ENERGY-EFFICIENT DEPLOYMENT OF UNMANNED AERIAL

VEHICLES IN WIRELESS COMMUNICATION SYSTEMS

by Hasini Viranga Abeywickrama

Dissertation submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

Prof. Eryk Dutkiewicz Dr. Ying He Dr. Beeshanga Abewardana Jayawickrama

School Electrical and Data Engineering University of Technology Sydney Sydney, Australia

August 2020

ABSTRACT

Unmanned Aerial Vehicles (UAVs) are fast gaining popularity in a wide spectrum of areas in wireless communications. Their many desirable features - ability to hover, ability to fly in otherwise inaccessible areas and ease of deployment make UAVs promising aerial mobile base stations. Base stations mounted on UAVs (UAV-BSs) can provide wireless coverage to areas of urgent need, without having to deploy additional infrastructure. However, UAVs have limitations that hinder their full potential. Limited available energy is identified as a key constraint of UAVs, therefore energy efficiency is important in UAV applications. Our work focuses on energy-efficient deployment of UAV-BSs in wireless communication networks.

Collision avoidance is identified as a key mission requirement in many UAV applications. Most of the collision avoidance methods for UAVs do not consider energy efficiency. However, minimising the energy spent on avoiding collisions is important to preserve the energy available for the assigned task. We propose energy efficient inter-UAV collision avoidance algorithms for multi-UAV systems. We propose selecting a subset of UAVs involved to act on avoiding collisions, while the rest of the UAVs are not impacted from potential collisions. We reduce the total distance travelled by the UAVs which results in improved energy efficiency.

To improve the energy efficiency in a multi-UAV system, it is important to understand the factors that contribute to high energy consumption. Thus, having a complete and accurate energy model for UAVs is fundamental. We propose an energy model for UAVs, based on empirical studies

of battery performance. The experiments were conducted on a commercial UAV with commercial and custom designed power loggers. The studies focused on determining the impact of payload, speed, wind, movement and communication on UAV energy consumption. We tested the reliability of the proposed energy model by using it to estimate the energy requirement of a planned UAV mission. The comparison of the predicted and measured energy requirements indicates negligible error of prediction.

Deploying UAV-BSs to provide wireless connectivity can be highly advantageous and challenging. The limited available energy, possible collisions, managing interference, maintaining system fairness and other related factors make the problem of UAV-BS deployment and path planning too difficult to be solved by traditional methods. We propose Reinforcement Learning (RL) based solutions for UAV-BS path planning and deployment problem. Extensive simulations show that the proposed methods outperform the baseline methods with increased user throughput, increased number of users covered and increased system fairness.

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Hasini Viranga Abeywickrama declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 05/08/2020

ACKNOWLEDGMENTS

My PhD journey has been extremely exciting and challenging at the same time. Looking back, I now see it as the most self-humbling experience I have ever had in my life. It is with a grateful heart that I acknowledge all the generous people I had the privilege of working with, who helped make this thesis a reality.

First and foremost I would like to acknowledge that this work has been supported by the University of Technology Sydney.

I would like to express my heartfelt gratitude to Prof. Eryk Dutkiewicz, who has been supporting me with the precious opportunities to learn, explore and improve.

I am forever grateful for my co-supervisor Dr. Ying He, who has been my biggest inspiration. I am thankful for the insightful technical discussions we shared over the years that greatly shaped this thesis. I cannot thank her enough for the constant motivation and encouragement that pushed me beyond my comfort zone.

I am thankful for Dr. Beeshanga Abewardana Jayawickrama, my cosupervisor for all the help, insightful feedback, and suggestions given throughout the study of my PhD. I am grateful to him for trusting me and giving me a stepping stone to pursue post-graduate studies and also for helping me in every step along the way.

I would like to thank my friends at the University of Technology Sydney, especially Dr. Shubhekshya Basnet, Dr. Meriam Bautista, Dr. Qingqing Cheng, Dr. Cristo Suarez Rodriguez, and Dr. Noman Haider, for all the good times we shared. You made life at UTS unforgettable!

