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ABSTRACT

Generative and Discriminative Learning

for Visual Matching

by

Zhedong Zheng

Visual matching aims to establish image correspondences across viewpoints.

Given a query image, the visual matching system seeks to retrieve images containing

the object of interest from non-overlapping viewpoints according to the similarity

score. The visual matching task remains challenging because objects captured by

di↵erent viewpoints often contain significant intra-class variations caused by back-

ground, viewpoint, object pose, etc. In this thesis, I present my research on com-

bining generative learning with discriminative learning to build one robust visual

matching system. First, due to lack of su�cient data to enhance robustness against

input variations, generative learning is aimed at letting the model potentially “see”

these variations (particularly intra-class variations) during training. With recent

progress in the generative adversarial networks (GANs), generative models have

become appealing choices to introduce additional augmented data for free. Sec-

ond, discriminative learning is designed to formulate visual matching as a metric

learning problem and adopt the discriminative optimization objective to learn the

distance. With these objectives in mind, it motivates us to enable Convolutional

Neural Network (CNN) to learn the mapping function to discriminate between dif-

ferent objects. In this thesis, I investigate two scientific problems of combining two

learning strategies: 1) How to obtain high-quality generated data for subsequential

training? 2) How to leverage the generated data to promote discriminative learning?

To study the two problems, I explore improving learned visual representations by

better leveraging the data from the following three aspects.



First, we present a semi-supervised pipeline that integrates GAN-generated im-

ages into discriminative learning. It contains a generative adversarial model for

unsupervised data generation and a discriminative convolutional neural network

for semi-supervised learning. Second, we observe that the generative pipelines are

typically presented as standalone models, which are relatively separate from the

discriminative learning models. To make the best of the two worlds, we further pro-

pose a learning framework that couples discriminative and generative learning. This

design leads to a unified framework that enables the interactions between generative

and discriminative modules in an end-to-end manner. Third, we further investigate

di↵erent discriminative learning approaches on various data sources. Specifically,

we study the feasibility of borrowing the knowledge from real-world vehicle images

collected on the web and propose a two-stage learning strategy to minimize the do-

main gap between the web data and real-world data. Furthermore, we also explore

the possibility of learning from synthetic data simulated by 3D engines. We propose

a new geo-localization benchmark and build a strong and flexible baseline to learn

from multi-view multi-source data.

In summary, this thesis studies and solves the critical challenges of data limita-

tion and robust representation learning in visual matching. We show the benefits

of leveraging the generative and discriminative learning in deep learning, which

achieves better performance than previous methods.

Dissertation directed by Professor Yi Yang

The Australian Artificial Intelligence Institute (AAII), School of Computer Science
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Chapter 1

Introduction

Visual matching aims to establish image correspondence across viewpoints. Given

one query image, the visual matching system is to find the image containing the ob-

ject of interest from other viewpoints. The visual matching system can be applied to

broad commercial applications, such as product retrieval for online shopping [90, 12],

vision-based localization for accurate delivery [210, 230], and tra�c management

for smart city [148, 147], attracting lots of attention from the community. In re-

cent years, the advance of visual matching is mainly due to two factors: 1) the

availability of large-scale datasets and 2) the deeply-learned visual representation.

Large-scale datasets facilitate the model training from scratch, which meets the de-

mands of the data-hungry deeply-learned approaches [207, 171]. On the other hand,

the rapid development of deeply-learned representation extracted by Convolutional

Neural Network (CNN) also provides the breakthrough of the visual representation

learning [216, 117, 142].

Despite the great success, the visual matching task remains challenging in the

sense that images captured by di↵erent cameras often contain significant intra-class

variants caused by changes in the background, viewpoint, occlusion and object pose,

etc. As a result, designing or learning representations that are robust against intra-

class variations as much as possible has been one of the major targets in visual

matching. Many e↵orts have been paid to either mining fine-grained visual fea-

tures [142, 136] or deep metric learning [43, 140]. In this thesis, we take one di↵erent

view, focusing on the data limitation and robust learning in visual matching. It is
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worthy to note that the annotation for visual matching is generally expensive due to

the di�culties of drawing bounding boxes and associating two objects from millions

of candidate images. In most recent datasets, despite the large image number in

total, the number of training images for each object is still limited, compromising

the training process of learning common object variance. For instance, there are

17.2 images per categories in Market-1501 [206], 9.6 images in CUHK03 [76] and

23.5 images in DukeMTMC-reID [126, 217] on average.

1.1 Motivation

One straightforward method is to let the model potentially “see” the common

variants of objects. Human could imagine something that did not existed

previously and learn from that imagination in order to conceive the idea

in the real world [28, 57]. This point inspires me of combining generative learn-

ing with discriminative learning to learn one robust system for visual matching.

In particular, the generative model provides more high-quality training data with

diversity, while discriminative learning motivates the matching model to learn the

prior knowledge of potential visual variants.

1.2 Approach

With the rapid development of generative adversarial network [36], the generated

image is easier to access with relatively good quality. One of the main advantages

of using the generated data is that we do not need to collect extra data. Since

the generative model is trained on the original training dataset, the generated data

generally follows the original data distribution. Before we involve the generated

data into training, one remaining question is how to assign one proper label for the

newly generated data. For instance, the samples generated by GAN [36] usually

contain visual elements from di↵erent semantic classes, which is hard to assign an
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appropriate label. In Chapter 3, we adopt one label smoothing regularization policy,

which views all the unlabeled generated data as outliers for existing categories to

regularize the training process.

Another widely-adopted method for data augmentation is to borrow the strength

of the synthetic data from 3D simulation systems. In Chapter 4, we collect one multi-

view multi-source dataset containing both the real-world data and the synthetic data

generated by the 3D engine. We propose one simple but e↵ective model to learn

the visual representation. The experiment verifies the e↵ectiveness of the synthetic

data to learn the viewpoint-invariant feature for real-world applications.

Except for the large-scale generated data, we also can collect more real-world

data from the Internet. The main disadvantage is that the web data is usually

from various data sources and contains di↵erent characteristics compared with the

target dataset. Therefore, the primary challenge we face is the gap between the

collected Internet data and the original training data. In Chapter 5, we investigate

the two-stage progressive learning strategy for the domain adaptation.

In Chapter 6, we propose one unified framework, which enables data generation

and discriminative learning in an end-to-end manner. With the generation quality

improvement and the controllable image manipulation, we adopt one new strategy

of involving one teacher model to predict more accurate pseudo labels for the gen-

erated images. The experiment shows the qualitative and quantitative performance

improvement on the image generation task and the image retrieval task.

1.3 Contributions

The contributions of this thesis on visual matching are as follows,

1. We propose a novel semi-supervised pipeline that integrates GAN-generated

images into the CNN learning machine in vitro and propose a Label Smooth-
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ing Regularization for Outliers (LSRO) method for semi-supervised learning.

The integration of unlabeled data regularizes the CNN learning process. We

show that the LSRO method is superior to the two available strategies for deal-

ing with unlabeled data and demonstrate that the proposed semi-supervised

pipeline has a consistent improvement over the ResNet baseline on three per-

son re-identification datasets and one fine-grained recognition dataset.

2. The first multi-view multi-source dataset for drone-based geo-localization,

University-1652, is contributed. We design e↵ective methods that fully exploit

the rich information contained in multi-view data. We also evaluate three basic

models and three di↵erent loss terms, including contrastive loss [82, 175, 216],

triplet loss [14, 24], and instance loss [215]. Apart from the extensive evalua-

tion of the baseline method, we also test the learned model on real drone-view

images to evaluate the scalability of the learned feature. Our results show that

University-1652 helps the model to learn the viewpoint-invariant feature and

reaches a step closer to practice.

3. To address the data limitation, we introduce one large-scale dataset, called

VehicleNet, to borrow the strength of the public vehicle datasets, which fa-

cilitate the learning of robust vehicle features. In the experiment, we verify

the feasibility and e↵ectiveness of learning from VehicleNet. To leverage the

multi-source vehicle images in VehicleNet, we propose a simple yet e↵ective

learning strategy, i.e., the two-stage progressive learning approach. We discuss

and analyze the e↵ectiveness of the two-stage progressive learning approach.

The proposed method has achieved competitive performance on the CityFlow

benchmark as well as two public vehicle re-identification datasets, i.e., VeRi-

776 [95] and VehicleID [86].

4. We provide the first framework that is able to end-to-end integrate discrimi-
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native and generative learning in a single unified network for visual matching.

Extensive qualitative and quantitative experiments show that our image gen-

eration compares favorably against the existing ones, and more importantly,

our retrieval accuracy consistently outperforms the competing algorithms by

large margins on several benchmarks.

1.4 Outline

This thesis is organized into the following chapters:

• Chapter 2 presents the literature review of existing methods for visual match-

ing, summarising discriminative learning approaches for di↵erent vision tasks,

recent developments in generative learning, and related works on machine

learning studied in this thesis.

• Chapter 3 provides detailed explanations of the proposed semi-supervised

learning pipeline with generated data. It shows that the imperfect gener-

ated data can help to regularize the model learning and avoid currently avail-

able learning frameworks from the over-fitting problem, yielding consistent

improvement.

• Chapter 4 considers the problem of cross-view geo-localization via synthetic

data. Besides phone cameras and satellites, we argue that drones could serve

as the third platform to deal with the geo-localization problem. To verify

the e↵ectiveness of the drone platform, we introduce a new multi-view multi-

source benchmark for drone-based geo-localization, named University-1652.

University-1652 contains data from three platforms, i.e., synthetic drones,

satellites and ground cameras of 1,652 university buildings around the world.

The experiments show that University-1652 helps the model to learn the



6

viewpoint-invariant features and also has good generalization ability in the

real-world scenario.

• Chapter 5 presents a two-stage progressive learning strategy to leverage the

real-world data collected from the web. The first stage of our approach is to

learn the generic representation for all domains by training with the conven-

tional classification loss. The second stage is to fine-tune the trained model

purely based on the target vehicle set, by minimizing the distribution discrep-

ancy between our VehicleNet and any target domain. We discuss our proposed

multi-source dataset VehicleNet and evaluate the e↵ectiveness of the two-stage

progressive representation learning through extensive experiments.

• Chapter 6 explains the joint discriminative and generative learning framework

with an end-to-end training manner. The proposed model involves a genera-

tive module that separately encodes each person into an appearance code and

a structure code, and a discriminative module that shares the appearance en-

coder with the generative module. The proposed joint learning framework ren-

ders significant improvement over the baseline without using generated data,

leading to the state-of-the-art performance on several benchmark datasets.

• Chapter 7 provides conclusions and suggests potential areas to be pursued in

the future.
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Chapter 2

Literature Review

2.1 Discriminative Learning

2.1.1 Person Re-identification

A large family of person re-identification (re-id) research focuses on metric learn-

ing loss. Some methods combine identification loss with verification loss [216, 179],

others apply triplet loss with hard sample mining [43, 127, 21]. Several recent works

employ pedestrian attributes to enforce more supervisions and perform multi-task

learning [84, 137, 164]. Alternatives harness pedestrian alignment and part match-

ing to leverage on the human structure prior. One of the common practices is to

split input images or feature maps horizontally to take advantage of local spatial

cues [189, 77, 142]. In a similar manner, pose estimation is incorporated into learn-

ing local features [136, 204, 172, 138, 218]. Apart from the pose, human parsing

is used in [60] to enhance spatial matching. In comparison, our DG-Net (in Chap-

ter 6) relies only on simple identification loss for re-id learning and requires no extra

auxiliary information such as pose or human parsing for image generation.

Another active research line is to utilize GANs to augment training data. In

[217], Zheng et al. first introduce to use unconditional GAN to generate images from

random vectors (more details are provided in Chapter 3). Huang et al. proceed with

this direction with WGAN [5] and assign pseudo labels to generated images [55].

Li et al. propose to share weights between re-id model and discriminator of GAN

[79]. In addition, some recent methods make use of pose estimation to conduct pose-

conditioned image generation. A two-stage generation pipeline is developed in [102]
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based on pose to refining generated images. Similarly, pose is also used in [33, 87,

118] to generate images of a pedestrian in di↵erent poses to make learned features

more robust to pose variances. Siarohin et al. achieve better pose-conditioned image

generation by using a nearest neighbor loss to replace the traditional `1 or `2 loss

[134]. All the methods set image generation and re-id learning as two disjointed

steps, while our DG-Net (in Chapter 6) end-to-end integrates the two tasks into a

unified network.

Meanwhile, some recent studies also exploit synthetic data for style transfer of

pedestrian images to compensate for the disparity between the source and target

domains. CycleGAN [228] is applied in [26, 222] to transfer pedestrian image style

from one dataset to another. StarGAN [22] is used in [221] to generate pedestrian

images with di↵erent camera styles. Bak et al. [8] employ a game engine to render

pedestrians using various illumination conditions. Wei et al. [171] take semantic

segmentation to extract foreground mask in assisting style transfer. In contrast to

the global style transfer, we aim to manipulate appearance and structure details to

facilitate more robust re-id learning in Chapter 6.

2.1.2 Vehicle Re-identification

Vehicle re-identification (re-id) demands robust and discriminative image rep-

resentation. The recent progress of vehicle re-identification has been due to two

aspects: 1) the availability of the new vehicle datasets [148, 95, 86, 184] and 2) the

discriminative vehicle feature from deeply-learned models [97, 17, 62]. Zapletal et

al. [193] first collect a large-scale dataset with vehicle pairs and extract the color

histograms and oriented gradient histograms feature to discriminate di↵erent cars.

With the recent advance in Convolutional Neural Network (CNN), Liu et al. [91]

combine the CNN-based feature with the traditional hand-crafted features to ob-

tain the robust feature. Qian et al. [117] and Guo et al. [38] propose to aggregate
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the multi-level feature to enrich the representation. To take full advantages of the

fine-grained patterns, Wang et al. [169] first explore the vehicle structure and then

extract the part-based CNN features according to the location of key points. Be-

sides, Shen et al. [131] involve the temporal-spatial information into the model

training as well as the inference process. Another line of works regards vehicle re-

identification as a metric learning problem, and explore the objective functions to

help the representation learning. Triplet loss has been widely studied in person re-

id [43, 215, 27], and also has achieved successes in the vehicle re-id [95]. Zhang

et al. [202] further company the classification loss with triplet loss, which further

improves the re-identification ability. Furthermore, Yan et al. [184] propose a multi-

grain ranking loss to discriminate the appearance-similar cars. Besides, some works

also show the attributes, e.g., color, manufactories and wheel patterns, could help

the model to learn the discriminative feature [84, 148, 164].

2.1.3 Cross-view Geo-localization

Most previous works treat geo-localization as an image retrieval problem. The

key of the geo-localization is to learn the view-point invariant representation, which

intends to bridge the gap between images of di↵erent views. With the development

of the deeply-learned model, convolutional neural networks (CNNs) are widely ap-

plied to extract the visual features. One line of works focuses on metric learning

and builds the shared space for the images collected from di↵erent platforms. Work-

man et al. show that the classification CNN pre-trained on the Place dataset [223]

can be very discriminative by itself without explicitly fine-tuning [174]. The con-

trastive loss, pulling the distance between positive pairs, could further improve the

geo-localization results [175, 82]. Recently, Liu et al. propose Stochastic Attraction

and Repulsion Embedding (SARE) loss, minimizing the KL divergence between the

learned and the actual distributions [89]. Another line of works focuses on the
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spatial misalignment problem in the ground-to-aerial matching. Vo et al. evaluate

di↵erent network structures and propose an orientation regression loss to train an

orientation-aware network [159]. Zhai et al. utilize the semantic segmentation map

to help the semantic alignment [194], and Hu et al. insert the NetVLAD layer [4]

to extract discriminative features [49]. Further, Liu et al. propose a Siamese Net-

work to explicitly involve the spatial cues, i.e., orientation maps, into the training

[88]. Similarly, Shi et al. propose a spatial-aware layer to further improve the lo-

calization performance [133] and Hu et al. [50] also show that spatial alignment is

of importance to the geo-localization task. In Chapter 4, since each location has a

number of training data from di↵erent views, we could train a classification CNN as

the basic model. When testing, we use the trained model to extract visual features

for the query and gallery images. Then we conduct the feature matching for fast

geo-localization.

2.2 Generative Learning

2.2.1 Generative Adversarial Networks

The generative adversarial networks (GANs) learn two sub-networks: a genera-

tor and a discriminator. The discriminator reveals whether a sample is generated or

real, while the generator produces samples to cheat the discriminator. The GANs

are first proposed by Goodfellow et al. [36] to generate images and gain insights

into neural networks. Then, DCGANs [121] provides some techniques to improve

the stability of training. The discriminator of DCGAN can serve as a robust fea-

ture extractor. Salimans et al. [130] achieve a state-of-art result in semi-supervised

classification and improves the visual quality of GANs. InfoGAN [19] learns inter-

pretable representations by introducing latent codes. On the other hand, GANs also

demonstrate potential in generating images for specific fields. Pathak et al. [113]

propose an encoder-decoder method for image inpainting, where GANs are used as



11

the image generator. Similarly, Yeh et al. [188] improve the inpainting performance

by introducing two loss types, and Luo et al. [100] introduce the adversarial loss to

learn the body structure information for human parsing. In [177], 3D object images

are generated by a 3D-GAN, while 2D face images can be automatically made up

with di↵erent fashion styles [56]. In Chapter 3, we do not focus on investigating

more sophisticated sample generation methods. Instead, we use a basic GAN model

[121] to generate unlabeled samples from the training data and show that these

samples help improve discriminative learning.

2.2.2 Dataset Augmentation

Many existing works focus on involving more samples to boost the training. One

line of works leverages the generative model to synthesize more samples for training.

Wu et al. [182] and Yue et al. [192] propose to transfer the image into di↵erent image

styles, e.g., weather conditions, and learn the robust feature for semantic segmen-

tation. In a similar spirit, Zheng et al. [217, 211] utilize the Generative Adversarial

Network (GAN) [36] to obtain lots of pedestrian images, and then involve the gen-

erated samples into training as an extra regularization term. Another line of works

collects the real-world data from the Internet to augment the original dataset [209].

One of the pioneering works [65] is to collect a large number of images via searching

the keywords on the online engine, i.e., Google. After removing the noisy data,

the augmented dataset facilitates the model to achieve state-of-the-art performance

on several fine-grained datasets, e.g., CUBird [160]. In a similar spirit, Zheng et

al. [210] exploit noisy photos of university buildings from Google, benefiting model

learning. Besides, several works [139, 147, 187] applies the game engine to build 3D

models. Sun et al. [139] build a large number of 3D person models, and map models

to 2D plane for generating more 2D training data. Yao et al. [187] and Tang et

al. [147] manipulate the generation setting and leverage attributes, e.g., color and
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pose, to enable multi-task learning on 2D synthetic data. Lin et al. [81] also leverage

the synthetic data to learn the common knowledge of human structure, improving

the model scalability on real data. In contrast with these existing works, we focus

on leveraging the public datasets with di↵erent data biases to learn the common

knowledge given that vehicles share the similar structure in Chapter 5.

