research background along with geotectonic 

setting, and earthquakes in Indonesia.This chapter also reveals the main context of the 

study, structure, problem statement, specified objectives, research goal, research plan, 

specific research questions, motivation, research limitation, and thesis organization. It 

addresses the earthquake impacts and provides the importance and significance of 

earthquake risk assessment.  

1.1. General introduction 

Natural hazards, such as earthquakes, landslides, floods, and fires are the major types that 

increase casualties, damage, and loss of property. These hazards significantly affect the 

social community, infrastructures, and local environment. Earthquake is a natural 

phenomenon that is characterized by a short period, but its impacts on valuable 

infrastructures and buildings or bridges, persist for years. Therefore, a study on 

earthquake is a major research field to investigate and analyze the effective contribution 

of geospatial information system (GIS) and remote sensing techniques for the detection 

of potential areas of earthquakes. By definition, a hazard is a potential threat to a particular 

place (Brooks 2003). The conditions determined by various factors, which can increase 

the susceptibility of the impact of hazard to any community is called vulnerability and the 

risk is the probability of harmful consequences or expected losses as a product of hazard, 

vulnerability and coping capacity (McGuire 1978, 1995; Yohe & Tol 2002). For the 

analysis of susceptibility to seismic amplification, conditions of local site effects play an 

important role. So large earthquakes can cause damages in which ground shaking is a 
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primary effect and the collateral secondary effects are liquefaction, landslides, and 

tsunami (Bui, Ho, et al. 2016; Bui, Tuan, et al. 2016; Karimzadeh et al. 2013; Shaw et al. 

2006).  

Many studies on probabilistic seismic hazard assessment are conducted globally 

(Brinkman et al. 2015; Hagiwara 1974; Hardebeck 2004; Krinitzsky 1993; Parsons 2005; 

Shapiro, Dinske & Kummerow 2007; Shcherbakov et al. 2019). Krinitzsky (1993) 

implemented the Gutenberg-Richter magnitude and recurrence relationship and estimated 

the probabilistic earthquake ground motions. Hardebeck (2004) included stress triggering 

and fault interaction that is necessary for the earthquake probability assessment 

quantitatively. Hagiwara (1974) conducted the earthquake probability in a large-scale 

geodetically using the crustal strain in an earthquake location. Shcherbakov et al. (2019) 

demonstrated that earthquakes are unexpected that could trigger successive events which 

can lead to strong earthquakes.  

Several studies have been conducted on the 2004 event in northern Sumatra, which was 

originated in the Indian Ocean creating a 9.2 Mw earthquake (Stein & Okal 2007, 2011). 

However, mostly all studies have interacted with the tsunami propagation models. 

Therefore, the works conducted by Consultant (2009); Roy, Karim & Ismail (2007); Jaffe 

& Gelfenbuam (2007); Koh et al. (2009) and Wijetunge (2009) are highly appreciated. 

Some of the studies such as Paris et al. (2007); Srinivasalu et al. (2007) and Paris et al. 

(2009) were focused on tsunami based geomorphological changes. Violette, Boulicot & 

Gorelick (2009) described in their study about how environments get affected by the 

tsunami and the mechanism of ecological protection for damage. Kaplan, Renaud & 

Lüchters (2009) explained that the 2004 tsunami in the Indian Ocean was one of the 



3 

deadliest disasters during the last decade. Aceh Province in Indonesia experienced the 

highest death of 163,978 people and many more injured. Sinaga et al. (2011) presented 

the tsunami vulnerability mapping using GIS, where they employed the Jembrana 

Regency in Bali as a case study. Rusydy et al. (2020) have aimed to predict the earthquake 

effects in Banda Aceh city by estimating injuries, casualties, and expected damage ratio 

based on the event intensity. Sengara et al. (2008) explained in their case study pointing 

the probabilistic seismic hazard and tsunami analysis. They analyzed the hazard by using 

the collected data of shear wave velocity from the spectral analysis of surface wave and 

geotechnical subsurface exploration. Rusydy et al. (2020) estimated the damage in their 

study pinpointing to several scenarios of the earthquake intensity model for the sub-

district of Kuta Alam in Banda Aceh. Therefore, pre-disaster assessment are required for 

the land-use planning, construction, or design of buildings (Clinton 2005; da Silva & 

Batchelor 2010; Bappenas & Community 2005). In this study, three models were 

developed as described in the objectives and  novelty section. It can be seen that all the 

developed models have performed well in terms of data modelling, processing time, 

accuracy, and results than several traditional  models presented in the literature review. 

1.2. Research background 

Geo-tectonic setting  

The destructive power of earthquakes in Indonesia is very strong, has a wide-range effect, 

and endangers the safety of human lives and properties (Xu, Dai & Xu 2010). Indonesia 

is one of the highly seismically active countries in the world with severe damage rates 

(Sørensen & Atakan 2008). The country has experienced a number of destructive 

earthquakes in the last two decades. Indonesia was experienced a massive number of 
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events with magnitudes ranging from 2 to 9.3 in a Richter scale associated with crustal 

faults and subduction zone are known to occur before 1600 to date.  

 Indonesia consists of several thousands of small islands situated along the continental 

oceanic plate boundary of the Eurasian plate and Indo–Australian plate in the central part 

of the Alpine–Himalayan seismic belt (Petersen et al. 2004; Granger et al. 1999). Trends 

on plate tectonics reveal the Indian plate to be part of the large Indo–Australian plate 

underlying Bengal Bay and the Indian Ocean. The plate motion is towards the 

northeastern direction with an average speed of six centimeters annually (Sørensen & 

Atakan 2008). The plate subducts beneath the microplate (Burma plate) of the large 

Eurasian plate at the region of the Sunda trench (Sørensen & Atakan 2008). This 

subduction process creates thrust faults and volcanic activities, the two major reasons for 

earthquakes in Indonesia (Bellier et al. 1997).  

Although the motion of the Sundaland block is currently known in the global context 

relatively well, the differential movements along the fault lines have not been charted 

consistently. The campaign by the Indonesian government and private agencies were 

conducted for the purpose of studying the tectonic behavior of the area by determining 

the magnitudes and directions of the movement of active faults. The network comprises 

several seismic stations and global positioning system (GPS) stations located in different 

parts of Indonesia. The study is based on the station coordinates changes between three 

epochs. 
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Indonesia is located on a relatively stable Sundaland block that forms the southern edge 

of the Eurasian plate (Figure 1.1). Sundaland block is affected by the continental collision 

between the Indian subcontinent and the Eurasian plate (Socquet et al. 2006). This block 

includes not only Vietnam, Thailand, and Malaysia but also the Sunda shelf, Borneo, 

Sumatra, and Java of particular interest is the triple junction area where the convergence 

of Eurasia and Australian continental plates with the Philippine Sea/Caroline/Pacific 

oceanic plates occurs. Aceh is located in the north of the Sumatra.  

Figure 1.1: Sundaland block of Eurasian Plate and tectonics (Source: Adopted 

from Hall 2002). 

Great Sumatran Fault is the largest crustal fault that passes through the Banda Aceh city 

(Barber, Crow & Milsom 2005). Banda Aceh has its unique features of land cover, 

geographical structure and characterized by quaternary sedimentary rocks. Earthquake 

inventory data reveals that severe ground shaking has been observed in the city. 

Probabilistic study reveals that strong events might be struck the city near the seismic gap 
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within the city. Figure 1.2 presents the probabilistic and deterministic methodology used 

for hazard assessment. 

Figure 1.2: The traditional methodologies for seismic hazard assessment. 

1.3. Earthquakes in Indonesia 

During the last decade, total death and injuries were observed in Indonesia is around 0.8 

million (Table 1.1). This explains that the situation in Indonesia is critical and it is the 

region with complicated tectonics where the study area is coming under the extremely 

high probable zone. 

Table 1.1: Total death and injuries in Indonesia due to earthquakes. 

No Year Region Fatalities Injuries Remarks Sources 

1 2018 Sulawesi, Java, 

Sulawesi 

Lombok, 

Sumatra 

2828 12566 Landslides, Tsunami, 

Aftershock, 

NGDC, 

NOAA, 

USGS 
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Foreshock, Building 

damage, widespread 

fatalities 

2 2017 Java, Ambon 5 36 

3 2016 Sumatra 104 1,273 Heavy damage 

in Aceh region. 

NOAA 

4 2015 Papua 1 Buildings damaged 

or destroyed. 

NOAA 

5 2013 Sumatra 43 276 USGS 

6 2012 Wharton Basin 12 12 Doublet &  building 

damage 

7 2011 Sumatra 10 

8 2010 Sumatra, Papua 425 62 Tsunami (local), 

hundreds missing. 

9 2009 Sumatra, Java, 

Talaud, West 

Papua 

1201 4266 Severe damage, 

Local tsunami, 

doublet  

NGDC 

10 2008 Sulawesi, 

Simeulue 

7 59 USGS 

11 2007 Sumatra, 

Molucca Sea 

95 548 USGS 

12 2006 Sumatra, Java, 

Seram 

6428 47867 Tsunami (Local & 

regional), Extreme 

damage 

13 2005 Sumatra 1,314 1,146 USGS 

14 2004 Sumatra–

Andaman, 

Papua, Alor, 

Western New 

Guinea, Bali 

228,002 629 Tsunami (basin-

wide), severe 

damage, doublet, 

several thousand 

buildings damaged 

NGDC 

15 2003 Halmahera 1 Extensive damage 
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16 2002 Sumatra, 

Western new 

guinea 

11 65 Tsunami & damage 

17 2000 Sumatra, 

Sulawesi 

149 2438 Tsunami & 

destruction 

NGDC 

18 1996 Biak, Sulawesi 174 423 Local tsunami 

19 1995 Sumatra 84 1868 Extreme damage NGDC 

20 1994 Java, Sumatra 457 2,000+ Tsunami NGDC 

21 1992 Flores 2,500 500 Severe damage 

(Tsunami) 

22 1989 West Papua 120 125 

23 1984 Sumatra 1 

24 1982 Flores 15 390 

25 1981 Papua 305 Thousands missing 

26 1979 Bali 30 200+ 

27 1977 Sumba 180 1,100 Tsunami(local) 

28 1976 Bali, Papua 995 4,750 Landslides, 

thousands missing 

USGS, 

NGDC 

29 1968 Sulawesi 213 

30 1965 Sanana 73 

31 1943 Sumatra, Java 213 2,096 Extensive damage NGDC 

32 1938 Banda Sea Local tsunami 

33 1935 Sumatra Local tsunami 

34 1917 Bali 1,500 Landslides 

35 1899 Seram 3,864 Destructive 

36 1867 Java 8 Extensive damage NGDC 

37 1861 Sumatra 2,000+ 

38 1852 Banda Sea Severe damage NGDC 

39 1833 Sumatra 1000+ Tsunami (local) 

40 1815 Bali 10,253 Tsunami NGDC 

41 1797 Sumatra 1000+ Tsunami(local) USGS 

42 1699 Batavia (Jakarta) 30 Building collapsed 
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43 1674 Ambon Serem 89 135 Tsunami & building 

damage 

NGDC 

44 1629 Banda sea Regional tsunami 

Due to this fact of historical evidence, there has been a growing trend in risk assessment 

for various natural hazards in Indonesia. Research on earthquake engineering provides 

options for risk assessment (Dilley et al. 2005).  Although several researchers have 

conducted studies that are natural for damages results from earthquakes within a distance 

of 100-200 km radius. Nevertheless, a high-intensity earthquake can create an impact up 

to a range of 700 km, as experienced in Mexico 1985 (Megawati, Pan & Koketsu 2005). 

Since Indonesia is known to be underlain by a tectonically stable crust and active seismic 

zone as a part of “Ring of Fire” surrounding the country, hence, we can raise the point 

that Indonesia is seismically active towards high risk indicating that Indonesia is forever 

immune to seismic risk. Thus, necessitating the need for this research, which is aimed at 

estimation of seismic risk in Aceh and Palu cities in Indonesia by an integrated GIS 

technique.  

1.4. Problem statement 

Mega-earthquakes mostly experienced in areas with complicated fault tectonics (Bletery 

et al. 2016). However, the densely populated cities in India, Nepal, Indonesia, Japan, and 

America are extensively catastrophic due to earthquakes that trigger landslides, destroy 

buildings and results in fatalities, injuries, and death tolls (Spence & So 2009). Population 

growth, old and poor planned infrastructure creating a critical condition for several 

countries. As the focus is specifically on city level risk assessment therefore, it can be 

observed that the cities over the world are expanding each year based on the 
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developmental planning in a proper way. However, most of the cities have been critically 

affected by natural disasters unlike earthquakes, floods, landslides, etc. Therefore, 

recognition and reduction of the vulnerability of population and buildings with respect to 

earthquakes are required (Cannon 1994). Buildings up-gradation against earthquakes is 

important for the reduction of loss of properties and lives. 

 

Very poor implementation of some pre-existing methodology and poor results from the 

traditional methods having uncertainty. Because,  the understanding of the fault geometry, 

geographical location and tectonic structures by using the current knowledge of ongoing 

research is essential and difficult (Stead, Eberhardt & Coggan 2006). Choose of important 

factors, well articulated information and proper implementation following the exact 

process is still not well established. Poor understanding of the complex mechanism of 

fault movement and internal structure of the study location is another problem in current 

times that could lead to poor results and uncertainity (Bray et al. 1994). The collection of 

complete data is another issue in solving the major seismic hazard and risks in local areas. 

 

Failure to establish a comprehensive GIS-based model including all effective parameters 

for the seismic probability analysis of earthquake-prone areas (Dou et al. 2019; Zhou et 

al. 2003). However, the detail literature review as explained in chapter 2 suggests that the 

risk areas assessment and urban population risk estimation is necessary to minimize the 

consequences and severity. To date, there is still an inability to implement a suitable 

methodology for a country like Indonesia. Adopting the global risk assessment models 

designed by developed countries, the tremendous effect of earthquakes can be reduced 

scientifically (Crowley et al. 2013). It is required to develop risk assessment models to 

evaluate earthquake risk from the major earthquake scenario for the risk reduction, future 
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strategy, and improvement of systematic inventory (Peduzzi et al. 2009). The 

applicability of these models in the Indonesian environment needs to analyze to identify 

the shortcomings. To fill the identified gaps in the literature and to understand the strength 

of the model, the evaluation of complete parameters is needed. 

 

Unfortunately, no major study has been conducted in the city-level through which an 

accurate and comprehensive assessment of probability, hazard, vulnerability, and risk can 

be performed using novel integrated GIS based models (Davidson & Shah 1997; Lindell 

& Perry 2000; Mohsen et al. 2018). Indonesia was choosen as the case study region in the 

northern Sumatra region that is falling under a very high seismic zone always affected by 

major earthquakes. Banda Aceh is falling under the seismic gap of the Great Sumatran 

Fault. Banda Aceh is coming under the high-risk zones for future seismic events because 

of its unique geographical location, geostructural features, and quaternary sedimentary 

rocks. Death-toll is increasing from the last decade and the record of fatalities and injuries 

reveals the importance of earthquake risk assessment. The growing population in Banda 

Aceh city in Indonesia can acute a big problem. Therefore, it is important to assess the 

risk of future seismic events (Delescluse et al. 2012; McCloskey, Nalbant & Steacy 2005). 

Historical analysis and events explained that the city has experienced severe ground 

shaking due to devastating events (McCloskey, Nalbant & Steacy 2005). Based on the 

probabilistic and deterministic approaches, seismologists and geologists believe that strong 

events might hit the city in the near future because of the release of the accumulated stress 

in the seismic gap. From the view explained in motivation, it can be considered that there 

is a necessity to propose further studies to estimate population risk and generate risk 

models at a level of city scale.  
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1.5. Research gap 

The earth’s internal structure is complicated; however, understanding the whole tectonics 

of the study region is difficult (Stead, Eberhardt & Coggan 2006). Earthquake prediction 

is important but the result may not satisfy seismologists in terms of expected accuracy. 

Therefore, working more on the probability, hazard, vulnerability, risk analysis, and 

mitigation is important (Greiving, Fleischhauer & Lückenkötter 2006). Various thematic 

layers can be generated via remote sensing and GIS to create a probability map for seismic 

amplification due to local site effects. Moreover, GIS is used to evaluate seismic hazards 

by using a suitable ranking scheme and for data integration techniques. There are many 

studies have been performed regarding the probabilistic and deterministic seismic hazard 

assessment and limited machine learning methods for earthquake risk assessment 

(Scawthorn & Chen 2002; Ram and Wang 2013; McGuire 1978, 1995). However, there 

are some limitations associated with the implementation of these studies. Therefore, in 

this section, we highlight the main research gaps obtained from an extensive literature 

review are: 

 

1. Failure to establish a comprehensive GIS-based model, including all effective 

parameters, for the seismic probability analysis of earthquake-prone areas. 

Implementing a suitable methodology remains difficult for many developing 

countries, such as Indonesia and Malaysia.  

2. Not much work has been done, especially on earthquakes, using integrated GIS 

techniques with historical earthquake catalog in underdeveloped countries. Moreover, 

no feasible and effective way exists for the comprehensive risk assessment and 

evaluation of parameters for mapping using open-access databases without focusing 

on the management and loss estimation strategy. 
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3. Many researchers have implemented a single machine learning algorithm for 

earthquake vulnerability and damage assessment; nevertheless, they did not test 

integrated machine learning and GIS-based models, and very limited hybrid models 

were developed that can produce better accuracy and consistency. No study has been 

conducted on earthquake probability assessment using machine learning techniques. 

4. Most of the works done on GIS-based earthquake probability assessment have limited 

conditioning factors as earthquake phenomenon controlled by several conditioning 

factors. Besides, very fewer researchers conducted optimization of factors specified 

in the field of earthquake/seismology. 

5. Improving old and developing new models that could inform risk is still a huge 

research gap (Greiving, Fleischhauer & Lückenkötter 2006). This is required for all 

seismic prone urban areas, while this could introduce new parameters, factors, 

methodologies based on local tectonic conditions and applicability. 

 

1.6. Scope of study 

Earthquake generally occurs in plate boundaries and the locations with complicated 

tectonics. Study on history of earthquake events and determining the earthquake 

probability, hazard, vulnerability, and risk is on demand. Complexity nature of earth’s 

tectonic boundaries, catastrophic consequences results due to earthquake forces 

established a research environment. The earthquake prediction, probability assessment in 

earthquake research that has evolved for urban planning and development through 

tectonic analysis, simulation, modeling, mapping and monitoring of earthquakes are the 

major scopes. 

Thus, the scope of this research deals with: 

1. The earthquake prediction and probability assessment. 
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2. Estimation of earthquake vulnerability, risk, and microzonation maps (Figure A1,A2). 

3. Earthquake ground motions and peak ground acceleration study. 

4. Hybrid and integrated decision-making models formulation. 

5. Seismic- modelling approaches or models development. 

6. The methods to integrate the coping capacity with the earthquake risk. 

7. In the past decade, the use of digital elevation model (DEM) has become quite 

popular. High resolution LiDAR data can surpass widely and can be used for 

earthquake probability analysis. 

8. The scope of this study may lead to early warning system development and 

improvement in earthquake monitoring.  

9. The USGS current projects also include earthquake hazard and risk assessment for 

future land use planning. 

 

In this thesis, DEM data was collected from the national agency named Statistics 

Indonesia applied to generate some thematic conditioning factors for probability 

assessment. The scope is more towards the current technology of LiDAR to implement 

in geohazard applications (Fanos & Pradhan 2019). The earthquake probability 

assessment is a key element in risk assessment. Therefore, in this research, a semi-

quantitative earthquake risk assessment model was developed based on artificial 

intelligence techniques along with decision-making models within a GIS environment for 

risk mapping. The model was based on Artificial Neural Network (ANN), Analytical 

Hierarchy Process, the Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), 

Locational Clustering Techniques, Matrix Plotting, and Excel-based analysis. The 
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probability assessment was performed in the thesis that could be the evolved trend in 

prediction analysis and could be a path for future probability and prediction modeling.  

The achievement of the whole Ph.D. thesis includes the development of a semi-

quantitative ERA model that efficiently handles various parameters and performs the risk 

analysis on a city scale. The model was applied in two case studies such as Banda Aceh 

and Palu city in Indonesia. Firstly, a detailed vulnerability assessment was conducted and 

then the model was developed for the probability and hazard analysis and integrated 

approach of both employed in ERA. In a later stage, the model was modified in terms of 

parameters and combined approaches. The final parameters required for the probability 

analysis, such as slope angle, elevation, fault density, lithology with amplification factor, 

depth density, proximity to the epicenter, epicenter density, magnitude density, and peak 

ground acceleration (PGA) density. The vulnerability factors that were considered in this 

research are household density, building surface area, building quality, building heights, 

proximity to the road, building types, proximity to buildings, building density, and 

population density.  

 

1.7. Research aim and objectives 

The aim of the study is to develop semi-quantitative earthquake risk assessment models 

using machine learning, multi-criteria decision-making, and GIS techniques. 

 

The current research developed three models that fulfill the research gap in the literature. 

The proposed models are complicated and comprehensive. This study developed three 

integrated models and continuously improved the models for different purposes. The 

developed models applied for the Banda Aceh city in Indonesia to estimate the population 

risk and area under risk. The main objectives of the present research are as follows;  
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1. To develop a novel integrated model AHP-VIKOR (Analytical hierarchy process- 

VIseKriterijumska Optimizacija I Kompromisno Resenje) technique for earthquake 

vulnerability estimation through structural, geotechnical, and social information. 

2. To develop an integrated model of neural network and AHP for earthquake risk 

mapping in a city-scale. 

3. To develop a fourfold ANN CV-hybrid AHP-TOPSIS (Artificial Neural Network-

Cross Validation- Hybrid Analytical Hierarchy Process- The Technique for Order of 

Preference by Similarity to Ideal Solution)  model to improve the risk assessment. 

 

1.7.1. Objective 1 

The first objective of the designed approach is to develop an innovative intuition for 

earthquake vulnerability assessment (EVA) that deals with the understanding of geometry 

and interrelationship of faults, and seismo-tectonic setting, building characteristics, social 

characteristics, and geotechnical characteristics. The input databases that are needed for 

the vulnerability analysis are building information, population density including other 

attributes. The routine of the model starts with vulnerable layers preparation that were 

derived from satellite images or the geological map or the collected shapefiles. The use 

of these data genuinely needed for fault and lineament density, geology, elevation, slope 

analysis by following the steps presented in the first objective. The model provides the 

novel idea of introducing the ViKOR method coupled with AHP for EVA. It is possible 

to understand the output results at this stage presented through maps that will help in the 

next stage to apply it directly. 

 

1.7.2. Objective 2  

This stage of the research involves earthquake risk assessment using a developed ANN-
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AHP model. It will allow us to find out the population and area under risk at a city level. 

Various parameters derived from the collected data to achieve the expected result. 

However, this model was developed based on the proposed integrated models. Therefore, 

the parameters were chosen carefully through the ANN technique to achieve acceptable 

accuracy. The applicability of all the parameters was assessed and the probability, hazard, 

vulnerability, and risk maps were produced for Banda Aceh city. Identifications of 

parameters and their influence on the earthquake scenario is important for the risk 

assessment in the next stage. 

 

1.7.3. Objective 3  

This stage develops a new integrated fourfold ANN CV-AHP-TOPSIS model to improve 

the earthquake risk assessment. To do this inventory data was divided into training and 

testing randomly and run the ANN model four times. Firstly, the earthquake probability 

assessment was conducted and then hazard analysis based on the earthquake intensity was 

performed. In the second step, vulnerability assessment was conducted based on the 

important parameters by employing a hybrid AHP-TOPSIS approach. The third step 

involves the risk assessment by multiplying the hazard and vulnerability. Finally, the risk 

model can be done based on all the described steps that provide the expected result 

pinpointing the number of people and the areas are under risk in the study area. Then the 

cross-validation reveals the output is accurate.  

 

Moreover, the overall designed model has novelty and prepared based on analyzing 

various older and recent models for earthquake vulnerability and risk assessment on a city 

scale. However, the models developed in the current research includes various parameters 

making it comprehensive and accurate. The limitations and the drawbacks of the model 
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can be understood from the conclusion section. 

1.8. Research questions 

1.8.1. Questions pertaining to objective 1 

In this study, some specific research questions that were addressed on vulnerability 

estimation such as; 

(i) Is it possible that MCDM methods can be applied for risk assessment by understanding 

the lack of current knowledge?;  

(ii) Can we propose novel ideas into the factors applied for EVA?; and  

(iii) How can we assess the MCDM model for EVA in an urban environment with useful 

information?  

By considering the above research questions, the main objectives of this research were 

set to estimate EVA in Banda Aceh by (1) presenting an innovative intuition into the 

dominant criteria; and (2) disclosing the prerequisite and effectiveness of applying 

MCDM methods for EVA. Accurate EVA is always hard and challenging, especially at 

large scales. Some computational models can reduce their impacts by assessing 

vulnerability to threats. Unfortunately, these models are data-dependent with plenty of 

uncertainty; It needs to understand them to use them reliably.  

 

1.8.2. Questions pertaining to objective 2 

In the second objective, the main research questions that were addressed are;  

(i) Is the accuracy of neural network models are good to estimate the earthquake risk in the 

city scale?;  

(ii) Can this study develop any well-performed integrated model for earthquake risk 

assessment?;  
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(iii)  Is it possible to achieve more accuracy on the modification of the developed model? 

To achieve this goal, this study contains three objectives such as; (1) Develops an integrated 

model combining ANN and AHP methods to produce an earthquake risk map; (2)  Applies 

and assesses the dimensions of earthquake probability, hazard, and vulnerability for Banda 

Aceh City;  (3)   Estimates the urban population risk quantitatively and qualitatively. 

 

1.8.3. Questions pertaining to objective 3 

The third objective of this research obtains three main research questions, which are 

necessary to address such as;  

(i) how the improved model for the earthquake risk assessment can be better than the 

previous model described in objective 2?;  

(ii) Is it possible to modify the current improved model to improve further to achieve 

more accurate results?;  

(iii) What are the main factors in the current model for better accuracy? To achieve this 

goal, the present study; (1) developed a fourfold ANN CV-AHP-TOPSIS model to 

estimate risk; (2) Applied the model for the Banda Aceh city and assess the population 

risk; and (3) evaluated the accuracy between the previously developed model and the 

current model. 

 

1.9. Motivation behind this research 

In the current period, natural hazards are quite common all over the world. The 

importance of the issues raised from natural hazards for environmental, social, and 

structural safety is increasing with the increase of natural catastrophes. Complicated 

tectonics, geological structure, rock types, active faults, and historical mega-events are 

expected to raise the probability of earthquakes. Earthquakes are disastrous in some 
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counties like Indonesia, Japan, United States of America, and India. Therefore, the focus 

of the government is continuous monitoring of natural hazards through mapping, 

modeling, and mitigation plan (Kussul, Shelestov & Skakun 2008; Schilderman 2004). 

These processes are complicated to implement as the earth’s internal structure is not 

simple. Humans are incapable to control and predict earthquakes. The influence of natural 

catastrophes could depend on the magnitude, intensity, and coverage region. Therefore, 

probability, vulnerability, hazard and risk assessments are quite important to study before 

moving to the post-disaster analysis for which development of novel models are 

necessary. 

 

The motivation of this thesis indicates that Aceh is a seismic-prone province on Sumatra 

with devastating seismic events that resulted in severe casualties and damages (Petersen 

et al. 2004; Yücemen, Özcebe & Pay 2004). The seismic prone area of Banda Aceh City 

provides many opportunities for numerous research. Banda Aceh is considered as a high-

risk zone for future seismic events because of its unique geographical location, 

geostructural features, and quaternary sedimentary rocks (Siemon, Ploethner & Pielawa 

2006; Irwansyah 2010). Many surveys and other investigations have been conducted to 

understand the tectonics and to improve the reconstruction of buildings in this location. 

The majority of conducted studies have focused on the rebuilding of structures, rebuilding 

houses, community rehabilitation, and livelihoods. Several studies have been conducted 

on tsunami evacuation planning (Løvholt et al. 2014; Synolakis & Kong 2006). Historical 

analysis shows that the city has experienced severe ground shaking due to devastating 

events (Irwansyah 2010). Therefore, very few researches could be found on the predictive 

analysis, vulnerability, and risk assessment based on the properties and population. On 

the basis of the probabilistic and deterministic approach, seismologists and geologists 
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believe that strong events may hit the city in the near future because of the release of the 

accumulated stress in the seismic gap. Thus, proposing further studies to generate risk 

assessment models at the city-scale is necessary. Unfortunately, much fewer studies are 

conducted at the city level by which an accurate assessment of probability, hazard, and 

risk can be conducted (e.g., Consultant 2009; Johar et al. 2013; Kafle 2006). Second, no 

comprehensive model has been developed for Banda Aceh for a detailed ERA. However, 

a literature review suggests that risk assessment and urban population risk estimation is 

necessary to minimize the consequences and severity (Zebardast 2013; Chaulagain et al. 

2015; Ram & Wang 2013; Blaikie et al. 2014). 

 

This thesis attempts to propose a semi-quantitative earthquake risk assessment model to 

map the earthquake probability, vulnerability, hazard, and risk combining the coping 

capacity for the Banda Aceh city in Indonesia. This research provides key motivation to 

use the developed maps to avoid more urbanization in seismic zones and to create a 

sustainable environment. In order to reduce the earthquake damages, injuries, fatalities, 

this study would help to identify the probable and vulnerable areas. Governments and 

planners could make use of the developed map and the quantitative results obtained by 

this study to determine the safe regions for residents, support fast emergencies response, 

can state infrastructure construction plans and update the strategies for city planning and 

development. Information released from this study could decrease the necessity to 

conduct an in-situ investigation by government and local surveying departments. 

 

1.10. Novelty and main contribution of the research 

In this study, three integrated models are developed for earthquake risk assessment. The 

purpose of this study is to address the lack of comprehensive GIS based models for risk 
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mapping. As a main contribution the novel combination of several machine learning 

techniques, MCDM approaches and GIS are conducted to overcome the uncertainties 

associated with traditional methods. Therefore, the detail mapping of probability, hazard, 

vulnerability and risk was conducted to update the old maps.  

 

The current research is designed as a novel combination of AHP-VIKOR, neural network-

AHP and N-fold neural network cross-validation (Fourfold ANN-CV) with a hybrid 

AHP-TOPSIS method to develop models for vulnerability, estimate the risk and improve 

the ERA in a city scale. These models are implemented in Aceh, Indonesia to test. The 

study developed and applied all three models for the first time in ERA and in Banda Aceh 

city. The study developed some new equations as described in the sub-sections “3.2.1.3 

Integration of AHP-VIKOR” and “3.7.1 Objective 1”. The detail description of 

implementation of developed models are described in the section “3.7 Implementation of 

the methodology” for all objectives. All the models are integrated models, which has not 

been applied in ERA that provides them as geographically consistent and long-term 

assessments. This study estimates the population under risk for the Banda Aceh city and 

finally evaluates the usefulness and limitations of the developed models. This study do 

not assume that earthquakes occur randomly through space and time and faults with their 

branched lineaments as one. In this study, geological, topographical, structural 

information and historical events were integrated to GIS with the aim to estimate and to 

map the future risk areas. 

 

1.11. Thesis organization 

The thesis consists of five chapters. The detail of contents carried out by the chapters 

were pointed out below. 
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Chapter 1 reveals the introduction to the topic and research background, earthquakes in 

indonesia, research problem, research gap, aim of the research, objectives and questions, 

the scope of the study, motivation behind this research, novelty and main contribution of 

the research and thesis organization in detail.  

 

Chapter 2 demonstrates the literature on seismic hazard and risk assessment. The first part 

of the chapter mainly discusses about the basic principles, data, and the methodology of 

various models used for seismic hazard and risk assessment. In the second part, 

comparative analysis in terms of the limitations and strengths of the models, as well as 

application variability is presented. Furthermore, the paper includes the descriptions of 

software, data resources, and major conclusions. 

 

Chapter 3 in the thesis discusses the methodology and the proposed models. This chapter 

demonstrates and discusses the data acquisition, study area, overall methodology, and 

implementation of the developed models for risk analysis. This chapter also describes the 

following: digital elevation model (DEM), vector datasets, modeling approaches for 

spatial analysis to generate risk maps.  

 

Chapter 4 describes the results of earthquake probability, hazard, vulnerability, and risk 

assessment in terms of maps, identified risk locations, expected population under risk.  

 

Chapter 5 concludes the study with detail description of research limitations, main 

findings, and future directions. 
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All the published papers mentioned in the “LIST OF PAPERS/PUBLICATIONS” page 

were included in this thesis with proper citation as per the requirement of all the chapters.
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter provides an extensive review of several traditional and GIS-based models 

for earthquake hazard and risk assessment. This chapter introduces some globally used 

seismic hazard- assessment models. The traditional models are discussed by highlighting 

the involvement of some supporting models, uncertainties, and accuracy. Similarly, 

review and discussion on GIS, machine learning, and AHP-based models are described. 

A section that discusses the findings, software and data for the modeling. Two sections 

provide a review of current issues and the brief summary. Finally, the last section draws 

ideas for future research. In general, this chapter reflects a general view of the use of 

several models for earthquake risk assessment.  

 

2.1. Introduction 

In literature, many models and tools have been widely employed for the earthquake 

probability and hazard analysis (Bommer & Abrahamson 2006; Scherbaum, Delavaud & 

Riggelsen 2009). In principle, these models rely on the high ability to perform a trustable 

result in seismic hazard and risk assessment. Nowadays, researchers are working on 

active tectonic faults and structural geology using both GIS and remote sensing 

techniques (Barreca, Bonforte & Neri 2013). In general, seismic hazard and risk 

assessment use fault specific analysis where the sources of seismic activities are 

geologically strained active faults (Deligiannakis, Papanikolaou & Roberts 2018). Fault 

specific based methods can be assessed quantitatively because they usually measure slip 

rates of faults from fault and geological data, which provides a more reliable estimation 

of the seismic hazard than that of historical records of seismicity (Michetti & Marco 
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2005). For the planning of land-use and assessment of critical facilities or the purpose of 

risk evaluation, the desirability of high-quality spatial resolution is also important 

(Deligiannakis, Papanikolaou & Roberts 2018). It is also possible to extract the recurrence 

interval information of associated major earthquakes and neo-tectonic movements 

(Papanikolaou et al. 2015).  

 

GIS-based models for seismic hazard and risk assessment are quite popular and most 

recommended by researchers (Sarker 2011). New models are being developed by 

researchers by keeping GIS technology as a base (Bommer & Abrahamson 2006). 