I would like to extend my gratitude to the admin staff of the School of Electrical and Data Engineering, who always made sure we were comfortable and had everything we needed to complete our studies. Thank you for answering our endless questions, tolerating us when we were being difficult, and doing your best to lift our spirits. You are appreciated, we were lucky to have you!

The University of Moratuwa, Sri Lanka will always hold a special place in my heart, for - among many other reasons - it is where my interest for research was born. I would like to thank my lecturers at the University of Moratuwa, Sri Lanka who in numerous ways strengthened my academic background. I would like to especially mention Mrs. Vishaka Nanayakkara and Dr. Shahani Markus - my two role models, who always inspired me and many others just by being the incomparable professionals they are. I would also like to thank Dr. Chandana Gamage, for encouraging me to pursue higher education and supporting me with numerous opportunities to learn and grow. I am forever thankful!

I would like to extend my heartfelt gratitude to Sujatha Vidyalaya, Matara, Sri Lanka where I was given enormous opportunities to explore and grow. I cannot forget my first teachers there, who built my self-confidence and believed in me without judgment. I would not be who I am today, had it not been for your presence in my life!

I would also like to thank my parents, sister, and brother for their love and for helping me maintain my sanity in difficult times. I would not have been able to complete this thesis without the unconditional support, love, and understanding of my husband. Thank you for encouraging me to believe in myself and have faith that this thesis would one day become a reality!

Finally, I would like to thank the generous people of Sri Lanka and

Australia for funding my education for many years. The free education of Sri Lanka brought me here and for that, I will be forever indebted!

To Thaththa, Amma and Chitral

Contents

A	bstra	\mathbf{ct}						iii
A	cknov	wledgr	nents					ix
Ta	able o	of Con	tents					xv
\mathbf{Li}	st of	Figur	es					xxi
\mathbf{Li}	st of	Table	S				ху	cvii
\mathbf{Li}	ist of	Publi	cations				x	xix
1	Intr	oduct	ion					1
	1.1	Backg	round					2
		1.1.1	UAVs in the Modern World					2
		1.1.2	UAVs in Wireless Communication Systems					3
		1.1.3	Limitations of UAVs					4
		1.1.4	Reinforcement Learning Basics		. .			5
	1.2	Challe	enges and Motivation					7
	1.3	Contra	ibutions					8
	1.4	Organ	isation of the Thesis					11
	1.5	Summ	nary	• •		•		13
2	Lite	erature	e Review					15

	2.1	UAV (Classification	16
	2.2	UAV (Collision Avoidance	17
		2.2.1	Geometric Collision Avoidance Methods	19
		2.2.2	Optimisation Based Collision Avoidance	20
		2.2.3	Sense and Avoid	21
		2.2.4	Learning Based Collision Avoidance	22
		2.2.5	Force Field Based Collision Avoidance	23
	2.3	Energ	y Models for UAVs	24
	2.4	UAVs	in Wireless Communication Systems	27
		2.4.1	UAVs as Mobile Aerial Base Stations	28
		2.4.2	Learning Techniques for UAVs in Wireless Communication	
			Applications	33
	2.5	Summ	ary	35
3	Ene	ergy Ef	ficient Inter-UAV Collision Avoidance	37
	3.1	Potent	tial Field Method Based Inter-UAV Collision Avoidance	38
		211	Potential Field Method	38
		0.1.1		
		3.1.2	Selective Avoidance For UAVs	41
		3.1.2 3.1.3	Selective Avoidance For UAVs	41 47
	3.2	3.1.2 3.1.3 Inter-0	Selective Avoidance For UAVs	41 47 50
	3.2	3.1.2 3.1.3 Inter-0 3.2.1	Selective Avoidance For UAVs	41 47 50 50
	3.2	3.1.2 3.1.3 Inter-1 3.2.1 3.2.2	Selective Avoidance For UAVs	41 47 50 50
	3.2	3.1.2 3.1.3 Inter-1 3.2.1 3.2.2	Selective Avoidance For UAVs	41 47 50 50
	3.2	3.1.2 3.1.3 Inter-1 3.2.1 3.2.2 3.2.3	Selective Avoidance For UAVs	41 47 50 50 50 56 59
	3.2 3.3	3.1.2 3.1.3 Inter-U 3.2.1 3.2.2 3.2.3 Summ	Selective Avoidance For UAVs	 41 47 50 50 50 56 59 60
4	3.2 3.3 Ene	3.1.2 3.1.3 Inter-V 3.2.1 3.2.2 3.2.3 Summ	Selective Avoidance For UAVs	41 47 50 50 56 59 60
4	3.2 3.3 Ene Per:	3.1.2 3.1.3 Inter-0 3.2.1 3.2.2 3.2.3 Summ ergy M forman	Selective Avoidance For UAVs	 41 47 50 50 56 59 60 61