2.3 Related Works on Machine Learning

2.3.1 Semi-supervised Learning

Semi-supervised learning is a sub-class of supervised learning, taking unlabeled

data into consideration, especially when the volume of annotated data is small. On

the one hand, some research treats unsupervised learning as an auxiliary task to

benefit sequential supervised learning. For example, Hinton et al. [45] learn a stack

of unsupervised restricted Boltzmann machines to pre-train the model. Ranzato et

al. [122] propose to reconstruct the input at every level of a network to get a compact

representation. In [123], the auxiliary task of ladder networks is to denoise represen-

tations at every level of the model. Besides, one line of works is based on the memory

mechanism, regularizing the supervised learning during training. As one of the early

works, Weston et al. [173] propose to use an external memory module to store the

long-term memory. In this way, the model could reason with the related experience

more e↵ectively. Chen et al. [20] apply the memory to the semi-supervised learning

to learn from the unlabeled data. Since the historical models memorize the experi-

ence from the previous training samples, the temporal ensemble [69] could provide

stable and relatively accurate predictions of the unlabeled data. Except for [69],

there are di↵erent kinds of external memory models. Mean Teacher [149] leverages

the weight moving average model as the memory model to regularize the training

and French et al. [32] extend Mean Teacher for visual domain adaptation. Zhang et

al. [203] propose mutual learning, which learns the knowledge from multiple student
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models. Zheng et al. [213] take one step further and leverage the auxiliary classifier

in vivo to regularize training. On the other hand, several works assign pseudo labels

to the unlabeled data for supervised learning. Papandreou et al. [111] combine

strong and weak labels in CNNs using an expectation-maximization (EM) process

for image segmentation. In [70], Lee assigns a “pseudo label” to the unlabeled data

in the class with the maximum predicted probability. In [108, 130], the samples

produced by the GAN generator are all taken as one class in the discriminator.

Departing from previous semi-supervised works, we adopt a di↵erent regulariza-

tion approach by assigning a uniform label distribution to the generated samples in

Chapter 3.

2.3.2 Transfer Learning

Transfer learning is to propagate the knowledge of the source domain to the

target domain [110]. On the one hand, several recent works focus on the alignment

between the source domain and the target domain, which intend to minimize the

discrepancy of the two domains. One of the pioneering works [46] is to apply the

cyclegan [229] to transfer the image style to the target domain, and then train the

model on the transferred data. In this way, the model could learn the similar patterns

of the target data. Besides the pixel-level alignment, some works [153, 154, 99, 213]

focus on aligning the network activation in the middle or high layers of the neural

network. The discriminator is deployed to discriminate the learned feature of the

source domain from that of the target domain, and the main target is to minimize the

feature discrepancy via adversarial learning. On the other hand, some works deploy

pseudo label learning, yielding competitive results as well [232, 233, 71]. The main

idea is to make the model more confident to the prediction, which minimizes the

information entropy. The pseudo label learning usually contains two steps. The first

step is to train one model from scratch on the source domain and generate the pseudo
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label for the unlabeled data. The second step is to fine-tune the model and make the

model adapt to the target data distribution via the pseudo label. Inspired by the

existing works, we propose one simple yet e↵ective two-stage progressive learning.

We first train the model on the large-scale VehicleNet dataset and then finetune the

model on the target dataset in Chapter 5. The proposed method is also close to the

traditional pre-training strategy, but the proposed method could converge quickly

and yield competitive performance due to the related vehicle knowledge distilled in

the model.
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Chapter 3

Semi-supervised Learning with Generated Data

3.1 Introduction

In this chapter, we propose a semi-supervised pipeline that works on the original

training set without an additional data collection process. It is challenging in 1)

how to obtain more training data only from the training set and 2) how to use the

newly generated data. In this work, the generative adversarial network (GAN) is

used to generate unlabeled samples. We propose the label smoothing regularization

for outliers (LSRO). This method assigns a uniform label distribution to the un-

labeled images, which regularizes the supervised model and improves the baseline.

We verify the proposed method on a practical problem: person re-identification

(re-ID). This task aims to retrieve a query person from other cameras [207]. We

adopt the deep convolutional generative adversarial network (DCGAN) for sample

generation, and a baseline convolutional neural network (CNN) for representation

learning. Experiments show that adding the GAN-generated data e↵ectively im-

proves the discriminative ability of learned CNN embeddings. On three large-scale

datasets, Market1501, CUHK03 and DukeMTMC-reID, we obtain +4.37%, +1.6%

and +2.46% improvement in rank-1 precision over the baseline CNN, respectively.

We additionally apply the proposed method to fine-grained bird recognition and

achieve a +0.6% improvement over a strong baseline.

In particular, this chapter addresses three challenges. First, current research

in GANs typically considers the quality of the sample generation with and without

semi-supervised learning in vivo [108, 130, 121, 19, 113, 177]. Yet a scientific problem
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Figure 3.1 : The pipeline of the proposed method. There are two components: a

generative adversarial model [121] for unsupervised learning and a convolutional

neural network for semi-supervised learning. “Real Data” represents the labeled

data in the given training set; “Training data” includes both the “Real Data” and

the generated unlabeled data. Our target is to learn more discriminative embeddings

with the “Training data”.

remains unknown: moving the generated samples out of the box and using them in

currently available learning frameworks. To this end, this work uses unlabeled data

produced by the DCGAN model [121] in conjunction with the labeled training data.

As shown in Figure 3.1, our pipeline feeds the newly generated samples into another

learning machine (i.e., a CNN). Therefore, we use the term “in vitro” to di↵erentiate

our method from [108, 130, 121, 19]; these methods perform semi-supervised learning

in the discriminator of the GANs (in vivo).

Second, the challenge of performing semi-supervised learning using labeled and

unlabeled data in CNN-based methods remains. Usually, the unsupervised data is

used as a pre-training step before supervised learning [122, 35, 45]. Our method uses

all the data simultaneously. In [111, 70, 108, 130], the unlabeled/weak-labeled real

data are assigned labels according to pre-defined training classes, but our method

assumes that the GAN generated data does not belong to any of the existing classes.
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The proposed LSRO method neither includes unsupervised pre-training nor label

assignments for the known classes. We address semi-supervised learning from a

new perspective. Since the unlabeled samples do not belong to any of the existing

classes, they are assigned a uniform label distribution over the training classes. The

network is trained not to predict a particular class for the generated data with high

confidence.

Third, in person re-id, data annotation is expensive, because one has to draw

a pedestrian bounding box and assign an ID label to it. Recent progress in this

field can be attributed to two factors: 1) the availability of large-scale re-id datasets

[206, 208, 183, 76] and 2) the learned embedding of pedestrians using a CNN [21, 34].

That being said, the number of images for each identity is still limited, as shown in

Figure 3.2. There are 17.2 images per identities in Market-1501 [206], 9.6 images in

CUHK03 [76], and 23.5 images in DukeMTMC-reID [126, 217] on average. So using

additional data is non-trivial to avoid model overfitting. In the literature, pedestrian

images used in training are usually provided by the training sets, without being

expanded. So it is unknown if a larger training set with unlabeled images would

bring any extra benefit. This observation inspired us to resort to the GAN samples

to enlarge and enrich the training set. It also motivated us to employ the proposed

regularization to implement a semi-supervised system.

In an attempt to overcome the above-mentioned challenges, this chapter 1)

adopts GAN in unlabeled data generation, 2) proposes the label smoothing reg-

ularization for outliers (LSRO) for unlabeled data integration, and 3) reports im-

provements over a CNN baseline on three person re-id datasets. In more details, in

the first step, we train DCGAN [121] on the original re-id training set. We generate

new pedestrian images by inputting 100-dim random vectors in which each entry

falls within [-1, 1]. Some generated samples are shown in Figure 3.3 and Figure 3.5.

In the second step, these unlabeled GAN-generated data are fed into the ResNet
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model [41]. The LSRO method regularizes the learning process by integrating the

unlabeled data and, thus, reduces the risk of over-fitting. Finally, we evaluate the

proposed method on person re-id and show that the learned embeddings demon-

strate a consistent improvement over the strong ResNet baseline.

To summarize, our contributions are:

• the introduction of a semi-supervised pipeline that integrates GAN-generated

images into the CNN learning machine in vitro;

• an LSRO method for semi-supervised learning. The integration of unlabeled

data regularizes the CNN learning process. We show that the LSRO method

is superior to the two available strategies for dealing with unlabeled data; and

• a demonstration that the proposed semi-supervised pipeline has a consistent

improvement over the ResNet baseline on three person re-id datasets and one

fine-grained recognition dataset.

The main content of this Chapter has been previously published in

Zhedong Zheng, Liang Zheng, Yi Yang. “Unlabeled Samples Generated by GAN

Improve the Person Re-identification Baseline in vitro”, IEEE International Con-

ference on Computer Vision (ICCV), 2017. (Spotlight)

3.2 Network Overview

In this section, we describe the pipeline of the proposed method. As shown

in Figure 3.1, the real data in the training set is used to train the GAN model.

Then, the real training data and the newly generated samples are combined into

training input for the CNN. In the following section, we will illustrate the structure

of the two components, i.e., the GAN and the CNN, in detail. Note that, our

system does not make major changes to the network structures of the
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Figure 3.2 : The image distribution per class in the dataset Market-1501 [206],

CUHK03 [76] and DukeMTMC-reID (Duke) [126, 217]. We observe that all these

datasets su↵er from the limited images per class. Note that there are only a few

classes with more than 20 images.

GAN or the CNN with one exception - the number of neurons in the last

fully-connected layer in the CNN is modified according to the number of

training classes.

3.2.1 Generative Adversarial Network

Generative adversarial networks have two components: a generator and a dis-

criminator. For the generator, we follow the settings in [121]. We start with a

100-dim random vector and enlarge it to 4 ⇥ 4 ⇥ 16 using a linear function. To

enlarge the tensor, five deconvolution functions are used with a kernel size of 5⇥ 5

and a stride of 2. Every deconvolution is followed by a rectified linear unit and batch

normalization. Additionally, one optional deconvolutional layer with a kernel size of

5⇥ 5 and a stride of 1, and one tanh function are added to fine-tune the result. A

sample that is 128⇥ 128⇥ 3 in size can then be generated.

The input of the discriminator network includes the generated images and the

real images in the training set. We use five convolutional layers to classify whether
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Figure 3.3 : Examples of GAN images and real images. (a) The top two rows

show the pedestrian samples generated by DCGAN [121] trained on the Market-

1501 training set [206]. (b) The bottom row shows the real samples in training set.

Although the generated images in (a) can be easily recognized as fake images by a

human, they still serve as an e↵ective regularizer in our experiment.

the generated image is fake. Similarly, the size of the convolutional filters is 5⇥5 and

their stride is 2. We add a fully-connected layer to perform the binary classification

(real or fake).

3.2.2 Convolutional Neural Network

The ResNet-50 [41] model is used in our experiment. We resize the generated

images to 256⇥256⇥3 using bilinear sampling. The generated images are mixed with

the original training set as the input of the CNN. That is, the labeled and unlabeled

data are simultaneously trained. These training images are shu✏ed. Following the

conventional fine-tuning strategy [207], we use a model pre-trained on ImageNet

[129]. We modify the last fully-connected layer to have K neurons to predict the
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K-classes, where K is the number of the classes in the original training set (as

well as the merged new training set). Unlike [108, 130], we do not view the new

samples as an extra class but assign a uniform label distribution over the existing

classes. So the last fully-connected layer remains K-dimensional. The assigned label

distribution of the generated images is discussed in the next section.

3.3 The Proposed Regularization Method

In this section, we first revisit the label smoothing regularization (LSR), which is

used for fully-supervised learning. We then extend LSR to the scenario of unlabeled

learning, yielding the proposed label smoothing regularization for outliers (LSRO)

method.

3.3.1 Label Smoothing Regularization Revisit

LSR was proposed in the 1980s and recently re-discovered by Szegedy et al. [144].

In a nutshell, LSR assigns small values to the non-ground truth classes instead of

0. This strategy discourages the network to be tuned towards the ground truth

class and thus reduces the chances of over-fitting. LSR is proposed for use with the

cross-entropy loss [144].

Formally, let k 2 {1, 2, ..., K} be the pre-defined classes of the training data,

where K is the number of classes. The cross-entropy loss can be formulated as:

l = �
KX

k=1

log (p(k))q(k), (3.1)

where p(k) 2 [0, 1] is the predicted probability of the input belonging to class k,

and can be outputted by CNN. It is derived from the softmax function which nor-

malizes the output of the previous fully-connected layer. q(k) is the ground truth
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distribution. Let y be the ground truth class label, q(k) can be defined as:

q(k) =

8
>><

>>:

0 k 6= y

1 k = y

. (3.2)

If we discard the 0 terms in Eq. 3.1, the cross-entropy loss is equivalent to only

considering the ground truth term in Eq. 3.3.

l = � log (p(y)). (3.3)

So, minimizing the cross-entropy loss is equivalent to maximizing the predicted

probability of the ground-truth class. In [144], the label smoothing regularization

(LSR) is introduced to take the distribution of the non-ground truth classes into

account. The network is thus encouraged not to be too confident towards the ground

truth. In [144], the label distribution qLSR(k) is written as:

qLSR(k) =

8
>><

>>:

"

K
k 6= y

1� "+ "

K
k = y

, (3.4)

where " 2 [0, 1] is a hyperparameter. If " is zero, Eq. 3.4 reduces to Eq. 3.2. If " is

too large, the model may fail to predict the ground truth label. So in most cases,

" is set to 0.1. Szegedy et al. assume that the non-ground truth classes take on a

uniform label distribution. Considering Eq. 3.1 and Eq. 3.4, the cross-entropy loss

evolves to:

lLSR = �(1� ") log (p(y))� "

K

KX

k=1

log (p(k)). (3.5)

Compared with Eq. 3.3, Eq. 3.5 pays additional attention to the other classes,

rather than only the ground truth class. In this chapter, we do not employ LSR

on the IDE baseline because it yields a slightly lower performance than using Eq.

3.2 (see Section 3.4.3). We re-introduce LSR because it inspires us in designing the

LSRO method.



23

Figure 3.4 : The label distributions of a real image and a GAN-generated image in

our system. We use a classical label distribution (Eq. 3.2) for the real image (left).

For the generated image (right), we employ the proposed LSRO label distribution

(Eq. 3.6), e.g.a uniform distribution on every training class because the generated

image is assumed to belong to none of the training classes. We employ a cross-

entropy loss that combines the two types of label distributions as the optimization

objective (Eq. 3.7).

3.3.2 Label Smoothing Regularization for Outliers

The label smoothing regularization for outliers (LSRO) is used to incorporate

the unlabeled images in the network. This extends LSR from the supervised domain

to leverage unsupervised data generated by the GAN.

In LSRO, we propose a virtual label distribution for the unlabeled images. We

set the virtual label distribution to be uniform over all classes, due to two inspira-

tions. 1) We assume that the generated samples do not belong to any pre-defined

classes. 2) LSR assumes a uniform distribution over the all classes to address over-

fitting. During testing, we expect that the maximum class probability of a generated
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image will be low, i.e., the network will fail to predict a particular class with high

confidence. Formally, for a generated image, its class label distribution, qLSRO(k),

is defined as:

qLSRO(k) =
1

K
. (3.6)

We call Eq. 3.6 the label smoothing regularization for outliers (LSRO).

The one-hot distribution defined in Eq. 3.2 will still be used for the loss compu-

tation for the real images in the training set. Combining Eq. 3.2, Eq. 3.6 and Eq.

3.1, we can re-write the cross-entropy loss as:

lLSRO = �(1� Z) log (p(y))� Z

K

KX

k=1

log (p(k)). (3.7)

For a real training image, Z = 0. For a generated training image, Z = 1. So our

system actually has two types of losses, one for real images and one for generated

images.

Advantage of LSRO. Using LSRO, we can deal with more training images

(outliers) that are located near the real training images in the sample space, and

introduce more color, lighting and pose variances to regularize the model. For

instance, if we only have one green-clothed identity in the training set, the network

may be misled into considering that the color green is a discriminative feature, and

this limits the discriminative ability of the model. By adding generated training

samples, such as an unlabeled green-clothed person, the classifier will be penalized

if it makes the wrong prediction towards the labeled green-clothed person. In this

manner, we encourage the network to find more underlying causes and to be less

prone to over-fitting. We only use the GAN trained on the original training set to

produce outlier images. It would be interesting to further evaluate whether real-

world unlabeled images are able to achieve a similar e↵ect (see Table 3.4).

Competing methods. We compare LSRO with two alternative methods. De-

tails of both methods are available in existing literature [108, 130, 70]; breif descrip-
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tions follow.

• All in one. Using [108, 130], a new class label is created, i.e., K + 1, and

every generated sample is assigned to this class. CNN training follows in

Section 3.4.2.

• Pseudo label. Using [70], during network training, each incoming GAN-

image is passed forward through the current network and is assigned a pseudo

label by taking the maximum value of the probability prediction vector (p(k)

in Eq. 3.1). This GAN-image can be thus trained in the network with this

pseudo label. During training, the pseudo label is assigned dynamically, so

that the same GAN-image may receive di↵erent pseudo labels each time it is

fed into the network. In our experiments, we begin feeding GAN images and

assigning them pseudo labels after 20 epochs. We also set a global weight to

the softmax loss of 0.1 to the GAN and 1 to the real images.

Our experimental results show that the two methods also work on the GAN

images and that LSRO is superior to “All in one” and “Pseudo label”. Explanations

are provided in the Section 3.4.3.

3.4 Experiment

We mainly evaluate the proposed method using the Market-1501 [206] dataset,

because it is a large scale and has a fixed training/testing split. We also report

results on the CUHK03 dataset [76], but due to the computational cost of 20

training/testing splits, we only use the GAN images generated from the

Market-1501 dataset. In addition, we evaluate our method on a recently released

pedestrian dataset DukeMTMC [126] and a fine-grained recognition dataset CUB-

200-2011 [160].
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3.4.1 Person Re-id Datasets

Market-1501 is a large-scale person re-id dataset collected from six cameras.

It contains 19,732 images for testing and 12,936 images for training. The images

are automatically detected by the deformable part model (DPM) [30], so the mis-

alignment is common, and the dataset is close to realistic settings. There are 751

identities in the training set and 750 identities in the testing set. There is an average

of 17.2 training identity images in the set. We use all the 12,936 detected images

from the training set to train the GAN model.

CUHK03 contains 14,097 images of 1,467 identities. Each identity is captured

by two cameras on the CUHK campus. This dataset contains two image sets. One

is annotated by hand-drawn bounding boxes, and the other is produced by the

DPM detector [30]. We use the detected set in this chapter. There is an aver-

age of 9.6 training identity images in the set. We report the averaged result after

training/testing 20 times. We use the single shot setting.

