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Abstract. There is an enormous number of healthcare analytics applications in 

existence which have been embedded into healthcare systems with varying de-

grees of success. One of the key challenges is their need for access to sensitive 

patient data in a healthcare system that has a multitude of healthcare applications. 

This paper introduces a new theoretical framework as an architecture in which 

Healthcare 4.0 applications can operate. The framework proposes using Apache 

Kafka as the core technology for creating data integration pipelines with the goal 

being to bring standardisation into the healthcare systems. The architecture offers 

a safe and secure environment in which multiple applications and algorithms 

from different organisations can seamlessly co-exist. 

Keywords: Healthcare 4.0, Apache Kafka, big data, data pipelines, real-time 

analytics. 

1 Introduction 

We live in the era of Big Data, where enormous amounts of information is collected 

each second, in both structured and unstructured formats across a number of different 

platforms and devices. The data underpins all modern enterprises nowadays, and the 

healthcare industry is no different. When presenting at the Doctor’s surgery with symp-

toms, it is the data about the patient that the Doctor uses to make an informed diagnosis 

of their condition and likewise it is data that informs the treatments and medications 

that should be administered and the follow up during recovery.   

This data revolution is impacting significantly on the healthcare industry. The ever 

evolving health sector consists of a number of inter-related processes whose change not 

only has an impact on the overall healthcare delivery of care and services but also im-

pacts on the clinicians, healthcare providers and ultimately, the patient. This complexity 

of co-existing multiple processes can benefit from big data analytics. In fact, a health 

sector that fully integrates big data analytics is essential.   

The past seven years has seen the introduction, expansion and maturing of big data 

analytics in healthcare research and practice. In particular it offers data tools that can 
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collate, manage and analyse vast amounts of data, structured and unstructured in nature 

[1]. There are many sources from which healthcare data can be generated, from clinical, 

to genomic, or pharmacological to behavioural hence emphasizing just some of the va-

riety in healthcare data available. The data is quite often collected and stored across 

multiple systems which may well be placed in a number of different physical locations 

and organisations such as healthcare centres, hospitals, government departments, and 

research labs. Each one of these organisations is being overwhelmed by the continuous 

increase in overall data volume and speed at which it is being generated, illustrating 

the velocity of big data in healthcare. Data repositories are also experiencing growth in 

size and complexity so, not only by the variety, volume, and velocity, but also by ve-

racity that exists due to data inconsistency. Such characteristics are commonly known, 

well versed features of big data and well accepted concepts of any modern day system.  

The extra consideration in the healthcare domain, is the sensitivity of personal data 

and the need for a platform that encompasses vast amounts of personal data both from 

patient records and from medical devices, and transforms it into intelligent healthcare 

systems. The smart environment needs to inform, personalise and support diagnosis and 

treatment pathways. In this context, any Healthcare 4.0 system shall take one or both 

of the following two forms: (1) the real-time analysis helps to find out irregularities in 

the collected data and act as fast as possible to prevent undesired consequences on the 

patient’s health, or (2) the long-term analysis uses the massive data collected from In-

ternet of Things (IoT) devices to uncover insights and identify trends and opportunities. 

Consider a hospital setting where there is a central system that records the patient 

information for a busy Intensive Care Unit. Data will be recorded by the clinical staff 

regarding the patient condition and treatment alongside data streaming onto the system 

from medical devices such as a ventilator recording critical information on the ventila-

tion being administered to the patient. It is impossible for a clinician to view all the data 

for a specific patient however, real-time analysis of the data can create early alarms to 

alert the clinician of a change in condition and additionally the data can be used to 

identify any underlying trend or gradual change in the patient condition. This can act 

as a decision support mechanism for the clinician and potentially flag up certain char-

acteristics that would otherwise go unnoticed. Likewise, in the community, patients 

currently diagnosed with type I diabetes can have data recorded from their mobile de-

vices such as their insulin pumps that can calculate the required dose of insulin which 

is monitored in real-time but also can be used in long term analysis to consider the long 

term risk of developing one of the possible multiple complications associated with the 

condition.  