Geotechnical information system (GTIS) is one of them and has been used for the 

estimation of the local site effects which is associated with the ground motion 

amplification, earthquake micro-zonation and the mean shear wave velocity (Chang & 

King 2005). The ground surface generally consists of alluvial deposits, while in some 

other cases dominance of layers of weak stones such as siltstone, claystone, and 

conglomerate (Karimzadeh et al. 2017). Some researchers are focusing on the traditional 

based models such as probabilistic and deterministic seismic hazard assessment (Klügel 

2008). Seismic hazard, risk analysis and the simulation of ground motion have been 

traditionally treated as an important section of the probabilistic seismic hazard assessment 

(PSHA) (Theilen-Willige 2010). During earthquakes, the pore-water pressure inside the 

aquifer can easily describe the mechanism and triggering factors of liquefaction (Hannich, 

Hötzl & Cudmani 2006). Damage potential will be high in wetlands during large 

earthquakes if vibrations are high, lasting for a long period (Theilen-Willige 2010). 

Therefore, decomposition of the PSHA has been done into smaller components, which 

are probabilistically designed such as seismicity rate, attenuation model of waves, and 

source-site distance calculation, site attenuation model, stress drop, shear wave velocity, 
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etc., are used in simulation methods. Most of the literature revealed that these traditional 

methods are limited to major drawbacks in terms of completeness of data, data quality, 

time consumed, accuracy and validation. Apart from this, not much work has been 

reported on the comprehensive seismic hazard and risk analysis in the growing field of 

GIS, which can reveal a comparative analysis of methodology, validation, strength, and 

limitations of various models. Therefore, in this study, we conducted a thorough analysis 

of kinds of literature, with an aim; (1) to investigate various models of seismic hazard and 

risk analysis for the understanding of suitability, core principles, and performances; (2) 

to make a comparative investigation based on strength and limitations; and (3) to motivate 

readers for the further research and progression. The focus is limited to the probability, 

hazard, vulnerability and risk assessment; therefore, management strategies are not 

discussed or analyzed.  

 

2.2. Seismic hazard and risk assessment models  

The hazard-damage assessment model shows that models use various parameters and 

mathematical formulation and can be categorized into two main groups: (1) worldwide 

models and (2) local (case-based) models (Karimzadeh et al. 2014). An overview of 

seismic hazard analysis is described below in Figure 2.1. PAGER (Prompt Assessment 

of Global Earthquakes for Response) and HAZUS (National Institute of Building 

Sciences 1999, 2004) (Hazards US) are different worldwide platforms used for different 

purposes. GEM (Global Earthquake Model) aims at creating tools, platforms, and models 

to assess seismic hazard and risk globally. CAPRA (Comprehensive Approach to 

Probabilistic Risk Assessment) is a global tool designed for Central America. 
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Figure 2.1: Classification of hazard assessment models. 

 

Various global and local risk models: 

Other models rather than the ones described below exist, such as models for hazard, risk 

analysis, damage and loss estimation, including risk reduction. The European seismic 

hazard model (ESHM13) (Woessner et al. 2015), Earthquake Model of the Middle East 

(EMME14) (Danciu, Kale & Akkar 2018), Earthquake Model of Central Asia, and all 

other hazard models worldwide can be found in 

(https://hazardwiki.openquake.org/models). Apart from these, other models have been 

developed by different international and local agencies, but are not popularly used as a 

basis for earthquake risk assessment. Earthquake hazard and susceptibility analysis using 

GIS technology will provide new ideas for research and development. All the models that 

are listed in (Table 2.1 and 2.2) are highly useful for earthquake risk and damage analysis. 

 

 

 

 

https://hazardwiki.openquake.org/models
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Table 2.1: Various local and global programs used for earthquake hazard, risk 

analysis, and loss estimation purpose.  

 

Criteria HAZUS PAGER RADIUS      GEM     CAPRA SELENA 
Launche
d By 

USA USA USA Italy Nicaragua Norway 

Develop
ed by 

National 
Institute 
of 
Building 
Science 
(NIBS) 

US 
Geologi
cal 
Survey 
under 
the 
Advance
d 
national 
seismic 
system(
ANSS) 

Geo-
hazard 
Internatio
nal  

Stakehol
ders 
worldwi
de  

GFDRR is 
supporting 
the 
countries 
of Central 
America 

The 
Internationa
l Centre for 
Geo-
hazards 
ICG, 
through 
NORSAR 

Input 
data 

Building
s, 
Critical 
Facilities
, 
Transpor
tation 
and 
Demogra
phic data 

Populati
on, 
Building
s, 
Seismic 
Intensity
, Fault 
and 
ground 
motion, 
Soil 
amplific
ation 

Building 
Populatio
n Ground 
shaking 
lifeline  

Populati
on, 
Global 
land 
cover, 
building 
data, 
global 
GDP 
data. 

Population
, Building 
inventory 
data, PGA, 
and 
Infrastruct
ure 

Building 
Demograph
ical data 
and Seismic 
data, 
different 
Soil class 

Methodo
logy 

1-
Prepare 
shake 
map 2- 
building 
vulnerabi
lity 
assessme
nt map 
3-
Estimati
on of 
damage 
and 

1. 
Preparati
on of 
shake 
map. 
2. 
Addition 
of fault 
geometr
y, 
attenuati
on of the 
regional 
shake 

1-Prepare 
earthquak
e risk 
map 2-
Prepare 
building 
vulnerabil
ity map 3-
Estimate 
damage 
and 
casualty. 

1- 
seismic 
risk 
Evaluati
on 2-Use 
of 
analytica
l and 
empirica
l 
methods 
for 
vulnerab
ility 

1- seismic 
hazard 
evaluation 
2-
Identifying 
inventory, 
3- 
Applicatio
n of 
vulnerabili
ty 
functions, 
4-
Estimation 

1-Prepare 
seismic risk 
map 2-
Produce 
building 
vulnerabilit
y map 3-
Estimate 
damage and 
casualty. 
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casualty 
4- 
Estimate 
loss 

map. 
3.seismi
c 
intensity 
map  
4.econo
mic loss 
and 
casualty 
estimati
on 
5. 
Determi
nation of 
alert 
level. 

analysis 
3- 
socioeco
nomic 
impact 
and 
losses 
estimatio
n. 

of losses 

Output 1. Loss 
estimates 
for 
utilities 
and 
lifelines, 
2.Estima
tion of 
vulnerabi
lity and 
casualtie
s, 
3.Estima
tion of 
economi
c and 
social 
loss. 

1. 
Estimati
on of 
loss and 
fatalities 

1. 
Seismic 
intensity 
calculatio
n, 
2.Estimati
on of 
Building 
damage 
and  
Casualty 

1. Loss 
of life 
and 
Property,  
2.damag
e 
estimatio
n, 
 3. Social 
and 
economi
c 
changes 
due to 
disruptio
n. 

1. Physical 
and 
economic 
losses 
approxima
ted per 
property, 
2. 
Probable 
% of loss,  
3. 
Annually 
expected 
economic 
losses. 

1. Physical 
damage 
estimation, 
2. 
Estimation 
of total 
economic 
loss, 3. 
Damage 
and 
casualty. 

Accessib
ility 

Open 
source 

Open 
source 

Open 
source 

 Open 
source 

Open 
source 
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Table 2.2: Continuation of models used for earthquake hazard, risk analysis, and 

loss estimation purpose.  

Criteria EQRM INFORM RQE 
Launched by Australia Inter-agency 

standing committee 
task team for 
preparedness and 
resilience and the 
European 
Commission 

Used for Global 
Catastrophe 
Modeling. 

Developed by Geoscience 
Australia 

International 
organizations and  
government with 
JRC 

EQECAT 

Input data 1.Active fault types 
2.Event scenario 
3.Attenuation 
4.Threshold 
Distance 
5.Amplification 
6.Building 
Classification 
 

1.Earthquake events 
2. Conflict Intensity 
3.Socio-economic 
layers 
4.Uprooted people 
5.DRR 
6.Governance 
7.Communication 
8.Infrastructures 

1. Seismo-
tectonic 
conditions 
2.Active faults 
3.Intensity of 
shaking 
4.Stability of 
soils 

Methodology 1. Generation of 
Synthetic 
earthquake catalog 
2.preparation of 
Attenuation relation  
3. Account of 
interaction between 
geology and  
seismic waves 
4.Preparing 
probability of every 
earthquake and 
hazard 
5. Using buildings 
and population risk 
analysis can be done 

1. Hazard analysis 
and exposure caused 
by both natural and 
human-induced. 
2. Vulnerability map 
preparation such as 
Socioeconomic and 
Vulnerable groups 
3.Lack of coping 
capacity analysis 
using both 
institutional and 
Infrastructure 

1. Hazard model 
preparation 
2. Vulnerability 
analysis 
3.Risk analysis 
4.Damage 
estimation 

Output 1.Probability 
estimation 
2.Level of damage 
estimation 
3.Financial loss 
4.Computation of 
risk 

1 Risk reduction 
2. Geospatial 
Information and 
Risk Analysis 
3. Estimation of 
statistics 

1.Hazard 
estimation 
2.Damage and 
loss estimation 



32 
 

Accessibility Open access Open access Open access 
 

2.3. Traditional approaches 

2.3.1. Probabilistic seismic hazard assessment 

A probabilistic model for hazard uses an extensive process of collecting and harmonizing 

relevant datasets (e.g. catalogues, active faults, geodetic, GPS measurements, and ground 

motions) to build seismogenic source models to forecast future seismicity and its effects 

(ground motions) (Azeez et al. 2019). Given the entire process, inherent uncertainties are 

associated with the data and methods used. Probabilistic Seismic Hazard Analysis 

(PSHA) has been widely used for almost 50 years by researchers and experts as a 

traditional seismic hazard assessment tool. PSHA is widely used for deciding safety and 

security criteria for nuclear power plants, making case-based local and official national 

hazard maps, development of required building codes, and determination of earthquake 

probability rates (Solomos, Pinto & Dimova 2008; Hanks et al. 2009). Hence, PSHA is 

widely used for designing and building critical structures.  

 

PSHA is the most widely used approach for the determination of seismic loads for 

infrastructures and to understand the effects of these loads on the environment. However, 

using a model of probabilistic seismic hazard assessment creates uncertainties in terms of 

magnitude, location, and recurrence rate of earthquakes (McGuire 1978, 1995). 

Explicitly, the variation of ground motion behaviors with the earthquake magnitude and 

location is important and considered for the estimation of seismic hazard. In addition, 

PSHA provides a model network in which various uncertainties are quantified and 

combined to make qualitative and quantitative pictures of the seismic hazard. Equations 

(2.1) and (2.2) show the process to calculate the level of shaking using PSHA in a 
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simplified manner, and mathematically it is the level of shaking;  

𝑙𝑙𝑙𝑙𝑙𝑙 (𝐼𝐼𝐼𝐼|𝑀𝑀,𝑅𝑅, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆,𝑁𝑁𝑁𝑁)  =  𝑓𝑓1 (𝑀𝑀)  +  𝑓𝑓2 (𝑅𝑅)  +  𝑓𝑓3  +  𝑓𝑓4 (𝑆𝑆𝑆𝑆)  +  𝑓𝑓5 (𝑁𝑁𝑁𝑁)  +  𝜀𝜀! 

                                                                                                                                      (2.1) 

And synthetic signal in the frequency domain;  

                                                                                                                                                                                             

𝐹𝐹𝐹𝐹𝐹𝐹 (𝑦𝑦|𝑀𝑀,𝑅𝑅)  =  𝑔𝑔1 (Source)  ×  𝑔𝑔2 (Path and Site)!                                           (2.2)   

where 𝐹𝐹𝐹𝐹𝐹𝐹 (𝑦𝑦|𝑀𝑀,𝑅𝑅) = intensity measure, M = magnitude, R = distance, SF = style of 

faulting, SE = local site soil effects, NS = near source effect, and 𝜀𝜀! = random error and 

𝑓𝑓1 to 𝑓𝑓5 is considered as functions and 𝐹𝐹𝐹𝐹𝐹𝐹 is the fast Fourier transform 𝑔𝑔1, 𝑔𝑔2 are 

representing ground motion (spectral acceleration) and y is yielding and 𝑦𝑦|𝑀𝑀,𝑅𝑅  

represents to PGA/spectral acceleration.  

 

This analysis is simple and allows the systematic investigation of a highly complicated 

process. The internal processes that generate seismic ground motions and affect the 

propagation of seismic waves are complicated (Corral 2004; Stein & Liu 2009). The 

overall methodology of PSHA is presented in Figure 2.2, as well as the core principles 

and applications of this model for seismic hazard and risk analysis. Some models that 

support the PSHA are discussed below individually. The regional recurrence model is a 

specific model that comes from the framework of PSHA. A maximum magnitude of the 

earthquake exists at a particular seismic zone that cannot be exceeded in the upcoming 

period. However, the primary objective of this model is to ascertain the chances of 

recurrence of an earthquake with the same or different magnitude (Cornel 1968).  
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Figure 2.2: Overall model for probabilistic seismic hazard assessment. (This is an 

adaptation form FIGURE 8.1 of Chapter 8, Earthquake Engineering Handbook 

W.F. Chen and Charles Scawthorn). 

 

In PSHA, for each seismic source, the low magnitude should be considered as 4.0 to 5.0 

magnitude, because a magnitude lower than 4.0 cannot significantly damage 

constructions and important engineering infrastructures. Nevertheless, the 

incompleteness of lower magnitude earthquakes needs to be considered for PSHA (Lee 
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& Brillinger 1979; Tinti & Mulargia 1985; Rydelek & Sacks 1989). The large earthquake 

magnitudes can be easily estimated by considering the seismo-tectonics of the whole 

region and historical earthquake catalog. The magnitude recurrence model depends on 

the frequencies of various sizes of event magnitudes annually. In general, for any seismic 

source region, the seismic parameters can be determined by using the Gutenberg-Richter 

(G-R) magnitude-frequency relationship (Gutenberg & Richter 1944). Each fault has a 

capacity to produce earthquakes with magnitudes in the range of m0 to mu, which can be 

calculated by using the exponential recurrence model introduced and developed by 

Cornel and Vanmarcke (1969), and can be presented by the following mathematical 

expression;  

         

N (m) =  Ni (𝑚𝑚0)  {βe^(−β (𝑚𝑚−𝑚𝑚0))/1− e^(−β (𝑚𝑚𝑢𝑢 −𝑚𝑚0))}                         (2.3)             

                     

For m0 < m <mu, where β = bln(10) and Ni (𝑚𝑚0) is weightage factor based on the 

deaggregation for a specific source and 𝑚𝑚0 is the seismic moment, mu are magnitudes and 

b value could be calculated from the known measured slip rate. The purpose of this model 

is to provide information on the recurrence of earthquakes. Details of principles and 

methodology of this model can be found in (Cornel and Vanmarcke 1969; Utsu 1984; 

Weichert 1980). 

 

2.3.2. Uniform hazard spectrum (UHS) 

The uniform hazard spectrum (UHS) is a highly important aspect and can be evaluated 

from the (PSHA) (Atkinson 2009). In the first step, seismicity, geo-tectonic, and fault 

geometry information are used to analyze seismo-tectonic zones (Atkinson 2009). For 

each seismic source zone, the historical earthquake data are used to analyze the recurrence 
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relationship of magnitude and uncertainty; the recurrence relationship states that the 

frequency of occurrence of earthquakes is a simple function of magnitudes (Cornell 

1968). Ground shaking relations are well-defined and provide an interlink between the 

occurrence of earthquake events and the ground motions, and this interlink results to a 

particular location in the seismo-tectonic zone (Kanai 1961). Ground shaking relationship 

can be understood as PGA or peak ground velocity (PGV). The final and most important 

step of hazard analysis is the integration of all magnitudes, distances, and their 

contributions to the probability of ground motion exceedance at the study area. Uniform 

hazard spectrum can be defined by repeating this process of analysis for a number of 

vibration periods, which is a spectrum with a specified probability of exceedance (Sen 

2006). The uniform hazard spectrum is a valuable composition of major earthquakes that 

strongly contribute to the seismic hazard at a level of specified probability. In general, the 

spectrum of ground motion and the spectrum of response are dependent strongly on 

magnitudes of earthquakes and distance. Ground shaking for short period of time 

generally can be attributed to small-to-moderate earthquake events at a short distance, 

whereas large earthquake events at a longer distance create strong ground motions for 

long time periods. Details of this model can be found in (Cornell 1968; McGuire 1976; 

Campbell & Bozorgnia 2003; Sen 2006). 

 

2.3.3. Hazard curves and maps 

Hazard curves can be calculated for a specific site and are located by using lat-long and 

by interpolating data at surrounding four-grid points (Stirling & Petersen 2006). Seismic 

hazard curves can be represented by using Mean Annual Rate of Exceedance with peak 

ground acceleration or spectral accelerations (Stirling & Petersen 2006). A response 

spectrum can be created by plotting the parameters of magnitudes versus periods from 
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seismic hazard curves. The data used for the hazard curves must be tabulated along with 

the plot. The maps were generally designed by computing such hazard curves at each grid 

point within the particular mapping region (Frankel 1995). Details of this model can be 

found in (Cornell 1968; McGuire 1976). 

 

2.3.4. Deaggregation 

The PSHA methodology allows mean calculation of the annual exceedance rate at a 

specific region based on the combined risk resulted from potential earthquakes of various 

magnitudes. This is the method in a probabilistic analysis that can provide necessary 

information about the return period of events (Cornell & Vanmarcke 1969). The 

exceedance derived by PSHA is not due to any specified earthquake magnitude or 

distance from the source to site (Harmsen, Perkins & Frankel 1999). Sometimes, 

estimating any particular earthquake magnitude and the most appropriate distance from 

the source to site is important. Basically, the model is used for the response analysis by 

selecting the historical ground motion acceleration records. This process is called 

deaggregation and it can be expressed by the function of magnitude and distance (Halchuk 

& Adams 2004). Details of this model can be found in (Cornell & Vanmarcke 1969; 

McGuire 1976; Campbell & Bozorgnia 2003; Halchuk & Adams 2004). 

 

2.3.5. Logic tree 

The logic tree model is designed as a prominent and potential network for the treatment 

of the uncertainty (Delavaud et al. 2012). However, the best choice of elements for 

seismic hazard models remains unclear (Delavaud et al. 2012). In some applications of 

PSHA, which always seeks to combine all the probable options into a ‘‘logic tree,” setting 

more or less subjectively assigning a weight to each branch and it can create a wide variety 
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of scenarios (Bommer et al. 2005). The sum of all possibilities from all the branches of a 

logic tree in a given node must not exceed 1. Such techniques have their origin in the 

Delphi method (Dalkey & Helmer 1963), which is used to assimilate expert opinions on 

possible outcomes. The logic tree method allows the uncertainty for the model selection 

for attenuation equation and distribution of magnitude (Bommer et al. 2005).  In the logic 

tree method, attenuation equation that was derived by the authors (Campbell & Bozorgnia 

1994) should be considered equally and are valuable; hence, each equation should be 

assigned by a relative weight. In the next level of the logic tree model, the Gutenberg-

Richter magnitude distribution should be considered over earthquake distribution, and 

finally, different relative likelihoods need to be assigned to the maximum magnitude. 

Therefore, Campbell and Bozorgnia (1994) calculated the branches of the logic tree, as 

follows: 

 Total no of branches =  

 (No. of attenuation equation ×  no. of magnitude distributions ×  

 no. of maximum magnitudes)   (2.4)                             

  

The logic tree model can be used in a seismic hazard analysis, in which the composition 

of models is based on the interpretation of alternative datasets, assumptions, and expert 

elicitation and/or parameters are associated with every branch of the model. The result 

can be taken as the sum of the individual results. Cornell’s (1968) approach is essential 

to separate the tasks of the seismologist and engineer. The job of the researcher is to 

provide “best estimates of the average activity levels of various potential sources of 

earthquakes”. Details of this model can be found in (Cornell 1968; Dalkey & Helmer 

1963; Bommer et al. 2005). 
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2.3.6. Uncertainty and accuracy of PSHA 

Uncertainties in earthquake magnitude, location, recurrence, and effects in ground 

shaking in PSHA are to be effectively considered in  the seismic hazard estimation. PSHA 

requires the quantification of all those uncertainties. Moreover, the accuracy of the 

probabilistic analysis based on the uncertainties can be characterized. Different models 

and procedures are available and can be used to quantify the uncertainty of all the 

parameters. Therefore, uncertainties may result because of the manner of data collection 

in a geologically short time period (Scawthorn & Chen 2002). For accuracy, technological 

knowledge and ideal judgment based on engineering decision-making models should be 

used wisely for the valuable interpretation of the PSHA model. A logic tree model is 

helpful enough for the uncertainties to be incorporated into the probabilistic model 

(Scawthorn & Chen 2002). A logic tree is an effective model and allows for the use of 

alternative models for improved understanding and analysis. The weight factors are 

important to be assigned in a logic tree and often use expert opinion, which can provide 

improved results. 

 

2.4. Deterministic seismic hazard assessment 

Deterministic Seismic Hazard Analysis (DSHA), is generally used for ground motion 

characteristics by applying the assumed or a real set of earthquake events in a specific 

region (Shah et al. 2012). The main contribution of DSHA depends on the understanding 

of the complexity of the seismo-tectonic zone (Ambraseys & Melville 1995). In the 

DSHA approach, the model identifies the major seismic sources near the study region can 

affect the region in a vibrant manner (Shah et al. 2012). Understanding the historical 

seismic records and geo-tectonic data regarding the characteristics of various destructive 

events that make the ground motion is important as well.  
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Figure 2.3: Overall model for deterministic seismic hazard assessment. 

 

In general, one or more earthquakes are highly dangerous in terms of magnitude and 

location, which can be called controlling earthquakes (Deif et al. 2012). The ground 

shaking of the region can be estimated deterministically because the analysis requires the 

magnitude, source-site distance, and condition of the study region. Details of the 

principles and methodology of this model can be found in (Campbell & Bozorgnia 2003; 

Shah et al. 2012; Deif et al. 2012) (See Figure 2.3). DSHA can be used for the hazard 

estimation in four important steps, namely, 

 

2.4.1. Uncertainty of DSHA 

DSHA is a traditional method that involves some scenario assumption, which can create 

uncertainty (Shah et al. 2012). The occurrence of a specified earthquake of a particular 

magnitude at a site for which ground shaking characteristics can be evaluated. The most 

important benefit comes from this approach when it provides a straight framework for the 

worst ground shakings. Catastrophic consequences may occur because of failure of 

nuclear power plants, large bridges, and dams, and DSHA is applied in these 

consequences. Therefore, DHSA is useful for creating an improved model.  
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2.4.2. Accuracy of DSHA 

DHSA does not provide any information on the likelihood of recurrence of the controlling 

earthquake. A controlling earthquake is assumed to occur in the region in which the 

expected ground shaking level can be understood during a limited time period. The 

uncertainties in different parts of the study are important to compute, and the accuracy 

depends on the uncertainty type. 

 

2.5. GIS-based models 

Nowadays researchers mostly use GIS-based models for seismic hazard and risk 

assessment (Frigerio et al. 2016). This review examined the core principles of many GIS-

based models with their applications. Moreover, the review discussed some of the models 

with methodology and their successful results. All the models have strengths and 

limitations, which are discussed in (Table 3).  

 

2.5.1. GTIS (Geotechnical Information System)  

Geotechnical information system (GTIS) is a modified technique to manage and use the 

geotechnical spatial information efficiently for the ground surface and sub-surface. It is 

derived by using GIS technology as a synthetic tool, and the main objective of GTIS is to 

make proper planning for multiple hazards analysis (Chang & King 2005; Erden & 

Karaman 2012; Karaman & Erden 2014; Williams et al. 2002). GTISs were developed 

based on GIS technology, thus Williams et al. (2002) called this system the geotechnical 

geographic information system (GEOGIS). The developed GTIS model can be applied to 

evaluate the site characteristics in seismic hazard analysis. As part of the model for site 

characterization, surface wave velocity (VS) values and geotechnical information need to 

be predicted to build a well-designed model of GTIS. GTIS has been developed using 
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new ideas of an extended research and geotechnical knowledge with an established 

procedure. First, important parameters need to be identified those are useful to solve 

geotechnical and earthquake engineering problems. Next, the step is to prepare the 

parameters for the micro-zonation mapping of the study region (Gong 1996). In a way 

forward, it is important to make response analyzes, and seismic micro-zoning maps 

(Kramer 1996). Seismic zonation mapping can verify the importance of the GTIS model. 

A large dataset is needed for building a GTIS model, which has the capacity to analyze 

and manage effectively. It is applicable in any environment as a globally developed 

model. Details of the principles, parameters, methodology, and accuracy of the output of 

this model can be found in (Williams et al. 2002; Chang & King 2005; Kramer 1996). 

 

2.5.2. Fault-specific GIS-based seismic hazard analysis 

A fault-specific seismic hazard assessment model has been developed and modified by 

several authors (Youngs & Coppersmith 1985). This method of seismic hazard mapping 

from geological fault throw-rate data was first presented by Papanikolaou (2003) and 

Roberts et al. (2004). The main objective of this model is to prepare fault-specific seismic 

hazard map that shows the recurrence of earthquakes with expected intensities 

(Deligiannakis, Papanikolaou & Roberts 2018; Giardini et al. 2018). This system requires 

a large dataset, which can be used for understanding current tectonic conditions and 

tectonic activity rates. 

 

 The dataset and analysis include aerial photographs, satellite data, interferometry data, 

strain rate, GPS data, quaternary formations mapping and analysis, pedological, 

sedimentological, geological, geomorphological, and geophysical studies for the 

identification and characterization of the structure (Michetti & Marco 2005). The 
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resulting hazard map may have uncertainties because of the consideration of many poorly 

affected parameters (Stein, Geller & Liu 2012). By doing proper scientific analysis of the 

active faults and geological conditions, the chances of uncertainties can be reduced. Some 

assumptions and errors that need to be considered in this analysis. Some assumption can 

be made for the delineation of the database of the fault geometry. The error parameters 

that can create a major problem in the study can be clearly understood from the research 

articles of; (Benedetti et al. 2003; Ganas, Pavlides & Karastathis 2005; Papanikolaou & 

Royden 2007; Sakellariou et al. 2007; Roberts et al. 2009; Grützner et al. 2014; Grützner 

et al. 2016; Deligiannakis, Papanikolaou & Roberts 2018). It can be applied for the 

seismic assessment of any seismically active zone. Therefore, the following four 

processes as described in the Figure 2.4 can represent the model. 

 

        

Figure 2.4: Methodology for fault-specific GIS-based seismic hazard analysis. 
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2.5.3. Intelligent simulation system using artificial intelligence 

Intelligent simulation is an effective system, which can be used simulating earthquakes, 

seismic hazards, damage, and losses. The main objectives of the model are to identify the 

weakness of the structures before an earthquake, and make an intelligent emergency 

response after an earthquake (Tao et al. 1996; Tang & Wen 2009). The structure of the 

system is clear, and has three steps: hazard simulation, risk analysis, and emergency 

response simulation, as shown in (Figure 2.5). The intelligent simulation method is 

helpful to identify aseismic weak structures and to accomplish quick damage assessment. 

The types of data needed for this simulation analysis are: (1) geographical location; (2) 

coverage of seismic monitoring network; (3) destructive earthquakes based on inventory; 

(4) coverage of recorded earthquake by instruments; coverage of active fault systems; (6) 

seismo-tectonic province; (7) coverage of the whole seismic zone (Tang & Wen 2009). 

The information sub-system is designed for analyzing various data quickly and 

efficiently. It is a platform for easy communication among all the sub-systems, and has a 

user-friendly interface for various users at different levels.  

 

 

Figure 2.5: Steps for the simulation based on GIS and artificial intelligence. 
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A worldwide model of this system has been designed and is used in various environments. 

Details of methodology, errors, and accuracy of this model can be found in (Tao et al. 

1996; Tang & Wen 2009). 

 

2.5.4. Vulnerability mapping using the FEMA-RVS method 

FEMA-RVS method is developed by Federal Emergency Management Agency for the 

vulnerability mapping for moderate seismicity. Another method of RVS was developed 

by Turkey, and is only applicable for reinforced concrete buildings (Rahman, Ansary & 

Islam 2015; Tas, Cosgun & Tas 2007). The main objective of this method is to evaluate 

composite vulnerability (Rahman, Ansary & Islam 2015). In this method, the score 

obtained is from a high to a low value, and a high value means low vulnerability and a 

low value means high vulnerability (Rahman, Ansary & Islam 2015). In this method, 

vulnerability assessment can be done using all parameters and can be done for multi-

hazard purposes (Gentile et al. 2019). A composite score of vulnerability can be estimated 

by combining the vulnerability of all hazards. This method can provide a complex 

scenario of vulnerability analysis. This integrated analysis of vulnerability model can be 

a relevant tool for disaster risk assessment. Moreover, it can provide an ideal methodology 

wherein the researchers can prioritize the hotspot areas for vulnerability assessment. The 

parameters required for the vulnerability assessment depends on the proper 

documentation of building identification information, such as the use of buildings, size, 

area, photograph, building plan sketch, elevation and its relation to seismic performance, 

vulnerability score, and the numerical value of seismic hazard (Jahan et al. 2011). Details 

of methodology and analysis of this method can be found in some articles (Rahman, 

Ansary & Islam 2015; Jahan et al. 2011) (See Figure 2.6). 
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Figure 2.6: Methodology of RVS FEMA for vulnerability analysis. 

 

2.5.5. GIS-based risk assessment 

The primary objective of this model is to integrate various relevant data with the concepts 

of risk assessment by considering the characteristics and sources of the earthquake (Tsai 

& Chen 2010). The method is one of the most popular methods in seismic risk assessment. 

Evaluating the potential ratio of disaster occurrence and ultimate loss or damage caused 

by that disaster is necessary. 

                                                 𝑅𝑅 =  𝐻𝐻 ×  𝑉𝑉 ×  𝐸𝐸                                                         (2.5)  

where R: risk 

H: a ratio of disaster occurrence 

E: exposure to the disaster 

V: level of damage 

The earthquake risk needs to be calculated using three elements, namely, hazard source, 

damage level to objects, and threat (Varazanashvili et al. 2012). The level of risk 

calculation is impossible to ascertain if any of these three elements is missing. In next 

step, an earthquake risk manager can only analyze the risk sources and scope of all the 

effects that may occur by using this risk assessment system (Tsai & Chen 2010). This 

leaves the responsibility of strategizing the assessment to the decision maker. Prevention 

training and organizational plans are necessary to create a proper risk assessment.  
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This method is efficient and quite feasible. The details of the principles and methodology 

can be found in (Smith 2003). Figure 2.7 shows the steps needed for risk assessment.  

 

Figure 2.7: Methodology for earthquake risk assessment. 

 

2.5.6. Integrated model for seismic vulnerability assessment 

Various methods have been developed to calculate seismic vulnerability (Varazanashvili 

et al. 2012). However, developing and improving a seismic vulnerability map using an 

integrated model is the most efficient method for seismically active areas (Ilanlu et al. 

2013; Oliveira 2003). The purpose of this method is for risk mitigation and risk reduction. 

The main objective of this method to estimate seismic vulnerability, including all 

parameters, by using an integrated technique. A weighted overlay technique is used for 

vulnerability mapping by using analytic hierarchy process to make the logical decision 

on the weight of the parameters (Bahadori, Hasheminezhad & Karimi 2017). A spatial 

map of city structures can be created and used as a basis for collecting information.  

 

The survey can be done based on various factors, which can be utilized for the 

investigation and for the evaluation of seismic damage (See Figure 2.8).  
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Figure 2.8: Steps for the integrated seismic vulnerability assessment. 

 

The model can be applied to all countries with the same conditions by making some 

modifications in the parameters and weight factors (Bahadori, Hasheminezhad & Karimi 

2017). This model can be a significant tool for the crisis resulting from the strong 

earthquakes (Bahadori, Hasheminezhad & Karimi 2017; Papoulia, Stavrakakis & 

Papanikolaou 2001). Details of this method can be found in (Ilanlu et al. 2013; Bahadori, 

Hasheminezhad & Karimi 2017).  

 

2.5.7. Soil liquefaction potential analysis 

Soil liquefaction due to the earthquake is one of the major challenges at this current time 

(Jefferies & Been 2015). Soil liquefaction depends on the soil properties and seismo-

tectonic behavior of the site. According to seismologists, active faults can be identified 

by using the geological feature known as Panvel flexure (Subrahmanyan 2001; Mhaske 

& Choudhury 2010). Detailed soil data is needed to ascertain the soil characteristics and 

for soil liquefaction analysis, and some more factors need to be considered for safety 

analysis. A simple method has been designed by (Youd 1995; Mhaske & Choudhury 

2010) for safety factor analysis, and can be used for estimating liquefaction potential. 

First, the undisturbed soil data should be collected for the evaluation of liquefaction 
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potential (Stokoe 2001). In next step, the safety factors of liquefaction for earthquakes of 

different magnitudes are derived. Then, the liquefaction of soil is classified by using the 

values from the previous step involving safety factors. Finally, a potential to soil 

liquefaction map can be prepared by using the soil liquefaction susceptibility method in 

GIS. The required soil data for the susceptibility analysis are depth of water table, depth 

of collected soil sample, dry density, saturated density and soil friction angle, among 

others (Murthy 2007). Three types of liquefaction maps exist: liquefaction susceptibility, 

liquefaction potential, and liquefaction-induced ground failure maps. The liquefaction 

susceptibility map indicates the susceptibility of soils to liquefaction, the potential map 

indicates the susceptibility of soil and earthquake potential, and the liquefaction-induced 

ground failure map indicates ground displacement associated with liquefaction. Details 

of the methodology of these methods can be found in (Murthy 2007; Youd 1995; Mhaske 

& Choudhury 2010). 

 

2.5.8. Seismic micro-zonation analysis 

Previously, micro-zonation was applied as one of the traditional methods. Nowadays, 

GIS-based micro-zonation model is commonly used by many researchers (Sekac et al. 

2016). The GIS-based micro-zonation model is generally used for earthquake risk 

analysis purposes (Pitilakis et al. 2005). The main objective of this model is to prepare a 

micro-zonation map that can be used to update the historical map and for risk assessment 

(Cox et al. 2011). Nevertheless, the completeness of parameters is highly important in 

micro-zonation mapping. In general, for preparing a micro-zonation map, various kinds 

of input data are required, such as local site effects, wave propagation, landslide hazard, 

liquefaction, and fault rupture. Ground shaking and site effects for the different scenario 

can be derived and used in this model for a proper analysis with precision and accuracy 
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(Louie 2001). Details of principles and applications of this model can be found in (Louie 

2001; Cox et al. 2011). 