DukeMTMC-reID is a subset of the newly-released multi-target, multi-camera

pedestrian tracking dataset [126]. The original dataset contains eight 85-minute

high-resolution videos from eight di↵erent cameras. Hand-drawn pedestrian bound-

ing boxes are available. In this work, we use a subset of [126] for image-based re-id,

in the format of the Market-1501 dataset [206]. We crop pedestrian images from the

videos every 120 frames, yielding 36,411 total bounding boxes with IDs annotated

by [126]. The DukeMTMC-reID has 1,812 identities from eight cameras. There are

1,404 identities appearing in more than two cameras and 408 identities (distractor

ID) who appear in only one camera. We randomly select 702 IDs as the training set

and the remaining 702 IDs as the testing set. In the testing set, we pick one query

image for each ID in each camera and put the remaining images in the gallery. As a

result, we get 16,522 training images with 702 identities, 2,228 query images of the
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other 702 identities and 17,661 gallery images. We will release our evaluation pro-

tocol. Some example re-id results from the DukeMTMC-reID are shown in Figure

3.6.

3.4.2 Implementation Details

CNN re-id baseline. We adopt the CNN re-id baseline used in [207, 208].

Specifically, the Matconvnet [158] package is used. During training, We use the

ResNet-50 model [41] and modify the fully-connected layer to have 751 and 1,367

neurons for Market-1501 and CUHK03, respectively. All the images are resized to

256 ⇥ 256 before being randomly cropped into 224 ⇥ 224 with random horizontal

flipping. We insert a dropout layer before the final convolutional layer and set the

dropout rate to 0.5 for CUHK03 and 0.75 for Market-1501 and DukeMTMC-reID,

respectively. We use stochastic gradient descent with momentum 0.9. The learning

rate of the convolution layers is set to 0.002 and decay to 0.0002 after 40 epochs and

we stop training after the 50th epochs. During testing, we extract the 2,048-dim

CNN embedding in the last convolutional layer for an input image with a size of 224

⇥ 224. The similarity between two images is calculated by a cosine distance before

ranking.

GAN training and testing. We use Tensorflow [1] and the DCGAN package∗

to train the GAN model using the provided data in the original training set without

preprocessing (e.g., foreground detection). All the images are resized to 128 ⇥

128 and randomly flipped before training. We use Adam [63] with the parameters

�1 = 0.5, �2 = 0.99. We stop training after 30 epochs. During GAN testing, we

input a 100-dim random vector in GAN, and the value of each entry ranges in [-1,

1]. The outputted image is resized to 256 ⇥ 256 and then used in CNN training

(with LSRO). More GAN images are shown in Figure 3.5.

∗https://github.com/carpedm20/DCGAN-tensorflow
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Figure 3.5 : The newly generated images from a DCGAN model trained on

DukeMTMC-reID (Duke) and CUB-200-2011. Through LSRO, they are added to

the training sets of DukeMTMC-reID and CUB-200-2011 to regularize the CNN

model.

3.4.3 Evaluation

The ResNet baseline. Using the training/testing procedure described in Sec-

tion 3.4.2, we report the baseline performance of ResNet in Table 3.1, Table 3.5

and Table 3.3. The rank-1 accuracy is 73.69%, 71.5% and 60.28% on Market-1501,

CUHK03 and DukeMTMC-reID respectively. Our baseline results are on par with

the those reported in [207, 216]. Note that the baseline alone exceeds many previous

works [80, 157, 198].

The GAN images improve the baseline. As shown in Table 3.2, when

we add 24, 000 GAN images to the CNN training, our method significantly im-

proves the re-id performance on Market-1501. We observe improvement of +4.37%

(from 73.69% to 78.06%) and +4.75% (from 51.48% to 56.23%) in rank-1 accuracy

and mAP, respectively. On CUHK03, we observe improvements of +1.6%, +1.2%,

+0.8%, and +1.6% in rank-1, 5, 10 accuracy and mAP, respectively. The improve-
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ment on CUHK03 is relatively small compared to that of Market-1501, because

the DCGAN model is trained on Market-1501 and the generated images share a

more similar distribution with Market-1501 than CUHK03. We also observe im-

provements of +2.46% and +2.14% in rank-1 and mAP, respectively, on the strong

ResNet baseline in the DukeMTMC-reID dataset. These results indicate that the

unlabeled images generated by the GAN e↵ectively yield improvements over the

baseline using the LSRO method.

The impact of using di↵erent numbers of GAN images during training.

We evaluate how the number of GAN images a↵ects the re-id performance. Since the

unlabelled data is easy to obtain, we expect the method would learn more general

knowledge as the number of unlabelled images increases. The experimental results

on Market-1501 are shown in Table 3.2. We note that the number of real training

images in Market-1501 is 12,936. Two observations are made.

First, the addition of di↵erent numbers of GAN images consistently improves

the baseline. Adding approximately 3⇥GAN images compared to the real training

set still has a +2.38% improvement to rank-1 accuracy.

Second, the peak performance is achieved when 2⇥GAN images are added. When

too few GAN sample are incorporated into the system, the regularization ability of

the LSRO is inadequate. In contrast, when too many GAN samples are present,

the learning machine tends to converge towards assigning uniform prediction prob-

abilities to all the training samples, which is not desirable. Therefore, a trade-o↵ is

recommended to avoid poor regularization and over-fitting of uniform label distri-

butions.

GAN images vs. real images in training. To further evaluate the proposed

method, we replace the GAN images with the real images from the CUHK03 dataset

which are viewed as unlabeled in the experiment. Since CUHK03 only 14,097 images,
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Table 3.1 : Comparison of the state-of-the-art methods reported on the Market-1501

dataset. We also provide results of the fine-tuned ResNet baseline. Rank-1 precision

(%) and mAP (%) are listed. * the respective paper is on ArXiv but not published.

method
Single Query Multi. Query

rank-1 mAP rank-1 mAP

BoW+kissme [206] 44.42 20.76 - -

BoW+kissme+BQE [85] 42.55 22.39 - -

MR CNN [155] 45.58 26.11 56.59 32.26

FisherNet [178] 48.15 29.94 - -

SL [16] 51.90 26.35 - -

S-LSTM [157] - - 61.6 35.3

DNS [198] 55.43 29.87 71.56 46.03

Gate Reid [156] 65.88 39.55 76.04 48.45

SOMAnet [9] 73.87 47.89 81.29 56.98

Verif.-Identif. [216] 79.51 59.87 85.84 70.33

DeepTransfer [34]* 83.7 65.5 89.6 73.8

Basel. [207, 216] 73.69 51.48 81.47 63.95

Basel. + LSRO 78.06 56.23 85.12 68.52

Verif-Identif. + LSRO 83.97 66.07 88.42 76.10
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Table 3.2 : Comparison of LSRO, “All in one”, and “Pseudo label” under di↵erent

numbers of GAN-generated images on Market-1501. We show that LSRO is superior

to the other two methods whose best performance is highlighted in blue and red,

respectively. Rank-1 accuracy (%) and mAP (%) are shown.

# GAN Img.
LSRO All in one Pseudo label

rank-1 mAP rank-1 mAP rank-1 mAP

0 (basel.) 73.69 51.48 73.69 51.48 73.69 51.48

12,000 76.81 55.32 75.33 52.82 76.07 53.56

18,000 77.26 55.55 77.20 55.04 76.34 53.45

24,000 78.06 56.23 76.63 55.12 75.80 53.03

30,000 77.38 55.48 75.95 55.18 75.21 52.65

36,000 76.07 54.59 76.87 55.47 74.67 52.38

Table 3.3 : Comparison of the baseline on DukeMTMC-reID. Rank-1 accuracy (%)

and mAP (%) are shown.

method rank-1 mAP

BoW+kissme [206] 25.13 12.17

LOMO+XQDA [80] 30.75 17.04

Basel. [207, 216] 65.22 44.99

Basel. + LSRO 67.68 47.13
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Table 3.4 : We add the 12,000 real pedestrian images in CUHK03 as outliers to

Market-1501. We find the model trained on the generated samples slightly out-

performs the model trained on CUHK03 real data. Rank-1 accuracy (%) and mAP

(%) are shown.

Unsup. Data rank-1 mAP

0 (basel.) 73.69 51.48

CUHK03-Real-12000 75.65 53.25

Market-1501-GAN-12000 76.81 55.32

we randomly select 12,000 for the fair comparison.

Experimental results are shown in Table 3.4. We compare the results obtained

using the 12,000 CUHK03 images and the 12,000 GAN images. We find the real

data from CUHK03 also assists in the regularization and improves the performance.

But the model trained with GAN-generated data is sightly better. In fact, although

the images generated from DCGAN are visually imperfect (see Figure 3.3), they still

possess similar regularization ability as the real images.

Comparison with the two competing methods. We compare the LSRO

method with the “All in one” and “Pseudo label” methods implied in [108, 130]

and [70], respectively. The experimental results on Market-1501 are summarized in

Table 3.2.

We first observe that both strategies yield improvement over the baseline. The

“All in one” method treats all the unlabeled samples as a new class, which forces

the network to make “careful” predictions for the existing K classes. The “Pseudo

label” method gradually labels the new data, and thus introduces more variance to

the network.
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Table 3.5 : Comparison of the state-of-the-art reports on the CUHK03 dataset. We

list the fine-tuned ResNet baseline as well. The mAP (%) and rank1 (%) precision

are presented. * the respective paper is on ArXiv but not published.

method rank-1 rank-5 rank-10 mAP

KISSME [64] 11.7 33.3 48.0 -

DeepReID [76] 19.9 49.3 64.7 -

BoW+HS [206] 24.3 - - -

LOMO+XQDA [80] 46.3 78.9 88.6 -

SI-CI [163] 52.2 84.3 94.8 -

DNS [198] 54.7 80.1 88.3 -

SOMAnet [9] 72.4 92.1 95.8 -

Verif-Identif. [216] 83.4 97.1 98.7 86.4

DeepTransfer [34]* 84.1 - - -

Basel. [207, 216] 71.5 91.5 95.9 75.8

Basel.+LSRO 73.1 92.7 96.7 77.4

Verif-Identif. + LSRO 84.6 97.6 98.9 87.4
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Figure 3.6 : Sample retrieval results on DukeMTMC-reID using the proposed

method. The images in the first column are the query images. The retrieved images

are sorted according to the similarity scores from left to right. The correct matches

are in the blue rectangles, and the false matching images are in the red rectangles.

DukeMTMC-reID is challenging because it contains pedestrians with occlusions and

similar appearance.
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Nevertheless, we find that LSRO exceeds both strategies by approximately +1%

⇠ +2%. We speculate the reason is that the “All in one” method makes a coarse

label estimation, while the “Pseudo label” originally assumes that all the unlabeled

data belongs to the existing classes [70] which is not true in person re-id. While

these two methods still use the one-hot label distribution, the LSRO method makes

a less stronger assumption (label smoothing) towards the labels of the GAN images.

These reasons may explain why LSRO has a superior performance.

Comparison with the state-of-the-art methods. We compare our method

with the state-of-the-art methods on Market-1501 and CUHK03, listed in Table 3.1

and Table 3.5, respectively. On the Market-1501, we achieve rank-1 accuracy

= 78.06%, mAP = 56.23% when using the single query mode, which is the

best result compared to the published papers, and the second best among all the

available results including ArXiv papers. On the CUHK03, we arrive at rank-

1 accuracy = 73.1%, mAP = 77.4% which is also very competitive. The

previous best result is produced by combining the identification and the verification

losses [34, 216]. We further investigate whether the LSRO could work on this two-

stream model. We fine-tuned the publicly available model in [216] with LSRO and

achieve state-of-the-art accuracy rank-1 accuracy = 83.97%, mAP = 66.07%

on Market-1501. On CUHK03, we also observe a state-of-the art performance rank-

1 accuracy = 84.6%, mAP = 87.4%. We, therefore, show that the LSRO

method is complementary to previous methods due to the regularization of the

GAN data.

3.4.4 Fine-grained Recognition

Fine-grained classification also faces the problem of a lack of training data and

annotations. To further test the e↵ectiveness of our method, we provide results on

the CUB-200-2011 dataset [160]. This dataset contains 200 bird classes with 29.97
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Table 3.6 : We show the recognition accuracy (%) on CUB-200-2011. The proposed

method has a 0.6% improvement over the competitive baseline. The two-model

ensemble shows a competitive result.

method model annotation top-1

Zhang et al. [199] AlexNet 2⇥part 76.7

Zhang et al. [199] VGGNet 2⇥part 81.6

Liu et al. [92] ResNet-50 attribute 82.9

Wang et al. [162] 3⇥VGGNet ⇥ 83.0

Basel. [92] ResNet-50 ⇥ 82.6

Basel.+LSRO ResNet-50 ⇥ 83.2

Basel.+LSRO 2⇥ResNet-50 ⇥ 84.4

training images per class on average. Bounding boxes are used in both training

and testing. We do not use part annotations. In our implementation, the ResNet

baseline has a recognition accuracy of 82.6%, which is slightly higher than the 82.3%

reported in [92]. This is the baseline we will compare our method with.

Using the same pipeline in Figure 3.1, we train DCGAN on the 5,994 train-

ing images with the bounding box, and then we combine the real images with the

generated images (see Figure 3.5) to train the CNN. During testing, we adopt the

standard 10-crop testing [67], which uses 256 ⇥ 256 images as input and the av-

eraged prediction as the classification result. As shown in Table 3.6, the strong

baseline alone is superior to some recent methods, and the proposed method further

yields an improvement of +0.6% (from 82.6% to 83.2%). We also combine the two

models generated by our method with a di↵erent initialization to form an ensemble.

This leads to an 84.4% recognition accuracy. In [92], Liu et al. report an 85.5%



37

recognition accuracy with a five-model ensemble using parts and a global scene. We

do not include this result because extra annotations are used. We focus on the

regularization ability of the GAN, but not on producing a state-of-the-art result.

3.5 Summary

In this chapter, we propose an “in vitro” usage of the GANs for discriminative

learning, i.e., person re-identification. Using a baseline DCGAN model [121], we

show that the imperfect GAN images e↵ectively demonstrate their regularization

ability when trained with a ResNet baseline network. Through the proposed LSRO

method, we mix the unlabeled GAN images with the labeled real training images

for simultaneous semi-supervised learning. Albeit simple, we demonstrate consis-

tent performance improvement over the re-id and fine-grained recognition baseline

systems, which sheds light on the practical use of GAN-generated data.

In the future, we will continue to investigate on whether GAN images of better

visual quality yield superior results when integrated into supervised learning. this

chapter provides some baseline evaluations using the imperfect GAN images and the

future investigation would be intriguing.
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Chapter 4

Multi-view Multi-source Image Matching

4.1 Introduction

In this chapter, we study the multi-view multi-source image matching problem,

i.e., cross-view geo-localization task. Most previous works regard the cross-view

geo-localization problem as a sub-task of image retrieval [114, 152, 4, 88, 150, 82,

186, 180]. Given one query image taken at one view, the system aims at finding

the most relevant images in another view among large-scale candidates (gallery).

Since candidates in the gallery, especially aerial-view images, are annotated with

the geographical tag, we can predict the localization of the target place according

to the geo-tag of retrieval results. The opportunity for cross-view geo-localization is

immense, which could enable subsequent tasks, such as, agriculture, aerial photog-

raphy, navigation, event detection and accurate delivery [230, 10, 190].

In general, the key to cross-view geo-localization is to learn a discriminative

image representation, which is invariant to visual appearance changes caused by

viewpoints. Currently, most existing datasets usually provide image pairs and fo-

cus on matching the images from two di↵erent platforms, e.g., phone cameras and

satellites [194, 88]. As shown in Figure 4.1 (a) and (b), the large visual di↵erence

between the two images, i.e., ground-view image and satellite-view image, is chal-

lenging to matching even for a human. The limited two viewpoints in the training

set may also compromise the model to learn the viewpoint-invariant feature.

In light of the above discussions, it is of importance to (1) introduce a multi-view

dataset to learn the viewpoint-invariant feature and bridge the visual appearance
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Figure 4.1 : It is challenging, even for a human, to associate (a) ground-view images

with (b) satellite-view images. In this chapter, we introduce a new dataset based on

the third platform, i.e., drone, to provide real-life viewpoints and intend to bridge

the visual gap against views. (c) Here we show two real drone-view images collected

from public drone flights on Youtube [3, 31]. (d) In practice, we use the synthetic

drone-view camera to simulate the real drone flight. It is based on two concerns.

First, the collection expense of real drone flight is una↵ordable. Second, the synthetic

camera has a unique advantage in the manipulative viewpoint. Specifically, the 3D

engine in Google Earth is utilized to simulate di↵erent viewpoints in the real drone

camera.
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Figure 4.2 : (a) The drone flight curve toward the target building. When flying

around the building, the synthetic drone-view camera could capture rich information

of the target, including scale and viewpoint variants. (b) The ground-view images

are collected from street-view cameras to obtain di↵erent facets of the building as

well. It simulates real-world photos when people walk around the building.

gap, and (2) design e↵ective methods that fully exploit the rich information con-

tained in multi-view data. With the recent development of the drone [230, 47, 75], we

reveal that the drone could serve as a primary data collection platform for cross-view

geo-localization (see Figure 4.1 (c) and (d)). Intuitively, drone-view data is more fa-

vorable because drones could be motivated to capture rich information of the target

place. When flying around the target place, the drone could provide comprehensive

views with few obstacles. In contrast, the conventional ground-view images, includ-

ing panorama, inevitably may face occlusions, e.g., trees and surrounding buildings.

However, large-scale real drone-view images are hard to collect due to the high

cost and privacy concerns. In light of the recent practice using synthetic train-

ing data [125, 87, 181, 73], we propose a multi-view multi-source dataset called

University-1652, containing synthetic drone-view images. University-1652 is fea-

tured in several aspects. First, it contains multi-view images for every target place.

We manipulate the drone-view engine to simulate images of di↵erent viewpoints
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around the target, which results in 54 drone-view images for every place in our

dataset. Second, it contains data from multiple sources. Besides drone-view images,

we also collect satellite-view images and ground-view images as reference. Third, it

is large-scale, containing 50, 218 training images in total, and has 71.64 images per

class on average. The images in the benchmark are captured over 1, 652 buildings

of 72 universities. More detailed descriptions will be given in Section 4.3. Finally,

University-1652 enables two new tasks, i.e., drone-view target localization and drone

navigation.

Task 1: Drone-view target localization. (Drone ! Satellite) Given one

drone-view image or video, the task aims to find the most similar satellite-view

image to localize the target building in the satellite view.

Task 2: Drone navigation. (Satellite ! Drone) Given one satellite-view

image, the drone intends to find the most relevant place (drone-view images) that

it has passed by. According to its flight history, the drone could be navigated back

to the target place.

In the experiment, we regard the two tasks as cross-view image retrieval prob-

lems and compare the generic feature trained on extremely large datasets with the

viewpoint-invariant feature learned on the proposed dataset. We also evaluate three

basic models and three di↵erent loss terms, including contrastive loss [82, 175, 216],

triplet loss [14, 24], and instance loss [215]. Apart from the extensive evaluation of

the baseline method, we also test the learned model on real drone-view images to

evaluate the scalability of the learned feature. Our results show that University-

1652 helps the model to learn the viewpoint-invariant feature, and reaches a step

closer to practice. Finally, the University-1652 dataset, as well as code for baseline

benchmark, will be made publicly available for fair use.