It has previously been predicted that quality of care of the patient and the overall 

efficiency of the system will be vastly increased with the full implementation of Elec-

tronic Health/Care Records (EHRs/ECRs) along with the systematic collection of phys-

iological data by healthcare providers [2]. However, this is not yet the reality, despite 

advances in data collection and storage [3]. The key challenges are within the imple-

mentation of new approaches to inform decisions based on vast amounts of data and 

the ability to embed such new algorithms into the healthcare system. Even to this day, 

clinical decision support systems are not being used to their full potential and are being 

restricted to draw from just one data set or have predefined rules embedded within.   
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 Our previous research considered real-time clinical decision support systems 

(CDSS) identifying the lack of current relevant metrics and clinical feedback as the 

biggest hindrance to the development of real-time CDSS [4] [5]. This motivated us to 

develop a set of new performance analytics techniques, with particular emphasis on 

CDSS for improving the quality of care of mechanically ventilated patients. This re-

sulted in new suitable metrics to evaluate a CDSS working as decision support to the 

clinicians. But, what happens when there is more than one CDSS, or when there are 

several different algorithms performing different functions in the one healthcare sys-

tem? Another challenge is how the algorithms potentially share and use knowledge 

from one another while protecting patient data, confidentiality and intellectual property. 

Although there are many studies, proposing architectural solutions for various use 

cases, such as mechanical ventilation [5] [6], and neonatal care [7], all of these solutions 

lack flexibility as they are tightly coupled to existing clinical systems. Furthermore, the 

systems are very complex in nature, each using a different blend of technologies, and 

cloud services which makes practical implementation of proposed systems and collab-

oration between research teams difficult, if not impossible. For example, the published 

proposal may rely on using Python programming language and cloud-based technolo-

gies and services, while employees in the IT department of the hospital are specialized 

in .NET technologies, and may not have access to the cloud applications. This results 

in a system that cannot be accessed or implemented by the hospital team and so the 

proposed solution and benefits of improved quality of care are not realised. 

In order to reap the full benefits of new healthcare 4.0 systems, such hurdles need to 

be overcome to release the users and researchers from the ongoing challenges of tech-

nology differences, and dealing with sensitive personal data. To the best of our 

knowledge there is no paper that proposes a solution that would enable easier access to 

the healthcare data and collaboration between medical practitioners and researchers. 

We propose a unique approach that utilizes the Apache Kafka data streaming platform 

as the underpinning technology to build a conceptual framework with the goal to pro-

vide a set of guidelines for overcoming such challenges.  

This paper is organised as follows. Section 2 provides a brief overview of Apache 

Kafka discussing the challenges related to architecting and building big data pipelines 

in general. Section 3 addresses these challenges by introducing a framework as a set of 

guidelines for building scalable, secure and fault tolerant data pipelines particularly for 

the Healthcare 4.0 industry. Section 4 provides an overview of related work and de-

scribes how our architectural solution differs from anything that has been done previ-

ously and Section 5 concludes the paper and offers our thoughts on future research.  

2 Relevant Theoretical Concepts 

2.1 Apache Kafka 

Apache Kafka [8] is an open-source distributed messaging platform [9] built for col-

lecting and distributing large volumes of data, at high velocities. The entire Kafka’s 

ecosystem is based on the Producer-Consumer messaging pattern [10] characterised by 

five key components: message, topic, producer, consumer and broker.  
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The messages are basic data units within the ecosystem, which are generated by the 

processes called producers. In order to achieve the efficiency in the performance, the 

producers send messages in batches to the centralised cluster consisting of single or 

multiple servers (also known as broker/s) where they get organised into categories 

called topics. Using the RDBMS terminology, the closest analogy to explain the con-

cepts of messages and topics would be rows and tables in the database, respectively.   