 

2.5.9. Seismic amplification susceptibility analysis 

The main objective of this method is to ascertain the potential areas of accumulation of 

unconsolidated sediments and to prepare a seismic amplification susceptibility map with 

spatial variation (Dhar, Rai & Nayak 2017). To prepare the susceptibility map of seismic 

amplification, important input data layers need to be considered, such as soil 

amplification factor, lithology, unconsolidated sediment, slope, height level, curvature, 

and flow accumulation (Theilen-Willige 2010). Weighted overlay technique can be an 

effective tool for preparing the soil amplification map in seismic hazard assessment 

(Theilen-Willige 2010). This model will help decide how the region is going to be 

affected by seismic waves. Because of loose sediment deposits, the seismic amplification 

increases. Seismic amplification analysis can help to create the seismic micro-zonation in 

the next stage. This model is feasible and useful for seismic hazard and risk analysis. The 

details of this model can be found in (Theilen-Willige 2010; Sekac et al. 2016). 

 

2.5.10. Unified risk assessment 

It summarizes the global hazard model HAZUS with various small modules and their 

interconnection (Pitilakis et al. 2005). The main objective of this method is to prepare a 

risk map and quantify the risk level (Pitilakis et al. 2006). This risk assessment method is 

useful for every lifeline, including population and buildings. In this assessment, the weak 

zones, such as seismic amplification, micro-zonation, and inventory of whole lifelines, 

are needed to identify the hazard analysis. For a feasible analysis of earthquake risk, a 

effective scenario should be developed. This system can be described as a multi-hazard 
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model for risk assessment by using the GIS tool (Pitilakis et al. 2006). The main ideal 

processing steps are global value estimation and impact on economic damages and losses. 

For improved results of risk assessment, the inventory data should be accurate and 

detailed with seismic hazard data. In this unified risk assessment model, several steps are 

needed for an effective analysis. Details of this risk assessment model can be found in 

(Werner et al. 2000; Pachakis & Kiremidjian 2004). 

 

2.5.11. Holistic model for seismic risk analysis  

This model can be applied to any seismic-prone region. Parameters of this model can be 

determined on the basis of local site conditions. Public and private sectors can utilize the 

risk assessment criteria developed in this model. An integrated earthquake safety index 

has been used for evaluating the level of safety (Mili, Hosseini & Izadkhah 2018). Many 

types of software are relevant for risk estimation, such as SAFER, Risk –UE, 

KOERILOSS, and DBELA (Pitilakis et al. 2006). A relative seismic risk index needs to 

be calculated based on vulnerability, damage, casualty, and social characteristics, and is 

the best method to address risk. In this model, the risk analysis is done based on required 

data. First, EHI (Equivalent Hazard Index) is to be calculated, and then EVI (Equivalent 

Vulnerability Index), and finally, the evaluation of (Response Capacity Index) RC; all 

these factors are important to reduce risk. This model is popular and recommended by 

many researchers. Details of principles, methodology, and efficiency of this method can 

be found in (Mili, Hosseini & Izadkhah 2018). 

 

2.5.12. Arithmetic and weighted overlay approach to seismic hazard assessments 

Integrated data analysis is used for the detection, visualization, mapping, and analysis of 

factors related directly or indirectly to earthquake occurrence (Kaliraj, Chandrasekar & 
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Magesh 2015). The main objective of this method is to produce an earthquake potential 

map by using all the parameters with relevant factors (Theilen-Willige 2010). Factors can 

be extracted using the input data for the detection of local site conditions. Thematic layers 

are generally used to evaluate numeric data layers that are applicable for arithmetic 

overlay analysis. Casual factors are important for the analysis of potential to earthquake 

areas (Theilen-Willige 2010). Based on weighted value, data integration can be done for 

earthquake potential analysis.  

Validation is important to validate the resulting map from the analysis, and can be done 

by using the historic map of seismic hazard. The weight value assigned to all the factors 

are attributed to the information, which depends on the thematic data layers for the 

integration of data and geospatial analysis in the GIS system (Ahmad, Singh & Adris 

2017; Pradhan & Jena 2016).  

 

Figure 2.9: Weighted overlay technique for the earthquake potential analysis. 
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The layers of input data must be multiplied by their corresponding ranks and should be 

added to obtain an Earthquake Potential Index (EPI) needed for earthquake hazard 

evaluation. 

The EPI can be calculated by using the following formula: 

EPI =  0.1 × DEM (ij)  +  0.1 × Slope (ij)  +  0.15 × DenF (ij)  + 0.15 ×

DenEv (ij)  +  0.2 × ML (ij)  +  0.15 × DisF (ij)  + 0.15 × Disepiev (ij)                 (2.6) 

 

 𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ (𝑅𝑅𝑖𝑖 × 𝑊𝑊𝑖𝑖𝑖𝑖 ) 10
𝑖𝑖=1                                                     (2.7) 

                                                                                                                                                                         

where Ri is the rank for factor (i) ,Wij is the weight of the class (j) of factor (i) and DEM 

(Digital Elevation Model), DenF (fault density) and DenEV (event density), ML(local 

magnitude), DisF (fault distance) and Disepiev (distance from epicenter of an event). The 

method is popular and highly recommended by researchers for earthquake potential 

analysis. Details of this method can be found in (Theilen-Willige 2010; Ahmad, Singh & 

Adris 2017) (See Figure 2.9).  

 

2.6. Machine learning techniques in predicting earthquakes  

Data mining is one of the most popular processes for analyzing and discovering hidden 

parts in data (Fayyad, Piatetsky-Shapiro & Smyth 1996). Machine learning is a part of 

data mining and considered as the process of automatic data-pattern recognition based on 

the collected training data (Fayyad, Piatetsky-Shapiro & Smyth 1996). In recent years, 

numerous studies have been performed on machine learning techniques. Most of the 

recent studies focuses on analyzing which machine learning techniques are most suitable 

and able to predict the earthquake with good accuracy (Rouet‐Leduc et al. 2017; Ruano 

et al. 2014; Idowu et al. 2016). Extensive research has been done on earthquakes (Asim 
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et al. 2017; Rouet‐Leduc et al. 2017). Machine learning techniques have recently become 

effective and prominent in the field of the seismology for earthquake prediction. Machine 

learning is well described by categorizing the machine learning algorithms into 

supervised and unsupervised learning, as mentioned by Idowu et al. (2016). In supervised 

learning input and target, an output is given to train and run a function. In unsupervised 

learning, no label is given in the sampled data. For the prediction of earthquakes, almost 

seven techniques are considered: Linear Regression (LR), Polynomial Regression (PR), 

Local Polynomial Regression (LPR), Vector Linear Regression (VLR), Gaussian Process, 

Support Vector Machine (SVM), and Neural Networks (Fayyad, Piatetsky-Shapiro & 

Smyth 1996). Holdout method is the one, which is used for evaluation. This method is 

simple and compatible with cross-validation, as described by Muñoz et al. (2015). 

Furthermore, the latitudes that the models are using in linear regression provide minimum 

errors. Polynomial regression and Gaussian process models cannot efficiently define the 

longitude. SVM is the best method for magnitude prediction (Ikram & Qamar 2015), and 

neural networks produce enhanced results in depth prediction. The most popular methods, 

such as SVM, ANN, and CNN are used for earthquake prediction and present with good 

accuracy. The details of all other methods for earthquake prediction can be found in 

(Asencio-Cortés et al. 2016; Atkinson & Tatnall 1997; Uyeda 2015; Florido et al. 2015; 

Dutta et al. 2016; Idowu et al. 2016). 

 

2.6.1. Support Vector Machine (SVM): a method of seismic detector 

In the last decade, the most applied technology used for various problems in the field of 

seismology is computational intelligence (CI). One of the major challenges in seismology 

is earthquake prediction, wherein research is conducted by many global organizations by 

analyzing and developing different models and parameters (Ruano et al. 2014; Yeats & 
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Prentice 1996). SVM is widely applied for various problems, including seismic detection. 

Moreover, SVM is one of the best methods for detecting earthquakes at an almost equal 

level to those detected by seismic stations. The least square support vector machine 

(LSSVM) is a better model for the prediction of seismic attenuation and is used to 

compute error bars as well. Nevertheless, SVM method provides excellent earthquake 

detection in terms of specificity. The drawback of this model is it takes too long for 

detecting earthquakes. Studies have stated that this technique is best for earthquake 

magnitude prediction (Panakkat & Adeli 2007, 2009).  

 

Furthermore, according to studies, this model provides good results when the data 

collected from the seismic stations are used in the SVM detector (Ruano et al. 2014). A 

general methodology was presented in the (Figure 2.10).  

 

Figure 2.10: A general SVM methodology for the earthquake prediction. 
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2.6.2. Artificial Neural Network for earthquake prediction 

In a scientific manner, predicting an earthquake is possible, but the prediction might have 

low accuracy (Wilson 1985). An artificial neural network is one of the technologies for 

that is better at predicting earthquakes compared with other traditional methods (Al-arifi 

et al. 2013; Alizadeh, Alizadeh, et al. 2018; Beale, Demuth & Hagan 1996; Nedic et al. 

2014). The prediction accuracy will be more prominent and correct if the input parameters 

are complete and comprehensive (Abraham 2005). A three-layer Levenberg Marquardt 

feed-forward learning algorithm generally seems to be used for earthquake prediction 

(Jena et al. 2019). Therefore, ANN accepts the strategy of individual training with a 

perfect weight leading to estimations (Sietsma & Dow 1991; Alizadeh, Alizadeh, et al. 

2018). Seismicity rhythm can be recognized using an ANN approach. The seismicity 

cycle can be represented by energy accumulation, that is, increasing release in energy, 

intense release, and the remnant release of seismic energy. It is a successfully operated 

application that realizes the seismic hazard evaluation (Figure 2.11b).  

 

Figure 2.11: (a) The phases of a neural network for earthquake prediction, (b) the 

general model of neural network adopted from (Jena et al. 2019). 
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Moreover, it is one of the complex mathematical expressions that may be an alternative 

to other models, and can predict improved results with accuracy. A model of neural 

network is presented below to show the complexity of the structure in (Figure 2.11b).  

 

2.6.3. Deep learning techniques 

Advancement of the deep learning that has been serving the artificial intelligence 

community from last few decades. It is very good to uncover the complex patterns in 

high-dimensional data. Therefore, deep learning is used in several areas of science and 

engineering. Several applications such as image recognition (Farabet et al. 2012; 

Krizhevsky, Sutskever & Hinton 2012; Szegedy et al. 2015; Tompson et al. 2014) and 

speech recognition (Mohamed & Hinton 2013; Hinton et al. 2012; Mikolov et al. 2011), 

it has beaten other techniques at predicting the seismic activity, brain circuits recreation 

(Helmstaedter et al. 2013), and predicting the disease, mutation and gene expression and 

many implemented in many medical science platforms (Leung et al. 2014). Deep learning 

has generated promising results in several fields (Collobert et al. 2011), specifically in 

classification, prediction, translation of language and other aspects (Abdollahi et al. 

2020).  

 

The recent advancement has been recorded in artificial intelligence and Conv-Net-Quake, 

a highly scalable and developed convolutional neural network that is designed for 

earthquake location detection from a single waveform analysis (Perol, Gharbi & Denolle 

2018). The research is being conducted by researchers on models to modify the 

methodology. However, various types of neural network models are being used, and 

among these, a deep convolutional neural network is highly suited for earthquake depth 

prediction (Perol, Gharbi & Denolle 2018).Deep convolutional neural network takes input 
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data as a 3-channel waveform data and predicts the label, such as noise and event. The 

parameters of the neural network model are highly optimized to either minimize or 

eliminate the discrepancy between the predicted result and the true labels on the training 

dataset. The detection accuracy depends on the percentage of windows, which is correctly 

classified as earthquake or noise. In general, the algorithm can detect all the events 

cataloged from any source successfully. This method is efficient for depth prediction. 

 

2.7. AHP-based Seismic analysis 

Seismic hazard and risk assessment based on analytical hierarchy process are among the 

popular techniques used by researchers. Usually, AHP is one of the best methods in 

decision making studies. Complex and complicated decisions can be analyzed by using 

the analytical hierarchy method, the criteria that is quantified and tangible (Saaty 1988, 

1990a, 1990b, 2008). AHP is one of the best methods, and it creates a hierarchy for the 

enhanced decision for parameter ranking and it is a highly popular method for creating a 

matrix to compare the pairs so that the weight of each element can be assigned 

consistently (Saaty 1988, 2008; Estoque 2012).  

 

Figure 2.12: Processes for making the decision in AHP. 

 

This is one of the latest decision-making models for successfully mapping seismic 

hazards worldwide by assigning the perfect weight to each factor (Malczewski 1999; 
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Mohanty & Walling 2008). AHP divides the problem into primary and secondary parts 

of the objectives. The whole agenda of processing is mathematically joined, making an 

effective and favorable statement for each element or group. The principal eigenvalue 

(λmax) needs to be calculated to check the consistency of the created matrix, where n is 

the good measure of consistency. To define the consistency degree, a consistency index 

(CI) can be computed as (Saaty 1988, 1990a): 

                         

                                                CI =(𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 - n)/(𝑛𝑛 − 1)                                               (2.8) 

                                                                                        

A high consistency index (CI) points towards a matrix of low consistency. The 

consistency ratio  is important for determining a satisfactory consistency level (Saaty 

1988, 1990a, 1990b, 2008), therefore: 

                                                        CR =  𝐶𝐶𝐶𝐶/𝑅𝑅𝑅𝑅                                                        (2.9) 

                                                                                    

The average consistency (RI) index can be created by using a random matrix that depends 

on the order of the matrix. A matrix with a satisfactory consistency level must yield a CR 

value of less than 0.10; thus, the calculated weight value for each factor is acceptable 

(Saaty 2008). AHP combines the weights of the criteria and the scores from the options 

in order to determine a global score and ranking evaluation. The global score is a weighted 

sum of the scores derived from all the criteria. The AHP simply can be implemented in 

three major and consecutive processes (See Figure 2.12). 

 

2.8. Previous works on earthquake prediction and probability, vulnerability, 

and risk assessment 

We divide this section into three subsections. The first subsection discusses about 
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earthquake probability mapping and forecasting. The second subsection provides a brief 

description of vulnerability, and the third section provides the overview of risk 

assessment using various methods. 

 

2.8.1. Prediction and probability assessment 

Avoiding earthquakes may be impossible, but accurate predictions and early warning can 

reduce the effect of the damage and consequences (Ikram & Qamar 2015). Research 

shows that natural hazards, such as earthquakes, are measured by probabilities, which 

explain the identification of potential zones for earthquakes in a semi quantitative analysis 

(Wang et al. 2006). Hazard is the probability of an earthquake in a specific geographic 

position within a period, and the intensity of ground shaking crosses a given threshold. 

Artificial neural network (ANN) has a wide range of applications, ranging from civil 

engineering (Karunanithi et al. 1994) to image processing (McIlraith & Card 1997) and 

to geology and seismology (Zhao & Takano 1999). ANN has been used in earthquake 

prediction and probability by calculating the importance of seismicity indicators for small 

and large events (Panakkat & Adeli 2007, 2009). Researchers have used different ANN 

architectures for earthquake prediction. A recurrent neural network was developed by 

Panakkat & Adeli  (2009) for the prediction of earthquake time and location by using 

eight seismicity indicators (e.g., T (time), a (latitude), and μ (days)). Moreover, they 

analyzed several sets of events and computed the latitude and longitude of the location of 

epicenter, as well as the occurrence time for the same events. Pradhan and Lee (2009, 

2010) used ANN model for the landslide hazard and risk assessment using remote sensing 

and GIS. Turmov et al. (2000) developed earthquake-induced tsunami prediction models 

using the measurement of electromagnetic and elastic waves simultaneously. Shimizu, 

Sugisaki & Ohmori (2008) studied earthquake forecasting using the technique of sample-
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entropy based on the VAN method.  Stefánsson (2020) used historical inventory and 

sensor data to conduct a probabilistic analysis and identify earthquake nucleation. They 

aimed to find the governing factors of impending earthquakes through nucleation 

monitoring. They conducted extrapolation to identify the fault size, hypocenter, 

earthquake impact, and time. They predicted frequent medium-sized events and discussed 

how significant events could trigger possible events at other locations. Xu et al. (2018) 

structured a weighted earthquake network using the maximum magnitude and event 

influence number. They predicted earthquakes by considering the minimum edge weight. 

Their results showed that the prediction accuracy is improved using the two networks. 

Asencio-Cortés et al. (2016) explained the use of ensemble learning along with regression 

algorithms subject to big data context. They used 1 GB catalogue data to predict the 

magnitude of events within a short period. They reported promising results using Amazon 

cloud infrastructure, Apache Spark framework, and R language. A recent study by Dias 

et al. (2019) described the influence of incomplete datasets on earthquake probability 

assessment based on spatial and temporal distributions. The data were collected from 

California from 2003 to 2016, with different magnitude thresholds and depths. They 

implemented nonextensive statistical mechanics and obtained the sequence forms caused 

by the increase in a jump between events. Martínez-Garzó et al. (2019) conducted a 

comparative assessment of the mainshocks, foreshocks, and aftershocks in the Sea of 

Marmara. Cluster statistics was used to identify particular locations where repeated events 

occur. Susceptibility analysis suggested that the western high region and Cinarcik have 

high probability where events may trigger. Uchida et al. (2019) identified the repeating 

earthquake events in the North Anatolian Fault areas. Past repeated events are located 

near the rupture borders. They observed that the creep rates are similar to relative plate 

motion, which is approximately 10–20 km depth. Several pieces of work on earthquake 
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induced landslide susceptibility assessment was proposed by (Aghdam, Varzandeh & 

Pradhan 2016; Bai et al. 2012; Cao et al. 2019; Pradhan et al. 2014; Tehrany, Pradhan & 

Jebur 2014; Umar et al. 2014; Youssef, Al-Kathery & Pradhan 2015; Wistuba et al. 2018; 

Zare et al. 2013). 

 

2.8.2. Vulnerability assessment 

The concept of vulnerability is associated with exposure to disaster, which is a 

prerequisite for risk mapping. Structural design, geological conditions, social behavior, 

and poverty are found to be the major key factors in understanding earthquake 

vulnerability assessment (EVA). Social vulnerabilities can be identified by considering 

gender, age, education level, population, households, and ethnicity (Jena et al. 2019). 

Zahran et al. (2008) argued on the situations for disaster depending on capacities of 

personal, socio-economic conditions, and infrastructure. Ruddock (2007) argued that 

women are disproportionately more vulnerable than men to disasters because of pre-

existing norms and practices. Innumerable techniques have been recommended by 

researchers to assess structural vulnerability on a city scale. Therefore, EVA is crucial in 

the urban environment (Yakut et al. 2003). Based on predefined relations, some 

approaches are relevant for a particular study area. In recent years, many studies have 

been implemented by using observation approach models or vulnerability indices under 

the Spatial Decision Support Systems framework (Aghataher et al. 2008; Choi, Engel & 

Farnsworth 2005; Wang, Peng & Wang 2018; Wang et al. 2020). However, to this end, 

researchers have not paid enough attention to the EVA method implementation in specific 

areas due to restricted data availability (Rashed & Weeks 2003). The lack of building 

inventory data and the statistics of destruction experienced due to past earthquakes can 

be seen in some highly susceptible urban areas. Owing to data limitation and prerequisite 
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to estimate structural, social, and geotechnical vulnerability, some efficiently applicable 

approach has been proposed in EVA for urban areas (Rashed & Weeks 2003). In this 

regard, researchers have implemented AHP and ANP methods using geographical 

information system  and multi-criteria decision-making approach (MCDM) (Alizadeh, 

Hashim, et al. 2018). Some inherent uncertainties associated with EVA that come through 

the MCDM approach could substantially influence the results (Jena, Pradhan & Beydoun 

2020). 

 

Some works have examined and inscribed the integrated unreliability. For the uncertainty 

evaluation that is associated with MCDM procedures, fuzzy logic has been applied, which 

was accepted for the seismic vulnerability assessment (SVA) (Alizadeh et al. 2018). Maps 

of human loss were prepared for Tehran City using a fuzzy logic approach based on 

sensitivity analysis. Several studies have used the granular computing technique for SVA 

in Tehran by applying the derived decision. An ordered weighted averaging operator was 

applied to assess the vulnerability in Tabriz city (Alizadeh, Alizadeh, et al. 2018). 

Through these approaches, experts have inscribed all the statistical units of the 

vulnerability, and they ranked the selected sample units. Alizadeh et al. (2018) performed 

an urban EVA of Tabriz City by using a hybrid technique of the Analytic Network Process 

and Artificial Neural Network. Alizadeh, Hashim, et al. (2018) developed a new model 

for the earthquake urban vulnerability and tested it for the Tabriz City of Iran. They 

observed reasonably good results due to the use of hybrid ANN and analytic hierarchy 

process approach. They achieved an accuracy of 90%. Alizadeh et al. (2018) and Panahi, 

Rezaie & Meshkani (2014) proposed a model for the seismic vulnerability assessment of 

the urban buildings in Tabriz City of Iran by using the Multi Criteria Decision Making 

(MCDM) approach. Vulnerability and behavior of residential and industrial buildings 
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associated with earthquakes are a prime concept in hazard assessment. These 

considerations have recognized the essential indicators in earthquake hazard estimation 

and applied various techniques for constructing a seismic hazard map. Recognition and 

reduction of the earthquake vulnerability of population and buildings with respect to 

earthquakes are required. The upgradation of buildings against earthquakes is important 

for the reduction of loss of properties and lives (Mehta & Burrows 2001).  

 

More recently, Zebardast (2013) proposed the hybrid factor analysis approach and 

analytic network process model for projecting a composite social vulnerability index by 

aggregating the vulnerability indicators. The main objective in this research was to 

develop a hybrid FA and ANP (F’ANP) model for the assessment of social vulnerability 

and to apply in county scale. Gulkan and Sozen (1999) developed a model for seismic 

vulnerability of concrete and masonry buildings. They explained their methods through 

the ratios of column and walls using graphical representation. Pay (2001) proposed a 

novel method for the seismic vulnerability assessment of buildings using the discriminant 

technique analysis in Turkey. The success rate achieved by Pay was approximately 

71.1%. Yakut et al. (2003) proposed another model for the earthquake vulnerability 

assessment of the reinforced concrete buildings. The method was similar to that of Pay. 

However, statistical analysis was included in their model. They achieved an accuracy of 

80.3% for the highly damaged buildings. Bahadori, Hasheminezhad & Karimi (2017) 

developed an integrated model best suited for the assessment of seismic vulnerability of 

buildings in Mahabad City in Iran. The methodology is an integration of five parameters, 

such as geotechnical, social, seismological, distance to dangerous facilities, and access to 

vital facilities along with the sub-parameters. Zhang, Xu & Chen (2017) described the 

construction of an evaluation model for the most significant assessment of social 



65 
 

vulnerability using a rough set up based on catastrophe progression.  

 

Karimzadeh et al. (2017) prepared a Vs30 map by applying an indirect approach using 

geological and topographical data in Iran. Sarmah & Das (2018) produced a hazard map 

of a city through vulnerability mapping using hazard microzonation and ward-level 

hazard maps. Tall buildings and high population density were observed in five out of 31 

wards, which were considered the most vulnerable areas and selected in their study. 

Torres et al. (2019) presented a process for seismic vulnerability assessment that 

combines aerial images with light detection and ranging (LIDAR) data collected from the 

Spanish National Plan of Aerial Orthophotography. Their results indicated that machine 

learning (ML) techniques could exhibit good performance with an accuracy of 77%–80% 

using SVM classification techniques. Thiri (2017) examined the interconnection between 

social vulnerability and environmental migration for 30 municipalities caused by the 2011 

Japan earthquake. Analysis revealed a 33.3% increase in out-migration is attributed to 

earthquake events. The evidence of linkage between the indicators of social vulnerability 

with environmental migration can be observed to understand the natural migration 

(Martins, e Silva & Cabral 2012). Very limited studies on earthquake vulnerability have 

been conducted in Banda Aceh City in Indonesia (Johar et al. 2013; Kafle 2006; Culshaw, 

Duncan & Sutarto 1979). 

 

2.8.3. Risk assessment 

Zhihuan & Junjing (1990) applied fuzzy logic in their research on damage and risk 

assessment. Mili, Hosseini & Izadkhah (2018) proposed a holistic model for earthquake 

risk assessment  and determine the risk reduction and management priorities in urban 

areas. Chaulagain et al. (2015) presented the estimation of structural vulnerability and 
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successfully analyzed the risk and the expected economic losses for future earthquakes in 

Nepal. They used the Open Quake-engine for earthquake hazard and risk in Nepal. Ram 

and Wang (2013) explained the seismic ground motion that has been estimated by a 

probabilistic approach in Nepal. They also calculated the PGAs using seismic source 

information and probabilistic parameters in their study. Khan et al. (2018) estimated the 

earthquake risk for developing countries using the modern ERA methods in their article. 

They analyzed Pakistan as a case study. They successfully estimated the earthquake risk 

using a practical event-based PSHA method. The proposed model is applicable for any 

earthquake-prone urban areas, and its parameters depend on the local conditions. 

(Battarra, Balcik & Xu 2018) focused on the prepositioning of emergency supplies during 

the preparation period. They proposed a new method to calculate the likelihood of events 

and affected people. (Abdollahzadeh & Faghihmaleki 2017) assessed the risk using a 

probabilistic approach of engineering structure against earthquake and earthquake-

induced natural hazards. They compared the two phase-based risk and revealed the near-

field earthquake risk. They observed that the risk of near-field earthquake is higher than 

that of far-fault earthquake with an extended return period. Schnebele et al. (2019) 

developed methods to quantify (i) the earthquake hazard and mineral production 

coincidence and (ii) the annual disruption of mineral supply on the basis of expected 

annual disruption (EAD) from earthquakes.  

 

Table 2.3: Comparative analysis of strength and limitations of traditional methods. 

Criteria Models Strength Limitations 

Traditi
onal 
models 

PSHA  Generally used to evaluate the 
seismic design load for the 
important engineering structures  

 capability to solve some issues, 

 Data scarcity, 
 Invalid physical model and 

mathematical formulation 
(Scawthorn & Chen 2002), 
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 Method is innovative, 
 Provides a feasible 

methodology. 
 

 Can’t find how crustal 
properties affect 
attenuation, 

 Conflicts with seism 
physics (Mulgaria et al. 
2017), 

 Failure of PSHA results 
(1988 Spitak, Armenia, 
event and the 2011 
Tohoku, Japan, event 
(Mulgaria et al. 2017)), 

 PSHA is highly limited 
 Poor quantification of 

uncertainties. 
 DSHA  Very easy methodology, 

 Calculations are relatively 
simple, 

 Can apply to assumed 
earthquake. 

 No strong solid physics 
roots, 

 Low-quality model, 
 Lack of consideration of 

uncertainties,  
 Highly limited, 
 Poor result (Campbell & 

Bozorgnia 2003; Shah et 
al. 2012; Deif et al. 2012). 
 

 

They calculated EAD based on the production, hazard, and vulnerability of the facility. 

Chaulagain et al. (2015) presented the structural vulnerability estimation in Nepal and 

carefully estimated the risk along with the expected losses for future events. They used 

the OpenQuake Engine for hazard and ERA. 

 

2.9. Strength and limitations of models 

Many models have been developed for seismic analysis. Each model has strengths and 

limitations. All the models are in Table 2.3 and 2.4 and are comparatively analyzed based 

on their strengths and limitations. 
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Table 2.4: Comparative analysis of strength and limitations of various GIS-based 

models/modules/platforms. 

Criteria Models Strength Limitations 

GIS-
based 
models 

GTIS 
(Geotechn
ical 
Informatio
n System)  

 A lot of geotechnical data can be 
stored and managed, 

 Integrated technology can solve 
problems in global scale, 

 Convenient and cost-effective, 
 An effective tool to promote 

accessibility, efficient distribution, 
Administration and cross-platform 
flexibility of geotechnical 
information,  

 Data exchange and improvement is 
easy 

 Impossible to manage 
easily without adopting 
the facilities in 
information system 
(Williams et al. 2002; 
Chang & King 2005), 

 Some information 
needs to be stored in 
images, 

 Scanning of images 
with resolution, scale 
inconsistency, file size 
etc. 

 Fault 
specific 
seismic 
hazard 
model 

 Can be applied to any seismically 
active zone (Deligiannakis, 
Papanikolaou & Roberts 2018) 

 Use to address the problems of the 
incompleteness of historical 
records, 

 Method is efficient, 
 Provide very effective result with 

proper scientific analysis, 

 May provide 
uncertainties because of 
poorly affected 
parameters, 

 Large dataset needed, 
 Some assumption can 

be made for the 
delineation of the 
database (Benedetti et 
al. 2003; Ganas, 
Pavlides & Karastathis 
2005; Papanikolaou & 
Royden 2007; 
Sakellariou et al. 2007), 

 Error parameters can 
create a problem 
(Papanikolaou 2003). 

 Intelligent 
simulation 
system 
using 
Artificial 
Intelligenc
e 

 Designed for analysis various kind 
of data in a quick mode and it is 
efficient (Tao et al. 1996; Tang & 
Wen 2009), 

 Useful for post-earthquake analysis, 
 Provides successful results, 

 Complex coding, 
 Data should be in a 

specific format, 

  
Vulnerabil
ity 
mapping 
using the 
FEMA-

 
 Provides a complete picture of 

existing vulnerability, 
 Helpful to relocate the people 

living in vulnerable buildings 

 
 Applicable to a small 

portion of the study 
area. 
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RVS 
method 
 

(Rahman, Ansary & Islam 2015),  
 The method is efficient and 

developed. 
 Integrated 

model for 
seismic 
vulnerabili
ty 
assessmen
t 
 

 Significant tool for confronting 
crisis resulting from future 
earthquakes, 

 Results have important implications 
for risk reduction, 

 Can be applied to other countries 
easily by modifying the parameters, 
sub-parameters, and their weights 
(Ilanlu et al. 2013). 
 
 

 A requirement of 
multiple parameters, 

 Efficiency depends on 
practicability and 
applicability parameters 
(Bahadori, 
Hasheminezhad & 
Karimi 2017). 

 Soil 
liquefactio
n 
susceptibil
ity 
analysis 

 Identified and displayed the 
susceptible area to liquefaction 
using the analyzes and the 
classification techniques of GIS 
(Subrahmanyan 2001; Mhaske & 
Choudhury 2010), 

 Updating hazard map,  
 Extend the liquefaction hazard 

maps to areas that lack geotechnical 
information using interpolation. 
 

 Lack of information 
can’t provide a logical 
result (Youd et al. 
1995; Mhaske & 
Choudhury 2010). 
 

 Micro-
zonation 
model 
 

 Simple methodology, 
 Can handle a large dataset, 
 Can provide four different level of 

micro-zonation (Pitilakis et al. 
2005), 

 Efficient method. 

 Need large dataset 
 3rd level of micro-

zonation based on 
complex coding(Louie 
2001; Cox et al. 2011). 

 Seismic 
amplificati
on analysis 

 Easily mapping can be done for 
susceptible areas,  

 Over a large area in a short duration 
and are used for performing a 
reconnaissance study (Theilen-
Willige 2010; Sekac et al. 2016), 

 Efficient method. 

 Accuracy depends on 
the quality of data and 
amount of input layers, 

 The weight of layers 
can choose both 
manually and decision 
making methods, 

 Not useful for small 
areas (Theilen-Willige 
2010; Sekac et al. 
2016). 
 

 Unified 
risk 
assessmen
t 

 It highlights various modules and 
their interconnections, 

 Enhance the reliability of the 
systems and improve mitigation 
policies (Werner et al. 2000; 

 Different aspects of 
uncertainty (Pitilakis et 
al. 2005), 

 Large dataset needed. 
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Pachakis & Kiremidjian 2004), 
 Provides sophisticated assessments, 
 Aiming to create mitigation 

strategy and minimize losses, 
 A holistic 

model for 
risk 
analysis  

 Applicable for all seismic prone, 
 Can be used to reduce earthquake 

damage and casualties (Mili, 
Hosseini & Izadkhah 2018), 

 Appropriate for estimation of safety 
level, 

 Applicable for countries with 
similar conditions. 

 Parameters should be 
determined based on 
local conditions, 

 A need for large 
dataset. 

 Arithmetic 
and 
weighted 
overlay 
approach 
to hazard 
assessmen
ts 
 

 Can cover a large area, 
 Efficient method, 
 Can apply to low-resolution data 

(Ahmad et. al. 2017). 
 

 A weight of layers can’t 
choose manually, 

 Very poor accuracy, 
with lack of parameters 
(Theilen-Willige 2010). 

Machin
e  
learnin
g 

Support 
vector 
machine 
(SVM) 

 Regularisation parameters, 
 High dimensional input space, 
 Sparse document vectors, 
 Produce excellent results, 
 Produced several successful 

applications (Ruano et al. 2014), 
 Better at computation speed, 
 It’s feasible and efficient. 

 

 The time taken for 
achieving the detection 
is too large, 

 Can’t handle a large 
dataset (Akhoondzadeh 
et al. 2018). 
 

 Neural 
Network 
(NN) 

 Perform better than a linear 
program, 

 It can continue without any 
problem if any element of it fails, 

 It learns and doesn’t need to be 
programmed again (Sietsma & 
Dow 1991; Alizadeh et al. 2018), 

 Can be implemented in any 
application without any problem. 

 Needs the training to 
operate, 

 Architecture is different 
from microprocessors, 
therefore, needs to be 
emulated 

 Requires high 
processing time for the 
large neural network 
(Alarifi, Alarifi & Al-
Humidan 2012; 
Alizadeh et al. 2018). 

AHP 
based 
models 

  It allows multicriteria decision 
making, 

 It is applicable when it is 
formulated criteria evaluations, 

 It allows qualitative evaluation 

 Hidden assumptions 
like consistency, 

 Difficult to use when no 
of criteria is high, 

 Difficult to add a new 
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 Applicable for group decision-
making environment (Saaty 1988, 
1990a, 1990b, 2008; Estoque 
2012). 
 

criterion or alternative, 
 Difficult to take out 

existing criteria 
(Malczewski 1999; 
Mohanty & Walling 
2008). 

 Remarks: GIS based models and Machine-learning models (Table 4) are better than all 
the traditional models described above in Table (3), which is concluded based on their 
strengths and limitations. 

 

2.10. Data required for the models 

Collection of a well-organized dataset is mandatory for earthquake hazard analysis. To 

improve the understanding of hazard analysis, the data of geology, geomorphology, soil, 

PGA, earthquake intensity, slope of the study area, digital elevation model, and 

topography and other factors need to have good quality (Moustafa 2015). Clearly, the 

completeness of important parameters can improve the accuracy of the resulting model. 

Therefore, data organization should be reliable and well-collected or digitized with all the 

effective parameters. The data can be collected from various sources for a relevant 

analysis.  

 

Bedrock and surficial geological data either collected from field survey or scanned from 

various maps should be rasterized. The data can be digitized for spatial accuracy via geo-

referencing. Images should be geometrically corrected as per the coordinate system 

WGS84 datum as layers within the GIS system (Moustafa 2015). A valuable database is 

necessary, wherein points, lines, and polygons correspond to a record in the GIS system. 