The main content of this Chapter has been previously published in
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Zhedong Zheng, Yunchao Wei, Yi Yang. “University-1652: A Multi-view Multi-

source Benchmark for Drone-based Geo-localization”, ACM Multimedia (ACM MM),

2020.

4.2 Geo-localization Dataset Review

Most previous geo-localization datasets are based on image pairs, and target

matching the images from two di↵erent platforms, such as phone cameras and satel-

lites. One of the earliest works [82] proposes to leverage the public sources to build

image pairs for the ground-view and aerial-view images. It consists of 78k image

pairs from two views, i.e., 45� bird view and ground view. Later, in a similar spirit,

Tian et al. [150] collect image pairs for urban localization. Di↵erently, they argue

that the buildings could serve as an important role to urban localization problem, so

they involve building detection into the whole localization pipeline. Besides, the two

recent datasets, i.e., CVUSA [194] and CVACT [88], study the problem of matching

the panoramic ground-view image and satellite-view image. It could conduct user

localization when Global Positioning System (GPS) is unavailable. The main di↵er-

ence between the former two datasets [82, 150] and the later two datasets [194, 88]

is that the later two datasets focus on localizing the user, who takes the photo.

In contrast, the former two datasets and our proposed dataset focus on localizing

the target in the photo. Multiple views towards the target, therefore, are more fa-

vorable, which could drive the model to understand the structure of the target as

well as help ease the matching di�culty. The existing datasets, however, usually

provide the two views of the target place. Di↵erent from the existing datasets, the

proposed dataset, University-1652, involves more views of the target to boost the

viewpoint-invariant feature learning.
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Table 4.1 : Comparison between University-1652 and other geo-localization datasets.

The existing datasets usually consider matching the images from two platforms,

and provide image pairs. In contrast, our dataset focuses on multi-view images,

providing 71.64 images per location. For each benchmark, the table shows the

number of training images and average images per location, as well as the availability

of collection platform, geo-tag, and evaluation metric.

Datasets University-1652 CVUSA [194] CVACT [88] Lin et al. [82] Tian et al. [150] Vo et al. [159]

#training 701 ⇥ 71.64 35.5k ⇥ 2 35.5k ⇥ 2 37.5k ⇥ 2 15.7k ⇥ 2 900k ⇥ 2

Platform Drone, Ground, Satellite Ground, Satellite Ground, Satellite Ground, 45� Aerial Ground, 45� Aerial Ground, Satellite

#imgs./location 54 + 16.64 + 1 1 + 1 1+1 1+1 1+1 1+1

Target Building User User Building Building User

GeoTag X X X X X X

Evaluation Recall@K & AP Recall@K Recall@K PR curves & AP PR curves & AP Recall@K

Table 4.2 : Statistics of University-1652 training and test sets, including the image

number and the building number of training set, query set and gallery set. We note

that there is no overlap in the 33 universities of the training set and 39 universities

of test sets.

Split #imgs #classes #universities

Training 50,218 701 33

Querydrone 37,855 701

39

Querysatellite 701 701

Queryground 2,579 701

Gallerydrone 51,355 951

Gallerysatellite 951 951

Galleryground 2,921 793
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4.3 University-1652 Dataset

4.3.1 Dataset Description

In this chapter, we collect satellite-view images, drone-view images with the sim-

ulated drone cameras, and ground-view images for every location. We first select

1, 652 architectures of 72 universities around the world as target locations. We do

not select landmarks as the target. The two main concerns are: first, the landmarks

usually contain discriminative architecture styles, which may introduce some unex-

pected biases; second, the drone is usually forbidden to fly around landmarks. Based

on the two concerns, we select the buildings on the campus as the target, which is

closer to the real-world practice.

It is usually challenging to build the relation between images from di↵erent

sources. Instead of collecting data and then finding the connections between various

sources, we start by collecting the metadata. We first obtain the metadata of univer-

sity buildings from Wikipedia ∗, including building names and university a�liations.

Second, we encode the building name to the accurate geo-location, i.e., latitude and

longitude, by Google Map. We filter out the buildings with ambiguous search re-

sults, and there are 1, 652 buildings left. Thirdly, we project the geo-locations in

Google Map to obtain the satellite-view images. For the drone-view images, due to

the una↵ordable cost of the real-world flight, we leverage the 3D models provided

by Google Earth to simulate the real drone camera. The 3D model also provides

manipulative viewpoints. To enable the scale changes and obtain comprehensive

viewpoints, we set the flight curve as a spiral curve (see Figure 4.2(a)) and record

the flight video with 30 frames per second. The camera flies around the target

with three rounds. The height gradually decreases from 256 meters to 121.5 meters,

∗https://en.wikipedia.org/wiki/Category:Buildings_and_structures_by_

university_or_college
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which is close to the drone flight height in the real world [128, 10].

For ground-view images, we first collect the data from the street-view images near

the target buildings from Google Map. Specifically, we manually collect the images

in di↵erent aspects of the building (see Figure 4.2(b)). However, some buildings do

not have the street-view photos due to the accessibility, i.e., most street-view images

are collected from the camera on the top of the car. To tackle this issue, we secondly

introduce one extra source, i.e., image search engine. We use the building name as

keywords to retrieve the relevant images. However, one unexpected observation

is that the retrieved images often contain lots of noise images, including indoor

environments and duplicates. So we apply the ResNet-18 model trained on the

Place dataset [223] to detect indoor images, and follow the setting in [65] to remove

the identical images that belong to two di↵erent buildings. In this way, we collect

5, 580 street-view images and 21, 099 common-view images from Google Map and

Google Image, respectively. It should be noted that images collected from Google

Image only serve as an extra training set but a test set.

Finally, every building has 1 satellite-view image, 1 drone-view video, and 3.38

real street-view images on average. We crop the images from the drone-view video

every 15 frames, resulting in 54 drone-view images. Overall, every building has

totally 58.38 reference images. Further, if we use the extra Google-retrieved data,

we will have 16.64 ground-view images per building for training. Compared with

existing datasets (see Table 4.1), we summarize the new features in University-1652

into the following aspects:

1) Multi-source: University-1652 contains the data from three di↵erent platforms,

i.e., satellites, drones and phone cameras. To our knowledge, University-1652 is the

first geo-localization dataset, containing drone-view images.

2) Multi-view: University-1652 contains the data from di↵erent viewpoints. The
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ground-view images are collected from di↵erent facets of target buildings. Besides,

synthetic drone-view images capture the target building from various distances and

orientations.

3) More images per class: Di↵erent from the existing datasets that provide image

pairs, University-1652 contains 71.64 images per location on average. During the

training, more multi-source & multi-view data could help the model to understand

the target structure as well as learn the viewpoint-invariant features. At the testing

stage, more query images also enable the multiple-query setting. In the experiment,

we show that multiple queries could lead to a more accurate target localization.

4.3.2 Evaluation Protocol

The University-1652 has 1, 652 buildings in total. There are 1, 402 buildings

containing all three views, i.e., satellite-view, drone-view and ground-view images,

and 250 buildings that lack either 3D model or street-view images. We evenly split

the 1, 402 buildings into the training and test sets, containing 701 buildings of 33

Universities, 701 buildings of the rest 39 Universities. We note that there are no

overlapping universities in the training and test sets. The rest 250 buildings

are added to the gallery as distractors. More detailed statistics are shown in Table

4.2. Several previous datasets [88, 194, 159] adopt the Recall@K, whose value is 1 if

the first matched image has appeared before the K-th image. Recall@K is sensitive

to the position of the first matched image, and suits for the test set with only

one true-matched image in the gallery. In our dataset, however, there are multiple

true-matched images of di↵erent viewpoints in the gallery. The Recall@K could

not reflect the matching result of the rest ground-truth images. We, therefore, also

adopt the average precision (AP) in [82, 150]. The average precision (AP) is the

area under the PR (Precision-Recall) curve, considering all ground-truth images in

the gallery. Besides Recall@K, we calculate the AP and report the mean AP value
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of all queries.

4.4 Cross-view Image Matching

Cross-view image matching could be formulated as a metric learning problem.

The target is to map the images of di↵erent sources to a shared space. In this

space, the embeddings of the same location should be close, while the embeddings

of di↵erent locations should be apart.

4.4.1 Visual Representations

There are no “standard” visual representations for the multi-source multi-view

dataset, which demands robust features with good scalability towards di↵erent kinds

of input images. In this work, we mainly compare two types of features: (1) the

generic deep-learned features trained on extremely large datasets, such as ImageNet

[25], Place-365 [223], and SfM-120k [120]; (2) the learned feature on our dataset. For

a fair comparison, the backbone of all networks is ResNet-50 [41] if not specified.

More details are in Section 4.5.2. Next, we describe the learning method on our

data in the following section.

4.4.2 Network Architecture and Loss Function

The images from di↵erent sources may have di↵erent low-level patterns, so we

denote three di↵erent functions Fs, Fg, and Fd, which project the input images

from satellites, ground cameras and drones to the high-level features. Specifically,

to learn the projection functions, we follow the common practice in [82, 88], and

adopt the two-branch CNN as one of our basic structures. To verify the priority of

the drone-view images to the ground-view images, we introduce two basic models

for di↵erent inputs (see Figure 4.3 (I),(II)). Since our dataset contains data from

three di↵erent sources, we also extend the basic model to the three-branch CNN to

fully leverage the annotated data (see Figure 4.3 (III)).
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Figure 4.3 : The basic model architectures for cross-view matching. Since the low-

level patterns of di↵erent data are di↵erent, we apply multi-branch CNN to extract

high-level features and then build the relation on the high-level features. (I) Model-I

is a two-branch CNN model, which only considers the satellite-view and ground-view

image matching; (II) Model-II is a two-branch CNN model, which only considers

the satellite-view and drone-view image matching; (III) Model-III is a three-branch

CNN model, which fully utilizes the annotated data, and considers the images of all

three platforms. There are no “standard” methods to build the relationship between

the data of multiple sources. Our baseline model applies the instance loss [215] and

we also could adopt other loss terms, e.g., triplet loss [14, 24] and contrastive loss

[82, 175, 216].
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To learn the semantic relationship, we need one objective to bridge the gap

between di↵erent views. Since our datasets provide multiple images for every target

place, we could view every place as one class to train a classification model. In light

of the recent development in image-language bi-directional retrieval, we adopt one

classification loss called instance loss [215] to train the baseline. The main idea is

that a shared classifier could enforce the images of di↵erent sources mapping to one

shared feature space. We denote xs, xd, and xg as three images of the location c,

where xs, xd, and xg are the satellite-view image, drone-view image and ground-

view image, respectively. Given the image pair {xs, xd} from two views, the basic

instance loss could be formulated as:

ps = softmax(Wshare ⇥ Fs(xs)), (4.1)

Ls = � log(ps(c)), (4.2)

pd = softmax(Wshare ⇥ Fd(xd)), (4.3)

Ld = � log(pd(c)), (4.4)

where Wshare is the weight of the last classification layer. p(c) is the predicted

possibility of the right class c. Di↵erent from the conventional classification loss,

the shared weight Wshare provides a soft constraint on the high-level features. We

could view the Wshare as one linear classifier. After optimization, di↵erent feature

spaces are aligned with the classification space. In this chapter, we further extend

the basic instance loss to tackle the data from multiple sources. For example, if one

more view is provided, we only need to include one more criterion term:

pg = softmax(Wshare ⇥ Fg(xg)), (4.5)

Lg = � log(pg(c)), (4.6)

Ltotal = Ls + Ld + Lg. (4.7)

Note that we keep Wshare for the data from extra sources. In this way, the soft con-

straint also works on extra data. In the experiment, we show that the instance loss
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objective Ltotal works e↵ectively on the proposed University-1652 dataset. We also

compare the instance loss with the widely-used triplet loss [14, 24] and contrastive

loss [82, 175, 216] with hard mining policy [43, 109] in Section 4.5.3.

4.5 Experiment

4.5.1 Implementation Details

We adopt the ResNet-50 [41] pretrained on ImageNet [25] as our backbone

model. We remove the original classifier for ImageNet and insert one 512-dim fully-

connected layer and one classification layer after the pooling layer. The model is

trained by stochastic gradient descent with momentum 0.9. The learning rate is 0.01

for the new-added layers and 0.001 for the rest layers. Dropout rate is 0.75. While

training, images are resized to 256⇥ 256 pixels. We perform simple data augmenta-

tion, such as horizontal flipping. For satellite-view images, we also conduct random

rotation. When testing, we use the trained CNN to extract the corresponding fea-

tures for di↵erent sources. The cosine distance is used to calculate the similarity

between the query and candidate images in the gallery. The final retrieval result

is based on the similarity ranking. If not specified, we deploy the Model-III, which

fully utilizes the annotated data as the baseline model. We also share the weights

of Fs and Fd, since the two sources from aerial views share some similar patterns.

4.5.2 Geo-localization Results

To evaluate multiple geo-localization settings, we provide query images from

source A and retrieve the relevant images in gallery B. We denote the test setting

as A ! B.

Generic features vs. learned features. We evaluate two categories of features:

1) the generic CNN features. Some previous works [175] show that the CNN model

trained on either ImageNet [25] or PlaceNet [223] has learned discriminative feature



51

Table 4.3 : Comparison between generic CNN features and the learned feature on

the University-1652 dataset. The learned feature is shorter than the generic features

but yields better accuracy. R@K (%) is Recall@K, and AP (%) is average precision

(high is good).

Training Set
Feature Drone ! Satellite Satellite ! Drone

Dim R@1 AP R@1 AP

ImageNet [25] 2048 10.11 13.04 33.24 11.59

Place365 [223] 2048 5.21 6.98 20.40 5.42

SfM-120k [120] 2048 12.53 16.08 37.09 10.28

University-1652 512 58.49 63.13 71.18 58.74

Table 4.4 : Ground-view query vs. drone-view query. m denotes multiple-query

setting. The result suggests that drone-view images are superior to ground-view

images when retrieving satellite-view images.

Query ! Gallery R@1 R@5 R@10 AP

Ground ! Satellite 1.20 4.61 7.56 2.52

Drone ! Satellite 58.49 78.67 85.23 63.13

mGround ! Satellite 1.71 6.56 10.98 3.33

mDrone ! Satellite 69.33 86.73 91.16 73.14
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by itself. We extract the feature before the final classification layer. The feature

dimension is 2048. Besides, we also test the widely-used place recognition model

[120], whose backbone is ResNet-101. 2) the CNN features learned on our dataset.

Since we add one fully-connected layer before the classification layer, our final fea-

ture is 512-dim. As shown in Table 4.3, our basic model achieves much better

performance with the shorter feature length, which verifies the e↵ectiveness of the

proposed baseline.

Ground-view query vs. drone-view query. We argue that drone-view images

are more favorable comparing to ground-view images, since drone-view images are

taken from a similar viewpoint, i.e., aerial view, with the satellite images. Mean-

while, drone-view images could avoid obstacles, e.g., trees, which is common in the

ground-view images. To verify this assumption, we train the baseline model and

extract the visual features of three kinds of data. As shown in Table 4.4, when

searching the relevant satellite-view images, the drone-view query is superior to the

ground-view query. Our baseline model using drone-view query has achieved 58.49%

Rank@1 and 63.13% AP accuracy.

Multiple queries. Further, in the real-world scenario, one single image could

not provide a comprehensive description of the target building. The user may use

multiple photos of the target building from di↵erent viewpoints as the query. For

instance, we could manipulate the drone fly around the target place to capture

multiple photos. We evaluate the multiple-query setting by directly averaging the

query features [206]. Searching with multiple drone-view queries generally arrives

higher accuracy with about 10% improvement in Rank@1 and AP, comparing with

the single-query setting (see Table 4.4). Besides, the target localization using the

drone-view queries still achieves better performance than ground-view queries by a

large margin. We speculate that the ground-view query does not work well in the

single-query setting, which also limits the performance improvement in the multiple-
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Figure 4.4 : The test accuracy curves when using n training drone-view images

per class, n 2 {1, 3, 9, 27, 54}. The two sub-figures are the Rank@1 (%) and AP

(%) accuracy curves, respectively. The orange curves are for the drone navigation

(Satellite ! Drone), and the blue curves are for the drone-view target localization

(Drone ! Satellite).

query setting.

Does multi-view data help the viewpoint-invariant feature learning? Yes.

We fix the hyper-parameters and only modify the number of drone-view images in

the training set. We train five models with n drone-view images per class, where n 2

{1, 3, 9, 27, 54}. As shown in Figure 4.4, when we gradually involve more drone-view

training images from di↵erent viewpoints, the Rank@1 accuracy and AP accuracy

both increase.

Does the learned model work on the real data? Yes. Due to the cost of

collecting real drone-view videos, here we provide a qualitative experiment. We

collect one 4K real drone-view video of University-X from Youtube granted by the

author. University-X is one of the schools in the test set, and the baseline model has

not seen any samples from University-X. We crop images from the video to evaluate

the model. In Figure 4.6, we show the two retrieval results, i.e., Real Drone !

Synthetic Drone, Real Drone ! Satellite. The first retrieval result is to verify
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Figure 4.5 : Qualitative image retrieval results. We show the top-3 retrieval results

of drone-view target localization (left) and drone navigation (right). The results are

sorted from left to right according to their confidence scores. The images in yellow

boxes are the true matches, and the images in the blur boxes are the false matches.

(Best viewed when zoomed in.)

whether our synthetic data well simulates the images in the real drone cameras.

We show the top-5 similar images in the test set retrieved by our baseline model.

It demonstrates that the visual feature of the real drone-view query is close to the

feature of our synthetic drone-view images. The second result on the Real Drone

! Satellite is to verify the generalization of our trained model on the real drone-

view data. We observe that the baseline model has good generalization ability and

also works on the real drone-view images for drone-view target localization. The

true-matched satellite-view images are all retrieved in the top-5 of the ranking list.

Visualization. For additional qualitative evaluation, we show retrieval results by

our baseline model on University-1652 test set (see Figure 4.5). We can see that

the baseline model is able to find the relevant images from di↵erent viewpoints. For

the false-matched images, although they are mismatched, they share some similar
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Figure 4.6 : Qualitative image search results using real drone-view query. We eval-

uate the baseline model on an unseen university. There are two results: (I) In

the middle column, we use the real drone-view query to search similar synthetic

drone-view images. The result suggests that the synthetic data in University-1652

is close to the real drone-view images; (II) In the right column, we show the re-

trieval results on satellite-view images. It verifies that the baseline model trained

on University-1652 has good generalization ability and works well on the real-world

query.

structure pattern with the query image.

4.5.3 Ablation Study and Further Discussion

E↵ect of loss objectives. The triplet loss and contrastive loss are widely applied

in previous works [82, 175, 24, 14, 216], and the weighted soft margin triplet loss is

deployed in [49, 88, 11]. We evaluate these three losses on two tasks, i.e., Drone !