For achieving high scalability and redundancy, each topic can furthermore be segre-

gated into multiple partitions and each partition replicated across multiple brokers 

within the cluster to obtain performance far superior to the ability of a single server. It 

is important to highlight that all of the messages belonging to a single batch are pub-

lished to the same topic and partition in an append-only manner.  

Opposite to the producers, the consumers are the processes that are used for reading 

messages from single or multiple topics, in the same order as they are being produced 

(i.e. first in first out – FIFO principle).   

Customised producers and consumers in Apache Kafka can be defined either by us-

ing low-level Producer-Consumer API or by using the higher level Connect framework. 

The former approach is used in instances where researchers have full access to the un-

derlying systems’ programming logic and are able to modify the code of the application 

they want to connect an application to, so that they can either push data into or pull data 

from Kafka. Alternatively, the Connect framework is used for the scalable and reliable 

streaming data between Apache Kafka and other externally managed datastores that are 

not necessarily written by the researchers for which the code cannot be modified [11]. 

Data streaming between Kafka and other external datastores is performed using pro-

cesses called connectors, which can be either Source or Sink Connectors. Source con-

nectors are used for ingesting entire data sources (e.g. relational and non-relational da-

tabases, key-value stores, file systems, search indexes, etc) and streaming the updates 

to Kafka topics when these occur, while sink connectors are used for delivering data 

from Kafka topics into destination data sources (e.g. warehouses, data lakes, etc.) for 

batch analysis [12]. A plethora of source and sink connectors that can be used for con-

necting Kafka with various data sources can be found on the Confluent Hub portal [13]. 

Features that differentiate Kafka from other similar Producer-Consumer messaging 

systems (e.g. RabbitMQ, ActiveMQ, etc.) are the way in which the messages are im-

mediately purged upon consuming, and its unique capability to persist the topics and 

their messages on disk for some configurable amount of time or until the designated 

storage space is filled. This feature enables consumers to replay the messages when 

needed which is crucial for the fault tolerance of the downstream systems and can fa-

cilitate longer term analytics. All persistence settings can be tuned for each topic sepa-

rately, and upon exceeding either the allowed disk’s quota or the retention time, the 

messages are automatically deleted from the system [14]. 

 

2.2 Challenges in Building Data Integration Systems 

Narkhede et al. [11] state that the most important characteristics to take into consider-

ation when designing data pipelines with a focus on integrating multiple systems, are: 
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timeliness, security, reliability and scalability. Apache Kafka meets all of these require-

ments as the technology for the implementation of these data integration systems: 

1. Timeliness – Generally speaking, the timeliness characteristic refers to the capabil-

ity of the data integration systems to provide support for the variable consumption 

needs of different consumer systems. For instance, some consumers might expect to 

receive their data within just a few milliseconds of its generation, while others may 

wish to receive it weekly in bulk. Bearing in mind that Apache Kafka is a distributed 

messaging platform with scalable and reliable storage capabilities, it can act as a 

huge buffer for received messages enabling decoupling time-sensitivity require-

ments between the producers and consumers. This allows producers to write to the 

Kafka cluster as frequently or infrequently as required, and consumers to read and 

deliver the messages either as they arrive, or to work in batches and read the mes-

sages that were accumulated in the cluster over time or all at once [11]. 

2. Security – When it comes to the data integration pipelines, the main security con-

siderations are those related to the: (i) encryption, (ii) authentication, and (iii) au-

thorisation.  Kafka provides support for SSL encryption of the data as it is transferred 

from the data sources to Kafka topics or from the topics to sinks, which is of huge 

importance especially when the data cross data centre boundaries. To prevent unau-

thorised and unauthenticated access to the data, Kafka supports the implementation 

of role-based access control (RBAC) authorisation and SASL authentication mech-

anisms. Additionally, Kafka also provides audit logs to track access [11]. 

3. Reliability – The main reliability concern is the design of data integration pipelines 

that avoid single points of failure and permit fast and automatic recovery from all 

kinds of failure events. In Kafka the data delivery reliability can be ensured through 

two different delivery mechanisms: at-least-once and exactly-once delivery [11]. 