Attributes in GIS include the place name, rock type, rock age, lineament type, and 

recorded magnitude. Table 2.5 does not explain the minimum requirements for the 

seismic study, but these are the base data needed for seismic analysis. The completeness 

of data can enhance the result that can be utilized for correlations and validation. 
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Table 2.5: Data required for the seismic risk analysis. 

Category Data Scale Type 

Base data Digital contour 
lines 
Digital elevation 
model 
Digital topographic 
map 
Air photos 
Satellite images 
Quick bird 

1:25000 Contour (Segment 
map) 
Aster DEM(Raster 
map) 
Topo map(Raster 
map) 
Landsat (7,8) 
Raster images 

Hazard data Earthquake catalog 
Earthquake 
Intensity 
map(MMI)       
Geological map   
City center       
Faults and 
lineament    
Borehole Locations 
Landslides 
Depth to water table  
Soil or Overburden 
Thickness       
Geo soil                                                        
                                                                                                         

1:2000      
 
 
1:100 000    
 
 
1:100 000       
 
 
 
1:25000                                                 

Point map and 
table 
Raster map 
Geological                                                                                                            
Units(Polygon 
map)  
Point map 
Segment map 
Point map 
Segment map 
Segment map 
Raster map 
Polygon map 

Elements at risk Population 
Land use and land 
cover 
Social and 
structural 
characteristics 
Roads 
Cities  
Villages 

1:2000 
1:2000 
 
 
1:2000 
1:25000 
1:25000 
 

polygon map 
polygon map 
 
 
polygon map 
Segment map 
polygon map 

 

2.11. Software used for the hazard and risk analysis 

We need some software for seismic hazard analysis. We described the software needed 

for the hazard and risk assessment. In Table 2.6, we discuss some important and most 

commonly used software and Matlab codes and their applications, along with their 

developers. 
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Table 2.6: Applications of various GIS, hazard, and risk software. 

Criteria Softwares Applications Developers 
 
 
 
 
 
 
 
 

GIS software 

ArcGIS  Susceptibility and  
vulnerability analysis for 
hazard and risk assessment 

ESRI, 
(Geographic 
information 
system company) 
 

QGIS  
 
 

 Susceptibility and  
vulnerability analysis for 
hazard and risk assessment 

QGIS 
Development 
Team 

gVSIG  
 
 
Development 
team 

Whitebox 
GAT 

SAGA GIS 

GRASS GIS 
DIVAGIS 

ILWIS 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hazard and risk 
software 

GRAM++  Used for earthquake hazard 
analysis. 

CSRE, IIT 
Bombay, India 

CU-PSHA  Used to analyze probabilistic 
earthquake hazards. 

MATLAB based 
software 

OpenSHA  OpenSHA used to develop 
object-oriented, web- & GUI-
enabled, open-source, and 
freely available code for 
conducting Seismic Hazard 
Analyzes (SHA). 
 

 Applied for earthquake rupture 
forecast, ground motion and 
response model 
 

US Department 
of the Interior 
 

EZ FRISK 
FRISK 

EQRISK 
 
 

SEISRISK II 
& III 

 
 

Crisis 

 When performing seismic 
source characterization and the 
integration methods, the main 
difference can be found.  
 

 Applied for seismic hazard and 
risk analysis, spectral matching 
and site response analysis, 
slope stability, liquefaction, 
site-specific PSHA. 

 
 (McGuire 1978, 
1995) 
 
 
 
(Bender & 
Perkins 1987) 
 
(Ordaz, Aguilar & 
Arboleda 2001) 
 

PRISK  Used for uncertainties LLNL-NRC 
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PSHC 

quantification and sensibility 
analyzes through logic tree 
methodology 

 
Principia 
Mathematica Ltd. 

KERFRACT  A program, which assumes a 
fractal geometry for the 
seismicity that, is represented 
by Kernel statistics. 

Woo, G., (1996) 

SAFER 
Risk-UE 

KOERILOSS 
DBELA 

 Used for seismic risk 
estimation. 

KOERI, (2002) 
developed the 
KOERILOSS. 

Open quake  An open source software used 
for hazard and risk modeling 

GEM team 

 

2.12. Current challenges in earthquake research  

1. Implementation of a suitable comprehensive methodology remains difficult for many 

developing countries.  

2. Few integrated GIS techniques with historical earthquake catalogue in 

underdeveloped countries have been used.  

3. Understanding of the fault geometry by using the current knowledge of ongoing 

research is essential and difficult.  

4. Fault mechanism study from fault data to understand the complex mechanism of fault 

movement is the main issue in current times.  

5. Most of the developed models are data dependent. Very few bespoke model 

development study has been conducted on earthquake study. 

6. The collection of complete data is another issue in solving the major seismic hazard 

and risks problems in local areas. 

2.13. Summary 

Collecting and integrating various data from different sources for creating an effective 

scenario for hazard and risk assessment is not highly feasible, but the availability of some 

free data can fulfill some requirements. Evaluation and analysis of seismic hazard and 



75 
 

risk to lifelines have been serious and sensitive issues as of current time. Today many 

well-established models have been developed that can be used for the seismic hazard, risk 

assessment, and damage estimation. Seismic analysis creates several steps towards urban 

development. Moreover, several proposed approaches are discussed in this review for 

hazard, vulnerability and risk assessment, and loss estimation for lifelines. In this study, 

we found that the attention of most researchers is towards the robust models to reduce 

limitations.  

1. All the models were applied for different environments using various data, and the 

paper gathered valuable conclusions, as follows; 

2. The capabilities of GIS-based and data mining approaches are more efficient than 

those of traditional models, as described and analyzed in (Table 2.3 and 2.4). 

3. A high seismicity concentration increases the chance of risk, depending on several 

factors. 

4. The suitability of a model for hazard and risk assessment depends on various factors, 

such as data, source, parameters, and expected results. 

5. Poor performance of models depends on the framework of methodology and quality 

of data and computational requirements as described in the limitations of various 

models. 

6. Modification of models regularly enhances the state of the research. 

7. More research is needed to establish comprehensive models with accuracy. 

8. More models for seismic hazard and risk assessment will provide more options to the 

research community. 

Using a decision-making process, the weight value for different factors can be established 

to derive accurate results. The development of research on various models and technology 

leads to more efficient and holistic mitigation strategies. Therefore, this review describes 
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the traditional seismic hazard models and GIS-based models for the hazard and risk 

analysis, and introduces some early and recently developed methodologies. Therefore, 

research on various proposed approaches are relatively growing with an advanced 

methodology for hazard, risk analysis, and mitigation plans. Introducing some novel 

models regarding seismic hazard analysis is important. 

 

One of the major findings of this review is that seismic analysis creates several steps to 

enrich research and establish new ideal models. In seismic analysis, every field of hazard, 

risk, and loss estimation should be considered as important. This study can provide 

knowledge for the future research and development. In general, there are many more GIS-

based models developed for qualitative and quantitative seismic hazard and risk 

assessment. There are many traditional models, which are not realistic but still used for 

seismic analysis (Mulargia, Stark & Geller 2017). Therefore, researchers must be 

concerned about their own models, which should be accurate and useful in society. First, 

researchers should prepare realistic and comprehensive models for the accurate results. 

Second, we need to acknowledge that “prediction of earthquake” is possible but might 

not be highly accurate. Therefore, disaster risk analysis and reduction are more important 

than prediction. Fault mechanism analysis using various methods are needed to 

understand the complexity of earth’s internal mechanism, and it might help risk reduction. 

A new state-of-the art models will be helpful for model developers, seismic researchers, 

scientists, academicians, and research scholars to understand the models and applications. 

The most accurate analysis needs to be presented to the public to be prepared for future 

earthquakes. 
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CHAPTER 3 

MATERIALS AND METHODOLOGY 

3.1. Introduction 
 
This chapter illustrates several methods applied in this study. Overall methodology, 

implementation of the detailed methodology and performance evaluation are described. 

Location and study area characteristics are reported. The data and materials used have been 

described in detail. Conditioning factors of probability and vulnerability factors and 

hazard factors are presented. An integrated AHP-VIKOR (Analytical Hierarchy Process- 

VIseKriterijumska Optimizacija I Kompromisno Resenje) model was introduced to 

demonstrate earthquake vulnerable areas on a city scale. An integrated ANN-AHP 

(Artificial Neural Network-Analytical Hierarchy Process) model was developed for 

earthquake risk mapping and the population under risk associated with them has been 

explored. An integrated ANN-CV and AHP-TOPSIS (Analytical Hierarchy Process- The 

Technique for Order of Preference by Similarity to Ideal Solution)  raster modeling was 

conducted using geostatistical techniques to improve the spatial risk mapping with better 

accuracy. Software used for the implementation of different models were also described. 

The chosen areas for spatial risk mapping as case studies are Banda Aceh and Palu city 

in Indonesia. Several mitigation processes are suggested in this chapter by analyzing the 

results. 

 

3.2. Multi-criteria decision-making model 

Multi-criteria decision-making is a potential tool that analyzes real complex problems to 

judge different alternatives on the basis of some aspects for a suitable alternative selection 

(Armaş 2012; Malczewski & Liu 2014). MCDM allows storing, modifying, analyzing, 
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and visualizing data for decision-makers, whereas GIS provides a platform to analyze and 

realize the desirability of alternatives (Sánchez-Lozano et al. 2013). To understand the 

desirability relationships, an expert’s opinion is obligatory. In general, uncertainty can be 

found among experts’ opinion in decision-making problems (Jankowski & Nyerges 2001; 

Ouma & Tateishi 2014; Meng & Malczewski 2015). The MCDM approaches were 

implemented in this research such as AHP, VIKOR, and TOPSIS for the vulnerability 

assessment. 

 

3.2.1. Integrated AHP-VIKOR approach 

In this research, the MCDM approaches, such as AHP and VIKOR methods, were applied 

to solve the current problem (Saaty 2008). AHP is the most used decision-making method 

in both academia and industries (Liu et al. 2008). Assessors believe in the results obtained 

by AHP than other decision-making methods on estimating the priority. VIKOR method 

is something, which is applied in other studies but not in earthquake research (Mardani et 

al. 2016). This research applied VIKOR to evaluate the ranking and weights of social, 

structural, and geotechnical vulnerability layers as very fewer studies have been 

conducted and limited experts opinion on ranking and prioritizing of all the described 

layers (Shaw et al. 2006). AHP and VIKOR methods were integrated to develop a new 

MCDM model for earthquake vulnerability assessment. The details of the new integrated 

model is presented below. 

 

3.2.1.1. AHP approach 

AHP can be used in developing a robust method like MCDM approaches that consider a 

selection of the best suitable alternatives for specific problems (Figure 15) (Ouma & 

Tateishi 2014). Owing to its user-friendliness, AHP is a popular approach among spatial 
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scientists (Nyimbili, Erden & Karaman 2018). AHP can be applied to manage complex 

problems. Sensitivity analyzes need to be applied to explore the changing effect of the 

priority of several indicators on different alternative ranking systems (Panahi, Rezaie & 

Meshkani 2014).  

Steps involved in the application of the AHP method in spatial decision-making are: 

Step 1: Criteria score calculation.  To obtain the scores, a pair-wise comparison should 

be performed in which each alternative can be compared with a specific criterion (x1,. . 

.xn) of alternatives. The eigenvectors can be calculated once the normalizing process of 

judgmental matrices is completed (Panahi, Rezaie & Meshkani 2014). 

Step 2: Criteria weights estimation. Saaty (2008) described the use of the lambda max 

technique to calculate the weights through pair-wise comparison. A comparison between 

alternatives and criterion should be in a pair-wise manner to calculate weights (wi. . .wn). 

For each matrix, there is a set of eigenvalues and the corresponding eigenvector can be 

found for every eigenvalue. In Saaty’s technique of lambda max, a normalized 

eigenvector is the vector of weights where the largest Eigenvalue is λ max. 

Step 3: Priorities and consistency estimation. Once the matrix through criteria 

comparisons is developed according to the goal, the priorities and consistency of criteria 

and judgments can be determined, respectively. Saaty (1990) also introduced the scale for 

the pair-wise comparison, which is presented in Table 4.7.  The priorities could be 

calculated through eigenvector w of matrix A using equation 3.1.  

                                                         AW = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚ω .                                                     (3.1) 

Once the vector normalization is obtained, the vector of priorities of the criteria resulted 

according to the goal. However, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the largest eigenvalue of the obtained matrix A, 

and w is the corresponding eigenvector that only considers positive values. The 

consistency ratio can provide the consistency of the judgmental matrix which is defined 
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as: 

                                                          𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶/𝑅𝑅𝑅𝑅 ,                                                        (3.2) 

where RI is known as a random index and CI is the consistency index that provides a 

value of deviation from consistency. Therefore, consistency index can be calculated as: 

                                                    𝐶𝐶 𝐼𝐼 = (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛)𝑛𝑛 − 1,                                             (3.3) 

where the largest eigenvalue is 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 of matrix A, and n is the criteria number. If the 

matrix has a high CR value, it indicates that the judgmental inputs are not well approved 

and not reliable.  However, a 0.10 or less CR value is acceptable. If CR crosses 0.1 toward 

high values, then the judgments are not reliable and again need to be elicited.   

In this study, the AHP technique was adopted to assess earthquake vulnerability using 

spatial information for Banda Aceh City. The weight results computed are considered 

satisfactory if the obtained consistency ratio values are reasonable. Figure 2 shows the 

methodology adopted in this research. The individual weighted pixels in the vulnerability 

map were calculated using Equation 4:   

                                                        𝑊𝑊𝑊𝑊 = ∑𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑊𝑊𝑗𝑗,                                                      (3.4) 

where terms 𝑋𝑋𝑖𝑖𝑖𝑖  shows the rank of the ith class on the basis of jth layer. 𝑊𝑊𝑗𝑗 is the 

normalized weight for jth layer. By increasing the normalized weighted, the absolute 

weight can be achieved for each layer in a consistent rank. 

 

3.2.1.2. VIKOR method 

The VIKOR approach was first proposed as one pertinent technique to be executed within 

MCDM problems and as a multi-attribute decision-making approach (Shen & Wang 

2018). This method emphasizes ranking and alternatives selection and regulates the 

compromise solution for conflicting criteria that can assist decision-makers to achieve an 

ultimate solution (Shen & Wang 2018; Wang et al. 2018; San Cristóbal 2011). The multi-
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criteria approach for ranking evolved from the aggregating function of LP-metric used 

through a compromise programming method (Baja, Chapman & Dragovich 2007). The 

detailed steps of the VIKOR method are described by Mardani et al. (2016). 

Step 1:  Calculation of 𝑿𝑿𝒊𝒊∗and 𝑿𝑿𝑿𝑿���. 

                                    𝑋𝑋𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑋𝑋𝑖𝑖𝑖𝑖��𝑗𝑗 = 1,2, … .𝑚𝑚�.                                                      (3.5)            

                                    𝑋𝑋𝑋𝑋��� = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑋𝑋𝑖𝑖𝑖𝑖��𝑗𝑗 = 1,2, … .𝑚𝑚�.                                                  (3.6) 

Here, 𝑋𝑋𝑖𝑖∗ and 𝑋𝑋𝑋𝑋��� are the maximum and minimum value of 𝑋𝑋𝑖𝑖𝑖𝑖. 𝑋𝑋𝑖𝑖𝑖𝑖 is the matrix value and 

𝑋𝑋𝑖𝑖 is the alternative of ith criterion function. 

Step 2: Calculation of the Sj and Rj values. 

                                                𝑆𝑆𝑗𝑗 = ∑ 𝑊𝑊𝑖𝑖
𝑋𝑋𝑖𝑖
∗−𝑋𝑋𝑖𝑖𝑖𝑖
𝑋𝑋𝑖𝑖
∗−𝑋𝑋𝑋𝑋���

.𝑛𝑛
𝑖𝑖=1                                                               (3.7) 

                                            𝑅𝑅𝑅𝑅 =  𝑀𝑀𝑀𝑀𝑀𝑀 �𝑊𝑊𝑖𝑖 �
𝑋𝑋𝑖𝑖
∗−𝑋𝑋𝑖𝑖𝑖𝑖

𝑋𝑋𝑋𝑋���−𝑋𝑋𝑖𝑖𝑖𝑖
��.                                                         (3.8) 

                                                   And i =1, 2,….n 

Here, 𝑆𝑆𝑗𝑗 and 𝑅𝑅𝑗𝑗 represent the utility measure and regret the measure for 𝑋𝑋𝑗𝑗as an 

alternative. Moreover, 𝑊𝑊𝑖𝑖 is the assigned criterion weight. 

Step 3: Estimation of 𝑺𝑺∗and 𝑹𝑹∗. 

                              𝑆𝑆∗ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑗𝑗�, 𝑆𝑆̅ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑗𝑗�,   𝐽𝐽 = 1,2, … .𝑚𝑚.                                   (3.9) 

                             𝑅𝑅∗ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑅𝑅𝑗𝑗�,𝑅𝑅� = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑅𝑅𝑗𝑗�,   𝐽𝐽 = 1,2, … .𝑚𝑚.                                    (3.10) 

Here, 𝑆𝑆∗ represents the minimum of utility measure while 𝑅𝑅∗is the minimum of regret 

measure. Accordingly, 𝑆𝑆̅ and 𝑅𝑅� are the maximum value of utility and regret measure. 

Step 4: Estimation of the value of 𝑸𝑸𝒋𝒋 for j =1, 2…., m, and using the 𝑸𝑸𝒋𝒋 values, 

alternatives can be ranked. 

                             𝑄𝑄𝑗𝑗 = 𝑣𝑣 �𝑆𝑆𝑗𝑗−𝑆𝑆
∗

 𝑆̅𝑆−𝑆𝑆∗
� + (1 − 𝑣𝑣) �𝑅𝑅𝑗𝑗−𝑅𝑅

∗

 𝑅𝑅�−𝑅𝑅∗
�,                                                  (3.11) 

where v is the strategy weight of maximum group utility and the individual regret weight 
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is 1 − 𝑣𝑣. In general, v=0.5, but if v>0.5, then rank can be expressed as 𝑄𝑄𝑗𝑗 index that will 

tend toward majority agreement. However, when v<0.5, the 𝑄𝑄𝑗𝑗 index will indicate the 

majority negative attitude. 

VIKOR is a powerful tool for solving multi-criteria problems, specifically in a condition 

where the decision-maker is unable or unaware of the system design at the beginning. It 

provides a maximum “group utility” and a minimum of the “individual regret” 

(represented by min S and R, respectively) of the “opponent” (Mardani et al. 2016).  

 

3.2.1.3. Integration of AHP-VIKOR 

Here, once the 𝑄𝑄𝑗𝑗 value achieved, the ranks could be calculated. The lowest 𝑄𝑄𝑗𝑗 value will 

have the highest rank while the highest 𝑄𝑄𝑗𝑗 value will have the lowest rank. Then the final 

weights 𝑊𝑊𝑓𝑓 of all the layers can be calculated by using the developed formula; 

                                                    𝑊𝑊𝑓𝑓 = 𝑄𝑄𝑗𝑗
∑ 𝑄𝑄𝑗𝑗𝑛𝑛
𝑗𝑗=1

.                                                         (3.12) 

Where in 𝑊𝑊𝑓𝑓 for f =1, 2…., n and the ranks of the weights could be calculated. Here, the 

ranks of the weights can be estimated based on the AHP approach. The highest weight 

will achieve highest rank while the lowest weight will achieve lowest rank.  

In the next step, the interchanging of the weights based on the 𝑄𝑄𝑗𝑗 rank will be conducted. 

Here, the highest 𝑄𝑄𝑗𝑗 rank will achieve lowest weight (𝐿𝐿𝑤𝑤) while the lowest rank will 

achieve highest weight (𝐻𝐻𝑤𝑤).  

Finally, the normalization of weights will be conducted. In this process, all the weight 

values will be considered up to two levels after the decimal point. Then the lowest weight 

𝐿𝐿𝑤𝑤 can be achieved using the formula written below. 

                                                      𝐿𝐿𝑤𝑤 = 1 − ∑𝑊𝑊𝑓𝑓 .                                                   (3.13) 

The details of implementation was described in the implementation of methodology 
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section in “3.7.1 Objective 1”. 

 

3.3. Hybrid AHP-TOPSIS model 

Based on the experts' opinion and literature review criteria and alternatives could be 

considered to formulate the AHP-TOPSIS model (Nyimbili, Erden & Karaman 2018). 

AHP approach was implemented to make a pair-wise comparison matrix and to obtain 

the priority weights for criteria. The reliability of this matrix can be understood by using 

important consistency measures such as maximum eigenvalue, consistency index, and 

consistency ratio. After the confirmation of the consistency of the matrix through the 

computed consistency ratio, using the Saaty’s rule weights could be applied in TOPSIS 

to make a hybrid approach. For the alternatives assessment, the TOPSIS approach was 

used as a reliable MCDM approach. A  decision  matrix  for  alternatives  need to be 

developed with  respect  to  criteria  and  then  normalized  decision  matrix  is  determined. 

Accordingly, a weighted normalized decision matrix could be calculated to obtain the 

final ranks of alternatives.  The details of AHP and TOPSIS algorithms were presented 

below with the flowchart presenting the hybrid relationship (Figure 3.1). 

 

3.3.1. AHP algorithm 

AHP is a well-established multicriteria decision-making (MCDM) approach developed 

by (Satty, 1990). It deals with the measurement of intangible and quantifiable criteria and 

has been applied to various fields, such as conflict resolution and decision making. The 

procedure of AHP is described as follows: 

In the first step, a pairwise comparison matrix need to be constructed for the criteria with 

scale 1 to 9, as directed by Saaty (2008). The criteria can be presented by 1 when they 

have the same priority, providing a square matrix where Criteria =N and matrix is 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁. 
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𝑎𝑎𝑖𝑖𝑖𝑖 represents the relative importance of I concerning to j. Normalized weight can be 

obtained in a comparison matrix by applying the geometric mean of rows. 𝐺𝐺𝐺𝐺𝑗𝑗 can be 

presented as:                            

                            𝐺𝐺𝐺𝐺𝑗𝑗 = �∏ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1 �

1/𝑁𝑁
and   𝑊𝑊𝑗𝑗 = 𝐺𝐺𝐺𝐺𝑗𝑗

∑ 𝐺𝐺𝐺𝐺𝑗𝑗
𝑁𝑁
𝑗𝑗=1

.                                            (3.14) 

 

Figure 3.1: Architecture of hybrid AHP-TOPSIS approach. 

 

Matrices A3 and A4 are calculated as: 

                                 𝐴𝐴3 = 𝐴𝐴1 ∗ 𝐴𝐴2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴4 = 𝐴𝐴3/𝐴𝐴2,                                                        (3.15) 

where 

                                       𝐴𝐴2 = [𝑊𝑊1,𝑊𝑊2 … ,𝑊𝑊𝑊𝑊]𝑇𝑇 ,                                                               (3.16) 
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The maximum Eigenvalue can be calculated by averaging matrix A4.  

Therefore, the consistency index can be calculated as: 

                                    CI = (λ max −  n)/(𝑛𝑛 − 1).                                                           (3.17) 

Accurate results can be indicated by lower C.I. value that shows a smaller deviation from 

the consistency level. 

The consistency ratio can be determined as:                                   

                                                             CR = 𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅

.                                                                            (3.18) 

In a pairwise comparison, the value CR ≤ 0.1 is acceptable according to (Satty, 2008). 

Here, RI represents the random index associated with the matrix size. The RI value is 

suggested as 1.41 for the matrix size of 8. 

 

3.3.2. TOPSIS algorithm 

TOPSIS belongs to the MCDM models used for ranking the alternatives in several 

applications. In general, this model could be performed in seven steps (García-Cascales 

& Lamata 2012). 

 

Step 1: Develop a decision matrix. 

Criteria weights were calculated using the abovementioned AHP approach, and a decision 

matrix was constructed (García-Cascales & Lamata 2012). 

Step 2: Normalized decision matrix construction. 

Two attributes, such as cost and benefit attributes, are involved in the MCDM problem. 

Normalization is needed to transform attribute unit dimensions into non-dimensional 

attributes, and internal comparisons are conducted using a standardized equation (Cheng 

et al. 2006). The frequently used method for normalization is described below.  
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                 𝑅𝑅 = �𝑅𝑅𝑖𝑖𝑖𝑖�𝑚𝑚×𝑛𝑛
=

𝐴𝐴1
𝐴𝐴2.

.
𝐴𝐴𝑚𝑚 ⎝

⎜
⎛

𝑢𝑢1 … . .𝑢𝑢2 ….  𝑢𝑢𝑛𝑛
𝑢𝑢11 … . . 𝑢𝑢12 … . 𝑢𝑢1𝑛𝑛
𝑢𝑢21 … . .𝑢𝑢22 … . .𝑢𝑢2𝑛𝑛
⋮          ⋮         ⋮
𝑟𝑟𝑚𝑚1 … . 𝑟𝑟𝑚𝑚2 … 𝑟𝑟𝑚𝑚𝑚𝑚 ⎠

⎟
⎞

 ,                                               (3.19) 

where 𝑅𝑅𝑖𝑖𝑖𝑖 is the normalized value, attribute value 𝑥𝑥𝑖𝑖𝑖𝑖, and matrix 𝑋𝑋 = (𝑋𝑋𝑖𝑖𝑖𝑖) 𝑚𝑚 × 𝑛𝑛 

                                           𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖/�∑ (𝑥𝑥𝑖𝑖𝑖𝑖)2𝑚𝑚
𝑖𝑖=1 .                                                                     (3.20) 

For benefit attribute 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈  𝑀𝑀, 𝑗𝑗 ∈  𝑁𝑁                                     

                                       𝑟𝑟𝑖𝑖𝑖𝑖 = 1 − (𝑥𝑥𝑖𝑖𝑖𝑖/�∑ (𝑥𝑥𝑖𝑖𝑖𝑖)2𝑚𝑚
𝑖𝑖=1  ).                                                          (3.21) 

For cost attribute 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈  𝑀𝑀, 𝑗𝑗 ∈  𝑁𝑁.  

All the GIS-based layers, including building density, building surface area, building 

quality, building heights, proximity to the road, building types, proximity to buildings, 

household density, and population density, were transformed into non-dimensional 

attributes using Eqs. 18 and 19. 

Step 3: Construction of the weighted normalized decision matrix. 

Here, the weighted normalized value 𝑣𝑣𝑖𝑖𝑖𝑖 is estimated as:                                                 

                                                 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑗𝑗×𝑟𝑟𝑖𝑖𝑖𝑖,                                                                   (3.22) 

where 𝑤𝑤𝑗𝑗 is the normalized decision matrix, and 𝑤𝑤𝑗𝑗 = 𝑤𝑤𝑗𝑗/∑ 𝑤𝑤𝑗𝑗
𝑛𝑛
𝑗𝑗=1

. Thus, ∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1  = 1, 

where 𝑊𝑊𝑗𝑗 is the assigned original weight, 𝑟𝑟𝑖𝑖𝑖𝑖 is the normalized weight, 𝑖𝑖 =  1, . . . ,𝑚𝑚; 𝑗𝑗 =

 1, . . . ,𝑛𝑛, and n and m are the number of criteria and number of attributes, respectively.  

Step 4: Determination of positive and negative ideal solutions. 

The cost criteria minimized by positive ideal solutions maximize the benefit criteria, 

whereas the cost criteria maximized by negative ideal solutions minimize the benefit 

criteria.  

Positive and negative ideal solutions can be expressed as: 

                                      𝐴𝐴 +  =  [𝑣𝑣+ , . . . ,  𝑣𝑣 + , . . . ,  𝑣𝑣𝑛𝑛+ ].                                                        (3.23) 
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                                      𝐴𝐴 −  =  [𝑣𝑣− , . . . ,  𝑣𝑣 − , . . . ,  𝑣𝑣𝑛𝑛− ].                                                        (3.24) 

Therefore,  

 �
𝑣𝑣𝑗𝑗+ =  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  �𝑣𝑣𝑖𝑖𝑖𝑖� 𝑖𝑖 =  1, 2, . . . ,𝑚𝑚

𝑣𝑣𝑗𝑗− =  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  �𝑣𝑣𝑖𝑖𝑖𝑖� 𝑖𝑖 =  1, 2, . . . ,𝑚𝑚
 ,    If the jth criterion is a beneficial criterion      (3.25) 

 �
𝑣𝑣𝑗𝑗+ =  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  �𝑣𝑣𝑖𝑖𝑖𝑖� 𝑖𝑖 =  1, 2, . . . ,𝑚𝑚

𝑣𝑣𝑗𝑗− =  𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  �𝑣𝑣𝑖𝑖𝑖𝑖� 𝑖𝑖 =  1, 2, . . . ,𝑚𝑚
 ,       If the jth criterion is a cost criterion            (3.26) 

where 𝑣𝑣𝑖𝑖𝑖𝑖 indicates the cell attribute values for the jth layer.  

Step 5: Estimation of the alternative separation from the positive and negative ideal 

solutions.  

In this step, the separation of each alternative was calculated, and GIS layers, such as S + 

i and S – I, were created.  

The equations for each alternative can be expressed as: 

                                  𝑆𝑆𝑖𝑖+ = ∑ �𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑗𝑗+� = ∑ 𝐷𝐷𝑖𝑖𝑖𝑖+𝑛𝑛
𝑗𝑗=1 ,𝑛𝑛

𝑗𝑗=1                                                     (3.27) 

                                  𝑆𝑆𝑖𝑖− = ∑ �𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑗𝑗−� = ∑ 𝐷𝐷𝑖𝑖𝑖𝑖−,𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑗𝑗=1                                                      (3.28) 

Step 6: Relative closeness calculation to the positive ideal solution  

The relative closeness for an ith alternative based on the positive ideal solution is given 

as: 

                                                 𝐶𝐶𝑖𝑖− = (𝑆𝑆𝑖𝑖
−)

(𝑆𝑆𝑖𝑖++𝑆𝑆𝑖𝑖−)
,                                                                          (3.29) 

 

where 0 ≤  𝐶𝐶 +  𝑖𝑖 ≤  1, 𝑖𝑖 =  1, 2, . . . ,𝑚𝑚. 

Step 7: Alternative rank determination based on relative closeness.  

“The relative closeness to the positive ideal solution” layer was created. The set of sites 

was observed to rank the value of C + i in descending order of. The higher the C + i value 

is, the best the sites will be. They are preferable and must be chosen when they are close 
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to the positive ideal solution.  

3.4 ANN architecture 

The ANN architecture imitates the performance of the human brain interconnected by 

many nodes, as presented in Figure 16 (Ghorbanzadeh et al. 2018; Bui et al., 2016). The 

ANN model operates in two parts, namely, learning the information and knowledge 

through training, and storing the synaptic info weights (Haykin 2009). A connection is 

found between weighted interconnections and interconnected neural networks (Figure 

3.2). An ANN can discover multiple nonlinear issues, such as predictions and probability 

analysis, and find the patterns between the indicators and responses. Various neural 

network architectures were proposed for several purposes. We applied the multilayer 

perceptron (MLP) architecture (for prediction classification) and backpropagation 

algorithm (to optimize parameters and update weights) in the current study for probability 

assessment. Neurons within the same hidden layer are connected to the neurons of the 

next layer rather than interconnected. Given that the number and size of hidden layers can 

be changed based on the requirements, some fixed values for the specific application are 

obtained (Safi & Bouroumi 2013).  

 

Figure 3.2: Network architecture for probability assessment. 
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Randomly chosen weightings of input nodes are updated based on backpropagation to 

minimize the errors (Paola & Schowengerdt 1995; Park et al. 2013). 

 

MLP and backpropagation learning: 

The used data are composed of 𝑁𝑁𝑣𝑣training patterns (𝑋𝑋𝑝𝑝,𝑇𝑇𝑝𝑝), where 𝑝𝑝 can be considered 

as the pattern number (Haykin 2009). For the absence of difficulty of analysis and 

notation, an augmented vector 𝑋𝑋𝑝𝑝(𝑁𝑁 + 1) that can handle the threshold on hidden and 

output units are assigned. Therefore, 𝑋𝑋𝑝𝑝 is consistent with the input vector of N-dimension 

of the Pth training pattern, whereas 𝑌𝑌𝑝𝑝 is consistent with the output vector of M-dimension 

for the Pth pattern from the training pattern (Haykin 2009). The details of MLP algorithms 

can be found in (Haykin 2009; Nazzal, El-Emary & Najim 2008; Park et al. 2015). The 

output and input units have rectified linear unit activations. Jth hidden unit input, netP (j) 

can be presented as: 

                            𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝(𝑗𝑗) = ∑ 𝑊𝑊ℎ𝑖𝑖(𝑗𝑗,𝑘𝑘)𝑋𝑋𝑝𝑝(𝐾𝐾)𝑛𝑛+1
𝑘𝑘=1       1 ≤ 𝑗𝑗 ≤ 𝑁𝑁ℎ.                             (3.30) 

 

For the Pth training pattern, the output activation can be presented as Op (j), which is 

expressed as: 

                                  𝑂𝑂𝑝𝑝( 𝑗𝑗) =  𝑓𝑓 �𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 ( 𝑗𝑗)�.                                                                  (3.31)   

The chosen sigmoid function is typically a nonlinear activation, which can be expressed 

as: 

                             𝑓𝑓 �𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 ( 𝑗𝑗)� = 1
1+𝑒𝑒−𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝  ( 𝑗𝑗) ,                                                            (3.32) 

 

where K is the index, which represents input N, and 𝑊𝑊ℎ𝑖𝑖 (J, K) represents the connecting 

weight to the Kth input unit to Jth hidden unit. The performance of the MLP was measured 
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based on root-mean-square-error. 

MSE can be represented as: 

                      𝐸𝐸 = 1/𝑁𝑁∑ 𝐸𝐸𝑝𝑝 =𝑁𝑁𝑁𝑁
𝑝𝑝=1 1/𝑁𝑁∑ ∑ �𝑇𝑇𝑃𝑃(𝑖𝑖) − 𝑌𝑌𝑝𝑝(𝑖𝑖)�

2𝑀𝑀
𝑖𝑖=1

𝑁𝑁𝑁𝑁
𝑝𝑝=1 ,                               (3.33) 

and 

                                      𝐸𝐸𝑝𝑝 = ∑ �𝑇𝑇𝑃𝑃(𝑖𝑖) − 𝑌𝑌𝑝𝑝(𝑖𝑖)�
2𝑀𝑀

𝑖𝑖=0  ,                                                         (3.34) 

where 𝐸𝐸𝑝𝑝 is the Pth pattern error, and 𝑇𝑇𝑝𝑝 is the required output for the Pth pattern. The 

mapping error calculation for the ith output unit can be represented as:                                            

                                 𝐸𝐸𝑖𝑖 = 1/𝑁𝑁𝑣𝑣 ∑ �𝑇𝑇𝑃𝑃(𝑖𝑖) − 𝑌𝑌𝑝𝑝(𝑖𝑖)�
2𝑀𝑀

𝑝𝑝=1 .                                                     (3.35) 

The Pth training pattern with the ith output can be written as; 

              𝑌𝑌𝑝𝑝(𝑖𝑖) = ∑ 𝑊𝑊0𝑖𝑖(𝑖𝑖,𝑘𝑘)𝑋𝑋𝑝𝑝(𝑘𝑘) + ∑ 𝑊𝑊0𝑖𝑖(𝑖𝑖,𝑘𝑘).𝑂𝑂𝑝𝑝(𝑗𝑗)𝑁𝑁ℎ
𝑗𝑗=1

𝑁𝑁+1
𝑘𝑘=1 ,                                      (3.36) 

Where 𝑊𝑊0𝑖𝑖 (𝑖𝑖,𝑘𝑘) explains the input nodes’ weight to the output nodes, and 𝑊𝑊0𝑖𝑖 (𝑖𝑖,𝑘𝑘)can 

be considered as the weights of the hidden nodes to the output nodes. 