Satellite and Satellite ! Drone and compare three losses with the instance loss used

in our baseline. For a fair comparison, all losses are trained with the same backbone

model and only use drone-view and satellite-view data as the training set. For the

triplet loss, we also try two common margin values {0.3, 0.5}. In addition, the hard

sampling policy is also applied to these baseline methods during training [43, 109].

As shown in Table 4.5, we observe that the model with instance loss arrives better
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Table 4.5 : Ablation study of di↵erent loss terms. To fairly compare the five loss

terms, we trained the five models on satellite-view and drone-view data, and hold

out the ground-view data. For contrastive loss, triplet loss and weighted soft margin

triplet loss, we also apply the hard-negative sampling policy.

Loss
Drone ! Satellite Satellite ! Drone

R@1 AP R@1 AP

Contrastive Loss 52.39 57.44 63.91 52.24

Triplet Loss (margin=0.3) 55.18 59.97 63.62 53.85

Triplet Loss (margin=0.5) 53.58 58.60 64.48 53.15

Weighted Soft Margin Triplet Loss 53.21 58.03 65.62 54.47

Instance Loss 58.23 62.91 74.47 59.45

Table 4.6 : Ablation study. With/without sharing CNN weights on University-1652.

The result suggests that sharing weights could help to regularize the CNN model.

Method
Drone ! Satellite Satellite ! Drone

R@1 AP R@1 AP

Not sharing weights 39.84 45.91 50.36 40.71

Sharing weights 58.49 63.31 71.18 58.74

Table 4.7 : Ablation study of di↵erent input sizes on the University-1652 dataset.

Image Size
Drone ! Satellite Satellite ! Drone

R@1 AP R@1 AP

256 58.49 63.31 71.18 58.74

384 62.99 67.69 75.75 62.09

512 59.69 64.80 73.18 59.40
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Table 4.8 : Comparison of the three CNN models mentioned in Figure 4.3. R@K

(%) is Recall@K, and AP (%) is average precision (high is good). Model-III that

utilizes all annotated data outperforms the other two models in the three of four

tasks.

Model
Training Drone ! Satellite Satellite ! Drone Ground ! Satellite Satellite ! Ground

Set R@1 R@10 AP R@1 R@10 AP R@1 R@10 AP R@1 R@10 AP

Model-I Satellite + Ground - - - - - - 0.62 5.51 1.60 0.86 5.99 1.00

Model-II Satellite + Drone 58.23 84.52 62.91 74.47 83.88 59.45 - - - - - -

Model-III Satellite + Drone + Ground 58.49 85.23 63.13 71.18 82.31 58.74 1.20 7.56 2.52 1.14 8.56 1.41

performance than the triplet loss and contrastive loss on both tasks.

E↵ect of sharing weights. In our baseline model, Fs and Fd share weights,

since two aerial sources have some similar patterns. We also test the model without

sharing weights (see Table 4.6). The performance of both tasks drops. The main

reason is that limited satellite-view images (one satellite-view image per location) are

prone to be overfitted by the separate CNN branch. When sharing weights, drone-

view images could help regularize the model, and the model, therefore, achieves

better Rank@1 and AP accuracy.

E↵ect of the image size. Satellite-view images contain the fine-grained infor-

mation, which may be compressed with small training size. We, therefore, try to

enlarge the input image size and train the model with the global average pooling.

The dimension of the final feature is still 512. As shown in Table 4.7, when we in-

crease the input size to 384, the accuracy of both task, drone-view target localization

(Drone ! Satellite) and drone navigation (Satellite ! Drone) increases. However,

when we increase the size to 512, the performance drops. We speculate that the

larger input size is too di↵erent from the size of the pretrained weight on ImageNet,

which is 224⇥ 224. As a result, the input size of 512 does not perform well.
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Di↵erent baseline models. We evaluate three di↵erent baseline models as dis-

cussed in Section 4.4. As shown in Table 4.8, there are two main observations: 1).

Model-II has achieved better Rank@1 and AP accuracy for drone navigation (Satel-

lite ! Drone). It is not surprising since Model-II is only trained on the drone-view

and satellite-view data. 2). Model-III, which fully utilizes all annotated data, has

achieved the best performance in the three of all four tasks. It could serve as a

strong baseline for multiple tasks.

Proposed baseline on the other benchmark. As shown in Table 4.9, we

also evaluate the proposed baseline on one widely-used two-view benchmark, e.g.,

CVUSA [194]. For fair comparison, we also adopt the 16-layer VGG [135] as the

backbone model. We do not intend to push the state-of-the-art performance but to

show the flexibility of the proposed baseline, which could also work on the conven-

tional dataset. We, therefore, do not conduct tricks, such as image alignment [132]

or feature ensemble [124]. Our intuition is to provide one simple and flexible baseline

to the community for further evaluation. Compared with the conventional Siamese

network with triplet loss, the proposed method could be easily extended to the

training data from N di↵erent sources (N � 2). The users only need to modify the

number of CNN branches. Albeit simple, the experiment verifies that the proposed

method could serve as a strong baseline and has good scalability toward real-world

samples.

Transfer learning from University-1652 to small-scale datasets. We evalu-

ate the generalization ability of the baseline model on two small-scale datasets, i.e.,

Oxford [114] and Pairs [115]. Oxford and Pairs are two popular place recognition

datasets. We directly evaluate our model on these two datasets without finetuning.

Further, we also report results on the revised Oxford and Paris datasets (denoted as

ROxf and RPar) [119]. In contrast to the generic feature trained on ImageNet [25],

the learned feature on University-1652 shows better generalization ability. Specifi-
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Table 4.9 : Comparison of results on the two-view dataset CVUSA [194] with VGG-

16 backbone. †: The method utilizes extra orientation information as input.

Methods R@1 R@5 R@10 R@Top1%

Workman [175] - - - 34.40

Zhai [194] - - - 43.20

Vo [159] - - - 63.70

CVM-Net [49] 18.80 44.42 57.47 91.54

Orientation [88]† 27.15 54.66 67.54 93.91

Ours 43.91 66.38 74.58 91.78

Table 4.10 : Transfer learning from University-1652 to small-scale datasets. We show

the AP (%) accuracy on Oxford [114], Paris [115], ROxford and RParis [119]. For

ROxford and RParis, we report results in both medium (M) and hard (H) settings.

Method Oxford Paris ROxf (M) RPar (M) ROxf (H) RPar (H)

ImageNet 3.30 6.77 4.17 8.20 2.09 4.24

Fs 9.24 13.74 5.83 13.79 2.08 6.40

Fg 25.80 28.77 15.52 24.24 3.69 10.29
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cally, we try two di↵erent branches, i.e., Fs and Fg, to extract features. Fs and Fg

share the high-level feature space but pay attention to di↵erent low-level patterns

of inputs from di↵erent platforms. Fs is learned on satellite-view images and drone-

view images, while Fg learns from ground-view images. As shown in Table 4.10, Fg

has achieved better performance than Fs. We speculate that there are two main

reasons. First, the test data in Oxford and Pairs are collected from Flickr, which

is closer to the Google Street View images and the images retrieved from Google

Image in the ground-view data. Second, Fs pay more attention to vertical viewpoint

changes instead of horizontal viewpoint changes, which are common in Oxford and

Paris.

4.6 Summary

This chapter contributes a multi-view multi-source benchmark called University-

1652. University-1652 contains the data from three platforms, including satellites,

drones and ground cameras, and enables the two new tasks, i.e., drone-view target

localization and drone navigation. We view the two tasks as the image retrieval

problem, and present the baseline model to learn the viewpoint-invariant feature.

In the experiment, we observe that the learned baseline model has achieved competi-

tive performance towards the generic feature, and shows the feasibility of drone-view

target localization and drone navigation. In the future, we will continue to inves-

tigate more e↵ective and e�cient feature of the two tasks. One extension of this

chapter via mining local viewpoint-invariant patterns has been published on TCSVT

2021 [166].
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Chapter 5

Two-stage Progressive Learning

5.1 Introduction

Vehicle re-identification (re-id) is to spot the car of interest in di↵erent cam-

eras and is usually viewed as a sub-task of image retrieval problem [211]. It could

be applied to the public place for the tra�c analysis, which facilitates the tra�c

jam management and the flow optimization [148]. Yet vehicle re-id remains chal-

lenging since it inherently contains multiple intra-class variants, such as viewpoints,

illumination and occlusion. Thus, vehicle re-id system demands a robust and dis-

criminative visual representation given that the realistic scenarios are diverse and

complicated. Recent years, Convolutional Neural Network (CNN) has achieved the

state-of-the-art performance in many computer vision tasks, including person re-id

[142, 141, 218] and vehicle re-id [95, 226, 169], but CNN is data-hungry and prone to

over-fitting small-scale datasets. Since the paucity of vehicle training images com-

promises the learning of robust features, vehicle re-id for the small datasets turn

into a challenging problem.

One straightforward approach is to annotate more data and re-train the CNN-

based model on the augmented dataset. However, it is usually una↵ordable due to

the annotation di�culty and the time cost. Considering that many vehicle datasets

collected in lab environments are publicly available, an interesting problem arises:

Can we leverage the public vehicle image datasets to learn the robust vehicle repre-

sentation? Given vehicle datasets are related and vehicles share the similar structure,

more data from di↵erent sources could help the model to learn the common knowl-
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edge of vehicles. Inspired by the success of large-scale datasets, e.g., ImageNet [25],

we collect a large-scale vehicle dataset, called VehicleNet.

Intuitively, we could utilize VehicleNet to learn the relevance between di↵erent

vehicle re-id datasets. Then the robust features could be obtained by minimizing

the objective function. However, di↵erent datasets are collected in di↵erent envi-

ronments, and contains di↵erent biases. Some datasets, such as CompCar [185], are

mostly collected in the car exhibitions, while other datasets, e.g., City-Flow [148]

and VeRi-776 [95], are collected in the real tra�c scenarios. Thus, another scien-

tific problem of how to leverage the multi-source vehicle dataset occurs. In several

existing works, some researchers resort to transfer learning [110], which aims at

transferring the useful knowledge from the labeled source domain to the unlabeled

target domain and minimizing the discrepancy between the source domain and the

target domain. Inspired by the spirit of transfer learning, in this work, we propose

a simple two-stage progressive learning strategy to learn from VehicleNet and adapt

the trained model to the realistic environment.

In a summary, to address the above-mentioned challenges, i.e., the data limita-

tion and the usage of multi-source dataset, we propose to build a large-scale dataset,

called VehicleNet, via the public datasets and learn the common knowledge of the

vehicle representation via two-stage progressive learning (see Figure 5.1). Specifi-

cally, instead of only using the original training dataset, we first collect free vehicle

images from the web. Comparing with the training set of the CityFlow dataset, we

scale up the number of training images from 26, 803 to 434, 440 as a new dataset

called VehicleNet. We train the CNN-based model to identify di↵erent vehicles,

and extract features. With the proposed two-stage progressive learning, the model

is further fine-tuned to adapt to the target data distribution, yielding the perfor-

mance boost. In the experiment, we show that it is feasible to train models with

a combination of multiple datasets. When training the model with more samples,
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we observe a consistent performance boost, which is consistent with the observation

in some recent works [211, 65, 103]. Without explicit vehicle part matching or at-

tribute recognition, the CNN-based model learns the viewpoint-invariant feature by

“seeing” more vehicles. Albeit simple, the proposed method achieves mAP 75.60%

on the private testing set of CityFlow [148] without extra information. With the

temporal and spatial annotation, our method further arrives the 86.07% mAP. The

result surpasses the AICity Challenge champion, who also uses the temporal and

spatial annotation. In a nutshell, our contributions are two-folds:

• To address the data limitation, we introduce one large-scale dataset, called

VehicleNet, to borrow the strength of the public vehicle datasets, which facil-

itate the learning of robust vehicle features. In the experiment, we verify the

feasibility and e↵ectiveness of learning from VehicleNet.

• To leverage the multi-source vehicle images in VehicleNet, we propose a sim-

ple yet e↵ective learning strategy, i.e., the two-stage progressive learning ap-

proach. We discuss and analyze the e↵ectiveness of the two-stage progressive

learning approach. The proposed method has achieved competitive perfor-

mance on the CityFlow benchmark as well as two public vehicle re-identification

datasets, i.e., VeRi-776 [95] and VehicleID [86].

The main content of this Chapter has been previously published in

Zhedong Zheng, Tao Ruan, Yunchao Wei, Yi Yang, Mei Tao. “VehicleNet:

Learning Robust Visual Representation for Vehicle Re-identification”, IEEE Trans-

actions on Multimedia (TMM), 2020.
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Figure 5.1 : The motivation of our vehicle re-identification method by leveraging

public datasets. The common knowledge of discriminating di↵erent vehicles could

be transferred to the final model.

5.2 Dataset Collection and Task Definition

5.2.1 Dataset Analysis

We involve four public datasets, i.e., CityFlow [148], VeRi-776 [95], CompCar

[185] and VehicleID [86] into training. It results in 434,440 training images of 31,805

classes as VehicleNet. Note that four public datasets are collected in di↵erent

places. There are no overlapping images with the validation set or the private test

set. We plot the data distribution of all four datasets in Figure 5.2. CityFlow [148]

is one of the largest vehicle re-id datasets. There are bounding boxes of 666 vehicle

identities annotated. All images are collected from 40 cameras in a realistic scenario.

We follow the o�cial training/test protocol, which results in 36,935 training images
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of 333 classes and 19,342 testing images of other 333 classes. The training set

is collected from 36 cameras, and test is collected from 23 cameras. There are

19 overlapping cameras. O�cial protocol does not provide a validation set. We

therefore further split the training set into a validation set and a small training

set. After the split, the training set contains 26,803 images of 255 classes, and

the validation query set includes 463 images of the rest 78 classes. We deploy the

original training set as the gallery of the validation set. VeRi-776 [95] contains

49,357 images of 776 vehicles from 20 cameras. The dataset is collected in the real

tra�c scenario, which is close to the setting of CityFlow. The author also provides

the meta data, e.g., the collected time and the location. CompCar [185] is designed

for the fine-grained car recognition. It contains 136,726 images of 1,716 car models.

The author provides the vehicle bounding boxes. By cropping and ignoring the

invalid bounding boxes, we finally obtain 136,713 images for training. The same

car model made in di↵erent years may contain the color and shape di↵erence. We,

therefore, view the same car model produced in the di↵erent years as di↵erent classes,

which results in 4,701 classes. VehicleID [86] consists 2211,567 images of 26,328

vehicles. The vehicle images are collected in two views, i.e., frontal and rear views.

Despite the limited viewpoints, the experiment shows that VehicleID also helps the

viewpoint-invariant feature learning. Other Datasets We also review other public

datasets of vehicle images in Table 5.1. Some datasets contain limited images or

views, while others lack ID annotations. Therefore, we do not use these datasets,

which may potentially compromise the feature learning.

5.2.2 Task Definition

Vehicle re-identification aims to learn a projection function F , which maps the

input image x to the discriminative representation fi = F (xi). Usually, F is decided

by minimizing the following optimization function on a set of training data X =
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Table 5.1 : Publicly available vehicle datasets. †: We view the vehicle model pro-

duced in di↵erent years as di↵erent classes, which leads to more classes. ‡: The

downloaded image number is slightly di↵erent with the report number in [86].

Datasets # Cameras # Images #IDs

CityFlow [148] 40 56,277 666

VeRi-776 [95] 20 49,357 776

CompCar [185] † n/a 136,713 4,701

VehicleID [86] ‡ 2 221,567 26,328

PKU-VD1 [184] 1 1,097,649 1,232

PKU-VD2 [184] 1 807,260 1,112

VehicleReID [193] 2 47,123 n/a

PKU-Vehicle [7] n/a 10,000,000 n/a

StanfordCars [66] n/a 16,185 196

VehicleNet 62 434,440 31,805

{xi}Ni=1 with the annotated label Y = {yi}Ni=1:

min

NX

i=1

loss(WF (xi), yi) + ↵⌦(F ), (5.1)

where loss(·, ·) is the loss function, W is the weight of the classifier, ⌦(F ) is the

regularization term, and ↵ is the weight of the regularization.

Our goal is to leverage the augmented dataset for learning robust image repre-

sentation given that the vehicle shares the common structure. The challenge is to

build the vehicle representation which could fit the di↵erent data distribution among

multiple datasets. Given X
d = {xd

i
}N
i=1 with the annotated label Y d = {yd

i
}N
i=1,d=1,

the objective could be formulated as:

min

DX

d=1

NX

i=1

loss(WF (xd

i
), yd

i
) + ↵⌦(F ), (5.2)
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Figure 5.2 : (a) The image distribution per class in the vehicle re-id datasets, e.g.,

CityFlow [148], VehicleID [86] , CompCar [185] and VeRi-776 [95]. We observe

that the two largest datasets, i.e., VehicleID and CompCars, su↵er from the limited

images per class. (b) Here we also provide the image samples of the four datasets.

The four datasets contain di↵erent visual biases, such as illumination conditions,

collection places and viewpoints.

where D is the number of the augmented datasets. The loss demands F could be

applied to not only the target dataset but also other datasets, yielding the good

scalability. In terms of the regularization term ⌦(F ), we adopt the common prac-

tise of weight decay as weight regularization, which prevents the weight value from

growing too large and over-fits the dataset.

5.3 Methodology

5.3.1 Model Structure

Feature Extractor. Following the common practise in re-identification problems

[95, 211], we deploy the o↵-the-shelf Convolutional Neural Network (CNN) model

pre-trained on the ImageNet dataset [129] as the backbone. Specifically, the pro-

posed method is scalable and could be applied to di↵erent network backbones. We

have trained and evaluated the state-of-the-art structures, including ResNet-50 [42],
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Figure 5.3 : Illustration of the model structure. We remove the original classifier

of the ImageNet pre-trained model, add a new classifier and replace the average

pooling with the adaptive average pooling layer. The adaptive average pooling is to

squeeze the output to the pre-defined shape (i.e., 1⇥ 1).

DenseNet-121 [51], SE-ResNeXt101 [48] and SENet-154 [48], in the Section 5.4. The

classification layer of the pre-trained backbone model is removed, which is dedicated

for image recognition on ImageNet. The original average pooling layer is replaced

with the adaptive average pooling layer, and the adaptive average pooling layer out-

puts the mean of the input feature map in terms of the height and width channels.

We add one fully-connected layer ‘fc1 ’ of 512 dimensions and one batch normaliza-

tion layer to reduce the feature dimension, followed by a fully-connected layer ‘fc2 ’

to output the final classification prediction as shown in the Figure 5.3. The length

of the classification prediction equals to the category number of the dataset. The

cross-entropy loss is to penalize the wrong vehicle category prediction.

