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ABSTRACT

Generative and Discriminative Learning

for Visual Matching

by

Zhedong Zheng

Visual matching aims to establish image correspondences across viewpoints.

Given a query image, the visual matching system seeks to retrieve images containing

the object of interest from non-overlapping viewpoints according to the similarity

score. The visual matching task remains challenging because objects captured by

di↵erent viewpoints often contain significant intra-class variations caused by back-

ground, viewpoint, object pose, etc. In this thesis, I present my research on com-

bining generative learning with discriminative learning to build one robust visual

matching system. First, due to lack of su�cient data to enhance robustness against

input variations, generative learning is aimed at letting the model potentially “see”

these variations (particularly intra-class variations) during training. With recent

progress in the generative adversarial networks (GANs), generative models have

become appealing choices to introduce additional augmented data for free. Sec-

ond, discriminative learning is designed to formulate visual matching as a metric

learning problem and adopt the discriminative optimization objective to learn the

distance. With these objectives in mind, it motivates us to enable Convolutional

Neural Network (CNN) to learn the mapping function to discriminate between dif-

ferent objects. In this thesis, I investigate two scientific problems of combining two

learning strategies: 1) How to obtain high-quality generated data for subsequential

training? 2) How to leverage the generated data to promote discriminative learning?

To study the two problems, I explore improving learned visual representations by

better leveraging the data from the following three aspects.



First, we present a semi-supervised pipeline that integrates GAN-generated im-

ages into discriminative learning. It contains a generative adversarial model for

unsupervised data generation and a discriminative convolutional neural network

for semi-supervised learning. Second, we observe that the generative pipelines are

typically presented as standalone models, which are relatively separate from the

discriminative learning models. To make the best of the two worlds, we further pro-

pose a learning framework that couples discriminative and generative learning. This

design leads to a unified framework that enables the interactions between generative

and discriminative modules in an end-to-end manner. Third, we further investigate

di↵erent discriminative learning approaches on various data sources. Specifically,

we study the feasibility of borrowing the knowledge from real-world vehicle images

collected on the web and propose a two-stage learning strategy to minimize the do-

main gap between the web data and real-world data. Furthermore, we also explore

the possibility of learning from synthetic data simulated by 3D engines. We propose

a new geo-localization benchmark and build a strong and flexible baseline to learn

from multi-view multi-source data.

In summary, this thesis studies and solves the critical challenges of data limita-

tion and robust representation learning in visual matching. We show the benefits

of leveraging the generative and discriminative learning in deep learning, which

achieves better performance than previous methods.

Dissertation directed by Professor Yi Yang

The Australian Artificial Intelligence Institute (AAII), School of Computer Science
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