 

3.5. PGA, source to site distance and intensity calculation 

Historical earthquake catalogue was implemented to estimate PGA along with the actual 

distance from the epicenter to the proposed study area, the intensity variation, magnitude, 

and tectonic sources. Several attenuation equations proposed in the current methodology, 

however, this study inclusively used the equation developed by (Joyner & Boore 1981). 

For PGA calculations, the distance (D) should be estimated using the degree to km 

calculation. Therefore, D value can be estimated by the formula; 

                                              D =  (𝐸𝐸^2 + 7.3^2) ^0.5.                                            (3.37) 

Where E = Epicentral distance 

According to Joyner & Boore (1981) the PGA can be calculated as,  

10^(0.249 ∗ 𝑀𝑀 − Log(𝐷𝐷) − 0.00255 ∗ 𝐷𝐷 − 1.02, D = (E^2 + 7.3^2)^0.5            (3.38) 
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Similarly, according to Campbell (1981),  

0.0185 ∗ EXP(1.28 ∗ M) ∗ D^(−1.75), D = 𝐸𝐸 + 0.147 ∗ EXP(0.732 ∗ 𝑀𝑀)            (3.39)                                                                                     

And according to Fukushima & Tanaka (1990), 

(10^(0.41 ∗ 𝑀𝑀 − LOG10(𝑅𝑅 + 0.032 ∗ 10^(0.41 ∗ 𝑀𝑀)) − 0.0034 ∗ 𝑅𝑅 + 1.30))/980       

                                                                                                                                    (3.40) 

Several authors developed many attenuation relationships, which have been implemented 

in several probabilistic earthquake hazard analysis research (Boore and Joyner 1982; 

Campbell 1985; Fukushima and Tanaka 1990). Out of them, the general equation of 

regression by Boore and Joyner (1982) is most popular and applied in several regional 

and worldwide datasets. Therefore, MMI (Modified Mercalli Intensity) could be 

calculated by implementing the formula, 

                          𝑀𝑀𝑀𝑀𝑀𝑀 = 1/0.3 ∗ (𝑙𝑙𝑙𝑙𝑙𝑙10 (𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 980) − 0.014                                    (3.41)                                                                                      

Where the PGA unit is G (Gal). 

 

It is feasible to understand the resulted MMI and applied in GIS to generate thematic layer 

as well as several other layers from the same dataset. Firstly, the detailed investigation of 

various attributes of earthquakes is the requirement to start the process. Secondly, PGA 

and MMI were estimated using the attenuation laws and implemented in all three 

objectives. PGA density map and Intensity variation layers were implemented in 

earthquake probability mapping and hazard estimation. Several lithological units were 

extracted from the geological map and assigned amplification factor values to each unit 

to generate another thematic layer.  

 

3.6. Overall methodology of the proposed research 

 The overall methodological flowchart is presented in Figure 3.3 that briefly describes 
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three objectives: Earthquake vulnerability assessment using an integrated AHP-VIKOR 

approach, earthquake risk assessment using integrated ANN-AHP model, and the spatial 

improvement of earthquake risk using developed ANN-CV-AHP-TOPSIS model. All the 

objectives used integrated models that provide a novel combination of python developed 

models with MCDM models for better earthquake risk assessment with good accuracy. 

 

In the first stage, all the vulnerability layers were prepared using the raster and vectors 

data collected from Indonesia. AHP and VIKOR methods were integrated to make a new 

approach to implement in the field of earthquake for the first time to generate an 

earthquake risk map. The second stage dealt with the pre-processing of the input data, 

model development, processing, and then post-processing integrated with MCDM results. 

The inventory data was preprocessed subjected to removing missing values and 

modifying the data points, creating a geospatial database, georeferencing (placing a 

digital photo in real world scenario), converting the data into a single format. The 

projection system of UTM WGS84 was applied to DEM, inventories, and the GIS 

database. ANN model was implemented for the probability assessment. Several 

conditioning factors were applied to map the probabilities. AHP was implemented for 

vulnerability assessment using several factors and the risk was calculated for the Banda 

Aceh city. The population under risk was estimated.  

 

The third stage deals with the improvement of the proposed method in the second 

objective, which consists of ANN-CV and hybrid AHP-TOPSIS models. The proposed 

model is developed to estimate the population at risk at Banda Aceh city with better 

accuracy than the integrated ANN-AHP model.  
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Figure 3.3: Overall methodological flowchart for earthquake risk assessment. 

 

The factors used here were considered based on the accuracy of the results and error and 

trial method. The ANN-CV model was trained and tested four times by randomly 

selecting the data points derived from all raster layers. The cross-validation approach 

describes the accuracy of the result in each test. The hyperparameters of the model were 

chosen via iterative search and previously developed models for earthquakes or any other 

natural hazards. The proposed ANN-CV model was implemented to generate an 

earthquake probability map. A hazard map was developed in the next stage by using the 

probability and the intensity variation. Then the hybrid AHP-TOPSIS model was applied 

to produce earthquake vulnerability. The chosen layers for the vulnerability assessment 

fully focused on social and structural characteristics. However, very carefully all the 

vulnerable layers were chosen to develop a vulnerability map with better accuracy than 

the previous study. Finally, the risk was calculated by using both hazard and vulnerability 
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results. In the fourth stage, another case study was conducted using the same ANN-CV-

AHP-TOPSIS model with the additional Silhouette clustering, Pure Locational 

Clustering (PLC) approach, and dendrogram to understand the locations prone to 

earthquakes. Consistency ratio, Receiver Operating Characteristics curves, Cross-

validation, and overall accuracy were used to obtain the best model. The details of the 

implementation of all the three objectives were described below.  

 

3.7. Implementation of the methodology 

3.7.1. Objective 1 

In the current study, a multi-criteria evaluation model is developed by using the integrated 

approach of the AHP and the VIKOR method (Figure 3.4). First, 20 criteria are selected 

to produce three different vulnerability indices. Cultural beliefs, Population, Poverty, 

Livelihoods, Gender, Equity, Social groups are the major factors of vulnerability 

estimation. However, all the described factors are not always needed for all-natural 

hazards vulnerability or risk estimation. This study classified the factors into three 

vulnerability types based on the requirements of earthquake vulnerability assessment 

(Alizadeh et al., 2018; Jena et al. 2019). Therefore, several other factors are chosen based 

on the different vulnerability categories to achieve the total vulnerability for Banda Aceh 

focusing on the location, active tectonics, population, building, etc. Then by using the 

expert’s opinion, this work produced the geotechnical, structural, and social vulnerability 

maps against earthquakes by using the AHP approach. Based on the relative importance 

according to Satty’s intensity scale, two criteria are evaluated in a pairwise comparison. 

In general, Index values ranging from 1 to 9 were applied. If the criteria have exactly 

equal importance then the pair receives a value of 1. If one criterion has the highest 

importance than the other then the value will be 9. All criteria will be graded in a possible 
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way with values between 1 to 9. Criteria standardization is the major issue for decision-

making models. For standardization, the classification of the map is the simplest way. 

Therefore, the layers were classified as suitable conditions (2 classes), unsuitable domains 

(2 classes), and medium domain (1 class).  The scaling code of 1 to 5 was implemented 

for social, structural, and geotechnical layers on the basis of strength and value of the 

structure. Then, the VIKOR approach is employed as described in section 3.2.1.2 to 

produce the final vulnerability map by ranking the three vulnerability layers. VIKOR is 

then applied to determine the degree of vulnerability for area and population in Banda 

Aceh City. Weighted sum technique was applied to all the layers with weight values and 

rank. Finally, the total vulnerability was estimated.  

 

The digital environment of GIS was involved to predict the final vulnerability map by 

using all the three vulnerable layers. The final vulnerability map was then classified into 

five classes, such as very high, high, moderate, low, and very low.  No specific research 

available on the total vulnerability mapping using all the three described layers in 

earthquake vulnerability mapping that can help in ranking the layers and calculating the 

weights. Therefore, this method is not exactly a hybrid method but an integration of AHP 

and VIKOR, where the results of AHP were applied to produce the final map using 

VIKOR. Here, we can write it as, 

                          

Final vulnerability = Weighted sum (Layers resulted by AHP) 

                                               

                                                 𝑉𝑉 = ∑ 𝐿𝐿(𝐴𝐴𝐴𝐴𝐴𝐴)𝑛𝑛
𝑖𝑖=1                                                      (3.42) 
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Figure 3.4: Methodological flowchart of the MCDM model for objective 1. 

 

Where, 𝑉𝑉 is considered as final vulnerability, 𝐿𝐿(𝐴𝐴𝐴𝐴𝐴𝐴) is the layers obtained by AHP.  

Rank and weights of layers were obtained by VIKOR method and i is the number of layers 

up to n. 

 

3.7.2. Objective 2 

In this current analysis, an ANN–AHP model was developed, implemented and presented 

in Figure 3.5. A feed-forward ANN with a three-layered structure was applied, and we 

trained the large area of Aceh province with a set of earthquake data points and an applied 

backpropagation algorithm for root mean square error calculation. Feed-forward ANN 

clearly describes the interconnection between the neurons in different layers. Then, the 
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small area of Banda Aceh was applied to test and to map the probability. First, the input 

data layers were converted into multiple data point values. In the first step, the model  was 

loaded by some external libraries to conduct modeling; these libraries include operation 

systems, data management, numerical analysis, and neural network. Next step was 

performed to measure the error rate of a model and for plotting purposes. In the next step, 

a neural network was built using the MLP classifiers. Then, the study applied 

normalization to all the layers. In the next step, the neural network was trained for 

probability mapping. The parameters applied for developing the model include input 

specifications, network topology, training parameters, and stopping criteria (Table 3.1). 

We measured the accuracy of the trained model. Then, the pixel values were predicted 

for the study area of Banda Aceh. The final map of probability was the result, which we 

analyzed on the basis of the literature review and expert experience. The final probability 

map was characterized by a high to a low probability of earthquake occurrence in Banda 

Aceh. Consequently, this work produced a hazard map by considering the earthquake 

intensity distribution. Then, the hazard map was classified into five different zones. The 

ANN model works significantly with good accuracy. The AHP methodology was 

implemented for vulnerability mapping based on the steps described above in AHP 

methodology architecture.  

 

Table 3.1: Parameters and stopping criteria for the ANN model. 

Criteria Parameters Values 
Input specifications Total training points 

Total earthquake events 
 

1546 
623 

Network topology Hidden layers 
Hidden layer sizes 
Input layer nodes 

Output layer nodes 

2 
(32,64) 

13 
1 
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Layers for analysis were chosen correctly and referred to some current literature. In 

addition, the quality of the results was analyzed on the basis of the achieved CR (0.04), 

which yielded good results. Finally, we multiplied both the hazard and vulnerability map 

to produce the earthquake risk map. 

 

3.7.2.1. Performance evaluation 

This section is important for understanding the obtained results. Several metrics are 

available that are used as benchmarks to analyze the performance of our projected neural 

network model, such as space, time, and model accuracy. Although time and space are 

highly important for the training of a model and may create an obstacle; therefore, we 

applied RMSE to evaluate the performance of applied ANN inside the ANN–AHP model. 

Several researchers have applied and understood the best performance obtained by the 

metric RMSE, which was selected on the basis of the problem nature and the expected 

results (Alarifi, Alarifi & Al-Humidan 2012). The results of our ANN model and the AHP 

method are presented in the section of results and discussion. The presented results are 

 

 
Training parameters 

Activation 
Solver 

Batch size, 
Learning rate initialization 

Shuffle 
Random state 
Momentum 

Nesterovs momentum 
early stopping 

validation fraction 

 
relu 
sgd 
2 

0.01 
True 

0 
0.9 

True 
True 
0.05 

 
Stopping criteria RMSE 

Accuracy rate 
0.3 
84 
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easy to understand and facilitate decision-making. 

 

Figure 3.5:  Methodological flowchart of the developed model for objective 2. 

 

3.7.2.2. Performance metrics 

Mean absolute error (MAE): 

MAE is a quantity used to measure how close predictions are to the target outcomes. The 

mean absolute error is defined as follows (Chai & Draxler 2014): 

 

                                     MAE = 1/𝑛𝑛∑ |𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑖𝑖|𝑛𝑛
𝑖𝑖=1 (3.43)

 

Root mean square error (RMSE): 

RMSE estimates the average error based on a quadratic scoring rule. RMSE is the square 

root of the average of squared differences between prediction and actual observation 
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(Chai & Draxler 2014). It provides the average prediction error of a network. The values 

of RMSE ranges from zero to infinity. However, the lower values expressed by the RMSE 

gives a better result. RMSE is better than the mean absolute error (MAE), whereas large 

errors are unacceptable. Therefore, RMSE is more appropriate for error measurement 

(Alarifi, Alarifi & Al-Humidan 2012). 

 

                                   RMSE = �1/𝑛𝑛∑ �𝑦𝑦𝑗𝑗 − ŷ𝑗𝑗�𝑛𝑛
𝑗𝑗=1

2                                                   (3.44) 

 

The RMSE values ŷ𝑗𝑗 that are predicted for times 𝑗𝑗 of a variable of regression's dependent 

𝑦𝑦𝑗𝑗 with y different predictions for observed variables over 𝑇𝑇 times are computed as the 

RMSE. The RMSE value for this study is 0.3 based on the training site of Aceh province 

with an accuracy value of 0.84. An accuracy curve was developed and described in the 

results and discussion part of the paper. 

 

3.7.3. Objective 3 

In this subsection, the newly developed hybrid fourfold ANN CV-AHP-TOPSIS model 

is used to improve the ERA. The inventory data were divided, and the fourfold CV was 

implemented to organize them into training and testing datasets. In this approach, the 

earthquake dataset applied K-folds of 𝐸𝐸1,𝐸𝐸2 …  𝐸𝐸𝐸𝐸, where ∀𝑛𝑛 and 𝑚𝑚 ∈ 𝑡𝑡, and size 

𝐸𝐸𝑛𝑛 =size 𝐸𝐸𝑚𝑚. The proposed model was run for K times, where time 𝑡𝑡 ≤ 𝐾𝐾. The randomly 

prepared inventory dataset was divided into fourfolds, 70% of earthquake events were 

considered in model training, and 30% were applied for CV purposes (Ghorbanzadeh et 

al. 2019). The details of the ANN model parameters are described in Table 3.2. The 

number of folds was created based on several factors, such as problem complexity, 
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inventory data volume, and implemented methodology. The CV approach was used to 

optimize the randomness effects on the results of ANN-based earthquake probability 

mapping. First, earthquake probability assessment was conducted, and hazard analysis 

was performed based on earthquake intensity (Figure 3.6). Table 3.2 describes all the 

criteria used in this research. Second, vulnerability assessment was conducted based on 

the important parameters by using the hybrid AHP-TOPSIS approach presented in Table 

3.5 and Figure 3.13. Third, risk assessment was conducted by multiplying the hazard and 

vulnerability.  

 

Table 3.2: Accuracy assessment and the parameters of the k-fold ANN model. 

ML AUC-
Fold1 

  AUC-
Fold2 

AUC-
Fold3 

AUC-
Fold4 

Cross validation 

ANN 81 85.4 81.3         83   84.8 
Criteria                Parameters Value 

Input training 
and testing 

Training points 
Testing points 

Earthquake events 
 
 

Hidden layers 
Size of hidden layers 

Total input nodes 
Output node 

 
K-fold training 

Dynamic learning 
Batch size 

Solver 
Activation 
Momentum 

 
RMSE 

Iterations 
Best accuracy 

 

70% randomly out of 
1810 
30% randomly out of 
1810  
1210 

Network 
architecture 

3 
(64, 32, 16) 
9 
1 

ANN training 
parameters 

Yes 
Yes 
100 
SGD 
Relu 
0.9 

Stopping 
criteria 

 
0.183 
50000 
85.4 
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Figure 3.6: Methodological flowchart of the improved model for objective 3. 

 

Finally, risk modeling was performed based on the described steps to provide the 

expected result of the number of people and the areas under risk in the study area. CV 

revealed that the output is accurate. The proposed novel model was prepared by analyzing 

various previous and recent models for earthquake vulnerability and risk assessment on a 

city scale. The proposed model included various parameters, making it comprehensive, 

accurate, and cost-effective. The limitations of the model are provided in the conclusion 

section. The details of the workflow are presented in Figure 3.6.  

 

3.8. Study area 

The meeting of the tectonic plates produces a reverse fault system governed by regional 

geology and active volcanos. According to worldwide earthquake databases, 150 or more 
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high magnitude earthquakes (Mw>5.5) were experienced from 1900 to 2017. Total 

fatalities exceeded 266,270 in the last 400 years in different regions of Indonesia. Some 

high deformation rates have triggered many large earthquake events (≥ 8.0), such as the 

1861 Nias event, 2004 event in the Indian Ocean, and the Simeulue event in 2005. The 

Sumatra–Andaman megathrust earthquake in 2004 is the second-largest magnitude 

earthquake recorded to date (Bilham & Ambraseys 2005). The earthquake created a 

rupture of 1300 km (length) characterized by seven separate segments from the northwest 

to the Andaman Islands at more than 1600 km (Bilham & Ambraseys 2005). The 

earthquake duration is the longest event period recorded at approximately 600 sec. Lin & 

Lee (2008) explained that the inter-tectonic subduction of the plate was associated with 

the event and bedrock movement. In Indonesia, the recorded human toll in Aceh province 

and North Sumatra due to the 2004 earthquake was approximately 110,229 deaths, 12,123 

missing, and 703,518 displaced (Siemon, Ploethner & Pielawa 2006). The details of 

fatalities and injuries are presented in Table 1.1. Infrastructure damage due to the 

dominant disastrous earthquakes may be due to the use of poor construction materials. 

Damage to buildings was caused by the earthquake magnitudes (i.e., ≥ 8.0) that used to 

frequently occur in Aceh province, thus continuously affecting the city of Banda Aceh 

(Irwansyah 2010). The total damage estimated for the buildings accounted for 35% of all 

buildings (Siemon, Ploethner & Pielawa 2006).  

 

Banda Aceh is the capital city of Aceh province that is exposed potentially to a significant 

earthquake vulnerability and risk along the major fault of the Great Sumatran Fault (GSF) 

(Figure 3.7). The west, north, and southern borders of Banda Aceh are close to the Indian 

Ocean, Malacca Strait, and Aceh Besar District, respectively. Banda Aceh is close to the 

Sunda Arc characterized by furious events and vulnerable to earthquakes because of its 
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unique geographical location and active tectonics. GSF is a right-lateral strike-slip fault 

that has not experienced any large earthquake in the northern part of the fault particularly 

in Banda Aceh from the last 200 years. This tranquil part of the fault is considerably 

recognized as a seismic gap in Aceh province. An accumulation of increased stress along 

the GSF may be observed due to the collision between plates. Petersen et al. (2004) 

mentioned the capability of GSF for producing up to M=7.9 event, as the history 

explained the capability of M=7.7 that has occurred along this fault. This earthquake 

occurred in 1892 near the city of Sibolga (approximately ±570 km at the southeast of 

Banda Aceh) (Petersen et al. 2004; Siemon, Ploethner & Pielawa 2006). Back marshes 

commonly found behind the sand dunes form the Banda Aceh coastline. Buildings or 

houses that are present at a distance of 3 to 5 km inland from the coastline were affected 

by the 2004 tsunami. The tsunami height in Banda Aceh was between 5 to 30 m 

(Natawidjaja & Triyoso 2007, Johar et al. 2013).  

 

The city is predominantly developed on soft soil, characterized by large reinforced 

concrete structures, such as public and private infrastructures, shopping malls, hotels, 

restaurants, and hospitals (Culshaw, Duncan & Sutarto 1979). The buildings are quite old 

and damaged because of strong ground motion. Building damage varies from total 

collapsed to minor damage depending on ground conditions, foundation type, and ground 

motion variation. The soft ground condition was the main factor for the damage of 

buildings in coastal and hilly areas of Banda Aceh. However, the site amplification 

probability is extremely high in the thick alluvium (Brebbia 1996; Setiawan 2017; 

Setiawan et al. 2018). Therefore, estimation of the seismic site amplification of Banda 

Aceh is required by recognizing the probability of future earthquakes because the city is 

surrounded by several earthquake events (Lin & Lee 2008; Yunita et al. 2018). The city 
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has experienced ground shaking due to some major earthquakes in recent years. 

Moreover, understanding Banda Aceh’s vulnerability and risk due to earthquakes are 

essential and significant for urban planning (Zhang & Jia 2010; Zhang et al. 2017). The 

probability, hazard, and social vulnerability analysis can be applied in future risk mapping 

and decision management by considering the risk reduction, prevention, and mitigation 

(Setiawan et al. 2020; Birkmann 2007; Adger et al. 2005; Adger & Kelly 1999; Rygel, 

O’sullivan & Yarnal 2006; Blaikie et al. 2014; Turner et al. 2003; Davidson & Shah 1997; 

Davidson & Freudenburg 1996). In the current analysis, the hazards and vulnerability 

resulting in high ability and stand on socially operated attributes and contexts, for a large 

population, are unsheltered.  

 

 

Figure 3.7: Location of Banda Aceh. 
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Research scholars and scientists have divergent definitions for the notion of vulnerability 

and risk because of the complexity behavior (Adger et al. 2005; Adger & Kelly 1999; 

Cutter 1996; Cutter, Mitchell & Scott 2000; Khan 2012; Tierney 2006; Hosseini et al. 

2014; Beccari 2016).  Therefore, it’s a requirement for researchers to develop models, 

breakthrough techniques to implement and work on earthquake probability, hazard, 

vulnerability, and risk assessment.  

 

3.9. Characteristics of the Banda Aceh city 

The study area is located at 5°33′0″ N and 95°19′0″ E. The city is located at an elevation 

of approximately 35m m.s.l. Banda Aceh is divided into nine subdistricts, in which four 

of them, namely, Kuta Raja, Meuraxa, Syiah Kuala, and Kuta Alam, share their 

boundaries with the Indian Ocean. The city extends approximately 20 km in an east-to-

west direction and 10 km in a north-to-south direction. The coastline shared by Banda 

Aceh is around 12 km. Topographic elevation in the city varies from 0–10 m. The city 

covers an area of approximately 61.4 km2 based on the 2010 census; the city is populated 

with 219,070 and 250,227 people based on the 2010 and 2015 census (Johar et al. 2013; 

Yuzal et al. 2017). Moreover, 10 ethnic groups can be found in the city, of whom the 

Acehnese is the largest group that comprises approximately 80% to 90% of the total 

population (Yuzal et al. 2017). The most noticeable Aceh fault is the measured structural 

discontinuity that passes through Banda Aceh. The Aceh fault is active; however, no 

events are experienced historically inside Banda Aceh. Banda Aceh was affected by a 7.7 

magnitude earthquake near the city in the NE region. After the 2004 tsunami event, the 

city experienced massive morphological changes, and the Indonesian government 

conducted developmental and recovery work. The building density in Banda Aceh city is 

highly concentrated in the central part than in coastal regions. The 2004 earthquake and 
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tsunami destroyed 0.2 million lives because of the lack of earthquake knowledge for land 

use planning (Telford & Cosgrave 2006). The study area is presented in Figure 3.7. 

 

3.10. Geology of the study area 

The relatively flat topography of Banda Aceh is characterized as quaternary sedimentary 

rocks, sands, and clay deposits (Switzer et al. 2012). Banda Aceh is situated on thick 

sedimentary alluvium deposits (Siemon, Ploethner & Pielawa 2006). However, loose 

sedimentary deposits in Banda Aceh make the city vulnerable to ground shaking caused 

by devastating events (Jena et al. 2019). The geology of Banda Aceh is composed of 

limestone, phyllite, and slate (Culshaw, Duncan & Sutarto 1979). Furthermore, the city 

is located at a low-lying area underlain by deposits of the Holocene age characterized by 

fluvial deposits and estuarine deposits (Figure 3.8). Its geology is classified as surface 

and subsurface types primarily as silt and clay deposits, and sand deposits can be found 

on the right bank of Aceh River close to the coastline (Culshaw, Duncan & Sutarto 1979).  

 

These rocks in the Cretaceous age in the geological timescale and the morphology 

indicates the mountainous structure at the end of the northern Barisan range in Sumatra 

(Culshaw, Duncan & Sutarto 1979). Massive and moderately weathered limestones are 

specifically found in this range. In the western part of the Indrapuri, mixed lithic 

conglomerates can be found at the outcrops. The wedges of conglomeratic outcrops are 

placed between the limestone and the Quaternary deposits and are believed to be of the 

Palaeogene age (Culshaw, Duncan & Sutarto 1979). Fossiliferous sandstone deposits can 

be found in the upper valley of Pliocene or early Pleistocene.  

 

 



108 
 

 

Figure 3.8: Geology map of the study area. 

 

These deposits show a shallow-water marine environment, thereby serving as evidence 

of a rise in elevation up to 90 m m.s.l. due to the tectonic upliftment (Johar et al. 2013). 
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On the western side of the Krueng Aceh valley, the unconformable Quaternary 

sedimentary deposits can be found. Banda Aceh is characterized by a quaternary 

sedimentary deposit along with some patches of peridotitic rocks. Therefore, The Krueng 

Aceh valley forms a graben-type structure between the Semangko fault and the splay 

main fault system (Wang et al. 2006; Culshaw, Duncan & Sutarto 1979). 

 

3.11. Palu city as a case study (for evaluating the transferability of the 

developed models) 

Sulawesi Island is situated at the convergence zone of three major plates such as; the 

Indian-Australian Plate, the Pacific Plate, and the Eurasian Plate (Rusydi & Efendi 2018). 

Palu is a city in Sulawesi Island in Indonesia (Figure 3.9). It is located at 0◦53042” S, 

119◦51034” E as the capital of the Central Sulawesi Province. Various geological rocks 

and tectonic conditions from the surrounding areas distinguish the city. Sulawesi island 

is K-shaped, which is characterized by 14 geomorphic units (Cipta et al. 2017). Matsuoka 

et al. (2006) described and classified the geomorphological units such as tertiary 

mountains, pre-tertiary mountains, hills, volcanic foot slopes, mountain foot slopes, 

volcano, and dunes. Volcanoes in Sulawesi covers approximately 75% of the island’s 

area. Several active faults could be found on the island, containing the active Palu-Koro 

fault found in the northwest part of the Palu city. The Makassar Basin is divided by the 

Palu-Koro fault zone and the separation produced into the North and South Makassar 

Basins (Katili 1978). The Palu-Koro fault is a transform fault in nature that is responsible 

for the movement of some part of western Sulawesi towards the south–southeasterly 

direction. However, this affects the island’s locality and generated two dormant spreading 

centers in the Makassar Strait (Katili 1978). The northward movement of Sulawesi 
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happened due to further spreading put up by the left-lateral Palu-Koro fault. Therefore, 

as a result, Sulawesi moved away from Kalimantan in a direction with a north-northwest–

south-southeast axis (Tjia & Zakaria 1974). The main tectonic assemblages found in 

Sulawesi such as eastern and southern arm ophiolite complexes and northern and southern 

arms tertiary granites, volcanic deposits (Katili 1978). Palu is unique because of its unique 

geological structure having five main structures. Palu-Koro strike-slip fault covers 

approximately an area of 50 km in width near Palu where fault slip range is 30–40 

mm/year according to Socquet et al. (2006). Alluvial deposits, granite fragments, beach 

sediments, molasses sediment, and metamorphic rocks could be found in a different part 

of the city within the valley. 

 

 

Figure 3.9: Location of Palu city. 

3.12. Data acquisition 

Various sets of data were collected from the several official websites of Statistics 

Indonesia as the main source (Figure 3.10). However, for ERA, data are generally used 

from single or multiple sources. Freely available earthquake data can be collected from 
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both public and private agencies. These sources are accessible from the internet and 

include the Advanced National Seismic System, United States Geological Survey 

(USGS), National Earthquake Information Center (NEIC), and the Northern California 

Earthquake Data Center. We have collected the complete earthquake catalog from USGS 

and NEIC of various magnitudes with coordinates of lat. 2O 30’00’’N and 5O00’00’’N 

and long. between 94O30’00’’E and 99O00’00’’E. Data for the probability, hazard, and 

vulnerability assessment were collected from various national and international agencies 

such as Statistics Indonesia (www.bps.go.id/eng), GeoNetwork 

(http://www.fao.org/geonetwork), and the USGS (https://earthquake.usgs.gov). Digital 

elevation model (DEM) with 7.5 m resolution and administrative shapefiles in Banda 

Aceh and Aceh province were collected from the Laboratory of Geographic Information 

Systems and Spatial Data of Syiah Kuala University.  

Figure 3.10: Location of Banda Aceh city distributing the sub-districts and the 

data collection zone. 

http://www.bps.go.id/eng
http://www.fao.org/geonetwork
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Inventory data, published maps, geological maps, and seismic tectonic conditions were 

obtained from the USGS world maps based on the coordinates of Aceh and its 

surrounding areas from 1800 to 2019 and were applied for the probability assessment and 

validation purposes. 

 

3.12.1. Data and thematic layers used for objective 1 

Vulnerability maps cannot be produced without analyzing criteria individually. The most 

important part of the approach is the selection of indicators that are adequate to reflect 

the total vulnerability of Banda Aceh City. Chosen factors and alternatives have been 

described for the vulnerability assessment (see Table 3.3). However, besides these 

factors, some were generated from the raw data of segment, polygon type as vector 

dataset, and DEM as raster dataset. The thematic layers were obtained using ArcGIS. 

Classification of the criteria is not straightforward because of lacking statistical rules that 

can automatically classify continuous data (Rozenstein & Karnieli 2011). The major 

mathematical methods for data classification are equal intervals, natural breaks, manual 

and statistical consideration, which are GIS default processes (Naghibi, Pourghasemi & 

Dixon 2016). Many academic scientists and researchers have used their individual 

discretion to identify class boundaries in continuous data layers. The natural breaks 

method was applied to classify the values into five classes for the EVA map 

(Mohammady, Pourghasemi & Pradhan 2012; Pourghasemi, Mohammady & Pradhan 

2012). For the density calculation, the function of kernel density was applied. A Euclidean 

function was implemented for distance calculation, which was characterized by a cell size 

of 5 m (pixel size 5×5 m) applied in the GIS software (Xie & Yan 2008).  
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Table 3.3: Data used for vulnerability assessment in objective 1. 

 

 

In this study, the Kernel density estimation (KDE) model was used to achieve the density 

of the layers of the building’s size, area, floors, and quality (Botev, Grotowski & Kroese 

2010). Thereafter, to achieve a value between 1 and 5, reclassification of layers was 

needed. Table 3.3 presents the details of the data and indicators.  

 

3.12.2. Data and thematic layers used for objective 2 

The probability and vulnerability assessment is extremely challenging without 

considering the significant criteria and the important indicators that depend on the 

Goal Criteria Selected layers Scale  Type  Resolution 
(m) 

 
 
 
 
 
 
 
 
 
Vulnerability 

 
Geotechnical 
(DEM and 
Segment 
types) 
 
 
 
 
 
 
Structural 
(Segment and 
polygon 
types) 
 
 
 
 
 
 
Social 
(Segment and 
polygon 
types) 

Slope 
Curvature 
Lithology 
Distance from 
fault 
Building 
Characteristics 
Major offices 
Transport nodes  
Educational 
institutions 
Service centres 
Stadium, 
museum and 
historical places 
Population 
characteristics 
Household 
Characteristics 
Village chiefs 
Educated people 
Popular places 
Visiting places 
Parks and others 

 
 
 
 
 
 
 
 
 
1:30000 

 
 
 
 
 
 
 
 
 
Raster 
layers 

 
 
 
 
 
 
 
 
 
5 
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heterogeneity of the study location (Table 3.4).  

Table 3.4: Selected input data layers from literature and data types used in 

objective 2. 

 

The most vital and useful part of the approach is to select the criteria and indicators 

adequately to obtain an accurate risk map for Banda Aceh. Probability layers were 

obtained from the DEM and historical events using excel and ArcGIS (Figure 3.11). 

However, vulnerability layers were obtained from the polygon and segment types of 

Criteria Selected layers Scale  Type  Resolution 
(m) 

 
 
 
 
 
Susceptibility 
 
 
 
 
 
 
 
 
Hazard 

Slope 
Curvature 
Elevation 
Aspect 
Epicenter density 
Epicenter distance 
Depth density 
Magnitude 
distribution 
PGA density 
Lithology 
Amplification 
factor 
Fault density 
Distance from fault 
 
Earthquake 
Intensity  
 

 
 
 
 
 
 
 
 
 
 
 
 
1:30000 

 
 
 
 
 
 
 
 
 
 
 
 
Raster 
layers 

 
 
 
 
 
 
 
 
 
 
 
 
5 

  
 
 
 
Vulnerability 

Building density 
District office 
Educated people 
Environmental 
infrastructure 
Stadium 
University 
Chiefs 
Service centers 
Offices 
Population 
Transport nodes 
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vector datasets (Figure 3.12). A geodatabase was created and applied individually for 

probability, hazard, vulnerability, and risk assessment. The details of the criteria and 

indicators used for this research are presented below.  

 

Figure 3.11: Criteria for probability mapping using ANN. (a) Slope, b) curvature, 

c) elevation, d) aspect, e) lithology, f) amplification factor, g) distance from faults, 

h) fault density, i) depth density, j) epicenter density, k) PGA density, l) magnitude 

density, and m) distance from epicentre. 
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On the basis of the objective and purpose of the study, collected data were used to prepare 

several layers that were identified and selected after the extensive literature review. 

Several steps implemented in ArcGIS such as create or modify a thematic layer, filtering 

of values in a thematic layer, organisation unit search and implementation, navigation 

between organisation hierarchies, and production of the maps. Thematic map 

development and management were done based on the requirement of the objective. 