Feature Embedding. Vehicle re-identification is to spot the vehicle of interest

from di↵erent cameras, which demands a robust representation to various visual

variants, e.g., viewpoints, illumination and resolution. Given the input image x, we

intend to obtain the feature embedding f = F (x|✓). In this work, the CNN-based

model contains the projection function F and one linear classifier. Specifically, we

regard the ‘fc2 ’ as the conventional linear classifier with the learnable weightW , and
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the module before the final classifier as F with the learned parameter ✓. The output

of the batch normalization layer as f (see the green box in the Figure 5.3). During

inference, we extract the feature embedding of query images and gallery images. The

ranking list is generated according to the similarity with the query image. Given

the query image, we deploy the cosine similarity, which could be formulated as

s(xn, xm) =
fn

||fn||2 ⇥ fm

||fm||2 . The ||.||2 denotes l
2 norm of the corresponding feature

embedding. The large similarity value indicates that the two images are highly

relevant.

5.3.2 Two-stage Progressive Learning

The proposed training strategy contains two stages. During the first stage, we

train the CNN-based model on the VehicleNet dataset and learn the general repre-

sentation of the vehicle images. In particular, we deploy the widely-adopted cross-

entropy loss in the recognition tasks, and the model learns to identify the input

vehicle images from di↵erent classes. The loss could be formulated as:

Lce =
NX

i=1

�pi log(qi), (5.3)

where pi is the one-hot vector of the ground-truth label yi. The one-hot vector

pi(c) = 1 if the index c equals to yi, else pi(c) = 0. qi is the predicted category

probability of the model, and qi = WF (xi|✓). Since we introduce the multi-source

dataset, the cross-entropy loss could be modified to work with the multi-source data.

Lce =
DX

d=1

NX

i=1

�p
d

i
log(qd

i
), (5.4)

where d denotes the index of the public datasets in the proposed VehicleNet. Specif-

ically, d = 1, 2, 3, 4 denotes the four datasets in VehicleNet, i.e., CityFlow [148],

VehicleID [86] , CompCar [185] and VeRi-776 [95], respectively. p
d

i
is the one-hot

vector of yd
i
, and q

d

i
= WF (xd

i
|✓). Note that we treat all the dataset equally, and

demand the model with good scalability to data of di↵erent datasets in VehicleNet.
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In the first stage, we optimize the Equation 5.4 on all the training data of Ve-

hicleNet to learn the shared representation for vehicle images. The Stage-I model

is agnostic to the target environment, hence the training domain and the target

domain are not fully aligned. In the second stage, we take one more step to further

fine-tune the model only upon the target dataset, e.g., CityFlow [148], according to

the Equation 5.3. In this way, the model is further optimized for the target envi-

ronment. Since only one dataset is considered in the Stage-II and the number of

vehicle category is decreased, in particular, the classifier is replaced with the new

fc2 layer with 333 classes from CityFlow. To preserve the learned knowledge, only

the classification layer of the trained model is replaced. Although the new classifier

is learned from scratch, attribute to the decent initial weights in the first stage, the

model could converge quickly and meets the demand for quick domain adaptation.

We, therefore, could stop the training at the early epoch. To summarize, we provide

the training procedure of the proposed method in Algorithm 1.

Discussion: What are the advantages of the proposed two-stage progressive learn-

ing? First, the learned representation is more robust. In the Stage-I, we demand

the model could output the discriminative representation for all of the data in the

multi-source VehicleNet. The model is forced to learn the shared knowledge among

the training vehicle images, which is similar to the pre-training practise in many

re-id works [218, 43]. Second, the representation is also more discriminative. The

first stage contains 31, 805 training classes during training. The axuiliary classes

of other real vehicles could be viewed as “virtual class” as discussed in [15]. Here

we provide one geometric interpretation in the Figure 5.4. After the convergence

of Stage I, the cross-entropy loss pulls the data with the same label together, and

pushes the data from di↵erent labels away from each other on the either side of the

decision boundary. In this manner, as shown in the Figure 5.4 (right), the first stage

will provide better weight initialization for the subsequent fine-tuning on the target
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Figure 5.4 : Geometric Interpretation. Here we give a three-class sample to show

our intuition. Wi denotes the class weight of the final linear classifier. In this

example, the third class denotes one auxiliary class, which belongs to VehicleNet but

the target domain. Therefore, in the Stage-II fine-tuning, we remove the auxiliary

classes, including W3. The cross-entropy loss of Stage-I pulls the samples with the

same label together (close to either the relative weight W1, W2 or W3). In this way,

the positive pair is closer than the negative pair, while the samples are far from the

decision boundary. Stage I, therefore, leads to a decent weight initialization to be

used in Stage II with a large margin from decision boundary, when we leave out the

auxiliary class, i.e., the third class with W3, from VehicleNet.
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dataset. It is because the auxiliary classes expand the decision space and the data

is much far from the new decision boundary, yielding discriminative features.

Figure 5.5 : The inference pipeline for AICity Challenge Competition. Given one

input image and the corresponding cropped image via MaskRCNN [40], we extract

features from the trained models, i.e., 8⇥SE-ResNeXt101 [48]. We normalize and

concatenate the features. Meanwhile, we extract the camera prediction from the

camera-aware model, i.e., the fine-tuned DenseNet121 [51]. Then query expansion

and camera verification are applied. Finally, we utilize the re-ranking technique [220]

to retrieve more positive samples.

5.3.3 Post-processing

Furthermore, we apply several post-processing techniques during the inference

stage as shown in Figure 5.5.

Cropped Images. We notice that the vehicle datasets usually provide a relatively

loose bounding box, which may introduce the background noise. Therefore, we

re-detect vehicles with the state-of-the-art MaskRCNN [40]. For the final result,

the vehicle representation is averaged between original images and cropped images,

yielding more robust vehicle representations.

Model Ensemble. We adopt a straightforward late-fusion strategy, i.e., concate-

nating features [218]. Given the input image xi, the embedding f
j

i
denotes the

extracted feature of xi from the j-th trained model. The final pedestrian descrip-
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Algorithm 1 Training Procedure of the Proposed Method

Require: The multi-source VehicleNet dataset Xd = {xd
i
}D
i=1; The corresponding label

Y d = {yd
i
}D
i=1;

Require: The initialized model parameter ✓; The first stage iteration number T1 and the

second stage iteration number T2.

1: for iteration = 1 to T1 do

2: Stage-I: Input xj
t
to F (·|✓), extract the prediction of the classifier, and calculate

the cross-entropy loss according to Equation 5.4:

Lce =
DX

d=1

NX

i=1

�pdi log(q
d

i ), (5.5)

where pd
i
is the one-hot vector of yd

i
, and qd

i
is the predict probability. qd

i
= WF (xd

i
|✓),

W is the final fully-connected layer, which could be viewed as a linear classifer. We

update the ✓ and W during the training.

3: end for

4: for iteration = 1 to T2 do

5: Stage-II: We further fine-tune the trained model only on the target dataset, e.g.,

CityFlow. The classifier is replaced with a new one, since we have less classes. We

assume that CityFlow is the first dataset (d = 1). Thus, we could update ✓ upon the

cross-entropy loss according to Equation 5.3:

Lce =
NX

i=1

�p1i log(q
1
i ). (5.6)

where p1
i
is the one-hot vector of y1

i
of the CityFlow dataset, and q1

i
is the predict

probability. q1
i
= W 0F (x1

i
|✓). We note that W 0 is the new fully-connected layer,

which is trained from scratch and di↵erent from W used in the Stage-I.

6: end for

7: return ✓.
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tor could be represented as:fi = [ f
1
i

||f1
i ||2

,
f
2
i

||f2
i ||2

, ...
f
n
i

||fn
i ||2 ]. The || · ||2 operator denotes

l
2-norm, and [·] denotes feature concatenation.

Query Expansion & Re-ranking. We adopt the unsupervised clustering method,

i.e., DBSCAN [29] to find the most similar samples. The query feature is updated to

the mean feature of the other queries in the same cluster. Furthermore, we adopt the

re-ranking method [220] to refine the final result, which takes the high-confidence

candidate images into consideration. In this work, our method does not modify the

re-ranking procedure. Instead, the proposed method obtains discriminative vehicle

features that distill the knowledge from “seeing” various cars. With better features,

re-ranking is more e↵ective.

Camera Verification. We utilize the camera verification to further remove some

hard-negative samples. When training, we train one extra CNNmodel, i.e., DenseNet121 [51],

to recognize the camera from which the photo is taken. When testing, we extract

the camera-aware features from the trained model and then cluster these features

by DBSCAN [29]. In this way, we could obtain clustering centers. We applied the

prior assumption that the query image and the true matches are taken in di↵erent

cameras, indicating that the query images and true matches in the gallery usually

belong to di↵erent camera clustering centers. Given a query image, we remove the

images of the same camera cluster from candidate images.

Temporal Annotation. Temporal annotation can be easily obtained by recording

the timestamp of which the target vehicle passes by. The prior assumption is that the

vehicles usually appear once in the whole camera network, indicating that the two

images with long time interval belong to two di↵erent vehicles. Given the timestamp

t of the query image, we filter out the image in the gallery with long interval ⌧ . As

a result, we only consider the candidate images with the timestamp in [t� ⌧, t+ ⌧ ],

which also could filter out lots of the hard-negative samples.
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Table 5.2 : The Rank@1 (%) and mAP (%) accuracy with di↵erent number of

training images. Here we report the results based on the validation set we splitted.

† Note that we split a validation set from the training set, which leads to less training

data.

Training Datasets
# Training Performance

Images Rank@1 (%) mAP (%)

CityFlow [148] † 26,803 73.65 37.65

CityFlow [148]+ VeRi-776 [95] +49,357 79.48 43.47

CityFlow [148]+ CompCar [185] +136,713 83.37 48.71

CityFlow [148]+ VehicleID [86] +221,567 83.37 47.56

VehicleNet 434,440 88.77 57.35

5.4 Experiment

5.4.1 Implementation Details

For two widely-adopted public datasets, i.e., VeRi-776 and VehicleID, we follow

the setting in [116, 39] to conduct a fair comparison. We adopt ResNet-50 [41] as

the backbone network and input images are resized to 256 ⇥ 256. We apply SGD

optimizer with momentum of 0.9 and mini-batch size of 36. The weight decay is set

to 0.0001 following the setting in [41]. The initial learning rate is set to 0.02 and is

divided by a factor 10 at the 40-th epoch of the first stage and the 8-th epoch in

the second stage. The total epochs of the first stage is 60 epochs, while the second-

stage fine-tuning is trained with 12 epochs. During inference, we only apply

the mean feature of the image flipped horizontally, without using other

post-processing approaches for two academic datasets.

For the competition dataset, i.e., CityFlow [148], we adopt one sophisticated
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Table 5.3 : Comparison with the state-of-the-art methods in terms of Rank@1 (%)

and mAP (%) accuracy on the VeRi-776 dataset [95] and the VehicleID dataset [86].

-: denotes the conventional hand-crafted features and *: denotes that the approach

utilizes the self-designed network structure. The best results are in bold.

Methods Backbones
VeRi-776 VehicleID (Small) VehicleID (Medium) VehicleID (Large)

mAP (%) Rank@1 (%) Rank@1 (%) Rank@5 (%) Rank@1 (%) Rank@5 (%) Rank@1 (%) Rank@5 (%)

LOMO [80] - 9.78 23.87 19.74 32.14 18.95 29.46 15.26 25.63

GoogLeNet [185] GoogLeNet 17.81 52.12 47.90 67.43 43.45 63.53 38.24 59.51

FACT [95] - 18.73 51.85 49.53 67.96 44.63 64.19 39.91 60.49

XVGAN [225] * 24.65 60.20 52.89 80.84 - - - -

SiameseVisual [131] * 29.48 41.12 - - - - - -

OIFE [169] * 48.00 65.92 - - - - 67.0 82.9

VAMI [226] * 50.13 77.03 63.12 83.25 52.87 75.12 47.34 70.29

NuFACT [96] * 53.42 81.56 48.90 69.51 43.64 65.34 38.63 60.72

FDA-Net [98] * 55.49 84.27 - - 59.84 77.09 55.53 74.65

QD-DLF [227] * 61.83 88.50 72.32 92.48 70.66 88.90 68.41 83.37

GGL [93] * 61.7 89.4 77.1 92.8 72.7 89.2 70.0 87.1

AAVER [61] ResNet-50 58.52 88.68 72.47 93.22 66.85 89.39 60.23 84.85

PVSS [94] ResNet-50 62.62 90.58 - - - - - -

C2FRank [38] GoogLeNet - - 61.1 63.5 56.2 60.0 51.4 53.0

VANet [23] GoogLeNet 66.34 89.78 83.26 95.97 81.11 94.71 77.21 92.92

PAMTRI [147] DenseNet-121 71.88 92.86 - - - - - -

SAN [116] ResNet-50 72.5 93.3 79.7 94.3 78.4 91.3 75.6 88.3

Part [39] ResNet-50 74.3 94.3 78.4 92.3 75.0 88.3 74.2 86.4

UMTS [59] ResNet-50 75.9 95.8 80.9 87.0 78.8 84.2 76.1 82.8

PVEN [105] ResNet-50 79.5 95.6 84.7 97.0 80.6 94.5 77.8 92.0

Ours (Stage-I) ResNet-50 80.91 95.95 83.26 96.77 81.13 93.68 79.06 91.84

Ours (Stage-II) ResNet-50 83.41 96.78 83.64 96.86 81.35 93.61 79.46 92.04
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model, i.e., SE-ResNeXt101 [48] as the backbone to conduct the ablation study and

report the performance. The vehicle images are resized to 384 ⇥ 384. Similarly,

the first stage is trained with 60 epochs, and the second stage contains 12 epochs.

When conducting inference on the validation set, we only apply the mean feature of

the image flipped horizontally, without using other post-processing approaches. In

contrast, to achieve the best results on the private test set of CityFlow, we apply

all the post-processing methods mentioned in Section 5.3.3.

5.4.2 Quantitative Results

E↵ect of VehicleNet. To verify the e↵ectiveness of the public vehicle data towards

the model performance, we involve di↵erent vehicle datasets into training and report

the results, respectively (see Table 5.2). There are two primary points as follows:

First, the model performance has been improved by involving the training data

of one certain datasets, either VeRi-776, CompCar or VehicleID. For instance, the

model trained on CityFlow + CompCar has achieved 83.37% Rank@1 and 48.71%

mAP, which surpasses the baseline of 73.65% Rank@1 and 37.65% mAP. It shows

that more training data from other public datasets indeed helps the model learn-

ing the robust representation of vehicle images. Second, we utilize the proposed

large-scale VehicleNet to train the model, which contains all the training data of

four public datasets. We notice that there are +15.12% Rank@1 improvement from

73.65% Rank@1 to 88.77% Rank@1, and +19.70% mAP increment from 37.65%

mAP to 57.35% mAP. It shows that the proposed VehicleNet has successfully “bor-

rowed” the strength from multiple datasets and help the model learning robust and

discriminative features.

Comparison with the State-of-the-art. We mainly compare the performance

with other methods on the test sets of two public vehicle re-id datasets, i.e., VeRi-

776 [95] and VehicleID [86] as well as AICity Challenge [147] private test set. The
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Table 5.4 : Competition results of AICity Vehicle Re-id Challenge on the private

test set. Our results are in bold.

Team Name Temporal Annotation mAP(%)

Baidu ZeroOne [145] X 85.54

UWIPL [52] X 79.17

ANU [101] X 75.89

Ours ⇥ 75.60

Ours X 86.07

comparison results with other competitive methods are as follows: VeRi-776 &

VehicleID. There are two lines of competitive methods. One line of works deploy

the hand-crafted features [80, 95] or utilize the self-designed network [226, 169, 96].

In contrast, another line of works leverages the model pre-trained on ImageNet,

yielding the superior performance [61, 23, 147, 39]. As shown in Table 5.3, we first

evaluate the proposed approach on the VeRi-776 dataset [95]. We leave out the

VeRi-776 test set from the VehicleNet to fairly compare the performance, and we

deploy the ResNet-50 [41] as backbone network, which is used by most compared

methods. The proposed method has achieved 83.41% mAP and 96.78% Rank@1

accuracy, which is superior to the second best method, i.e., Part-based model [39]

(74.3% mAP and 94.3% Rank@1) by a large margin. Meanwhile, we observe a

similar result on the VehicleID dataset [86] in all three settings (Small /Medium

/Large). Small, Medium and Large setting denotes di↵erent gallery sizes of 800,

1600 and 2400, respectively. The proposed method also arrives competitive results,

e.g., 83.64% Rank@1 of the small gallery setting, 81.35% Rank@1 of the medium

gallery setting, and 79.46% Rank@1 of the large gallery setting. One competitive

method, VANet [23], has achieved comparable results on VehicleID, but is inferior
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to the proposed method on VeRi-776. It is because VANet introduces one extra

viewpoint module, which could discriminate di↵erent viewpoints, i.e., front view and

rear view. Since the VehicleID dataset only contains two views, VANet works well.

In contrast, on another benchmark VeRi-776, containing 20 cameras, the proposed

method is more scalable than VANet in terms of the multi-camera scenario. AICity

Challenge. For AICity Challenge Competition (on the private test set of CityFlow

[148]), we adopt a slightly di↵erent training strategy, using the large input size as

well as the model ensemble. The images are resized to 384 ⇥ 384. We adopt the

mini-batch SGD with the weight decay of 5e-4 and a momentum of 0.9. In the first

stage, we decay the learning rate of 0.1 at the 40-th and 55-th epoch. We trained 32

models with di↵erent batchsizes and di↵erent learning rates. In the second stage,

we fine-tune the models on the original dataset. We decay the learning rate of 0.1 at

the 8-th epoch and stop training at the 12-th epoch. Finally, we select 8 best models

on the validation set to extract the feature. When testing, we adopt the horizontal

flipping and scale jittering, which resizes the image with the scale factors [1, 0.9, 0.8]

to extract features. As a result, we arrive at 75.60% mAP on the private testing set.

Without extra temporal annotations, our method has already achieved competitive

results (see Table 5.4). With the help of extra annotation of temporal and spatial

information, we have achieved 86.07% mAP, which surpasses the champion of the

AICity Vehicle Re-id Challenge 2019.

5.4.3 Further Evaluations and Discussion

E↵ect of Two-stage Progressive Learning. We compare the final results of the

Stage I and the Stage II on the private test set of CityFlow (see Table 5.5). We

do not evaluate the performance on the validation set we splitted, since we utilize

all training images into fine-tuning. The model of Stage II has arrived 87.45%

Rank@1 and 75.60% mAP accuracy, which has significantly surpassed the one of
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Table 5.5 : The Rank@1(%) and mAP (%) accuracy with di↵erent stages on the

CityFlow private test set.

Private Test Set

Rank@1(%) mAP(%)

Stage I 82.70 68.21

Stage II 87.45 75.60

Table 5.6 : E↵ect of di↵erent post-processing techniques on the CityFlow validation

set.

Method Performance

with Cropped Image? X X X X X

Model Ensemble? X X X X

Query Expansion? X X X

Camera Verification? X X

Re-ranking? X

mAP (%) 57.35 57.68 61.29 63.97 65.97 74.52

Table 5.7 : The Rank@1 (%) and mAP (%) accuracy with di↵erent backbones on

the CityFlow validation set. The best results are in bold.