	4.2	Measu	rements and Energy Consumption Patterns	63
	4.3	Challe	enges	73
	4.4	Comp	rehensive Energy Consumption Model for UAVs	74
		4.4.1	Overview	74
		4.4.2	Custom-made, high accuracy, lightweight digital multimeter .	76
		4.4.3	Measurement Results and Energy Consumption Model	78
		4.4.4	Evaluation of the Proposed Energy Consumption Model $\ .$	94
	4.5	Concl	usion	96
5	Ene	ergy-Ef	fficient Fair User Coverage using UAV-BSs	99
	5.1	Syster	m Model and Problem Formulation	100
		5.1.1	Channel Model	101
		5.1.2	Problem Formulation	103
	5.2	Propo	sed Reinforcement Learning Based Solution	106
		5.2.1	State Space and Action Space	107
		5.2.2	Reward Function	108
		5.2.3	Multi-UAV Scenario	110
	5.3	Nume	rical Results	116
		5.3.1	Single UAV-BS Scenario	120
		5.3.2	Number of users covered	123
		5.3.3	Multi UAV-BS Scenario	126
		5.3.4	Convergence of the Proposed DQL Algorithm	131
	5.4	3D Pa	th Planning for UAV-BSs	132
		5.4.1	Problem Formulation	133
		5.4.2	Proposed Deep Reinforcement Learning Based Solution	135
		5.4.3	State Space and Action Space	135
		5.4.4	Reward Function	136
		5.4.5	Numerical Results	138
	5.5	UAV-	BSs for Mobile Users	142

		5.5.1	Problem Formulation
		5.5.2	Proposed Adaptive Network Algorithm
		5.5.3	User Movement Prediction
		5.5.4	User Clustering
		5.5.5	UAV-BS Movement
		5.5.6	Numerical Results
	5.6	Summ	ary
6	UA	V-BSs	for Improved Throughput using Selective CoMP 153
	6.1	System	n Model and Problem Formulation
		6.1.1	Channel Model
		6.1.2	Problem Formulation
	6.2	Propo	sed Solution with Selective CoMP
		6.2.1	Necessary Conditions for Selective CoMP
		6.2.2	Proof of Taylor Expansion Conditions
		6.2.3	State Space and Action Space
		6.2.4	Reward Function
		6.2.5	Reduction in Training Time
		6.2.6	Proposed Team Q-Learning Based Algorithm
	6.3	Nume	rical Results
		6.3.1	Effectiveness Improved ϵ -Greedy Method
		6.3.2	Effectiveness of Selective CoMP
		6.3.3	Effectiveness of the Proposed Method
	6.4	Summ	ary
7	Cor	nclusio	n 189
	7.1	Rema	rks
	7.2	Future	e Work