 

Figure 3.12 Criteria for vulnerability mapping using AHP. (a) Building density, b) 

district offices density, c) density of educated people, d) environmental 

infrastructure, e) major offices, f) population density, g) distance from service 

centers, h) stadium, i) transportation nodes, j) distribution universities and k) 

distribution of village chiefs. 
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3.12.3. Data and thematic layers used for objective 3  

Nonspatial and spatial data were used in the current research (Figure 3.14). Nonspatial 

data, such as event time, magnitude, and magnitude error, were collected from the USGS 

data source (Figure 3.13). Events were filtered based on magnitude larger than 5 Mw 

because low magnitudes have a small capacity for damage. Accessing a very high-

resolution DEM is a challenging factor during data collection and database creation 

(Ghasemi, Pradhan & Jena 2018). Appropriate attribute selection is a crucial part of this 

study. The selected attributes for the probability index indicators were obtained based on 

the exact longitude, latitude, day, month, year, depth, and magnitude. 

  
Figure 3.13: Input layers for probability index estimation. (a) lithology with an 

amplification factor, (b) slope angle, (c) fault density, (d) depth density, (e) 

proximity to epicenter, (f) elevation, (g) epicenter density, (h) magnitude density, 

and (i) PGA (Peak ground acceleration) density. 
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Table 3.5: Probability and vulnerability indicators for ERA used in objective 3. 

Data  Types Factors Impacts References 
 
 
 
 
 
 
 
 
 
 
DEM, 
Earthquake 
events 
Geological map, 
 

 
 
 
 
 
 
 
 
 
 
 
 
Probability 
indicators 

Slope Slope affects the 
landscape 
processes such as 
subsurface flow, 
runoff rates, 
erosion potential, 
and velocity of 
overland flow. 
Slopes are 
associated with 
crustal faults. 

(Bathrellos et 
al. 2017; 
Sakellariou et 
al. 2017) 

Elevation High elevation 
projects 
complicated 
tectonics. 
Probability is 
high with higher 
elevation. 

(Alizadeh 
et al. 2018) 

Fault density Areas with high 
fault density are 
highly 
susceptible to 
earthquakes. If 
the faults are 
active then the 
chance is very 
high.  

(Dimri, 
Lakhera & 
Sati 2007) 

Lithology and 
Amplification 
factor 

Composition of 
the rocks and 
their 
amplification 
factors helps to 
identify the areas 
that could have 
high ground 
shaking capacity. 

(Jena et al. 
2019) 

Epicentre 
density 

Areas with 
earthquake 
clustering and 
epicentre of pairs 
of large events 
are highly 
probable zone. 

(Martínez-
Garzón et al. 
2019;  Rashed 
& Weeks 
2003; Soe 
et al. 2009) 
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Magnitude 
density 

Likelihood of 
occurrence of a 
particular 
magnitude at a 
particular place.  

(Zebardast 
2013) 

Proximity to 
epicentre 

Avoiding the 
source location 
of earthquakes is 
important 
because epicentre 
zones are highly 
probable. 

(Jena et al. 
2020) 

Depth density It gives 
information on 
the fault depth 
and capacity of 
producing a 
particular event. 

(Soe et al. 
2009) 

PGA density It provides 
ground 
acceleration 
information. 

(Morales-
Esteban, 
Martínez-
Álvarez & 
Reyes 2013) 

 
 
 
 
 
 
 
Administrative 
areas, Buildings 
shapefile, 
Population raster 
file from DIVA-
GIS, Shapefile of 
all other 
vulnerable layers 

 
 
 
 
 
 
 
 
 
 
 
Vulnerability 
indicators 

Population 
density 

Higher the 
population 
density near the 
seismic gap of 
GSF, higher the 
vulnerability. 

(Tate 2012) 

Building 
density 

Expansion of 
buildings and 
increase in 
building density 
could increase 
the earthquake 
risk. 

(Vicente et al. 
2011) 

Building 
surface area 
density 

Bigger the 
surface area of 
buildings floor 
lesser the 
vulnerability. 

(Binita, 
Shepherd & 
Gaither 2015) 

Building 
quality 

Buildings quality 
is reliant on 
material quality, 
design standards, 
income of the 
owner. 
Therefore, low 

(Moradi, 
Delavar & 
Moshiri 2015) 
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Risk assessment is challenging without considering the essential criteria and the 

significant indicators based on the study area heterogeneity. The selection of relevant 

quality buildings 
area highly 
vulnerable.  

Building 
heights 

Buildings 
vulnerability 
increases with 
height and 
quantity of 
floors.  

(Ebert, Kerle 
& Stein 2009) 

Building 
types 

Shape and 
geometric size of 
the land structure 
are vital. Large 
yet consistent 
shapes or sizes 
are less 
vulnerable. 

(Tavakoli & 
Favakoli 
1993) 

Proximity to 
road 

Roads provides 
access to move to 
the safe place in 
highly populated 
and junction 
areas. 

(Vicente et al. 
2011;  Sarris 
et al. 2010) 

Proximity to 
buildings 

Be away from 
high-rise 
buildings during 
earthquake is 
safe. 

(Debnath 
2013) 

Household 
density 

It is crucial to 
assess the 
household 
population 
density to 
vulnerability. 
Household 
vulnerability 
particularly 
focused by 
scientists and 
policy makers. 

(Binita, 
Shepherd & 
Gaither 2015;  
Shepard et al. 
2012) 
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criteria is a vital part of the ANN K-fold cross-validation model to obtain an accurate 

result for the city. The detailed characteristics of the indicators used in this study area and 

the raw data were described in Table 3.5. USGS data and data from Statistics Indonesia 

(www.bps.go.id/eng) were used for probability index estimation and hazard mapping. For 

the vulnerability assessment, the collected administrative, structural, and social 

information were used.  

 

 
Figure 3.14: Input layers for vulnerability index estimation. (a) household density, 

(b) building surface area, (c) building quality, (d) building heights, (e) proximity to 

road, (f) building types, (g) proximity to buildings, (h) building density, and (i) 

population density. (Building density and population density maps were 

reproduced after (Jena et al., 2019). 

 

 

http://www.bps.go.id/eng
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3.13. Factors used in this study and the importance 

3.13.1. Probability and hazard indicators 

The development of a probability map using the catalogue of historical events of moderate 

to large earthquakes (M ≥ 5.5) was considered. Therefore, to characterize the 

spatiotemporal distribution of earthquakes this research generated several thematic 

indicators for the earthquake probability mapping. The applied method/model accounts 

for several tectonics parameters along with the spatial and nonspatial datasets, which 

could potentially influence the spatiotemporal variability. As a fundamental component 

of risk, this study also calculated the PGA and Intensity variation for earthquake hazard 

assessment. The whole process required various components, such as active geological 

faults, historical earthquake catalogues, estimation of geodetic crustal deformation, 

paleoseismic data, and seismotectonic features. However, hazard analysis could be in two 

different ways: a particular scenario deterministically identified and used for hazard, 

while probabilistically, all-potential earthquake scenarios were considered along with the 

probability to estimate hazard. The detailed parameters used for probability and hazard 

assessment were presented below. 

 

3.13.1.1. Environmental indicators 

Lithology: Banda Aceh is characterized by quaternary sediments with patches of 

peridotite. Therefore, this provides an indicator of seismic amplification (Alizadeh et al. 

2018; Dimri, Lakhera & Sati 2007). 

Slope: Slope is one of the key factors for earthquake and landslide analysis. However, 

slopes are associated with the faults and provide the information of fault slip (Alizadeh et 

al. 2018). 

Elevation: This indicator is important because hilly regions are highly seismic relative to 
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the plane lands given the complicated tectonics and structure (Alizadeh, Alizadeh, et al. 

2018). 

Curvature: It gives the positive and negative values of the surface because we can 

recognize the sediment deposits more in the basin than the dome part of a region, which 

is important for the seismic study (Consultant 2009) 

Aspect: Generally, faults are not characterized by straight lines, plain surfaces, and those 

vertical to the surface. The dipping direction of faults is associated with the direction of 

slopes, thereby making it important for the study. 

Distance to fault: It is an important factor because the earthquake potential zones are 

extremely near to faults, and they decrease with distance (Alizadeh, Alizadeh, et al. 2018). 

Fault density: Fault density is important because the high density of faults indicates the 

complex tectonics and are more prone to areas for earthquakes (Alizadeh et al. 2018, 

Dimri, Lakhera & Sati (2007). 

 

3.13.1.2.  Seismic indicators 

Magnitude density: Magnitude density provides the chances of occurrence of a 

particular magnitude of the earthquake at the highly experienced zone (Zebardast 2013; 

Soe et al. 2009). 

PGA density: It is an important indicator because it provides ground acceleration 

information that is related to the lithology, magnitude, and distance from the earthquake 

source zone (Soe et al. 2009). 

Depth density: It provides information about the fault zone if the earthquake focuses are 

at the same depth (Soe et al. 2009). 

Epicenter density: Epicenter density provides the zone of earthquake clustering that 

indicates the earthquake probable zones (Soe et al. 2009). 
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Proximity to epicenter: Avoiding the source location of earthquakes is important 

because epicentre zones are highly probable (Jena et al. 2020). 

Amplification factor: It is one of the important key indicators because the amplification 

value of each lithotype must be analyzed in an earthquake study (Soe et al. 2009). 

 

3.13.2. Vulnerability indicators 

For vulnerability mapping, several layers were selected according to the requirement of 

objectives (Alizadeh et al., 2018). The layers were building density, building surface area 

density, building quality, building heights, building types, proximity to the road, 

Proximity to buildings, household density, district office, educated people density, 

environmental infrastructure, stadium, distribution of universities, distribution of village 

chiefs, distance from service centers, major offices, district offices density, population 

density, and transport nodes, as presented in Figure 3.12. For pairwise comparison, the 

relative importance of the layers was estimated using VIKOR, AHP and TOPSIS 

approaches. Then, by applying the normalization technique, the weight and rank of all the 

layers were evaluated. In the next step, the weighted sum tool in the GIS is used to make 

the vulnerability map. 

 

3.13.2.1. Social indicators 

Population density: The population density is increasing every year, as indicated by the 

2000–2017 census data. Unfortunately, the increased population density is towards the 

seismic gap of the GSF fault in Banda Aceh, thereby resulting in high vulnerability 

(Rygel, O’sullivan & Yarnal 2006; Alizadeh, Hashim, et al. 2018). 

Educated people density: A higher level of literacy can increase more about the 

awareness of hazards among people than uneducated people. Education can enhance 
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responsibilities during disasters (Rygel, O’sullivan & Yarnal 2006; Alizadeh et al., 2018). 

University distribution: Universities are the main source of education that can raise crisis 

alarms hazards. Therefore, the good distribution of universities in a large city is 

significant (Alizadeh, Hashim, et al. 2018). 

Village chief distribution: “Chiefs” are the highly respected persons in village areas. 

Through chiefs, the government can provide information on disasters to the people 

(Alizadeh et al., 2018). 

 

3.13.2.2. Physical indicators 

Building density: Land allocation, lowering building construction, and equal distribution 

of buildings, along with a perfect development plan, can decrease vulnerability to 

disasters (Alizadeh et al., 2018). 

Building surface area density: Bigger the surface area of buildings floor lesser the 

vulnerability (Binita, Shepherd & Gaither 2015). 

Building quality: Buildings quality is reliant on material quality, design standards, the 

income of the owner. Therefore, low-quality buildings area highly vulnerable (Moradi, 

Delavar & Moshiri 2015). 

Building heights: Buildings' vulnerability increases with height and quantity of floors. 

However, current innovations and technologies failed while high height buildings are 

highly vulnerable (Ebert, Kerle & Stein 2009). 

Building types: Shape and geometric size of the land structure are vital (Figure A5). 

Large yet consistent shapes or sizes are less vulnerable (Tavakoli & Favakoli 1993). 

Proximity to roads: Roads provide access to move to a safe place in highly populated 

and junction areas. (Vicente et al. 2011; Sarris et al. 2010) 

Proximity to buildings: Be away from high-rise buildings during an earthquake is safe. 
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(Debnath 2013) 

Household density: It is crucial to assess the household population density to 

vulnerability. Household vulnerability particularly focused by scientists and 

policymakers. (Binita, Shepherd & Gaither 2015; Shepard et al. 2012) 

Service centers and offices: The main offices and the service center distribution is 

extremely important for a well-planned city in lowering vulnerability (Alizadeh et al., 

2018). 

Transportation nodes: Transportation nodes are a key factor in disaster management. 

Street classification is more important than system performance (Alizadeh, Hashim, et al. 

2018). 

Environmental infrastructure: It is one of the major factors that must be considered for 

earthquake vulnerability assessment (Blaikie et al. 2014; Alizadeh et al., 2018). 

Stadiums: Stadiums full of people are more vulnerable than empty stadiums (Rygel, 

O’sullivan & Yarnal 2006). 

 

3.14. Software for modeling implementation 

In this research, the main data was DEM, which was obtained from Statistics Indonesia. 

ArcMap software was used to pre, processing, and post-processing, interpolation, and 

raster to vector, point raster calculation, index estimation, and map preparation (Table 

3.6). Python was used to develop ANN, ANN-CV models of earthquake probability 

mapping required for earthquake risk estimation. It was also used to generate algorithms 

(individual and ensemble) for the hyperparameters optimization. In addition, these 

models were integrated with some MCDM models for risk estimation. The MCDM 

models were implemented using Excel and TOPSIS calculator software. PAST software 

was used to determine several relationships such as PGA VS INTENSITY using 
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Silhouette clustering characterized by a 3point average with 95% ellipses, Matrix plotting 

was conducted to understand the relationship between Mw, PGA, and Intensity variation. 

Pure Locational Clustering (PLC) approach was also conducted using the PAST to 

generate a clustered graph for all the major events and to generate a dendrogram. 

Therefore, GIS (ArcGIS, QGIS) were used to develop the final probability maps of 

earthquakes and then used for hazard, vulnerability, and risk estimation accordingly. 

AHP, VIKOR, AHP-TOPSIS methods were employed in association with artificial 

intelligence and machine learning techniques to carry out the research and to produce a 

risk map. Several other processing was also done using AHP, TOPSIS, SAW, and linear 

assignment calculators to confirm the excel-based calculations. 

 

Table 3.6: Detailed software and their characteristics used for the risk assessment. 

Software Characteristics Uses 

Microsoft Excel  Data sorting and Filtering 
 Handle a huge amount of 

data points 
Built-in formulae 
Produce table reports and 
chart  

 Automatically edit results 

Used for the calculation of 
Intensity, PGA, 
Amplification factor values 
and source to site distance. 
AHP, VIKOR and TOPSIS 
values calculation. 

PAST  Statistic software 
 Manipulation, plotting,  
 Time-series and spatial 

analysis 

Silhouette clustering, 
Matrix plotting, Pure 
Locational Clustering 
(PLC) and dendrogram 
plotting. 

Faultkin (version 7.5) and 
Georose 5.0 

 Accepts only data in text 
format and used for fault 
slip analysis 

Structural geological 
analysis 

Python 3.7  General-purpose 
programming  

 Statistics software 
 Useful for modeling and 

algorithm development 
 Code readability  

Neural network modeling 
and accuracy assessment 
for probability mapping 
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ArcGIS 10.4.1  Create layered maps and 
perform basic spatial 
analysis 

Used for database creation, 
data analysis, mapping, 
modeling and map 
production 

Expert’s Choice  Decision making To apply experts opinion 
for validation purposes 

 

 

3.15. Several mitigation processes  

3.15.1. Structural 

Earthquake forces are strong enough that buildings cannot be 100% safe. Buildings' 

earthquake resistance mostly depends on stiffness, strength, and inelastic deformation 

capacity. The earthquake-generated force could be controlled to a certain extent 

depending upon structural, geotechnical, and social characteristics. Shaking performance 

should be checked through the earthquake-shaking table to test the response of structures. 

These models used to check to shake of building components against seismic waves. 

 

3.15.2. Non-structural 

Policies guidelines and training should be provided to implement the structural measures. 

Specified authorities such as policymakers, decision-makers, planners should approve a 

proper construction of structures. Suitable building codes formulation and legal 

implications required. Retrofitting needs to be well formulated for earthquake-resistant 

constructions as well as old structures keeping the focus on foundation, site selection, 

construction, materials, and workmanship. Monitoring of developmental and construction 

work, settlements, and land use planning should be formulated through guidelines in 

hazard-prone areas to avoid fatalities and loss of property. 
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3.15.3. Seismic retrofitting  

Modification of existing infrastructures, buildings or constructions and converting them 

to more resistant to earthquake, liquefaction, or ground motion due to seismic activity is 

called seismic retrofitting. Understanding of seismic behavior on structures and the 

current knowledge on experienced earthquakes in urban areas seismic retrofitting could 

be well acknowledged (Alizadeh et al. 2018). 

 

3.15.4. Long-term measures for mitigation 

Re-framing of old building codes, implementation, guidelines is quite important. Strong 

rules should be developed for high seismic areas. Identifying high vulnerable, risky areas 

and legal corporation of earthquake-resistant features is required. Earthquake proof public 

utilities construction and substitutes for infrastructures to reduce risk. Earthquake-

resistant community buildings should be constructed in seismic zones of moderate to 

higher intensities. The requirement of R&D for disaster mitigation, preparedness, 

prevention is quite important (Schilderman 2004). Evolving educational curriculum and 

practical training is needed for disaster-related topics. 

 

3.16. Summary 

The summaries attained from the developed models were delineated in this chapter for 

earthquake probability, hazard, vulnerability, and risk assessment as follows: 

1. Banda Aceh/ Aceh province and Palu/ Sulewasi province were selected as two case 

studies to perform the ERA. 

2. The chosen study areas were seismically active with very frequently occurred 

earthquakes. Moreover, these locations contribute to the economic and tourism 

sectors in Indonesia. 
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3. High-resolution 7.5m DEM, historical earthquakes catalog, and social, structural 

information were used in this study for several thematic indicators preparation. 

4. Several conditioning factors were prepared using several data layers in a GIS database 

and then with the modification of model the importance of factors was identified to 

be used for earthquake probability mapping. Similarly, vulnerability layers were 

chosen to perform mapping using several MCDM approaches. 

5. ANN, ANN-CV models were developed and optimized and then integrated with 

various MCDM techniques to produce an earthquake risk assessment map on a city 

scale. 

6. Using the developed integrated techniques, vulnerability areas, risk areas, and 

populations at risk were derived. 

7. Risk results revealed that the ANN-CV-AHP-TOPSIS model performs better than the 

ANN-AHP model. The risk areas and population at risk vary in both the models. 

8. All the developed maps were performed through pre-post processings using Python 

and GIS environment. 

9. To reduce earthquake risk various mitigation processes were suggested in this chapter.
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1. Introduction 

This chapter demonstrates the results of case studies obtained using the developed 

integrated model for earthquake risk assessment in the city scale. The probability, hazard, 

vulnerability, and risk results using several conditioning factors, and triggering factors 

are also presented in this section. Moreover, the improvement of the developed model 

was also demonstrated in this chapter. In addition, vulnerable and risk areas were 

estimated along with the total population under risk were also calculated and illustrated 

in this chapter including the mitigation suggestions for  Banda Aceh and Palu city. The 

produced high-resolution maps were presented in this chapter to understand the risk prone 

areas.  

 

4.2. Objective 1 

4.2.1. Social vulnerability 

For the Social Vulnerability (SV) map (Figure 4.1), the ranking is done on the degree of 

vulnerable areas based on natural break classification represented by a color scale from 

dark green (less vulnerable areas) to red (very high vulnerable areas) (Chakraborty, Tobin 

& Montz 2005). The geospatial unit is used for the indicator representation and the social 

vulnerability index (SVI) corresponded to administrative zones within the city (Figure 

A3). The results of the decision matrix, priority and rank of all the vulnerable layers are 

presented in Table 4.1. 
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Table 4.1 Decision matrix, priority and rank evaluation for the criteria of social 

vulnerability. 
 

1 2 3 4 5 6 7 8 
     1 1 2.00 2.00 3.00 3.00 4.00 5.00 7.00 
     2 0.50 1 2.00 3.00 4.00 4.00 5.00 7.00 
     3 0.50 0.50 1 3.00 2.00 4.00 4.00 6.00 
    4 0.33 0.33 0.33 1 0.50 2.00 3.00 4.00 
    5 0.33 0.25 0.50 2.00 1 3.00 5.00 7.00 
    6 0.25 0.25 0.25 0.50 0.33 1 2.00 4.00 
    7 0.20 0.20 0.25 0.33 0.20 0.50 1 3.00 
    8 0.14 0.14 0.17 0.25 0.14 0.25 0.33 1 

         No Category Priority Rank 
          1 Household density     26.9% 1 
          2 Household surface 

area 
     24.0% 2 

          3 Educated people 16.9% 3 
          4 Village chiefs 8.1% 5 
          5 Highly popular 

place 
12.3% 4 

          6 Religious sites 5.6% 6 
          7 Visiting places 3.9% 7 
          8 Parks 2.2% 8 
Number of comparisons = 28 
Consistency Ratio CR = 4.6% 
Principal Eigenvalue = 8.448 
Eigenvector solution: 6 iterations, delta = 2.2E-8 

 

1. The very-low social vulnerability (characterized by 26.93% area and 62,190 

population) index included four neighborhood villages, namely, zones 1, 3, 4, and 9 

that are located along the coastal part of the city. These areas are supposed to be less 

sheltered and characterized by a better recovery capacity than the other areas.  

2. Low social vulnerability (characterized by 33.62% area and 85,155 population) can 

be observed in zones 1, 2, 6, and 8. These areas are found to be less exposed to low 

residential building density. The design and planning of buildings in these areas are 

better than in other areas. Moreover, these areas have less population. 

3. Medium social vulnerability (characterized by 20.41% area and 48,554 population) is 
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visible in zones 2, 3, 5, 6, 7, and 8 in a non-homogeneous manner. The medium 

category includes villages with a medium exposure of buildings. However, this can 

consequently confirm that household density and size are at the medium level in 

locations with medium population density and educated people, which falls within 

this category.  

4. High social vulnerability (characterized by 13.66% area and 31,473 population) is 

detected from the northeast central region toward the southwest central 

neighborhoods, where zones 1, 3, 5, and 8 score high in the vulnerability index. This 

category is characterized by high household density with less size and surface areas 

along with low-quality infrastructures.  

 

Figure 4.1: Social vulnerability map. 
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5. The very-high social vulnerability index (characterized by 5.35% area and 10,975 

population) describes the central part of the city, which covers zones 3 and 5 that are 

highly exposed, but may have the capacity to recover soon. Therefore, the focus 

should be on the high- and medium-vulnerability areas in the city.  

 

4.2.2. Structural vulnerability 

The vulnerability of structures was calculated and classified into the five categories of 

very high, high, medium, low, and very low, as shown in Figure 4.2 and A4. Decision 

matrix, priority, and rank of all the structural vulnerability criteria were presented in Table 

4.2. According to the geographical distribution, infrastructure development and very high 

vulnerability of residential, commercial, and educational buildings can be found in zones 

3 and 5, whereas safe buildings are located in zones 1, 3, 4, and 9.  

 

Figure 4.2: Structural vulnerability map. 
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From a statistical viewpoint, 3.71%, 10.03%, 22.35%, 31.71%, and 32.20% of buildings 

have very high, high, medium, low, and very low structural vulnerability, respectively. 

Moreover, the zones where these buildings are located account for 7,173; 24,070; 52,144; 

79,370; and 75,590 of the population, respectively (Table 4.5).  

 

Historical research about the city indicates that the main cause of vulnerability or the low 

vulnerability condition is the existing traditional buildings. Zones 3 and 5, which are 

considered the center of Banda Aceh City, were not well constructed and some buildings 

have not been renovated because of their cultural heritage status. Zones 2, 5, 6, and 8 are 

among the oldest settlements and the structures were not developed on the basis of 

standards. Furthermore, city boundary expansion in zones 1, 4, and 3 have increased the 

structural vulnerability of the structures in these locations. Nevertheless, some newly 

constructed and reinforced buildings in zones 21 and 22 are the major reasons for safe 

buildings in these locations. 

 

Table 4.2: Decision matrix, priority, and rank evaluation for the criteria of 

structural vulnerability. 

 
1 2 3 4 5 6 7 8 9 10 11 

1 1 2.00 3.00 3.00 4.00 3.00 3.00 5.00 7.00 6.00 7.00 
2 0.50 1 3.00 3.00 4.00 3.00 3.00 5.00 6.00 4.00 6.00 
3 0.33 0.33 1 1.00 3.00 3.00 3.00 5.00 7.00 4.00 6.00 
4 0.33 0.33 1.00 1 2.00 0.50 0.50 5.00 6.00 4.00 6.00 
5 0.25 0.25 0.33 0.50 1 0.33 0.33 3.00 4.00 3.00 4.00 
6 0.33 0.33 0.33 2.00 3.00 1 1.00 4.00 6.00 4.00 6.00 
7 0.33 0.33 0.33 2.00 3.00 1.00 1 4.00 5.00 4.00 5.00 
8 0.20 0.20 0.20 0.20 0.33 0.25 0.25 1 2.00 0.50 2.00 
9 0.14 0.17 0.14 0.17 0.25 0.17 0.20 0.50 1 0.33 2.00 
10 0.17 0.25 0.25 0.25 0.33 0.25 0.25 2.00 3.00 1 2.00 
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4.2.3. Geotechnical vulnerability 

The geotechnical vulnerability map was constructed by using the susceptibility of city 

buildings on the basis of geotechnical factors in Banda Aceh City. Decision matrix, 

priority, and rank of all the factors were presented in the Table 4.4. This susceptibility is 

classified into five categories, namely, very high, high, medium, low, and very low 

(Figure 4.3). The results of the geotechnical vulnerability showed that 11.71% of the 

entire area with 11,970 population is characterized by very high vulnerability. However, 

high, moderate, low, and very low vulnerable zones can be found in 15.05%, 40.57%, 

25.96%, and 6.69% of the area, respectively (Table 4.6).  

11 0.14 0.17 0.17 0.17 0.25 0.17 0.20 0.50 0.50 0.50 1 
No Category Priority Rank 
1 Building 

density 
22.9% 1 

2 Building 
surface area 

19.4% 2 

3 Offices 13.8% 3 
4 Sub district 

offices 
9.0% 6 

5 Transportation 
nodes 

5.5% 7 

6 Educational 
institutes 

10.1% 4 

7 School 
density 

9.7% 5 

8 Stadium 2.7% 9 
9 Museum 1.9% 10 
10 Service 

centres 
3.3% 8 

11 Historical 
places 

1.8% 11 

Number of comparisons = 55 
Consistency Ratio CR = 5.5% 
Principal Eigen value = 11.830 
Eigenvector solution: 6 iterations, delta = 3.1E-8 
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Table 4.3: Decision matrix, priority, and rank evaluation for the criteria of geo-

technical vulnerability. 

 

Zones 1, 3, 4, 6, and 9 in the northwest areas of the city fall within the low or very low 

vulnerability. Despite the high slopes in zones 1, 3, 5, and 8, these areas are classified 

under medium geotechnical vulnerability because of the minimum low PGA values and 

the low liquefaction probability than the coastal areas.  

 

Figure 4.3: Geotechnical vulnerability map. 

No              Category Priority Rank 
1                   Slope 16.9% 3 
2        distance from fault 44.3% 1 
3                 geology 38.7% 2 

 Number of comparisons = 3 
Consistency Ratio CR = 1.9% 
Principal Eigen value = 3.018 
Eigenvector 
solution: 4 iterations, delta 
= 1.9E-10 

           1          2        3 
1         1        0.3     0.50 
2         3.00    1       1.00 
3         2.00    1.00    1 
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However, in the southern and some parts of the northeast regions, zones 1, 3, and 7 are 

considered high vulnerability areas, whereas the southwest regions are considered very 

high vulnerability because of the fault system, high slope, and high liquefaction 

susceptibility. 

 

4.2.4. Final vulnerability map 

Earthquake vulnerability map was produced using three vulnerable layers explained 

above. Alternatives were chosen to produce a decision matrix based on the criteria. Three 

selected alternatives, such as social (population density only), structural (building density 

only), and geotechnical (distance from active faults only) achieve ranks 1, 2, and 3, 

respectively. The ranks were calculated by using the normalized decision matrix based 

on the VIKOR approach. The Si and Ri values obtained are 1, 0.84, 0 and 0.625, 0.558, 

0, respectively (Table 4.5). The chosen alternatives were used to understand the 

importance of alternatives. Decision matrix for ranking the alternatives were presented in 

Table 4.4. 

 

Figure 4.4 presents the final map. The results showed that 3.4% of Banda Aceh City has 

very high vulnerability, 11.9% has high vulnerability, 23.73% has medium vulnerability, 

28.82% has low vulnerability, and 32.20% has very low vulnerability, which constitutes 

safe areas (Figure 4.4). The central parts of the city and some parts of the north include 

zones 1, 3, 4, and 9, which are considered locations with very low or no vulnerability. 

These areas are not affected by steep slopes in the northern parts due to the low PGA 

amplitude. 
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Table 4.4: Decision matrix for ranking the alternatives by using the VIKOR 

method. 

 Criteria/Alternatives Social 
Vulnerability 

Structural 
vulnerability 

Geotechnical 
vulnerability 

Social characteristics 0.25 0.5 1 
Structural 
characteristics 0.33 1 2 

Geo-technical 
characteristics 1 3 4 

Calculated weights 
based on AHP 
approach 0.625 0.238 0.137 

 

 

Table 4.5: Normalized decision matrix and ranking of alternatives by using the 

VIKOR method. 

    Sj Rj Qj Rank 
Social 
characteristics 

 
0.231 

 
0.156 

 
0.218 

 
1.000 

 
0.625 

 
1.000 

 
1 

Structural 
characteristics 

 
0.305 

 
0.312 

 
0.436 

 
0.840 

 
0.558 

 
0.867 

 
2 

Geo-technical 
characteristics 

 
0.924 

 
0.937 

 
0.873 

 
0.000 

 
0.000 

 
0.000 

 
3 

Max 0.924 0.937 0.873 1.000 0.625   
Min 0.231 0.156 0.218 0.000 0.000   

 

Zone 5 and the north part of the city can be considered the first and oldest settlements of 

Banda Aceh City. Hence, the buildings here are non-adaptable to the necessary criteria. 

This limitation is generally attributed to a lack of funding, cultural heritage, and low 

awareness among residents.  



140 
 

The primary aim of the current study is to describe the earthquake vulnerability of 

buildings and the population in Banda Aceh City. Conducting an overlay analysis through 

GIS is important for all the derived vulnerability layers, as depicted in Figure 28, 29, and 

30. The results showed that numerous residential buildings situated in zones 1, 2, 3, 5, 

and 6 exhibited high earthquake vulnerability. Moreover, only a few residential buildings 

located in zones 9, 7, and 8 are considered very safe. 

 

Figure 4.4: Earthquake vulnerability map (EVM) by using the AHP and VIKOR 

method. 

 

Results show that out of the 59 km2 of the city, 2 km2 and 7 km2 fall under very high and 

high vulnerability zones, respectively. Moreover, 14, 17, and 19 km2 of land area fall 

under medium, low, and very low vulnerability zones, respectively. As the area in very 
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high vulnerability zones is small, the population in the very high vulnerability zone is 

approximately 6,573. Figure 4.4 shows a very high vulnerability zone located in the city 

center. In addition, 25, 070 residents are in the highly vulnerable zone, whereas the rest 

reside in medium, low, and very low vulnerability areas (Table 4.6). 

 

Table 4.6:  Estimation of population and area under vulnerable zones in Banda 

Aceh City. 

 ID Vulnerability Area 
(Sq. 
Km) 

Area 
(Hect
are) 

Percentage Population  

Social 
Vulnerabil

ity 

1 Very low 16 1610 26.93 62,190 

2 Low 20 2010 33.62 85,155 

3 Medium 12 1220 20.41 48,554 

4 High 8 817 13.66 31,473 

5 Very high 3 320 5.35 10,975 

 Total 
 

59 5977 100 238,347 

Structural 
Vulnerabil

ity 

1 Very low 19 1919 32.20 75,590 

2 Low 19 1900 31.71 79,370 

3 Medium 13 1336 22.35 52,144 

4 High 6 600 10.03 24,070 

5 Very high 2 222 3.71 7173 

 Total  59 5977 100 238,347 

Geotechni
cal 

Vulnerabil
ity 

1 Very low 4 400 6.69 2,333 

2 Low 15 1552 25.96 75,544 

3 Medium 24 2425 40.57 109,500 

4 High 9 900 15.05 39,000 

5 Very high 7 700 11.71 11,970 
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 Total  59 5977 100 238,347 

Final 
Vulnerabil

ity 

1 Very low 19 1919 32.20 75,699 

2 Low 17 1692 28.82 76,587 

3 Medium 14 1446 23.73 54,244 

4 High 7 691 11.86 25,070 

5 Very high 2 229 3.39 6573 

 Total  59 5977 100 238,347 

 

4.2.5. Discussion 

Brooks (2003) stated that labelling communities are not appropriate because some are 

naturally more vulnerable than other communities. Hahn, Riederer & Foster (2009) 

further added that vulnerability estimation should be a part of a scheme to empower and 

engage communities. Alizadeh, Hashim, et al. (2018) applied MCDM tools to predict 

earthquake vulnerability. They described the performance of the method as well as the 

quality of the resulting map. They mentioned that communities should make key 

decisions during disasters to avoid losses. Major building structures in Banda Aceh are 

old and constructed by using traditional methods, whereas newly developed 

infrastructures have not been following the construction standards; hence, these buildings 

are vulnerable to earthquakes. This vulnerability was evident from the 2004 earthquake 

that hit Banda Aceh City with a magnitude of Mw 9.2. By realizing the importance of 

building characteristics and data limitations, the developed structural vulnerability map 

could play an important role in earthquake risk assessment. The demographic context is 

vital during and after such events. Therefore, social characteristics have a direct 

interrelation with death, damage toll, and relief facilities. 
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During the last decade, experts have not paid enough attention to the issue associated with 

social characteristics, and not much work has been performed on this viewpoint in the 

aftermath of the 2004 earthquake. However, geotechnical features are influential in 

increasing the scope of vulnerability during an event. Geotechnical specifications, such 

as strong ground motion specifically controlled by the complex combination duration, 

frequency, distance from hypocenter, magnitude, slope, lithology, distance from the fault, 

and curvature, can be used to understand the history of Banda Aceh. Thus, consideration 

of PGA while designing structures, which is the major reason for building damages, is 

vital (Panahi, Rezaie & Meshkani 2014). Sometimes, an unstable steep slope as the 

foundation of a structure can cause a landslide, earthquakes, and liquefaction in alluvial 

and sandy lithotypes (Sarvar, Amini & Laleh-Poor 2011). Therefore, these vulnerable 

layers are important to be noticed, which can lead to destruction and an increase in 

damages. 