Backbones
ImageNet Performance

Top5(%) Rank@1 (%) mAP (%)

ResNet-50 [41] 92.98 77.97 43.65

DenseNet-121 [51] 92.14 83.15 47.17

SE-ResNeXt101 [48] 95.04 83.37 48.71

SENet-154 [48] 95.53 81.43 45.14
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Table 5.8 : The Rank@1(%) and mAP (%) accuracy on the CityFlow validation set

with two di↵erent sampling methods. Here we use the ResNet-50 backbone.

Sampling Policy
Performance

Rank@1(%) mAP(%)

Naive Sampling 77.97 43.65

Balanced Sampling 76.03 40.09

Figure 5.6 : Qualitative image search results using the vehicle query images from

the CityFlow dataset. We select the four query images from di↵erent viewpoints.

The results are sorted from left to right according to the similarity score. The

true-matches are in green, when the false-matches are in red.

Figure 5.7 : Visualization of the activation heatmap in the learned model on Vehi-

cleNet. The vehicle images in every subfigure (a)-(c) are from the same vehicle ID.

Noted that there do exist strong response values at the regions containing discrimi-

native details, such as headlights and tire types.



82

Stage I +7.39% mAP and +4.75% Rank@1. It verifies the e↵ectiveness of the

two-stage learning. In the Stage I, the target training set, i.e., CityFlow, only

occupy 6% of VehicleNet. The learned model, therefore, is sub-optimal for the

target environment. To further optimize the model for CityFlow, the second stage

fine-tuning helps to minor the gap between VehicleNet and the target set, yielding

better performance. We also observe similar results on the other two datasets, i.e.,

VeRi-776 and VehicleID. As shown in the last two row of Table 5.3, the Stage-

II fine-tuning could further boost the performance. For instance, the proposed

method has achieved +2.50% mAP and +0.83% Rank@1 improvement on VeRi-

776. We compare the two-stage learning strategy with the domain adaption policy,

which is usually based on style transferring. Specifically, we apply the prevailing

CycleGAN [229] to change the style of data in VehicleNet to VeRi-776. We observe

that CycleGAN could successfully change the vehicle style. However, CycleGAN

introduces some unrealistic noise. As shown in Table 5.9, the style transferring

method is inferior to the proposed two-stage learning strategy. We speculate that

it is due to the generation noise by CycleGAN. Besides, training CycleGAN costs

extra time, which may be not ideal for the fast domain adaptation.

Table 5.9 : Comparison with other complementary methods on VeRi-776.

Method Rank@1(%) mAP(%)

w CycleGAN data 92.91 75.23

Stage I 95.95 80.91

Stage II 96.78 83.41

Stage II + PCB [142] 97.26 83.54

E↵ect of Part-based Method Fusion. The proposed method has the potential

to fuse with other competitive methods. We select the second best method [116] on
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VeRi-776 to verify the potential of the proposed method. [116] utilizes one similar

policy as PCB [142] to split the feature map horizontally into 4 parts. As shown

in Table 5.9, ours + PCB can take one step further, yielding 97.26% Rank@1 and

83.54% mAP.

E↵ect of Post-processing. Here we provide the ablation study of post-processing

techniques on the validation set of CityFlow (see Table 5.6). When applying the

augmentation with cropped images, model ensemble, query expansion, camera ver-

ification and re-ranking, the performance gradually increases, which verifies the

e↵ectiveness of post-processing methods.

E↵ect of Di↵erent Backbones. We observe that di↵erent backbones may lead

to di↵erent results. As shown in Table 5.7, SE-ResNeXt101 [48] arrives the best

performance with 83.37 Rank@1 and 48.71% mAP on the validation set of the

CityFlow dataset. We speculate that it is tricky to optimize some large-scale neural

networks due to the problem of gradient vanishing. For instance, we do not achieve

a better result (45.14% mAP) with SENet-154 [48], which preforms better than SE-

ResNeXt101 [48] on ImageNet [25]. We hope this observation could help the further

study of the model backbone selection in terms of the re-identification task.

E↵ect of Sampling Policy. Since we introduce more training data in the first

stage, the data sampling policy has a large impact on the final result. We compare

two sampling policies. The naive method is to sample every image once in every

epoch. Another method is called balanced sampling policy. The balanced sampling

is to sample the images of di↵erent class with equal possibility. As shown in Table

5.8, the balanced sampling harms the result. We speculate that the long-tailed

data distribution (see Figure 5.2) makes the balanced sampling have more chance

to select the same image in the classes with fewer images. Thus the model is prone

to over-fit the class with limited samples, which compromise the final performance.
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Therefore, we adopt the naive sampling policy.

Visualization of Vehicle Re-id Results. As shown in Figure 5.6, we provide

the qualitative image search results on CityFlow. We select the four query images

from di↵erent viewpoints, i.e., the front view, the overhead view, the rear view and

the side view. The proposed method has successfully retrieved the relevant results

in the top-5 of the ranking list.

Visualization of Learned Heatmap. Following [216, 7], we utilize the network

activation before the pooling layer to visualize the attention of the learned model.

For instance, given one middle-level feature of 14 ⇥ 14 ⇥ 2048, we aggregate the

activation of all channels via summation, resulting one feature of 14 ⇥ 14. Then

we normalize the feature to [0,1], and map the value to the corresponding heatmap

color. The generation code is avaiable at ∗. As shown in Figure 5.7, the trained

model has strong response values at the regions containing discriminative details,

such as headlights and tire types. In particular, despite di↵erent viewpoints, the

model could focus on the salient areas, yielding the viewpoint-invariant feature.

Model Convergence. As shown in Figure 5.8 (left), despite a large number of

training classes, i.e., 31, 805 categories in VehicleNet, the model could converge

within 60 epochs. As discussed, the first stage provides a decent weight initialization

for fine-tuning in the second stage. Therefore, Stage-II training converges quickly

within 12 epochs (see Figure 5.8 (right)).

Time Cost. The Stage-I training costs about 30 hours on the whole VehicleNet

with 3 ⇥ Nvidia 2080TI. The Stage-II training costs about 1.5 hours for fine-tuning.

∗
https://github.com/layumi/Person_reID_baseline_pytorch/blob/dev/visual_heatmap.py
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Figure 5.8 : The training losses of the two stages. Due to the large-scale data and

classes, the first stage (left) takes more epochs to converge. Attribute to the trained

weight of the first stage, the second stage (right) converge early.

5.5 Summary

In this chapter, we intend to address two challenges in the context of vehicle

re-identification, i.e., the lack of training data, and how to harness multiple public

datasets. To address the data limitation, we build a large-scale dataset called Ve-

hicleNet. To learn the robust feature, we propose a simple yet e↵ective approach,

called two-stage progressive learning. We achieve 86.07% mAP accuracy in AICity19

Challenge and competitive performance on two other public datasets, i.e., VeRi-776

and VehicleID. In the future, we will try two data collection methods to further

improve the work. 1). One method is to collect data from the search engine, i.e.,

Google, to enlarge the dataset. The existing works [65, 210] show that a few noise

annotations usually do not compromise the model training. 2). The other way is to

generate the synthetic data by either GAN [36] or 3D-models [187], to further ex-

plore the robust representation learning. Besides, we will explore weakly supervised

learning approaches [196, 195, 106] to fully take advantage of unlabeled data.
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Chapter 6

Joint Discriminative and Generative Learning

6.1 Introduction

Person re-identification (re-id) aims to establish identity correspondences across

di↵erent cameras. It is often approached as a metric learning problem [207], where

one seeks to retrieve images containing the person of interest from non-overlapping

cameras given a query image. This is challenging in the sense that images captured

by di↵erent cameras often contain significant intra-class variations caused by the

changes in background, viewpoint, human pose, etc. As a result, designing or learn-

ing representations that are robust against intra-class variations as much as possible

has been one of the major targets in person re-id.

Convolutional neural networks (CNNs) have recently become increasingly pre-

dominant choices in person re-id thanks to their strong representation power and

the ability to learn invariant deep embeddings. Current state-of-the-art re-id meth-

ods widely formulate the tasks as deep metric learning problems [216, 43], or use

classification losses as the proxy targets to learn deep embeddings [207, 77, 142,

180, 218, 148]. To further reduce the influence from intra-class variations, a number

of existing methods adopt part-based matching or ensemble to explicitly align and

compensate the variations [136, 204, 172, 138, 218].

Another possibility to enhance robustness against input variations is to let the re-

id model potentially “see” these variations (particularly intra-class variations) during

training. With recent progress in the generative adversarial networks (GANs) [36],

generative models have become appealing choices to introduce additional augmented
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Figure 6.1 : Examples of generated images on Market-1501 by switching appearance

or structure codes. Each row and column corresponds to di↵erent appearance and

structure.
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Table 6.1 : Description of the information encoded in the latent appearance and

structure spaces.

Appearance Space Structure Space

clothing/shoes color,

texture and style,

other id-related cues, etc.

body size, hair, carrying,

pose, background,

position, viewpoint, etc.

data for free [217]. Despite the di↵erent forms, the general considerations behind

these methods are “realism”: generated images should possess good qualities to

close the domain gap between synthesized scenarios and real ones; and “diversity”:

generated images should contain su�cient diversity to adequately cover unseen vari-

ations. Within this context, some prior works have explored unconditional GANs

and human pose conditioned GANs [217, 55, 118, 33, 87] to generate pedestrian

images to improve re-id learning. However, a common issue behind these meth-

ods is that their generative pipelines are typically presented as standalone models,

which are relatively separate from the discriminative re-id models. Therefore, the

optimization target of a generative module may not be well aligned with the re-id

task, limiting the gain from generated data.

In light of the above observation, we propose a learning framework that jointly

couples discriminative and generative learning in a unified network called DG-Net.

Our strategy towards achieving this goal is to introduce a generative module, of

which encoders decompose each pedestrian image into two latent spaces: an ap-

pearance space that mostly encodes appearance and other identity related seman-

tics; and a structure space that encloses geometry and position related structural

information as well as other additional variations. We refer to the encoded fea-
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tures in the space as “codes”. The properties captured by the two latent spaces

are summarized in Table 6.1. The appearance space encoder is also shared with

the discriminative module, serving as a re-id learning backbone. This design leads

to a single unified framework that subsumes these interactions between generative

and discriminative modules: (1) the generative module produces synthesized images

that are taken to refine the appearance encoder online; (2) the encoder, in turn,

influences the generative module with improved appearance encoding; and (3) both

modules are jointly optimized, given the shared appearance encoder.

We formulate the image generation as switching the appearance or structure

codes between two images. Given any pairwise images with the same/di↵erent iden-

tities, one is able to generate realistic and diverse intra/cross-id composed images by

manipulating the codes. An example of such composed image generation on Market-

1501 [206] is shown in Figure 6.1. Our design of the generative pipeline not only leads

to high-fidelity generation, but also yields substantial diversity given the combina-

torial compositions of existing identities. Unlike the unconditional GANs [217, 55],

our method allows more controllable generation with better quality. Unlike the

pose-guided generations [118, 33, 87], our method does not require any additional

auxiliary data, but takes the advantage of existing intra-dataset pose variations as

well as other diversities beyond pose.

This generative module design specifically serves for our discriminative module

to better make use of the generated data. For one pedestrian image, by keeping

its appearance code and combining with di↵erent structure codes, we can generate

multiple images that remain clothing and shoes but change pose, viewpoint, back-

ground, etc. As demonstrated in each row of Figure 6.1, these images correspond

to the same clothing dressed on di↵erent people. To better capture such composed

cross-id information, we introduce the “primary feature learning” via a dynamic

soft labeling strategy. Alternatively, we can keep one structure code and combine
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with di↵erent appearance codes to produce various images, which maintain the pose,

background and some identity related fine details but alter clothes and shoes. As

shown in each column of Figure 6.1, these images form an interesting simulation of

the same person wearing di↵erent clothes and shoes. This creates an opportunity for

further mining the subtle identity attributes that are independent of clothing, such

as carrying, hair, body size, etc. Thus, we propose the complementary “fine-grained

feature mining” to learn additional subtle identity properties.

To our knowledge, this work provides the first framework that is able to end-

to-end integrate discriminative and generative learning in a single unified network

for person re-id. Extensive qualitative and quantitative experiments show that our

image generation compares favorably against the existing ones, and more impor-

tantly, our re-id accuracy consistently outperforms the competing algorithms by

large margins on several benchmarks.

The main content of this Chapter has been previously published in

Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang, Jan Kautz.

“Joint Discriminative and Generative Learning for Person Re-identification”, IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2019. (Oral)

6.2 Methodology

As illustrated in Figure 6.2, DG-Net tightly couples the generative module for

image generation and the discriminative module for re-id learning. We introduce

two image mappings: self-identity generation and cross-identity generation to syn-

thesize high-quality images that are online fed into re-id learning. Our discriminative

module involves primary feature learning and fine-grained feature mining, which are

co-designed with the generative module to better leverage the generated data.
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Figure 6.2 : A schematic overview of DG-Net. (a) Our discriminative re-id learning

module is embedded in the generative module by sharing appearance encoder Ea.

A dash black line denotes the input image to structure encoder Es is converted to

gray. The red line indicates the generated images are online fed back to Ea. Two

objectives are enforced in the generative module: (b) self-identity generation by the

same input identity and (c) cross-identity generation by di↵erent input identities.

(d) To better leverage generated data, the re-id learning involves primary feature

learning and fine-grained feature mining.

6.2.1 Generative Module

Formulation. We denote the real images and identity labels as X = {xi}Ni=1

and Y = {yi}Ni=1, where N is the number of images, yi 2 [1, K] and K indicates

the number of classes or identities in the dataset. Given two real images xi and

xj in the training set, our generative module generates a new pedestrian image

by swapping the appearance or structure codes of the two images. As shown in

Figure 6.2, the generative module consists of an appearance encoder Ea : xi ! ai,

a structure encoder Es : xj ! sj, a decoder G : (ai, sj) ! x
i

j
, and a discriminator
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D to distinguish between generated images and real ones. In the case i = j, the

generator can be viewed as an auto-encoder, so x
i

i
⇡ xi. Note: for generated images,

we use superscript to denote the real image providing appearance code and subscript

to indicate the one o↵ering structure code, while real images only have subscript as

image index. Compared to the appearance code ai, the structure code sj maintains

more spatial resolution to preserve geometric and positional properties. However,

this may result in a trivial solution for G to only use sj but ignore ai in image

generation since decoders tend to rely on the feature with more spatial information.

In practice, we convert input images of Es into gray-scale to drive G to leverage

both ai and sj. We enforce the two objectives for the generative module: (1) self-

identity generation to regularize the generator and (2) cross-identity generation to

make generated images controllable and match real data distribution.

Self-identity generation. As illustrated in Figure 6.2(b), given an image xi,

the generative module first learns how to reconstruct xi from itself. This simple

self-reconstruction task serves as an important regularization role to the whole gen-

eration. We reconstruct the image using the pixel-wise `1 loss:

L
img1
recon = E[kxi �G(ai, si)k1]. (6.1)

Based on the assumption that the appearance codes of the same person in di↵er-

ent images are close, we further propose another reconstruction task between any

two images of the same identity. In other words, the generator should be able to

reconstruct xi through an image xt with the same identity yi = yt:

L
img2
recon = E[kxi �G(at, si)k1]. (6.2)

This same-identity but cross-image reconstruction loss encourages the appearance

encoder to pull appearance codes of the same identity together so that intra-class

feature variations are reduced. In the meantime, to force the appearance codes

of di↵erent images to stay apart, we use identification loss to distinguish di↵erent
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identities:

L
s
id = E[� log(p(yi|xi))], (6.3)

where p(yi|xi) is the predicted probability that xi belongs to the ground-truth class

yi based on its appearance code.

Cross-identity generation. Di↵erent from self-identity generation that works

with image reconstruction using the same identity, cross-identity generation focuses

on image generation with di↵erent identities. In this case, there is no pixel-level

ground-truth supervision. Instead, we introduce the latent code reconstruction

based on appearance and structure codes to control such image generation. As

shown in Figure 6.2(c), given two images xi and xj of di↵erent identities yi 6= yj, the

generated image x
i

j
= G(ai, sj) is required to retain the information of appearance

code ai from xi and structure code sj from xj, respectively. We should then be able

to reconstruct the two latent codes after encoding the generated image:

L
code1
recon = E[kai � Ea(G(ai, sj))k1], (6.4)

L
code2
recon = E[ksj � Es(G(ai, sj))k1]. (6.5)

Similar for self-identity generation, we also enforce identification loss on the gener-

ated image based on its appearance code to keep the identity consistency:

L
c
id = E[� log(p(yi|xi

j
))], (6.6)

where p(yi|xi

j
) is the predicted probability of xi

j
belonging to the ground-truth class

yi of xi, the image that provides appearance code in generating x
i

j
. Additionally,

we employ adversarial loss to match the distribution of generated images to the real

data distribution:

Ladv = E[logD(xi) + log(1�D(G(ai, sj))]. (6.7)

Discussion. By using the proposed generation mechanism, we enable the gen-

erative module to learn appearance and structure codes with explicit and comple-
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mentary meanings and generate high-quality pedestrian images based on the latent

codes. This largely eases the generation complexity. In contrast, the previous meth-

ods [217, 55, 118, 33, 87] have to learn image generation either from random noise

or managing the pose factor only, which is hard to manipulate the outputs and in-

evitably introduces artifacts. Moreover, due to using the latent codes, the variants

in our generated images are explainable and constrained in the existing contents of

real images, which also ensures the generation realism. In theory, we can generate

O(N ⇥ N) di↵erent images by sampling various image pairs, resulting in a much

larger online generated training sample pool than the ones with O(2 ⇥ N) images

o✏ine generated in [217, 55, 118].

6.2.2 Discriminative Module

Our discriminative module is embedded in the generative module by sharing

the appearance encoder as the backbone for re-id learning. In accordance with the

images generated by switching either appearance or structure codes, we propose the

primary feature learning and fine-grained feature mining to better take advantage

of the online generated images. Since the two tasks focus on di↵erent aspects of

generated images, we branch out two lightweight headers on top of the appearance

encoder for the two types of feature learning, as illustrated in Figure 6.2(d).

Primary feature learning. It is possible to treat the generated images as

training samples similar to the existing work [217, 55, 118]. But the inter-class

variations in the cross-id composed images motivate us to adopt a teacher-student

type supervision with dynamic soft labeling. We use a teacher model to dynamically

assign a soft label to x
i

j
, depending on its compound appearance and structure from

xi and xj. The teacher model is simply a baseline CNN trained with identification

loss on the original training set. To train the discriminative module for primary

feature learning, we minimize the KL divergence between the probability distribution
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p(xi

j
) predicted by the discriminative module and the probability distribution q(xi

j
)

predicted by the teacher:

Lprim = E[�
KX

k=1

q(k|xi

j
) log(

p(k|xi

j
)

q(k|xi

j
)
)], (6.8)

where K is the number of identities. In comparison with the fixed one-hot label

[118, 232] or static smoothing label [217], this dynamic soft labeling fits better in our

case, as each synthetic image is formed by the visual contents from two real images.