Bibliography

197

List of Figures

1.1	Estimated market value of UAV-powered solutions	2
1.2	Classification of UAV applications	3
1.3	UAVs in wireless communications	4
1.4	Single agent and multi-agent RL	7
2.1	UAV classification for wireless communication applications $\ . \ . \ .$	17
2.2	Classification of collision avoidance methods $\ldots \ldots \ldots \ldots \ldots \ldots$	18
3.1	The forces acting on a UAV based on the PFM $\ .$	39
3.2	Inter-UAV collision avoidance for a two-UAV system	42
3.3	Inter-UAV collision avoidance for a multi-UAV system	43
3.4	Distances travelled by the UAVs	46
3.5	Total distance comparison	49
3.6	Total airborne time of the UAV system	49
3.7	Traditional PFM avoiding a 3 UAV collision, in 2D plane	51
3.8	Proposed method avoiding a 3 UAV collision, in 3D plane	51
3.9	Critical and safety zones of a UAV	53
3.10	Avoiding a 3 UAV collision	55
3.11	Flow chart for virtually changing the target position	57
3.12	Comparison of distance reduction in UAV systems with varying num-	
	ber of UAVs.	58

4.1	Set-up connecting Power Meter to UAV. An Intel Aero Ready to Fly	
	Drone is used	63
4.2	On-ground power consumption of the UAV	65
4.3	Power consumption for communication	66
4.4	Power consumption trend for hovering with altitude	67
4.5	Power consumption for horizontal flying	68
4.6	Power consumption for flying vertically up	68
4.7	Energy consumption for flying vertical up	69
4.8	Power consumption for flying vertically down	70
4.9	Energy consumption trend for flying vertically down	70
4.10	Impact of speed on power consumption	71
4.11	Energy consumption trend with speed	71
4.12	Impact of payload on power consumption.	72
4.13	Power consumption trend for payload	73
4.14	Circuit to measure and log instantaneous current and voltage every	
	20 ms	76
4.15	Circuit diagram of custom digital multimeter	77
4.16	Set up of the circuit and UAV	77
4.17	Evaluating the accuracy of the custom digital multimeter	78
4.18	On-ground energy consumption of the UAV	79
4.19	UAV power and energy consumption for take-off with varying speeds	82
4.20	Voltage, current and power consumption of the UAV for taking-off,	
	hovering and landing	83
4.21	UAV power consumption for hovering in different altitudes	83
4.22	UAV power consumption for horizontal flying	86
4.23	Forces acting on a UAV when hovering and flying horizontally in	
	constant speed	87
4.24	UAV energy consumption for horizontal flying	88

4.25	UAV power consumption for flying vertically upward to reach different
	relative altitudes
4.26	UAV energy consumption for flying vertically upward to reach differ-
	ent relative altitudes
4.27	UAV power consumption for flying vertically downward 89
4.28	UAV energy consumption for flying vertically downward
4.29	Impact of payload on UAV power consumption
4.30	Impact of speed on UAV power consumption
4.31	Impact of speed on UAV energy consumption
4.32	Impact of wind on power consumption of the UAV
4.33	Power consumption for planned UAV mission
51	Virtually discretised area 100
5.2	Coverage based on hovering point
5.3	Collision between two UAV-BSs 110
5.4	Interference levels based on UAV positions 113
5.5	Comparison of system fairness number of covered users and total
0.0	coverage 118
56	Paths obtained by different methods for a UAV-BS
5.7	Comparison of system fairness with varying number of ground users
5.1	and varying amount of opergy units available
50	Comparison of total system coverage with verying number of ground
5.0	users and verying amount of energy units available
5.0	Comparison of the number of individual compared with compiler
5.9	Comparison of the number of individual users covered with varying
	number of ground users and varying amount of energy units available 123
5.10	Paths obtained by different methods for a scenario of 3 UAV-BSs
	providing coverage
5.11	System fairness comparison
5.12	Total system coverage comparison