 

 The key weakness of analyzing vulnerabilities is the assessment of people’s weaknesses 

without focusing on their capabilities. For example, we can consider a disabled female 

more highly vulnerable than a disabled male. This assumption and ignorance will affect 

vulnerability results. Figure 4.5 shows the results of the population and areas under 

vulnerable zones. However, the figure shows that the population increases with the 

decrease in vulnerability, whereas the area increases while a decrease in vulnerability 

occurs. In Figure 4.6, the total injury and fatalities in Indonesia and Banda Aceh were 

plotted. Compared with the vulnerability results obtained in this study, more fatalities and 

injuries were recorded during the intensity 9 and magnitude Mw 7.0 earthquake in Aceh 

in Sumatra and Java. Three zones of fatalities were identified on the basis of earthquake 

magnitudes and depths in Figure 4.6d. Fatalities are high if the focus of earthquakes is 
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found at a depth of 0 to 50 km.  

 

Figure 4.5: Graphical presentation of earthquake vulnerability with area and 

population. 

Therefore, the focus should be on high and medium vulnerability zones with high 

fatalities, because the population is minimal in very high vulnerable zones, which are 

located in the city center. In addition, the central region has the capacity to mitigate and 

recover before and after an earthquake. Each property and life need to be considered in 

analyzing vulnerabilities. Understanding these vulnerabilities will help mitigate 

earthquake disasters in the near future. Vulnerability should be compounded, or consider 

more than one indicator of vulnerability, such as level of education, a person with a 

disability, building characteristics, and geological factors.  

 

Implications on integration programs: Integration of earthquake risk reduction programs 

with various development programs are needed to reduce the social, environmental, and 

economic impact of disasters (Iemura et al. 2006). The current study has revealed three 
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main contributing factors responsible for very high vulnerability, namely, “building  

 

Figure 4.6: Injury and fatalities in Indonesia due to earthquakes on the basis of; a) 

Magnitude, b) Location, c) Intensity, and d) Depth. 

 

characteristics,” “population growth,” and “household characteristics.” Therefore, 

focusing on mitigation, preparedness, and response and recovery programs is important. 

 

4.2.6. Validation 

Validation of the current developed EVA map reveals that by applying the building 

inventory and zonation hazard data with implementing spatial analysis, building hazard 

in Banda Aceh has been assessed by Irwansyah & Hartati (2014) during the 2004 

earthquake. According to their result, 95% of the total number of buildings, includes 

36,312 of units that fall under the low hazard zone, whereas less than 3% includes 1,051 
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units under the high hazard zones. Jena et al. (2019) described in their recent study on 

earthquake risk assessment in Banda Aceh that very high and high-risk areas account for 

7.23% and 15.31% to the total city area, respectively, and the central part is more 

vulnerable than coastal areas.  

 

Therefore, the results are compared with the previous studies that show that 

approximately 3.4% of area including educational facilities, residential houses, religious 

facilities, and commercial buildings fall under the very high vulnerability zone. 

Moreover, 11.9% of area under the high vulnerability zone surrounds the very high 

vulnerability zones. Irwansyah & Hartati (2014) showed that residential and commercial 

buildings occupy the largest area in the city center and obtained as a high-risk zone of 

approximately 9.885 km2 of the total area, which is located in the city center. Therefore, 

our method is more effective because the study implemented a complete set of data by 

using a robust technique to assess vulnerability. 

 

4.3. Objective 2 

4.3.1. Probability estimation using MLP 

MLP calculates the information based on the training data. MLP executes the analysis of 

a non-parametric regression between the input and dependent variables finally in the 

system that were recognized by an output neuron. MLP was applied to map the earthquake 

probability in Banda Aceh. The probability results indicate that the training accuracy was 

reasonably good with a total prediction of 616 earthquake points out of 624. The approach 

was unable to predict the other eight earthquakes because of the noise in the probability 

indicators. 
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Figure 4.7: Training data used for earthquake probability mapping. 

 

The total prediction was out of 1546 training points characterized by both earthquake and 

non-earthquake points in Aceh province, as presented in Figure 4.7. The total area 

predicted from the network under risk is approximately 608400 m2 in Aceh province. 

Then, the model tested for the study area of Banda Aceh as the capital of Aceh province. 

The true positive rate (TPR) and false positive rate (FPR) that was obtained the Banda 

Aceh were 0.84 and 0.13, respectively. The rate of 0.13 shows that each time we call for 

a positive, we obtain this specific probability of being wrong. Therefore, this value is 

called the false positive rate. Likewise, a true negative rate can be analyzed. The graphical 

representation of accuracy is presented in Figure 4.8. 
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Figure 4.8: Accuracy assessment curve for the earthquake probability map. 

 

The details of TPR, FPR, 1-FPR, TF, threshold, and crossover are listed in Table 4.7. The 

accuracy of the prediction was 0.84 with RMSE 0.3. Given that the city is very small and 

is located near the GSF with no evidence of historical earthquakes, the seismic gap in 

Aceh province may experience future earthquakes. However, the high probability areas 

can be found in the SE corner of the city, and low probability can be found towards the 

NW corner of the city as per the resultant probability map. The map explains the potential 

zone for earthquakes within the city, as presented in Figure 4.9. The SE region of the city 

found to have a very high probability, whereas the NW part of the city falls under very 

low probability. The reason behind the high probability in this region is the high fault 

density, epicenter density, magnitude density, and low distance from the active fault along 

with high height and amplification value as the city is mostly covered with quaternary 

sedimentary rocks. The low probability of the NW part of the city is because of low 
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epicenter, magnitude, and active fault density, along with low height and slope.  

 

 

Figure 4.9: Earthquake probability map. 

 

Table 4.7: Prediction results using ANN. 

 

 

False 
positive rate 
(FPR) 

True 
positive rate 
(TPR) 

1-FPR TF Thresholds Crossover 

0.132982 0.848876      0.867018         -0.048142                 1 
 

    1 

Total Pixels belong to Earthquake Predicted: 616 earthquakes out of 
1546 training points of Aceh province 
The Total Area Under Risk: 608400 m2 in the Aceh province 
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4.3.2. Hazard estimation 

A hazard map was developed using the probability map and presented in Figure 4.10. The 

main objective of the hazard map is to provide information on the extent of possible 

damage and the activities of disaster prevention. The most important point is to provide 

residents with comprehensible information through hazard maps. The level of danger of 

an earthquake can be understood by its intensity. The intensity pattern in the study area 

can be defined on the basis of the historical records of destructive earthquakes and 

statistical calculations. Near Banda Aceh along the GSF, high-intensity earthquakes may 

occur occasionally.  

 

This study calculated how high the level of destruction can be in case of such high-

intensity earthquakes. Therefore, it is assumed that when the earthquake intensity 

becomes more than 9, the hazard will be very high, whereas the intensity 8–9 will be 

considered high hazard areas, 8–7 is considered medium, 7–5 is low, and below 5 is very 

low. The hazard map was classified into five different classes based on the quantile 

classification technique. The results indicate that very high hazard can be found in the SE 

part of the city and very low hazard in the NW part because of high magnitude 

earthquakes near the SE part of the city. This type of hazard map is the basic map for the 

administrative agencies that can be used for disaster prevention services. These maps are 

used to develop an evacuation and warning system, as well as available facts for land use 

regulations. These maps can also be used in inhibitory works. 
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Figure 4.10: Earthquake hazard map. 

 

For the results described in this section, it can be recognized that the better capabilities of 

a neural network for earthquake prediction and probability modeling characterized by 

nonlinear and complex relationships among the variables is a developed model to handle 

variable interactions. Neural networks are not an easily understandable model, but they 

become complicated with a large number of variables. The performance results explained 

in this study indicate that the potential of a neural network can be useful for earthquake 

probability mapping in other study areas and is worthy of further investigation. 
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4.3.3. Vulnerability index estimation 

Integration and aggregation of the various significant indicators described in the data table 

are included in the tree of the AHP approach. Table 4.8 shows the process and the criteria 

weights in the hierarchical tree. The calculated rank of criteria, as well as the eigenvalues 

and consistency ratios, are presented in Table 4.9. The experts can understand the resulted 

weights and ranks for various criteria by the preliminary investigations, and they can 

monitor the AHP approach adaptation and review the obtained vulnerability map and the 

associated uncertainties, thereby approving the resulting map. The vulnerability 

assessment considered all the layers, analyzed the significance of all the layers using the 

AHP ranking approach, and applied them to GIS for the vulnerability mapping.  

 

Table 4.8: Decision matrix for vulnerability assessment 

 

Category 
name 1 2 3 4 5 6 7 8 9 10 11 

Building 
density 

1 3 0.33 3 4 2 3 5 3 0.25 2 

District office 0.33 1 0.25 2 3 1 0.5 1 1 0.25 1 
Educated 
people density 

3 4 1 5 5 3 3 4 3 0.5 4 

Environmental 
infrastructure 

0.33 0.5 0.2 1 1 0.33 0.33 0.5 0.25 0.2 0.5 

Stadium 0.25 0.33 0.2 1 1 0.33 0.33 0.5 0.33 0.2 0.33 
Distribution of 
universities 0.5 1 0.33 3 3 1 3 3 2 0.33 2 

Distribution of 
Chiefs 0.33 2 0.33 3 3 0.33 1 3 2 0.25 2 

Distance from 
service centers 0.2 1 0.25 2 2 0.33 0.33 1 1 0.2 0.33 

Major offices 0.33 1 0.33 4 3 0.5 0.5 1 1 0.25 2 
Population 
density 

4 4 2 5 5 3 4 5 4 1 5 

Transport 
nodes 

0.5 1 0.25 2 3 0.5 0.5 3 0.5 0.2 1 
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Table 4.9: Evaluation of weights and rank of layers. 

 

 

The resultant vulnerability map (Figure 4.11) was acquired by the processing of several 

vulnerable indicators. In total, 55 comparisons were made with the resultant CR of 0.04. 

The principal eigenvalue was 11.728 based on the analysis, and the eigenvector solution 

was five iterations. Mathematically, an eigenvalue that should be non-zero, which 

corresponds to an eigenvector, points in a direction that is stretched by the transformation. 

The eigenvalue is the factor by which it is stretched. A negative eigenvalue represents a 

reverse direction. However, the CR shows that the importance of all the layers is 

evaluated carefully and accurately. The delta value of 3.3E-8 was obtained from AHP in 

this analysis. Population density, educated people, and building density were ranked as 1, 

2, and 3, with weights of 24.9%, 19.2%, and 12.2%, respectively. The lowest rank was 

Category                                   Name                                                                            Priority Rank 

1 Building density 12.8% 3 
2 District office 5.3% 8 
3 Educated people density 19.2% 2 
4 Environmental infrastructure 2.8% 10 
5 Stadium 2.6% 11 
6 Distribution of universities 9.3% 4 
7 Distribution of Chiefs 7.6% 5 
8 Distance from service centers 3.9% 9 
9 Major offices 6.0% 6 
10 Population density 24.9% 1 
11 Transport nodes 5.4% 7 
 Number of comparisons = 55 

Consistency Ratio CR = 0.04 
Principal Eigenvalue = 11.728 
Eigenvector solution: 5 iterations 
delta = 3.3E-8 
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obtained by environmental infrastructure and stadium, whereas the remainder were 

ranked medium. The resultant map was classified into five different categories according 

to experience: very low, low, medium, high, and very high. The results indicate that the 

mapped areas can be calculated using the option of geometry. Very high vulnerability can 

be found in the south-central part of the study area because of the high building and 

population density, along with the government offices and educated people density. Very 

low vulnerability was observed in the NW part because of the reverse conditions in the 

region. Therefore, our map is good and useful for national and local government 

organizations in their vulnerability mapping. 

 

Figure 4.11: Earthquake vulnerability map. 
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4.3.4. Risk estimation 

An earthquake risk map was prepared for Banda Aceh by multiplying the hazard and 

vulnerability map. The resultant map was classified into five classes by using the quantile 

classification technique (Birkmann & Welle 2015). Therefore, the areas of all the classes 

were calculated for the city and for different zones within the city. The geometry showed 

that 7.23% of the entire area was under extreme risk. High, moderate, low, and very low-

risk zones represent 15.31%, 20.99%, 28.70%, and 27.72% of the total area, respectively 

(Table 4.10). On the basis of the geographic position, the east-southern part of the city, 

comprising zones 2, 3, 5, 6, and 7, represent the regions with moderate risk. Given the 

few people and low infrastructure in the zones, 1, 4, 9, and some parts of 3 and 8, the risk 

chances are low.  

 

Figure 4.12: Earthquake risk map. 
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Figure 4.13: Estimated number of population and area within the risk zones. 

However, in the south to central regions of the city, zones 3, 5, 7, 8, and some parts of 6 

are considered high-risk areas because of the high population density, building density, 

educated people, government offices, and proximity to the seismic gap of GSF. By simply 

understanding the vulnerable and hazard zone size and area, one can obtain the impact 

level of the probable future earthquakes. Therefore, population data of Banda Aceh were 

used for estimation of the population risk. Thus, risk mapping was conducted in all nine 

zones of Banda Aceh, as illustrated in Figure 4.12 and graphically presented in Figure 

4.13. 

 

The most clustered risk zones are identified. Overall, three zones are considered highly 

risky areas; the main reason is their geographical location and high population. The 

detailed calculations of earthquake population risk and area risk for nine different zones 

and for the entire area are presented in Tables 4.11 and 4.12, respectively.

The issues can be understood by the following five main situations. 
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1. Areas with very high population, structural, and geotechnical vulnerability comprise 

7.23% risk area of the total area. The most at-risk zones are located, as per the results, 

in zones 3, 5, and 7; either demolition or reconstruction of poor quality buildings are 

required. 

2. The highest number of buildings can be found in the central part of Banda Aceh. 

However, buildings are situated in zones 2, 3, 5, 7 and 8, and their risk can be reduced 

by retrofitting and modification based on seismic ground shaking. 

3. Moderate risk from geotechnical, structural, and social indicators is found in nearly 

20.99% of the city area. Populations in zones 1, 2, 6 and some parts of zones 3, 5, 7 

are under moderate risk. Retrofitting or, occasionally, destruction or renovation of the 

buildings can reduce risk. 

4. Populations with low risk can be found in 28.70% of the city. The buildings in zones 

1, 2, 6, 8, and 9 are safe and not particularly vulnerable. 

5. An extremely low density of residential buildings with low population, which showed 

very low risk, comprise approximately 27.72% of the total area. By considering the 

circumstances of structural and geotechnical data, the buildings in this area are under 

less risk than those in other classes. 

 

Table 4.10: Estimated earthquake population risk and area. 

ID Risk Area (Sq. km.) Hectare Percentage 

 
Population 
in risk 

1 Very low 17.894 1789.46 27.72 
65167 

2 Low 17.524 1752.40 28.70 76268 
3 Medium 12.55 1255.80 20.99 47981 
4 High 9.885 988.56 15.31 32363 
5 Very high 4.669 466.92 7.23 14018 
Total  62.53 6253.14 100 235,797 
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Table 4.11: Estimation of earthquake risk area of Banda Aceh. 

ID Risk Area(Km2) Hectre Percentage       Zone  Name 
2 Low 4.764 476.4 32.89  
1 Very low 8.962 896.2 61.88 Syiah Kuala 
3 Medium 0.735 73.5 5.075                 1  
4 High 0.022 2.2 0.15  
   1448.3 100  
3 Medium 2.73 281.9 55.6  
2 Low 2.2 220 43.4                   2 Ulee Kereng 
4 High 0.05 5 0.99  
   506.9 100  
1 Low 1.981 198.1 21.2  
2 Very low 3.365 336.5 36.024  
3 Medium 1.923 192.3 20.586               3 Kuta Alam 
4 High 1.092 109.2 11.69  
5 Very high 0.98 98 10.49  

   934.1 100  
1 Very low 1.347 134.7 37.89  
2 Low 1.436 143.6 40.39  
3 Medium 0.582 58.2 16.37                 4 Kutaraja 
4 High 0.179 17.9 5.035  
5 Very high 0.011 1.1 0.309  
   355.5 100  
4 High 2.5 250 22.32  

5 Very high 2.53 253 22.7  

3 Medium 1.53 153 8.27                   5 Baiturrahman 
2 Low 1.1 110 45.8  
   766 100  
2 Low 1.771 177.1 27.75  
3 Medium 1.939 193.9 30.38  
4 High 2.487 248.3 38.906                6 Lueng Bats 
5 Very 

High 
0.189 18.9 2.96  

   638.2 100  
2 Low 0.592 59.2 12.82  
4 High 2.145 214.5 46.63  
3 Medium 1.599 159.9 34.76                  7 Banda Raya 
5 Very high 0.264 26.4 5.74  

   460 100  
3 Medium 1.24 124.83 26.71  
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Table 4.12: Estimation of population under risk in nine zones of Banda Aceh. 

ID Risk 
 Area 

(Sq.km) 
Population 

in risk Percentage Zone Name 
2 Low  3.38 12309 39   

1 
Very 
low 

 
4.04 14713 45.5   

3 Medium  1.27 4625 14.44 9 Meuraxa 
4 High  0.15 546 1.754   

5 
Very 
high 

 
0.035 127 0.45   

    32322 100   
3 Medium  1.24 5837 37.41   
4 High  1.26 4588 27.024   

5 
Very 
high 

 
0.66 1082 

 
3.627 8 Jaya Baru 

2 Low  1.3 4734 28.023   

1 
Very 
low 

 
0.18 655 3.907   

    16898 100   

5 
Very 
high 

 
0.592 2156 11.843   

4 High  2.645 9633 52.91   
3 Medium  1.499 5459 29.97 7 Banda Raya 
2 Low  0.264 961 5.27   
    18210 100   
2 Low  1.771 7449 32.14   
3 Medium  1.939 8061 34.79   
4 High  2.487 6966 30.06 6 Lueng Bats 

4 High 1.26 126.27 27.024  
5 Very high 0.66 66.95 14.32                        8 Jaya Baru 
2 Low 1.30 130.94 28.023  
1 Very low 0.18 18.26 3.907  
   467.25 100  
1 Low 3.38 338.42 38.06  
2 Very low 4.04 404.14 45.45  
3 Medium 1.27 127.57 14.34                        9 Meuraxa 
4 High 0.15 15.46 1.74  
5 Very high 0.035 3.525 0.40  
       889.115                                                         100                                                           
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5 
Very 
high 

 
0.189 694 2.99   

    23170 100   
        
4 High  2.53 6292 22.75   

5 
Very 
high 

 
2.50 6351 22.96   

3 Medium  1.53 2295 8.30 5 Baiturrahman 
2 Low  1.1 12710 45.97   
    27648 100   

1 
Very 
low 

 
1.347 4906 37.89   

2 Low  1.436 5230 40.39   
3 Medium  0.582 2119 16.37 4 Kutaraja 
4 High  0.179 652 5.035   

5 
Very 
high 

 
0.011 40 0.309   

    12947 100   
        
1 Low  1.981 7214 21.2   

2 
Very 
low 

 
3.365 12255 36.024   

3 Medium  1.923 7003 20.586 3 Kuta Alam 
4 High  1.092 3977 11.69   

5 
Very 
high 

 
0.98 3569 10.49   

    34019 100   
3 Medium  2.72 9906 53.66   
2 Low  2.2 8312 45.02 2 Ulee Kereng 
4 High  0.05 242 1.31   
    18460 100   
        
2 Low  4.764 17350 32.89   

1 
Very 
low 

 
8.962 32639 61.88 1 Syiah Kuala 

3 Medium  0.735 2676 5.075   
4 High  0.022 80 0.15   
    52747 100   
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4.3.5. Validation 

Validation of the resulted probability map was implemented in sequence to examine the 

accuracy in Figure 4.14. The trained model of Aceh province was obtained and converted 

to a probability map of Aceh using GIS. The trained earthquake probability map was 

presented with five different classes to recognize various zones of probability, as 

previously shown in Figure 4.7. A well-constructed map accurately shows the domain of 

interest. If we consider the location of Banda Aceh in the trained map of probability, then 

we can understand that the result of Banda Aceh matched with the trained map. Not 

achieving such accuracy may occur when using standardized/classified data.  

 

The total number of training points of earthquakes and the surrounding earthquakes of 

Aceh province were also used to validate the result. Mostly, the earthquakes were focused 

on the east, west, and southern regions of Banda Aceh. Therefore, it can be observed that 

the resultant probability map has a high probability of earthquake occurrence towards the 

east, west, and southern regions. The histogram of earthquake probability was also 

presented to understand the flow of probability from one part of a city to the other parts. 

Hence, the domain mentioned here in this study can be notably seen in the output that 

represents compatibility and flexibility, proven with a human perspective. To validate the 

model results of integrated ANN–AHP following the literature review, historical 

earthquake probability mapping results, historical events, and earthquake impacts must 

be considered. However, on the basis of the model accuracy of ANN and the CR of AHP, 

our proposed result is significantly good. 
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Figure 4.14: Validation of earthquake mapping result: A. Earthquake events in 

Aceh province (set of earthquakes in different zones of a, b, c); B. Zoomed image of 

Aceh with earthquakes; C. Position of Banda Aceh and events in Aceh province; D. 

Earthquake probability map and presented as low to high with the set of 

earthquakes to validate the Probability result; E. Histogram of probability map that 

shows the high and low probabilities. 
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4.4. Objective 3 

4.4.1. Crustal fault and subduction zone characteristics 

Two main sources of active faults are found in Indonesia, which generate high magnitude 

earthquakes of more than 7 Mw (Table 4.13). A conservative probabilistic approach was 

used to reveal the slip rate, fault length, dip angle, and expected magnitude. Magnitude 

(Mmax) was used to plot versus slip rate (Blaser et al. 2010). The results showed that the 

slip rate varies from 5 to 55 mm/year, and all the slip rate of faults can generate events 

with more than 8 Mw (Figure 4.15a). A correlation was observed between the dip angles 

and length of faults. The dip angle is high when the fault length is small and vice versa, 

as presented in Figure 4.15b. 

 

Figure 4.15: (a) Average slip rate and maximum magnitude earthquake observed 

in crustal and subduction area faults. (b) Average fault dip and length below the 

ground surface. 
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Table 4.13: Types of fault and magnitude generating capacity with slip rates in 

Indonesia. 

 

 

4.4.2. Predictive performance, probability, and hazard mapping 

The ML algorithm of the implemented ANN model was used for earthquake probability 

mapping in Banda Aceh. The probability maps were derived using the trained ANN 

model with experienced earthquake points, which included the locations and medium to 

high magnitude events with different depths. These maps represent the likelihood of 

No location source Fault 
type 

Dip(K
m) 

Top
(K
m) 

Bot
tom 

Slip 
rate 

Mw Sources 

1 North 
Sulawes
i 

Subducti
on 

Thrus
t 

22 3  50  20, 
54  

8.2, 
8.4, 8.6 

 
 
 
 
 
 
 
Irsyam et 
al. 
(2008, 
2010); 
Burbidge 
et al. 
(2008); 
USGS; 
NGDC 

2 Palu Crustal Strike
-slip 

      80 3 30 30,3
5,44 

7.9, 
8.1, 8.3 

3 Seram Subducti
on 

Thrus
t 

      20 3  50  40  7.9, 
8.1, 8.3 

4 South 
Seram 

Crustal Norm
al 

      30 3  20  11  7.8, 
8.0, 8.2 

5 Semang
ko 

Crustal Strike
-slip 

85 3 30 5 7.6, 
7.8, 8.0 

6 Sunda 
Arc 

Subducti
on 

Thrus
t 

12-20 3  50  30-
50 

9.5 
(8.3-
9.5) 

7 Sunda 
strait 

Crustal Strike
-slip 

85 3 20 5 7.0, 
7.2, 7.4 

8 Timor Crustal Thrus
t 

      30 3  50  8,15
,22 

7.6, 
7.8, 8.0 

9 West 
Mollucc
a 

Crustal Thrus
t 

      30 3  30  13 8.3, 
8.5, 8.7 

10 West 
Sorong 

Crustal Strike
-slip 

      85 3 30 8.5 7.9, 
8.1, 8.3 

11 Wetar Crustal Thrus
t 

      30 3  30  15 8.0, 
8.2, 8.4 

12 Yapen Crustal Strike
-slip 

      85 3 18 46 7.7, 
7.9, 8.1 



165 
 

occurrence of continuous events and the probability of exceeding a specific magnitude 

based on organized conditioning factors. The results showed that the training accuracy is 

acceptable, where 1210 points are successfully predicted out of 1248 events on average, 

and the total training points are 1810. The model did not predict the extra 38 points 

because of noise and data heterogeneity in probability input layers. The model 

approximately predicted 567 100 m2 of area as probable for events in Aceh. Masking of 

the likely classes of Banda Aceh was obtained and reclassified to five different categories 

based on quantile classification (Pradhan, Moneir & Jena 2018). Banda Aceh was tested 

based on the ANN CV fold two. The true positive rate was 0.85, and RMSE was 0.18 for 

Banda Aceh. The accuracy curves for all the four folds were obtained as 81%, 85.4%, 

81.3%, and 83%, respectively, as shown in Table 3.2. Jena et al. (2019) achieved an 84% 

accuracy in earthquake probabilistic assessment using ANN. The ROC curve is plotted 

and presented in Figure 4.19a. 

 

For the probable spatial distribution of predicted classes, the probability of earthquake 

occurrence is high in the northwest and southeast areas, as shown in Figure 4.16. Quantile 

classification was applied in this analysis to generate five different classes of the nearest 

values divided through breakpoints (Tehrany, Pradhan & Jebur 2013). Although this 

method is not the standard for classifying the probability map, still it can be observed that 

the values are close to each other for earthquake probability mapping. Banda Aceh is a 

small city with a seismic gap in Aceh Province that may be struck by future events. The 

high probable areas observed in the city are located in the SE to the NE corner. Medium 

probability is observed by surrounding the probable high zone toward the west direction. 

The resultant probability map suggests that the probability decreases toward the coastal 

areas. The leading cause of high probability toward the eastern part of the city is 
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associated with high fault density, epicenter, and magnitude density, and the proximity to 

the active fault is low. Highest amplification can be observed toward the coastal part. The 

entire city is characterized by quaternary sedimentary rocks, making the city probable 

toward the east. Opposite conditions for the low likely areas can be recognized. For 

hazard assessment, hazard increases, and intensity crosses 9 at the intensity scale. 

Intensities of 8–9, 8–7, 7–5, and less than 5 can be considered as high, moderate, low, 

and very low. Intensity depends on magnitude and is associated with vulnerable factors. 

The observed potential zones in Aceh Province could provide necessary information 

about the occurrence of high magnitude events (Figure 4.16). 

 

 

Figure 4.16: Probability index estimation in Aceh province using a fourfold ANN-

CV model. 
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4.4.3. Vulnerability mapping 

A vulnerability map was generated based on exposure and vulnerability factors (Figure 

4.17). Thirty-six comparisons were conducted, where the CR achieved 0.06 in scoring the 

factors. The principal eigenvalue originated during the priority analysis was 9.737, and 

the eigenvector solution achieved six iterations. An eigenvalue must be nonzero that 

corresponds to an eigenvector. The principal eigenvalues are the points stretched by the 

transformation. Consequently, a negative eigenvalue directs oppositely. Therefore, the 

CR manifested that the priority of criteria was accurately and deliberately assessed. The 

decision-making approach achieved a delta value of 8.7E−9. Population density, building 

density, and household density achieved priority scores of 1, 2, and 3, with their estimated 

weights of 39.90%, 24.50%, and 10.70%, respectively (Table 4.14). The remaining 

criteria achieved medium to a low-rank CR, which was accurate. The priorities of all 

criteria were plotted based on maximum and minimum values. The obtained results are 

shown in Figure 4.19(b).  

 

In this research, the whole process evaluated nine factors for the vulnerability assessment 

that provides acceptable CR. According to the Saaty’s article, the magic number of 7(+ 

or – 2) criteria is acceptable to evaluate CR. Therefore, nine factors reached the highest 

limit of (7+2) criteria selection. No criteria was removed during the AHP analysis, the 

last two criteria in accordance with the AHP ranking were removed, while the TOPSIS 

approach was applied, where seven criteria were selected at the end of the entire process. 

Although all the criteria are important to achieve a good vulnerability map, last two 

criteria may provide a biased result.  
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Table 4.14: Priority estimation and ranking of vulnerability factors. 

 

Seven alternatives that are closely similar to buildings and social characteristics were 

chosen and decision matrix was calculated (Table 4.15). The best and worst distances 

from the best and worst vectors were estimated for all alternatives, as presented in Table 

4.16. The closeness coefficient score was calculated using the AHP-TOPSIS algorithm, 

which contributed to a similar rank of criteria, as shown in Table 4.17.  

 

The map shows that approximately 24% (14.16 km2) of the city is exposed with high to 

very high vulnerability. The city center and southwestern parts of the study region, 

including Kuta Alam, Baiturrahman, Banda Raya, Jaya Baru, parts of Siyah Kuala, and 

Uli Kereng, dominantly belong in this category.  

 

  ID Criteria Priority Rank (+) (-) 
  1 Building density 24.50% 2 8.80% 8.80% 
  2 Building length 2.00% 9 1.10% 1.10% 

  3 
Shape of 
buildings 5.50% 5 2.60% 2.60% 

  4 
Surface area 

density 4.90% 6 1.50% 1.50% 

  5 
Proximity to 

road 4.20% 7 1.90% 1.90% 

  6 
Perimeter 
density 2.10% 8 0.90% 0.90% 

  7 
Proximity to 

buildings 6.10% 4 2.00% 2.00% 

  8 
Household 

density 10.70% 3 5.40% 5.40% 

  9 
population 

density 39.90% 1 19.00% 19.00% 
Number of comparisons= 36 
Consistency Ratio CR = 6.4% 
Principal Eigenvalue = 9.737 
Eigenvector solution: 6 iterations, delta 
= 8.7E-9 
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Figure 4.17: Earthquake vulnerability map derived using the hybrid AHP-TOPSIS 

model. 

 

The main factors that are close to assessing earthquake vulnerability, such as buildings 

and social characteristics, are accountable for this condition. The results showed that 

approximately 28% (16.52 km2) of the city was classified as moderately vulnerable. 

Moderate vulnerable areas covered the highly sensitive areas surrounding the city center. 

Low to very low vulnerable areas accounted for 48% (28.32 km2). Low to very low areas 

covered the northwestern and southwestern regions, including the coastal part of the city 

and the hilly regions close to Aceh Besar District. This finding could be due to the small 

population and building density in these areas that indicate a very low vulnerability. The 

resulting map shows the spatial variation and degree of vulnerability in the city. 

Vulnerability mapping illustrates that around 14% (33,368) of the population lives in a 

very high vulnerable zone, 17% (40,518) of the population can be found in a high 
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vulnerable zone, followed by 45% (107,256) as a moderately vulnerable, and 24% 

(57,203) falls under low to very low zone. The vulnerability level is notably high in 

central areas because of the influences of buildings and population density. Geometry 

could help in estimating the total number of populations and areas under vulnerable zones 

for all the nine sub-districts in the city. Therefore, the obtained vulnerability map is useful 

for Indonesia’s government organizations, private, and government agencies in future 

earthquake risk mapping. 

 

Table 4.15: Normalized Decision Matrix for alternatives ranking using TOPSIS. 

 

 

 

 

Criteria/alter
natives 

Social 
characte
ristics 
 

Total 
building
s  
  

Househ
old 
density 
  

Distanc
e from 
main 
building
s 
 
 

C and L 
type 
building
s 
  

Large 
building
s 
          

Distanc
e from 
road 
junction
s          

Population 
density 

[[0.408,      0.26,         0.099,      0.053,        0.045,        0.01,          0.01], 
 
[0.135,       0.087,       0.075,       0.035,        0.027,       0.005,       0.003],  
 
[0.103,       0.029,       0.025,       0.026,        0.02,         0.003,       0.002],  
 
[0.06,         0.02,         0.008,       0.009,        0.02,         0.002,       0.001],  
 
 
[0.04,         0.013,       0.006,       0.003,        0.005,       0.002,     0.0005],  
 
 
[0.02,         0.009,       0.004,       0.002,        0.002,       0.001,     0.0004],  
 
 
[0.005,       0.005,       0.003,       0.002,        0.001,      0.0002,    0.0002]] 
 

Building 
density 
Household 
density 
Proximity to 
buildings 

Shape of 
buildings 
 
Surface area 
density 

Proximity to 
road 
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Table 4.16: Vectors analysis and matrix creation using TOPSIS. 

Analysis Matrix 
Best Answer Vector [[0.408, 0.26, 0.099, 0.053, 0.045, 0.01, 0.01], 

Worst answer Vector [0.005, 0.005, 0.003, 0.002, 0.001, 0.0002, 
0.0002]] 

Choices Distance From Best Vector [0, 0.326, 0.393, 0.434, 0.457, 0.476, 0.492] 

Choices Distance From Worst 
Vector 

[0.493, 0.176, 0.108, 0.062, 0.038, 0.017, 0] 
 

Closeness Vector of Each Choices [1, 0.35, 0.22, 0.13, 0.078, 0.035, 0 ] 

 

 

Table 4.17: Closeness coefficient and rank estimation of alternatives. 

Alternatives Closeness coefficient Rank 
Social characteristics 1 1 
Total buildings  0.35 2 
Household density 0.22 3 
Distance from main buildings                         0.13 4 
C and L type buildings 0.077 5 
Large buildings 0.034 6 
Distance from road junctions 0 7 

 

4.4.4. Risk mapping 

A risk map was developed for the city by considering hazard situations and vulnerability 

results. A quantile classification technique was implemented to classify the map into five 

different classes, starting from very high to very low (Birkmann & Welle 2015). Risk 

areas and the total population in each zone were estimated accordingly. Estimated 

geometry manifested that 4.81 km2 of a very high-risk zone can be observed in the entire 

city. Approximately 10.02, 14.7, 14.8, and 20 km2 areas inside the city were considered 

high, moderate, low, and very low zones, respectively (Table 4.18). The southwestern 

parts surrounding the city center constituting the subdistricts, such as Jaya Baru, Banda 

Raya, Syiah Kuala, Baiturrahman, Kuta Alam, and Jaya Baru, projected a moderate to 
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high risk, whereas the central, southwestern, and northeastern parts, including the 

subdistricts of Syiah Kuala, Baiturrahman, Kuta Alam, and Jaya Baru comprised a very 

high-risk zone. Low population stability and low building density in areas, such as Kuta 

Raja, Meuraxa, Lueng Bats, parts of Syiah Kuala, and Kuta Alam, manifested low to 

shallow risk.  