4. Scalability – The requirement for the data integration pipelines is to support very 

high throughputs and to be able to scale out in order to support increased messaging 

loads, when it is needed. By acting as a buffer between producers and consumers, 

Kafka does not require the coupling of consumer throughput to producer throughput, 

as is the case with many other messaging brokers. Instead because of its capabilities 

to accumulate received messages on disk, Kafka has the ability to scale either side 

of the pipeline by adding consumers or producers independently and thus matching 

the changing throughput requirements [11]. 

3 A Conceptual Framework for Architecting Healthcare 4.0 

Applications 

In this section we introduce the conceptual framework with the primary goal of bringing 

in the standardisation and ease that is required for the development of Healthcare 4.0 

applications. Our proposal extends and enhances the current development of healthcare 

applications which follows a three-tiered architecture consisting of the Data Emitting 

Layer (DEL), the Healthcare Gateway Layer (HGL) and the Application Layer (APL).  
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As the name suggests, DEL includes any possible healthcare data emitting mecha-

nism which includes, but is not limited to, devices for collecting medical images (X-

Rays, CAT Scans, Magnetic Resonance, etc.), devices for collecting sensory readings 

such as those necessary for vital signs monitoring (e.g. pulse rate, respiration rate, blood 

pressure, body temperature, etc.), or data from the healthcare professionals who, having 

collected information about the patient, are in charge of writing the diagnosis, prescrip-

tions or admitting and discharging patients to and from the hospital. Depending on the 

source and type of the collected data, using various protocols (such as TCP, HTTP, 

MQTT, Bluetooth, etc.) this information is then transported to HGL where it is usually 

persisted in the electronic medical records (EMR), Hadoop File System (HDFS), AWS 

S3, or similar storage solutions for further processing and analysis. The healthcare pro-

viders are the key stakeholders so have to maintain both DEL and HGL, due to the 

sensitivity of the patient information. The researchers and academic collaborators out-

side of these organisations need to pass rigorous security checks and obtain special data 

access rights to be able to utilise just a small portion of the information for the purpose 

of developing clinical decision support systems and other advanced applications in the 

APL. Each healthcare organisation has its own set of internal policies hence making the 

requesting of these permissions and eventual access to the data, a very lengthy process 

which generally can take several months. If we take into account that every healthcare 

organisation will utilise a different combination of technologies and programming lan-

guages for running their internal IT infrastructure (.NET vs JVM vs other programming 

stacks, cloud vs on-premise deployment, different cloud providers if the cloud is used, 

relational vs non-relational databases for storing information and different vendors of 

these technologies, etc.), research organisations need to be prepared for a huge degree 

of flexibility and adaptability in order to start using the data from these systems. Cu-

mulatively this all causes a serious negative impact to the speed of development of 

Healthcare 4.0 applications, thus raising the need for creating a standardised framework 

for easier collaboration between the healthcare providers and research organisations.  

To overcome these issues, we propose adding an additional layer to decouple com-

munication between HGL and APL. We name this extra layer the Data Pipeline Layer 

(DPL) and due to the reasons previously described, we selected Apache Kafka as its 

underpinning technology. Fig. 1 provides an overview of the proposed architecture.  

To facilitate data transfer between Kafka and existing data sources in HGL and APL 

we propose using Kafka Connect. The main motivation for proposing this framework 

is the fact that it provides out-of-the-box features like configuration management, offset 

storage, parallelization, error handling, support for different data types, and most im-

portantly it is extremely flexible as it can be used by non-developers who would only 

need to configure the connectors for communication with the data sources [11]. 

The healthcare providers (data owners) should be in charge of maintaining the Kafka 

Cluster and source connectors. Due to the advanced security capabilities which enable 

data encryption and protection of data stored in Kafka, from unauthorised and unau-

thenticated access, healthcare providers are able to pre-plan what datasets they are will-

ing to share with potential research collaborators and have a fine grain control over 

adequate data access rights. Research organisations, with the right data access permis-
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sion would be able to start using healthcare data by attaching their preferred sink con-

nector to the Kafka cluster provided by the healthcare organisation. Similar to how data 

exchanges between HGL and APL, if the data sharing agreement permits, Apache 

Kafka could be used for establishing the connection, hence fostering the collaboration 

between the research organisation in the Research Collaboration Layer (Fig. 1). 