5.13 I	Individual user coverage comparison
5.14 (Occurrences of interference
5.15 (Convergence performance of the proposed DQL algorithm 131
5.16 U	UAV-BSs to offload traffic from terrestrial BS
5.17 U	UAV-BS paths obtained by different methods
5.18 (Comparison of system fairness
5.19 (Comparison of total system coverage
5.20 (Comparison of individual user coverage
5.21 U	User coverage gain
5.22 I	Deployed idle UAVs
5.23 S	Spectral efficiency gain
5.24 A	Average number of required UAV-BSs
61 Л	For view of connectivity of a UAV BS deployment 161
0.1	Top view of connectivity of a OAV-DS deployment
6.2 C	Connectivity graph
6.3 I	Intersection of two UAV-BS coverage regions
6.4 (Comparison of analytical (calculated by (6.8) and (6.23)) and simu-
la	ation results for coverage regions with the same radii
6.5 (Comparison of analytical (calculated by (6.8) and (6.23)) and simu-
la	ation results for coverage regions with different radii
6.6 H	Hovering altitude distribution of UAV-BSs
6.7 (Convergence of the proposed algorithm using traditional ϵ -Greedy
n	nethod and modified ϵ -Greedy method
6.8 A	Average throughput (calculated by (6.36)) comparison with and with-
С	out selective CoMP
6.9 7	Total user coverage comparison with and without selective CoMP $$ 180 $$
6.10 (Comparison of system fairness with varying number of UAV-BSs, en-
	194

6.11	Comparison of total system coverage with varying number of UAV-
	BSs, energy available for flying and user density
6.12	Comparison of the number of users with varying number of UAV-BSs,
	energy available for flying and user density

List of Tables

2.1	Summery of the recent work on UAV-BSs
3.1	Simulation parameters
4.1	Intel Aero Ready to Fly Drone specifications
4.2	Dualsky LiPo battery specifications
4.3	UAV operating modes
4.4	Power consumption statistics
4.5	Parameters affecting power consumption for hovering
4.6	Impact of the factors considered on UAV energy consumption 94
4.7	Parameters of UAV energy model
4.8	Parameter values for the UAV mission
5.1	Description and values of parameters used
5.2	Simulation results
6.1	Description of parameters used
6.2	Simulation parameters
6.3	Iterations for convergence

List of Publications

Journal publications

- Hasini Viranga Abeywickrama, Ying He, Eryk Dutkiewicz, Beeshanga Abewardana Jayawickrama and Markus Mueck, "A Reinforcement Learning Approach for Fair User Coverage Using UAV Mounted Base Stations Under Energy Constraints", in *IEEE Open Journal of Vehicular Technology*, vol. 1, pp.67-81, Feb. 2020. (Corresponding to Chapter 5)
- Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama, Ying He and Eryk Dutkiewicz, "Comprehensive Energy Consumption Model for Unmanned Aerial Vehicles, Based on Empirical Studies of Battery Performance", in *IEEE Access*, vol. 6, pp. 58383-58394, Oct. 2018. (Corresponding to Chapter 4)

<u>Under Review</u>

• Hasini Viranga Abeywickrama, Ying He, Eryk Dutkiewicz and Beeshanga Abewardana Jayawickrama, "Reinforcement Learning Based Path Planning for UAV Mounted Base Stations for Improved Throughput with Selective CoMP", submitted to *IEEE Transactions on Mobile Computing*, 2021. (Corresponding to Chapter 6)

Conference publications

- Hasini Viranga Abeywickrama, Ying He, Eryk Dutkiewicz and Beeshanga Abewardana Jayawickrama, "An Adaptive UAV Network for Increased User Coverage and Spectral Efficiency", in *Proc. IEEE Wireless Communications* and Networking Conference (WCNC), pp. 1-6, 2019. (Corresponding to Chapter 5)
- Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama, Ying He and Eryk Dutkiewicz, "Empirical Power Consumption Model for UAVs", in *Proc. IEEE Vehicular Technology Conference (VTC-Fall)*, pp. 1-5, 2018. (Corresponding to Chapter 4)
- Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama, Ying He and Eryk Dutkiewicz, "Potential Field Based Inter-UAV Collision Avoidance Using Virtual Target Relocation", in *Proc. IEEE Vehicular Technology Conference (VTC-Spring)*, pp. 1-5, 2018. (Corresponding to Chapter 3)
- Hasini Viranga Abeywickrama, Beeshanga Abewardana Jayawickrama, Ying He and Eryk Dutkiewicz, "Algorithm for energy efficient inter-UAV collision avoidance", in *Proc. International Symposium on Communications and Information Technologies (ISCIT)*, pp. 1-5, 2017. (Corresponding to Chapter 3)