In the experiments, we show that a simple baseline CNN serving as the teacher

model is reliable to provide the dynamic labels and improve the performance.

Fine-grained feature mining. Beyond the direct usage of generated data for

learning primary features, an interesting alternative, made possible by our specific

generation pipeline, is to simulate the change of clothing for the same person, as

shown in each column of Figure 6.1. When training on images organized in this

manner, the discriminative module is forced to learn the fine-grained id-related

attributes (such as hair, hat, bag, body size, and so on) that are independent to

clothing. We view the images generated by one structure code combining with

di↵erent appearance codes as the same class as the real image providing the structure

code. To train the discriminative module for fine-grained feature mining, we enforce

identification loss on this particular categorizing:

Lfine = E[� log(p(yj|xi

j
))]. (6.9)

This loss imposes additional identity supervision to the discriminative module in

a multi-tasking way. Moreover, unlike the previous works using manually labeled

pedestrian attributes [84, 137, 164], our approach performs automatic fine-grained

attribute mining by leveraging on the synthetic images. Furthermore, compared to

the hard sampling policy applied in [43, 127], there is no need to explicitly search

for the hard training samples that usually possess fine-grained details, since our
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discriminative module learns to attention on the subtle identity properties through

this fine-grained feature mining.

Discussion. We argue that our high-quality synthetic images, in nature, can be

viewed as “inliers” (contrary to “outliers”), as our generated images maintain and

recompose the visual contents from real data. Via the above two feature learning

tasks, our discriminative module makes specific use of the generated data in line with

the way how we manipulate the appearance and structure codes. Instead of using

a single supervision as in almost all previous methods [217, 55, 118], we treat the

generated images in two di↵erent perspectives through the primary feature learning

and fine-grained feature mining, where the former focuses on the structure-invariant

clothing information and the latter attentions to the appearance-invariant structural

cues.

6.2.3 Optimization

We jointly train the appearance and structure encoders, decoder, and discrim-

inator to optimize the total objective, which is a weighted sum of the following

losses:

Ltotal(Ea, Es, G,D) = �imgL
img
recon + L

code
recon +

L
s
id + �idL

c
id + Ladv + �primLprim + �fineLfine, (6.10)

where L
img
recon = L

img1
recon + L

img2
recon is the image reconstruction loss in self-identity gen-

eration, L
code
recon = L

code1
recon + L

code2
recon is the latent code reconstruction loss in cross-

identity generation, �img, �id, �prim, and �fine are weights to control the importance

of related loss terms. Following the common practice in image-to-image transla-

tions [228, 71, 54], we use a large weight �img = 5 for the image reconstruction loss.

Since the quality of cross-id generated images is not great at the beginning, the iden-

tification loss Lc
id may make the training unstable, so we set a small weight �id = 0.5.
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Figure 6.3 : Comparison of the generated and real images on Market-1501 across

the di↵erent methods including LSGAN [104], PG2-GAN [102], FD-GAN [33], PN-

GAN [118], and our approach. This figure is best viewed when zoom in. Please

attention to both foreground and background of the images.

We fix the two weights during the whole training process in all experiments. We do

not involve the discriminative feature learning losses Lprim and Lfine until the gener-

ation quality is stable. As an example, we add in the two losses after 30K iterations

on Market-1501, then linearly increase �prim from 0 to 2 in 4K iterations and set

�fine = 0.2�prim. See more details on how to determine the weights in Section 6.3.3.

Similar to the alternative updating policy for GANs, in the cross-identity generation

as shown in Figure 6.2(a), we alternatively train Ea, Es and G before the generated

image and Ea, Es and D after the generated image.

6.3 Experiment

We evaluate the proposed approach following standard protocols on three bench-

mark datasets: Market-1501 [206], DukeMTMC-reID [126, 217], and MSMT17 [171].

We qualitatively and quantitatively compare DG-Net with state-of-the-art methods

on both generative and discriminative results. Extensive experiments demonstrate

that DG-Net produces more realistic and diverse images, and meanwhile, consis-

tently outperforms the most recent competing algorithms by large margins on re-id

accuracy across all benchmarks.



98

Figure 6.4 : Comparison of the generated images by our full model, removing online

feeding (w/o feed), and further removing identity supervision (w/o id).

6.3.1 Implementation Details

Our network is implemented in PyTorch. In the following, we use channel⇥height⇥width

to indicate the size of feature maps. (i) Ea is based on ResNet50 [41] pre-trained on

ImageNet [25], and we remove its global average pooling layer and fully-connected

layer then append an adaptive max pooling layer to output the appearance code a

in 2048⇥ 4⇥ 1. It is mapped to primary feature fprim and fine-grained feature ffine,

both are 512-dim vectors, through two fully-connected layers. (ii) Es is a shallow

network that outputs the structure code s in 128 ⇥ 64 ⇥ 32. It consists of four

convolutional layers followed by four residual blocks [41]. (iii) G processes s by four

residual blocks and four convolutional layers. As in [54] every residual block con-

tains two adaptive instance normalization layers [53], which integrate in a as scale

and bias parameters. (iv) D follows the popular multi-scale PatchGAN [58]. We

employ discriminators on the three di↵erent input image scales: 64⇥ 32, 128⇥ 64,
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Figure 6.5 : Example of image generation by linear interpolation between two ap-

pearance codes.

and 256 ⇥ 128. We also apply the gradient punishment [107] when updating D to

stabilize training. (v) For training, all input images are resized to 256⇥128. Similar

to the previous deep re-id models [207], SGD is used to train Ea with learning rate

0.002 and momentum 0.9. We apply Adam [63] to optimize Es, G and D, and set

learning rate to 0.0001, and (�1, �2) = (0, 0.999). (vi) At test time, our re-id model

only involves Ea (along with two lightweight headers), which is of a comparable

network size to most methods using ResNet50 as the backbone. We concatenate

fprim and ffine into a 1024-dim vector as the final pedestrian representation. More

architecture details can be found in the appendix.

6.3.2 Generative Evaluations

Qualitative evaluations. We first qualitatively compare DG-Net with its two

variants that ablate online feeding and identity supervision. As shown in Figure 6.4,

without online feeding generated images to appearance encoder, the model su↵ers

from blurry edges and undesired textures. If further removing identity supervision,

the image quality is unsatisfying as the model fails to produce the accurate clothing

color or style. This clearly shows that our joint discriminative learning is beneficial

to the image generation.
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Figure 6.6 : Examples of our generated images by swapping appearance or structure

codes on the three datasets. All images are sampled from the test sets.

Next we compare our full model with other generative approaches, including

one unconditional GAN (LSGAN [104]) and three open-source conditional GANs

(PG2-GAN [102], PN-GAN [118] and FD-GAN [33]). As compared in Figure 6.3,

the images generated by LSGAN have severe artifacts and duplicated patterns. FD-

GAN are prone to generate very blurry images, which largely deteriorate the realism.

PG2-GAN and PN-GAN, both conditioned on pose, generate relatively good visual

results, but still contain visible blurs and artifacts especially in background. In

comparison, our generated images are more realistic and close to the real in both

foreground and background.

To better understand the learned appearance space, which is the foundation

for our pedestrian representations, we perform a linear interpolation between two

appearance codes and generate the corresponding images as shown in Figure 6.5.

These interpolation results verify the continuity in the appearance space, and show

that our model is able to generalize in the space instead of simply memorizing trivial

visual information. As a complementary study, we also generate images by linearly

interpolating between two structure codes while keeping the appearance code intact.

See more discussions regarding this study in the appendix. We then demonstrate our

generation results on the three benchmarks in Figure 6.6, where DG-Net is found
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Table 6.2 : Comparison of FID (lower is better) and SSIM (higher is better) to

evaluate realism and diversity of the real and generated images on Market-1501.

Methods
Realism Diversity

(FID) (SSIM)

Real 7.22 0.350

LSGAN [104] 136.26 -

PG2-GAN [102] 151.16 -

PN-GAN [118] 54.23 0.335

FD-GAN [33] 257.00 0.247

Ours 18.24 0.360

to be able to consistently generate realistic and diverse images across the di↵erent

datasets.

Quantitative evaluations. Our qualitative observations above are confirmed

by the quantitative evaluations. We use two metrics: Fréchet Inception Distance

(FID)[44] and Structural SIMilarity (SSIM) [170] to measure realism and diversity of

generated images, respectively. FID measures how close the distribution of generated

images is to the real. It is sensitive to visual artifacts and thus indicates the realism

of generated images. For the identity conditioned generation, we apply SSIM to

compute intra-class similarity, which can be used to reflect the generation diversity.

As shown in Table 6.2, our approach significantly outperforms other methods on

both realism and diversity, suggesting the high quality of our generated images.

Remarkably, we obtain a higher SSIM than the original training set thanks to the

various poses, carryings, backgrounds, etc. introduced by switching structure codes.

Limitation. We notice that due to data bias in the original training set, our
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Figure 6.7 : Comparison of success and failure cases in our image generation. In

the failure case, the logo on t-shirt of the original image is missed in the synthetic

image.

generative module tends to learn the regular textures (e.g., stripes and dots) but

ignores some rare patterns (e.g., logos on shirts), as shown in Figure 6.7.

6.3.3 Discriminative Evaluations

Ablation studies. We first study the contributions of primary feature and

fine-grained feature in Table 6.3. We train ResNet50 with identification loss on each

original training set as the baseline. It also serves as the teacher model in primary

feature learning to perform dynamic soft labeling on the generated images. Our pri-

mary feature is found to largely improve over the baseline. Notably, the fine-grained

feature without using important appearance information but only considering subtle

id-related cues already achieves impressive accuracy. By combining the two features,

we can further improve the performance, which substantially outperforms the base-

line by 6.1% for Rank@1 and 12.4% for mAP on average of the three datasets. We

then evaluate the two features independently learned after our synthetic images are

o✏ine generated. This results in an 84.4% mAP on Market-1501, inferior to the

86.0% mAP of the end-to-end training, suggesting that our joint generative training

is beneficial to the re-id learning.

Influence of hyper-parameters. Here we show how to set the re-id learning
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Table 6.3 : Comparison of baseline, primary feature, fine-grained feature, and their

combination on the three datasets.

Methods
Market-1501 DukeMTMC-reID MSMT17

Rank@1mAP Rank@1 mAP Rank@1mAP

Baseline 89.6 74.5 82.0 65.3 68.8 36.2

fprim 94.0 84.4 85.6 72.7 76.0 49.7

ffine 91.6 75.3 78.7 61.2 71.5 43.5

fprim, ffine 94.8 86.0 86.6 74.8 77.2 52.3

Figure 6.8 : Analysis of the re-id learning related hyper-parameters ↵ and � to

balance primary and fine-grained features in training (left) and testing (right).

related weights: one is ↵, the ratio between �fine and �prim to control the importance

of Lfine and Lprim in training; the other is � to weight ffine when combined with fprim

as the final pedestrian representation in testing. We search the two hyper-parameters

on a validation set split out from the original training set of Market-1501 (first 651

classes for training and rest 100 classes for validation). Based on the valiation results

in Figure 6.8, we choose ↵ = 0.2 and � = 0.5 in all experiments.

Comparison with state-of-the-art methods. Finally we report the perfor-

mance of our approach with other state-of-the-art results in Tables 6.4 and 6.5. Note
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that we do not apply any post processing such as re-ranking [191] or multi-query fu-

sion [206]. On each dataset, our approach attains the best performance. Comparing

with the methods using separately generated images, DG-Net achieves clear gains

of 8.3% and 10.3% for mAP on Market-1501 and DukeMTMC-reID, indicating the

advantage of the proposed joint learning. Moreover, our framework is more train-

ing e�cient: we use only one training phase for joint image generation and re-id

learning, while others require two training phases to sequentially train generative

models and re-id models. DG-Net also outperforms other non-generative methods

by large margins on the two datasets. As for the recent released large-scale dataset

MSMT17, DG-Net performs significantly better than the second best method by

9.0% for Rank@1 and 11.9% for mAP.

6.4 Summary

In this chapter, we have proposed a joint learning framework that end-to-end cou-

ples re-id learning and image generation in a unified network. There exists an online

interactive loop between the discriminative and generative modules to mutually ben-

efit the two tasks. Our two modules are co-designed to let the re-id learning better

leverage the generated data, rather than simply training on them. Experiments

on three benchmarks demonstrate that our approach consistently brings substantial

improvements to both image generation quality and re-id accuracy.
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Table 6.4 : Comparison with the state-of-the-art methods on the Market-1501 and

DukeMTMC-reID datasets. Group 1: the methods not using generated data. Group

2: the methods using separately generated images.

Methods
Market-1501 DukeMTMC-reID

Rank@1 mAP Rank@1 mAP

Verif-Identif [216] 79.5 59.9 68.9 49.3

DCF [72] 80.3 57.5 - -

SSM [6] 82.2 68.8 - -

SVDNet [141] 82.3 62.1 76.7 56.8

PAN [218] 82.8 63.4 71.6 51.5

OG-Net-Deep [212] 86.2 68.1 76.9 57.2

GLAD [172] 89.9 73.9 - -

HA-CNN [78] 91.2 75.7 80.5 63.8

MLFN [13] 90.0 74.3 81.0 62.8

Part-aligned [138] 91.7 79.6 84.4 69.3

PCB [142] 93.8 81.6 83.3 69.2

Mancs [161] 93.1 82.3 84.9 71.8

DeformGAN [134] 80.6 61.3 - -

LSRO [217] 84.0 66.1 67.7 47.1

Multi-pseudo [55] 85.8 67.5 76.8 58.6

PT [87] 87.7 68.9 78.5 56.9

PN-GAN [118] 89.4 72.6 73.6 53.2

FD-GAN [33] 90.5 77.7 80.0 64.5

Ours 94.8 86.0 86.6 74.8
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Table 6.5 : Comparison with the state-of-the-art methods on the MSMT17 dataset.

Methods Rank@1 Rank@5 Rank@10 mAP

Deep [143] 47.6 65.0 71.8 23.0

OG-Net-Deep [212] 47.7 - - 23.0

PDC [136] 58.0 73.6 79.4 29.7

Verif-Identif [216] 60.5 76.2 81.6 31.6

GLAD [172] 61.4 76.8 81.6 34.0

PCB [142] 68.2 81.2 85.5 40.4

Ours 77.2 87.4 90.5 52.3
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Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

This thesis explored the problem of data limitation and studied the generative

and discriminative learning for visual matching. In particular, we

1. proposed a novel semi-supervised learning framework to learn from imperfect

generated data for model regularization in Chapter 3;

2. studied the robust learning of visual representation from a new multi-view

multi-source dataset including synthetic data simulated by 3D engines in

Chapter 4;

3. proposed a two-stage progressive learning strategy to borrow the strength of

large-scale real-world data from the web, and demonstrated the scalability of

the learned common knowledge in terms of transfer learning in Chapter 5;

4. finally we investigated one unified network for joint generative and discrimi-

native learning, and showed the great benefits of training the generation task

with the discriminative task in an end-to-end manner in Chapter 6.

It is clear that the work in this thesis is unable to cover all the potential applica-

tions and generalization of representation learning for visual matching. Other direc-

tions such as visual feature learning with linguistic descriptions [84, 164, 215, 74],

e�cient training with millions of data [167, 176, 231], learning from structured in-

formation [212, 205] and fast post-processing [201] are also promising directions for
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learning robust visual representation to meet the demands of real-world applications.

Nevertheless, we believe that our explorations manage to touch the challenging topic

of data scarcity in deep learning and are of significant contributions to the field of

computer vision in general, paving the way for future studies. Also we believe that

the research of joint generative and discriminative learning is just at the beginning

and our e↵orts make learning the knowledge from the freely available data, including

generated, synthetic and web data, one step closer to the reliable system for visual

matching.

7.2 Future Directions

More Prior Knowledge. I think the wisdom underpinning the prior knowl-

edge can provide us more insights to future works. Although deeply-learned models

outperform many traditional methods [120], especially hand-crafted features, the

prediction result is still vulnerable against small visual changes and easy to be

cheated [37, 219, 200, 151, 197]. One main reason is that the prior knowledge of

humans has not been fully explored in the current prevailing deep learning frame-

works [68]. In recent years, more and more researchers have realized this point and

try to involve either human-like reasoning [165, 146] or knowledge graph [18] into

the current prevailing deep learning frameworks. In terms of visual matching, the

common target objects are humans, vehicles and buildings. In this thesis, we study

the feasibility of taking advantage of “free” training data to implicitly distill the

common visual variants of either the humans, cars or buildings. To take one step

further, we observe that humans have one standard 3D geometric structure and

explore 3D point cloud of the human body in [212], which explicitly mines the

geometric prior knowledge and shows great robustness against occlusion. On the

other hand, we also extend the basic geo-localization approach with the spirit of the

local binary pattern (LBP) [2] in [166], which enables the contextual information
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learning and enrich the representation ability of the learned model on local patterns.

E�cient Training for More Data. In this thesis, we explore the potential of

involving “free” generated data, synthetic data via 3D engines and web data into

the model training process. In the future decades, we may face more and more

real-world data, which will be created almost everywhere with mobile devices. But

several scientific problems remain: 1. does more data mean higher performance?

how to train one high-quality model with millions of data e�ciently? 2. how to

protect user privacy? For the first question, it may cover several aspects:

1. Data Selection. Some training data is duplicated or similar, which contains

limited new information for model to learn. One method is to distill the

large dataset to a small one, which has been explored in [167]. But the

performance is still far from satisfactory. Another desirable way is to train

a life-long learning model, which can preserve the knowledge and is updated

only with the forthcoming data [112]. The model trained with large-scale

generated data, described in this thesis, can be an appealing starting point

for such a learning strategy since we have already let the model “see” many

variants.

2. Noisy Annotations. More data generally contains more noisy annotations,

which are hard to identify. In Chapter 3, we propose LSRO to provide one

smooth label for the imperfect generated data to regularize the model train-

ing. Similarly, in Chapter 6, we adopt one teacher model to generate the

smooth label for the student model. These two methods prevent the model

from over-fitting to the one-hot label, and are robust to the noisy annotation.

Recently, we have investigated and applied the data uncertainty to identify

the noisy label [214] in the training process. The uncertainty-based method

has shown e↵ectiveness in rectifying the noisy annotations, which may become
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one alternative choice for future studies.

3. E�cient Model. An e�cient model is another key to learning from a large-scale

dataset. One favorable solution is to obtain one light-weighted model distilled

from a relatively “heavy” model. We have provided one early attempt on

pruning a large image retrieval model in [168], which removes the duplicated

filter according to clustering results. We think this field has more space to

be explored in the future, including mobile CNN models [83, 224] and other

variants.

For the second question, as we explored in Chapter 5, transfer learning is one poten-

tial solution. In particular, we can train one model with good generalizability on the

server then the model is distributed and independently updated on the client termi-

nals. This strategy has been recently adopted in the federated learning [231, 176].

Since federated learning does not need uploading the client data to the server, it

can be one desirable way to keep high performance and protect user privacy.
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