 

The high risk could be due to high building density and building characteristics along 

with population density, proximity to GSF, and the seismic gap that comes within the 

city. The overall risk map is spatially depicted in Figure 4.18. Risk uncontrolled loss may 

occur in the future. Therefore, the risk map illustrated that around 3.7% (10,252) of people 

were observed as very high risk in the city, whereas the high-risk zone covered 

approximately 18% (44,443).  

 

Figure 4.18: Risk map obtained from fourfold ANN-CV and hybrid AHP-TOPSIS 

model. 
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Figure 4.19: (a) Accuracy curve for probability index estimation, and (b) 

Maximum, minimum and resulted priority of vulnerability criteria. 

 

Moderate to very low-risk impacts were explicitly observed in 47% (106,824), 25% 

(58,949), and 7.3% (17,213), respectively (Table 4.18). These areas were located close to 

the coastlines with a small population and planned the tsunami-based land use planning 
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and several adequate mitigation measures. Consistency was observed in the spatial risk 

assessment by comparing the vulnerability index and degree of hazard results particularly 

in the areas near the coast with low elevation, low slope, loose sedimentary rocks, low 

population, and building characteristics. The risk levels changed after the 2004 tsunami 

because of adequate mitigation planning. Mohsen et al. 2019 achieved 90.01% ANN 

accuracy in earthquake vulnerability assessment and estimated the total population in a 

vulnerable zone. Mohsen et al. (2018) achieved 95.66% accuracy in social vulnerability 

assessment using ANN for Tabriz City in Iran. 

 

The risk in Banda Aceh can be perceived by focusing on some conditions. 

(1) Very high-risk areas of approximately 4.81% should be the focus of the government 

with the reconstruction or demolition of low-quality buildings. 

(2) A dense building density could be observed in the city center of Banda Aceh. The 

high-risk area, which is 10.02% of the total area, could be lessened by considering ground 

shaking-based retrofitting and modification. 

(3) Moderate risk generated caused by social, economic, structural, and geotechnical 

factors could be observed in 23.3% of the city. Therefore, retrofitting, reconstruction and 

renovation of buildings are some options to reduce the risk. 

(4) Low risk could be found in 23.73% of areas with (58,949) population. Buildings and 

residents are safe in these areas. 

 A low density (17,213 population) of residential buildings covers the coastal parts of the 

city. This study explored the areas with the nearest tectonic condition and coastal ground 

shaking. Therefore, these areas could be more vulnerable to a tsunami than earthquake 

risk.  
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Table 4.18: Estimation of area and population under earthquake risk

Area name Very high High Moderate Low Very low 

Risk zones Area 
(Km2)   

population Area 
(Km2)   

population  Area 
(Km2)   

population Area 
(Km2)   

population Area 
(Km2)   

population 

Syiah Kuala 0.03 
 
0.02 
 
1.1 
 
0.01 
 
2.6 
 
0.3 
 
0.43 
 
0.5 
 
0 

64 
 
43 
 
2,345 
 
22 
 
5,545 
 
640 
 
916 
 
1065 
 
0 

0.03 
 
0.07 
 
1.4 
 
0.22 
 
2.6 
 
1.9 
 
2.3 
 
1.5 
 
0 

183 
 
369 
 
6220 
 
976 
 
11,542 
 
8,278 
 
10,222 
 
6,653 
 
0 

1.1 
 
2.9 
 
2.7 
 
0.5 
 
1.6 
 
2.3 
 
1.8 
 
1.6 
 
0.2 

7994 
 
21,074 
 
19,621 
 
3,634 
 
11,627 
 
16, 713 
 
13,081 
 
11,627 
 
1453 

2.8 
 
0.8 
 
1.9 
 
2 
 
1.1 
 
1.3 
 
0.5 
 
1.2 
 
3.2 

11,152 
 
3,187 
 
7,568 
 
7,966 
 
4,381 
 
5,178 
 
1992 
 
4780 
 
12,745 

4.1 
 
1.7 
 
2.9 
 
2.3 
 
0.7 
 
1.4 
 
1.7 
 
1.6 
 
3.6 

3529 
 
1463 
 
2,496 
 
1980 
 
603 
 
1204 
 
1463 
 
1377 
 
3,099 

Ulee Kereng 

Kuta Alam 

Kutaraja 

Baiturrahman 

Lueng Bats 

Banda Raya 

Jaya Baru 

Meuraxa 

Total 4.81 10,252 10.02 44,443 14.7 106,824 14.8 58,949 20 17,213 
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4.4.5. Validation 

The results of risk mapping were validated using the previously published work (Jena et 

al. 2019). The results were validated based on the earthquake inventory data, results of 

decision-making approach, feedback gained from some local people, and accuracy 

explained by experts and researchers. ANN CV obtained 85.4% accuracy in the twofold 

probability assessment. The hybrid AHP-TOPSIS decision-making model obtained a CR 

of 0.06. Therefore, all the earthquake events experienced in Aceh were used to cross-

check with our earthquake risk map, which was satisfactory. Ten experts were invited to 

provide their feedback on our risk results (Table 4.20). Some 2004 earthquake and 

tsunami images on Google Earth were crosschecked to find some damage buildings. 

Therefore, the results are good and can be useful for the city residents by considering the 

output obtained from the above-described objectives. The experts profile and their 

specialization were presented in Table 4.19. 

 

Table 4.19 Table of experts’ profiles for the AHP-TOPSIS approach 

Categ
ory 

No. of 
Experts 

Profes
sion 

Specialisat
ion 

Recruitment 
process 

Evaluation 
process for 
pair-wise 
comparison 

Validatio
n process 

Exper
ts 

2 Seism
ologist 

Experts in 
the seismic 
study, 
vulnerabili
ty, hazard, 
risk 
assessmen
t, 
monitorin
g, 
mapping, 

 MCDM 
application in 
their study. 

 Mapping in 
Physical, 
structural, 
geotechnical 
vulnerability 

 Expert in local 
and regional 

 Objective of 
the research 
requirements 
 

 Application 
of method 
evaluation 
 

 Vulnerab
ility 
determin
ants 
 

 Represen
tation of 
spatial 
maps 
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GIS, 
Artificial 
intelligenc
e, Multi-
criteria 
decision 
making  

vulnerability 
assessment 

 Data analysis 
expertise 

 Requirement 
of spatial 
analysis 
 

 Vulnerability 
determinants 
 

 Satty’s 
Intensity 
scale 
 
 
 
 

 Expected 
uncertain
ties 
 

 Map 
validatio
n 

 Results  
 Commun

icability 
 

 How 
useful to 
land use 
planning 

 Benefit 
to local 
people 
 

Resea
rchers 

6 Geolo
gist, 
hydrol
ogist, 
GIS 
analys
t, 
soil 
physic
ist, 
geotec
hnical 
resear
cher   

Researche
r on 
natural 
hazards 
using GIS 
and remote 
sensing 

 Multi-criteria 
mapping using 
AHP, ANP, 
TOPSIS, 
VIKOR etc. 

 Qualitative 
assessment 
with sensitivity 

 Published good 
articles in high 
impact journals 

Gener
al 
peopl
e 

2 Banda 
Aceh 
reside
nts 

Two local 
people 
having a 
general 
knowledge 
of 
earthquake 

 Local 
geographical 
knowledge 

 Experienced 
audience 

 

 

  

Table 4.20: Feedback summary on earthquake vulnerability and risk map 

obtained from opinions of different categories of people 

Category  Total Number of 
Respondents 

                       Feedback 
Highly 
Satisfied 

Satisfied Not Satisfied 

Experts 2 2 0 0 
Researchers 6 4 1 1 
General 
people 

2 2 0 0 

Total 10 (100%) 8 (80%) 1 (10%) 1 (10%) 
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4.5. Results of case study (Palu city) 

4.5.1. Relationship between Mw, PGA and intensity variation 

Matrix plot is generally used to obtain the relationship between several variables. 

Therefore, in this study, earthquake magnitude, PGA values obtained for the location and 

the possible intensity for each scenario were calculated and correlated to understand the 

relationship among them. The three variables obtained from the calculation using the 

inventory data of earthquake events from USGS were applied using the Matlab tools. 

However, the results obtained from the plotting is presented in Figure 4.20. The 

interpolation method was also implemented to join the three variables smoothly. The total 

number of variables was 200. The variable values vary between -3.19 to 8.09. Many 

negative values could be observed in the intensity section while positive values could be 

found in the magnitude section. However, PGA values vary at a level of 0.571 while 

magnitude varies within 4 to 8 Mw.  

Figure 4.20: Relationship between Mw, PGA and intensity variation. 
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Therefore, this analysis shows that earthquakes intensity on a particular site depends on 

the site to source distance and does not directly depend on the magnitude. 

 

4.5.2. Silhouette clustering analysis  

Silhouette clustering analysis is an interpretation and validation method to clarify the 

consistency within the data cluster. Therefore, in this study, the obtained PGA and 

intensity values for all the earthquakes were applied to check the consistency between 

them. Succinct representation of data points was plotted graphically to show their object 

classification.  

 

The four cross-correlation obtained in figure 4.21 varies with the lag values of -105 to 

105. However, in the case of the correlation between epicentral distance and source-to-

site distance, when the lag value is zero the correlation is one and the p-value reaches 

zero. The p-values vary in a range from 0.028 to 0.919 in the crosscorrelation portraying 

a positive correlation, where source-to-site distance leads in the correlation. The second 

crosscorrelation reveals that the p-values vary in a range from 0.00012 to 0.974. In this 

case, the lag value is zero the correlation is -0.266 and the p-value reaches 0.00009 with 

positive correlation where depth leads. The third and fourth crosscorrelation projects that 

the p-values varies in a range from 0.014 till 0.99 and 0.0003 till 0.973, respectively. In 

these cases, the lag value is zero the correlation is 0.073 and 0.246 while the p-value 

reaches 0.287 and 0.0003, respectively. The results show that Mw versus intensity shows 

positive correlation and intensity leads and Mw versus PGA shows positive correlation 

and PGA leads. There is a strong correlation between epicentral distance with source-to-

site distance and Mw with PGA are strongly correlated. However, the other two 
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correlations performed in figure 4.21 are moderately correlated. The possible reasons 

could be calculations of variables were performed through several attenuation laws. 

 

 

Figure 4.21. cross-correlation shows (red signal portray p-values while the blue 

signal is the correlation spectrum) a)  epicentral distance vs source-to-site distance, 

b) PGA vs depth, c) Mw vs intensity, d) Mw vs PGA. 

 

In general, silhouette value is a value that shows the similarity of an object to its cluster 

as compared to other clusters. Figure 4.22a plotted with Silhouette clustering, log y and 

3point average. Silhouette clustering was included to plot all the indicators in a single 

graph. Log y will provide the plot for negative values while 3-point average could provide 

the graph in a signal form. Figure 4.22a shows that the values of Intensity (E) and PGA 

(D) vary in a similar way while the relative values for A, B and F vary in a similar way. 

b) a) 

c) d) 
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This graph shows that if the signal varies smoothly then the values are almost close to 

each other having a large cluster which could be seen in case of magnitude (C) as the 

magnitude varies from 4 to 8 with very minor changes. 

 

Figure 4.22. Silhouette clustering analysis: a) Relative change of values for five 

indicators (A) epicentral distance, (B) source to site distance, (C) magnitude (Mw), 

(D) PGA, (E) intensity, (F) depth of earthquake focus, b) PGA vs Intensity. 

 

Figure 4.22b shows the plot of the Silhouette clustering of intensity against PGA. This 

study analyzed the data with a 3-point average and 95% confidence. However, as the 

silhouette values range from −1 to +1. Therefore, the object will be considered as poorly 

matched to neighboring clusters and well-matched to its own cluster if the high value 

observes. From this graph, it is clear that most objects have a high value that shows an 

appropriate clustering configuration (Figure 4.22b). Ellipse in this graph considers the 

objects as a single cluster. There are no negative values, therefore no clustering 

configuration observed in a negative value. Euclidean distance was applied to calculate 

the silhouette values as the distance metric. 

           

a) b) 
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4.5.3. Pure Locational Clustering (PLC) approach 

In this research, Pure Locational Clustering (PLC) approach was applied using the 

classical clustering technique for defining and evaluating the number of clusters.  

 
Figure 4.23 a) Locational clustering analysis using earthquake longitude and event 

gap, b) Dendrogram shows between Euclidean distance and clusters. 

 
PLC is an approach implemented in the current study that is defined on the basis of 

geographic coordinates of a set of earthquake locations. The figure 4.23a presented below 

shows the results of the classical clustering performed using the earthquake locations. 

However, the elbow method was applied to figure out the optimum clusters by 
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investigating the obtained critical points on the plotted graph. However, in total two 

optimum numbers of clusters were obtained in this study. It could be observed that the 

distance generated between the clusters was less in classical clustering than any other 

clustering such as the K-means algorithm. Thus, classical hierarchical clustering is 

implemented as a countermeasure in the current research. The dendrogram presented in 

figure 4.23b shows the Euclidean distance between the groups they based on and the 

clusters on the least distance between the points. The clustering method is applied to 

figure out the centroid of the longitudes and then the locations prone to earthquakes were 

observed, which depends on the distance of the events, the clusters could be mapped.  

 
 
4.5.4. Probability assessment 

Fewer studies have been conducted for Palu on earthquake probabilistic assessment 

however; SSA is one of them (Aucelli et al. 2018; Dhar, Rai & Nayak 2017; Monahan et 

al. 2018). The seismic zone map of Palu (SNI 03-1726-2002) shows that the region comes 

under a high to very high hazard zone trending northeast–southwest direction across the 

central part of the city characterized by metamorphic rocks, unconsolidated deposits and 

fewer granitic patches. Probabilistic estimation in Palu gives PGA of approximately 0.5 

to 0.6g for 10% exceedance in 50 years. From this study, the highest PGA obtained is 0.2 

for Palu, which comes under the very strong category. However, the SSA depends on the 

amplification factor of rock types. Therefore, the PGA observed in Palu used for the 

hazard assessment. During the probability mapping, training and testing was performed 

using all the factors as input and events as target (Figure 4.24). The proposed ANN-CV 

model was not able to predict 14 data points. However, the reason could be noise and data 

heterogeneity in the thematic layers. However, during the data processing some unusual 

data points were removed for better accuracy. The proposed model predicted 
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approximately 205 m2 as the most probable area. As the study is a probability assessment,  

Figure 4.24 factors for probability assessment. 

 

 

Figure 4.25. Probability results from ANN-CV approach. 
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therefore no classification technique was applied for probable classes in Palu city. 

Nevertheless, the probability must vary between 0 and 1. Palu city was tested using the 

fold 2 of ANN CV. The true positive rate for the city was estimated as 0.88 and RMSE 

was 0.16. The spatial distribution of the probability of occurrence is higher in the eastern 

and northern parts of the eastern limb of Palu city as presented in figure 4.25. However, 

Palu is a small city that is located close to the Palu-Koro active fault system has the 

capacity to strike strong future earthquakes. Therefore, high probability in the city located 

at eastern limb in north-south direction. Medium probability is surrounding the high and 

low probability could be found in the east and west direction. The leading cause of high 

probability could be the major active fault system, a huge number of events in the eastern 

part and the high magnitude events. Seismic amplification is higher in the coastal part 

than other areas in the city; however, loose sedimentary rocks making the city more 

probable towards the east and northern regions. The reasons could be reverse for the low 

probability.  

 

Intensity distribution was obtained and multiplied with the probability to generate the 

earthquake hazard map for events more than the 4Mw. With high intensity of more than 

9 can be considered as a very high hazard, while as high, moderate, low and very low 

hazard can be classified with intensity variation such as 8–9, 8–7, 7–5 and <5, respectively 

(Jena et al. 2019; Bayrak et al. 2009). 

 

4.5.6. Vulnerability mapping 

The vulnerability assessment was conducted and a map was produced using several 

vulnerable factors for Palu (Figure 4.26). Vulnerable areas geometry and the buildings 

within could help in calculating the number of vulnerable populations and areas in the 
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city. 

  

Figure 4.26. Factors influencing EVA. 
 

Seven vulnerable factors were applied in the AHP approach for pairwise comparison and 

weight calculation (Jena, Pradhan & Beydoun 2020). Twenty-one number of comparisons 

were carried out with an achieved consistency ratio (CR) of 0.07. The priority analysis 

evaluated the principal eigenvalue as 7.586; however, the eigenvector solution achieved 

six iterations. An eigenvalue must be nonzero and a negative eigenvalue directs 

inappropriate evaluation. However, CR value less than 0.1 demonstrated that the criteria 

were deliberately assessed. Delta value observed as 2.9E-8 during the MCDM processing. 

Priority scores for all the 8 layers were achieved. However, building density, road density 

and major offices achieved the weights of 43.1%, 20.8% and 12.5% and ranked as 1, 2, 

and 3, respectively (Table 4.21). CR obtained from the process shows that pairwise 
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comparison was accurate. The remaining criteria achieved medium to a low rank as per 

the results presented in Table 2. A maximum and minimum of all the weights were also 

obtained. Seven alternatives were chosen out of 8 against all the seven major criteria from 

which the criteria interesting locations were removed. The details of factors, weights and 

ranks were presented in Table 4.21. Then using the TOPSIS approach, it was concluded 

that there is no need of the factor interesting locations which was removed from the study. 

 

Approximately 20% (78.80 km2) area of Palu is estimated as high to very high 

vulnerability. The city center dominant to a very high and northsouth limb of the city 

belongs to the high vulnerability category. Factors that could account for this condition 

of very high to high vulnerability are social characteristics that are high in the city center. 

Moderate conditions covered both the sensitive and remote areas around the city with a 

huge areal characteristic. The vulnerable map showed that 40% (157.60 km2) area came 

under a moderately vulnerable category (Figure 4.27). An estimated area of 40% (157.60 

km2) covered by low to very vulnerability. Low areas covered the southestern close to the 

hilly regions and some parts of western coastal regions of the city.  

 

The reason for the indication of low vulnerability could be low social characteristics. 

Spatially the vulnerability variation could be observed from the resulting map for the Palu 

city. Approximately, 80% of the population lives in a very high, high and moderately 

vulnerable zone, whereas 20% situated in the low vulnerable zone. Notably, very high to 

high vulnerability mostly influenced by high population and building density. Therefore, 

the produced vulnerability map could be implemented as a source map for future risk 

mapping in Indonesia. 
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Table 4.21. Priority and rank of criteria for vulnerability assessment. 

 

 

 

             

Figure 4.27. Vulnerability map resulted from AHP approach. 

 

4.5.7. Risk estimation 

Finally, the earthquake risk was mapped spatially and presented in figure 4.28. Several 

Category Priority Rank (+) (-)  
Number of 
comparisons = 21 
Consistency Ratio 
CR = 7.3% 
Principal eigenvalue 
= 7.586 
Eigenvector 
solution: 6 iterations, 
delta = 2.9E-8 
 

1 Building density 43.1% 1 20.7% 20.7% 
2 Road density 20.8% 2 8.0% 8.0% 
3 Proximity to road (in 

m) 
9.7% 4 4.5% 4.5% 

4 Stream density 4.5% 6 2.0% 2.0% 
5 Proximity to stream 

(in m) 
2.8% 7 1.4% 1.4% 

6 Major official places 12.5% 3 6.7% 6.7% 
7 Major visiting places 6.7% 5 1.4% 1.4% 
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classification techniques used for classifying the developed maps. In this study, the 

quantile technique was employed to classify the risk into five classes such as very high, 

high, moderate, low, and very low. Based on the obtained results 67 km2 (17 %), 87 km2 

(22.08 %) of the city was regarded as a very high-to high risk zone. while 240 km2  (60.91 

%) of the city comprised of moderate to very low risk. The high to very high risk areas 

are observed in the city center and some parts in the northern limb of the city. Medium to 

very low risk could be expected towards the eastern part of the city having hilly areas. 

The detailed assessment of building types, quality of materials and number of floors could 

be conducted for the Palu city that was not performed in this study. Very high and high 

risk areas of the city should be the focus of the Indonesian Govt. for earthquake mitigation 

planning.  

 

            

Figure 4.28. Risk map resulted from integrated ANN-CV and AHP-TOPSIS 

approach. 
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4.6. Summary  

In chapter 4, the application of developed integrated models for probability, hazard, 

vulnerability and risk assessment modeling leads to the following results: 

 

1. The suggested models explicitly extracted the important factors and added some new 

factors in the earthquake risk assessment and demonstrated. In addition, the 

assessment was conducted on Banda Aceh and Palu city in Indonesia was presented. 

Different software and their uses in this research were described and specifically the 

datasets and their origin were also pinpointed. 

2. Several attenuation equations and the historical earthquake events were used to 

calculate some important layers such as PGA, Intensity variation, Lithology with 

amplification factors map. The results show that the earthquake risk is highly affected 

by local seismotectonic condition, lithology, building quality and density and 

population density, respectively.  

3. In the first objective, using the administrative data, social, structural and geotechnical 

characteristics of the study location earthquake vulnerability assessment was 

conducted. Risk assessment in the two study areas were obtained in multi-scenario 

based study. Both the study areas are prone to high magnitude earthquakes and the 

mega thrust earthquake of 9.3Mw was experienced in Banda Aceh in Banda sea, 

therefore chosen for the implementation of the model. 

4. In the second objective, using the high-resolution DEM, historical earthquake events 

several thematic layers originated and earthquake probability assessment was 

conducted with an accuracy of (84%) and then hazard assessment was conducted 

using the all the earthquake intensity scenarios. 

5. Finally, the risk assessment was conducted using the vulnerability and hazard data, 
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using the integrated ANN-AHP model and total population is under the risk areas 

were calculated as very low (65167), low (76268), moderate (47981), high (32363), 

very high (14018). 

6. In the third objective, ANN was again modified to ANN-CV and then AHP was 

modified to AHP-TOPSIS and finally an integrated ANN-CV and hybrid AHP-

TOPSIS model was designed to map the earthquake risk, which provides better result 

than the previous model with an accuracy of (85.4%) 

7. The difference in the last two developed models were observed in terms of accuracy, 

limitations, obtained results and validation. Different mitigation strategies for very 

high and high-risk areas assessed and discussed. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS 

 

 

5.1. General 
 
This research deployed high-resolution DEM with detailed social, structural, geotechnical 

characteristics and complete inventory data. Consequently, this work produced 

earthquake probability, hazard, vulnerability, and risk in a tropical country like Indonesia. 

The research is intended on the development of integrated models, and estimation of the 

population under earthquake risk on a city scale. This research implemented a novel 

combination of the AHP-VIKOR model, integrated ANN-AHP model, and ANN-CV 

with AHP-TOPSIS model using the machine-learning algorithms in python and ArcGIS. 

Earthquakes are the only natural geo-hazards, which is almost impossible to be forecasted 

or predicted. However, mapping, monitoring, and mitigation planning could assist in 

estimating the probability, hazard, and risk for such catastrophes through several artificial 

intelligence-based geospatial methods. The recurrent megathrust and some major events 

experienced in Banda Aceh and Palu city, Indonesia. Therefore, earthquake risk 

assessment is indispensable to map the risk areas and population that could assist in the 

appropriate planning and mitigation processes. Even though numerous methods, models, 

approaches, and techniques are already developed for earthquake risk mapping, however, 

mostly these methods are quite complex, traditional, and time-consuming. Therefore, 

GIS-based integrated machine learning-MCDM models simplify the risk assessment 

processes and provide good accuracy. 
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Earthquake is a physical-based active tectonics phenomenon. Therefore, hazard and risk 

should be assessed when striking a pose as a threat to properties and lives. Therefore, 

substantial analysis must be conducted systematically in a city-scale area, such as Banda 

Aceh and Palu area. Earthquake mechanisms and active tectonics phenomenon are varied 

temporally and spatially. Elimination of such a phenomenon from the research could 

trigger exponential natural hazards. Therefore, ERA in terms of mapping and estimating 

risk could aid in providing a full insight of earthquake risk that could assist in mitigation 

planning, development of protective barriers, and monitoring. 

 

5.2. Conclusions of objective 1 

In this study, an integrated MCDM model was developed for EVA to produce a 

vulnerability map and quantify the population in vulnerable zones. For the first time, 

VIKOR and AHP were integrated and applied for a city-scale assessment. The following 

conclusions can be drawn from the current study. In EVA, data from several sources were 

collected and applied to estimate the vulnerability out of which past earthquake events, 

building and population characteristics were vital. In the city, 17% of buildings fall under 

high vulnerability, where 7% of buildings fall under severe vulnerability. This result may 

be due to the age of surveyed buildings and their characteristics. However, 48% of the 

buildings were moderately vulnerable to an earthquake. These buildings are found along 

the northeast central toward the southwest of the city. The EVA map illustrates high 

vulnerability to earthquake impacts for Syiah Kuala, Kuta Alam, Baiturrahman, and Jaya 

Baru. The EVA map validation was successfully performed by applying the current 

research results quantitatively. Infrastructure, communities, and environments within 

these zones are the primary impacts of earthquakes. Authorities could use the results for 

mitigation strategies to protect humans and resources from violent earthquakes in the 
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identified vulnerable zones.  

The focus of the study is the potential use of MCDM in Banda Aceh City in Indonesia for 

an accurate assessment. The integrated vulnerability assessment approaches show that the 

developed MCDM model outranks the other MCDM models from various perspectives. 

However, the scale of vulnerability was developed in the current study by applying 

natural break and expert’s opinion, which is important for experts to translate the 

significance of vulnerability properly. The assessment techniques used, namely the AHP 

approach and the VIKOR method, produced an acceptable vulnerability assessment 

result. The proposed method has good variances in vulnerability mapping that can be a 

good state for decision-makers while applying for future risk assessment.   

 

5.3. Conclusions of objective 2 

In this study, a model for the earthquake risk estimation in an urban area using an 

integrated technique of ANN–AHP was developed. The model is a GIS-based spatial 

analysis useful for the city scale. The adopting information about the selection of the 

indicators from the literature with combined techniques was advantageous and effective 

for ERA that was applied for Banda Aceh. However, the incorporation of knowledge 

about geomorphology, geology, and structural information, as well as the data of 

historical earthquake events, are important and will aid in generating an earthquake risk 

map for the city. Nine zones of Banda Aceh were used in the investigation as two groups 

of analysis characterized by several sub-parameters. 

 

The ANN model is extremely useful for earthquake probability measurement, and the 

AHP method is useful for the weight calculation of the parameters for earthquake 

vulnerability assessment. The ranks and weights were decided on the basis of the 
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judgments and preferences of the authors. Given that the RMSE is very low, the ANN 

model has a low chance of misinterpretation of the earthquake probable areas, and the CR 

in AHP shows the quality of vulnerability results. The developed method found that an 

urban area might have several risk patterns if all factors are considered. Findings indicate 

that the geological factors have contributed the highest impact to earthquake probability 

assessment, whereas social factors contribute highest for vulnerability assessment in 

Banda Aceh. However, factors vary in different zones of Banda Aceh. The results reveal 

that the highest risk zones were possibly 3, 5, 7, and 8 in the central-southern part of the 

city. Comparatively, the other parts have low-to-moderate earthquake risk. 

Developmental infrastructure and master plans of the city show that it is expanding 

towards the southern direction towards the GSF fault. Thus, at present, parts of the city 

with various schools, universities, and informal settlements are situated near the fault. 

Settlements, construction, and a developmental city plan near the fault may cause a 

serious problem in the future if the city grows towards the fault without attention being 

placed on dangers posed by faults and many other concerns. 

 

Population density and building density are high in the very high-risk zones. Government 

offices and the main transportation junctions can critically exacerbate the conditions. The 

city deserves outstanding consideration of support from the local and the national 

government to reassess the managing strategies of natural disasters because the city 

already was exposed to the 2004 tsunami and its consequences. Therefore, appropriate 

guides are needed to manage the city and aid decision-makers to recognize the influence 

of various factors and to understand the deficiencies in each zone. The critical condition 

of buildings and the populated risk zone area should be included in government 

observations, and programs of risk reduction must be improved. Lack of proper space 
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distribution within the city and poor developmental city planning can be considered the 

future factors for risk. Therefore, the ANN–AHP model in this study provides an effective 

and practical estimation of earthquake risk and provides urban planning information.  

 

5.4. Conclusions of objective 3 

This study showed that 10,252 and 44,443 people belonged to a very high and high-risk 

zone in Banda Aceh, which should be the focus of the national government. Five main 

situations described in the risk assessment should be analyzed, and adequate measures 

should be taken. Regulatory, institutional, political, and environmental factors 

participating in the earthquake hazard indirectly associated with ERA. Some human-

induced earthquakes were experienced by considering the specific locations of human 

activity. Constructing recreational areas, dams, and tunnels could trigger large magnitude 

events. Population concentration was high in the city, and human activity was not 

considered because it is away from the GSF. Therefore, settlements and massive 

infrastructures close to GSF could indicate a highly probable zone for earthquakes. Thus, 

social and structural data collected from several census data sources were used. The 

reason for collecting the opinion of experts was because of their field background 

regarding GIS-based risk assessment, geographical knowledge, and leading expertise in 

criteria-based vulnerability and risk assessment. The obtained vulnerability factors may 

have some limitations. This study did not consider all factors that determine total 

vulnerability. This study aimed to localize the minimum vulnerability factors that define 

the vulnerability of Banda Aceh. The risk map for Banda Aceh indicated that the result is 

significantly accurate using the proposed model.  
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Special guidance by experienced decision makers is necessary to manage the Banda Aceh 

City for understanding the influence of several indicators and identifying the deficiencies. 

The government should observe the critical condition of infrastructures and populated 

areas in which risk reduction could be improved. Spatial distribution and poor city 

planning could be extended as vulnerable factors in future research. Therefore, the K fold 

ANN-hybrid AHP-TOPSIS model is useful and provides practical information on 

earthquake risk estimation. Our future studies will focus on biodiversity and its prominent 

roles in earthquake probability and risk assessment. Convolutional neural networks could 

be applied for predictive-based probability assessment. ML techniques are intelligence-

based models with accurate predictions and require massive training data and many 

probability factors. ML methods, such as random forest and support vector machines, 

could be useful for earthquake probability, hazard, vulnerability, and risk assessment. 

 

5.5. Conclusions of Palu case study 

According to the risk results, very high and high risk areas could be observed in 67 km2 

(17 %), 87 km2 (22.08 %) of the city while 240 km2 (60.91 %) of the city comprised of 

moderate to very low risk. The results obtained from both risk maps are quite helpful for 

future studies. A detailed risk assessment could be conducted using complete inventory, 

seismic indicators, active tectonics and geospatial data. Necessary criteria were 

reasonably chosen based on previous research and experience in the field. In this study, 

AHP and TOPSIS techniques were applied for vulnerability assessment, while ANN-CV 

was applied for probability assessment. The details of limitations were described in 

conclusions for objective 3 in section “5.4 Conclusions of objective 3”. 
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5.6. Research drawbacks and limitations  

The proposed models for earthquake probability, hazard, vulnerability and risk 

assessment have been applied in Banda Aceh in Indonesia and the study achieved the 

research objectives. Therefore, lack of proper spatial distribution within the city and poor 

developmental city planning can be considered as the future factors for risk, which was 

not included in the first objective. The drawback of this study is that much time is needed 

for the model’s implementation on a wider-scale because the pairwise comparision is 

challenging and the process is time-consuming, and it requires a large amount of experts 

opinion.  

 

Several drawbacks were encountered in the second and third objective that could 

influence the results. Firstly, the ANN model design and training required considerable 

time and a sufficient amount of training data. Second, the multicriteria approach was 

applied for risk assessment in this study. Managing the data quality and processing of 

criteria was challenging to achieve acceptable results. There are several limitations 

associated with this research. This research used the freely available LULC data for 

vulnerability mapping rather than high-resolution LULC data.  For instance, LIDAR data 

can improve risk assessment rather than applying the DEM with a 7.5 m resolution, that 

can result in generating best conditioning factors and maps. Population data were recent, 

including the monthly deaths, although born individuals were not considered. These 

limitations will be the focus of future studies. The limitation also includes several criteria 

that have been considered in previous research on the estimation of an earthquake 

vulnerability index, such as soil liquefaction, seismic resonance, and building categories. 

These criteria were not considered in this study because of the lack of data. This study 

also provides limited vulnerability results without consideration of health, education, and 
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day and night vulnerability. Moreover, this work was limited to the pre-earthquake spatial 

probability, vulnerability and risk assessment. There is no post-earthquake study was 

conducted in this research. 

 

However, the city should be the focus of earthquake risk reduction by the national and 

state government in Indonesia. The availability of good vulnerability, hazard and risk 

assessment approaches raises concerns to achieve a simplistic tool on a global scale. The 

authors assume that the developed multi-criteria decision making (MCDM) models 

provide a robust basis for the current risk estimation. This study recommends developing 

new MCDM models for future studies that include more consistent and detailed analysis 

that can be implemented globally.  

 

5.7. Recommendations for future work 

In this research, the proposed models were implemented and all the three objectives were 

achieved. Moreover, further work can be done on earthquake risk assessment by applying 

a detailed dataset using the latest models of artificial intelligence. The recommendation 

for future work are: 

1. Indonesia is a seismically active region that experienced a huge number of 

earthquakes therefore, it still requires further intense research using paleo seismic 

factors (identified paleoseismic faults), geodetic factors (dimensional changes in 

crustal motion), and geophysical factors (fluid-related earthquake precursors).  

2. To improve the accuracy while dealing with uncertainties can be another future 

research to achieve good results in earthquake hazard and risk assessment as well as 

prediction.  

3. The employed methods and the developed models in this research should be exercised 
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in other seismic prone areas in India, Japan, or America for the derivation of 

comprehensive information.  

4. This research concentrates on the earthquake hazard, vulnerability, and risk 

assessment using the 7.5m resolution DEM, inventory, and several other rasters and 

vector layers. Many qualitative and quantitative elements that control the earthquake 

phenomenon is complicated tectonics and stress accumulation and release. 

Interferometric Synthetic Aperture RADAR (InSAR) and Unmanned Aerial Vehicle 

(UAV) could be engaged in the risk assessment. Several sensors are accessible to be 

tested for that reason. 

5. The current research can be enhanced further by utilizing a completed inventory 

dataset including detailed seismic factors. In addition, an earthquake early warning 

and monitoring system should be developed in association with a public agency, 

decision-makers, individual researchers for constructing and evaluating alternative 

earthquake risk models. 

6. The future study could emphasize organizing city-scale pre- and post-EVA in 

developed and developing countries to produce a valid EVA tool. 

7. Seismic probability mapping should be the main research as the earthquake prediction 

is challenging that could be done by developing novel machine learning and advanced 

artificial intelligence algorithms. 
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 Figure A2. Earthquake risk map developed using the integrated ID–AHP  
approach. 

 
           

 
 
 

        Figure A3. Social vulnerability map created using the entropy method. 
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           Figure A4. Structural vulnerability based on building density and building 

size and age. 
 

 
 
 

     Figure A5. Mapping of buildings typology vulnerability in villages in the 
city. 
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