 
Fig. 1. A conceptual framework for architecting Healthcare 4.0 Applications 
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4 Related Work 

The Apache Kafka has been increasingly used as a distributed streaming platform in 

real-time processing of IoT events [15], Industry 4.0 [16], and smart cities [9]. 

Gokalp et al. [17] created a real-time patient monitoring system which collected pa-

tients’ vital sign parameters heart rate, blood pressure, respiration, skin temperature, 

and blood oxygen level SPO2 using IoT devices.  Kafka was used as a message broker 

to distribute the data from IoT devices to Apache Storm [18] which processed the data 

in real time and warned clinicians if collected values crossed predefined thresholds.  

 

 
Fig. 2. A research organisation utilising data from two different healthcare providers  

 

There are two fundamental differences between their work and the conceptual frame-

work proposed in this paper. The first difference is in the way that Kafka communicates 

with the DEL. Gokalp et al [17] authors have full access to the underlying systems’ 

programming logic and are able to modify the application code they want to connect  

to so that they can push data into Kafka directly from the IoT devices. The majority of 
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Healthcare 4.0 projects do not have this condition as the healthcare providers are the 

data owners. Hence, the Kafka Connect framework is a better alternative. 

The second difference is in the transformations that the pipelines perform. Gokalp et 

al. [17] use the ETL (extract-transform-load) approach where the data pipeline, or in 

their case Apache Storm [18], makes modifications to the data as it passes through. The 

main disadvantage of this method is that valuable information is getting lost in the pro-

cess which automatically creates restrictions on those who want to process the data 

further down the pipeline [11]. Hence, in our paper we propose using the ELT (extract-

load-transform) process instead providing maximum flexibility to users of the target 

system, since they have access to all the data in the original format [11]. Fig. 2 provides 

an illustration of the proposed architecture for a research organisation utilising data for 

their healthcare analytics applications from two different healthcare providers. 

The Artemis platform makes use of the Vines device connectivity software to enable 

Data Acquisition from medical devices within neonatal ICUs [19]. Vines utilises Rab-

bitMQ. Vines was chosen due to the proprietary messaging protocol for the output sig-

nals from many medical devices including those used within the collaborating NICUs 

for the Artemis deployments. Decoupling of the Data Collection and Data Acquisition 

components from the remaining analytics, data storage and visualisation components 

of Artemis was proposed in [20]. Both Vines and Python scripts were assessed for their 

applicability for the Data Acquisition function within the context of low resource set-

tings with a case study context of the NICU within Belgaum Children’s Hospital, India. 

The component nature of Artemis enables the Vines component to be easily replaced 

by the architecture proposed in this paper. 

A key challenge for different healthcare providers is ensuring that new medical de-

vice procurement procedures ensure procured support output of data streams and utilise 

standardised and well documented messaging protocols rather than proprietary messag-

ing approaches. 

5 Conclusions and Further Directions 

This paper introduces a novel conceptual framework as a consistent architecture for 

Healthcare 4.0 applications. The framework proposes Apache Kafka as the core tech-

nology for creating data integration pipelines bringing standardisation to the healthcare 

systems enabling easier communication between healthcare providers and researchers.  

The architecture offers a safe and secure environment in which multiple applications 

and algorithms from different organisations and providers can seamlessly “plug” into 

the healthcare providers Kafka “socket” to utilise sensitive data without any issue with 

data access, or security. Each healthcare provider has their “socket” created for each 

organisation and likewise each organisation may have multiple “sockets” in which they 

can “plug” into to access the relevant healthcare data set and provide their service. 

Further directions of the research is to deploy previously designed healthcare ana-

lytics applications to the new architecture in a hospital setting. 
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