UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

LEARNING FOR OBJECT LOCALIZATION WITH IMPERFECT DATA

by

Xiaolin Zhang

A THESIS SUBMITTED
IN FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Xiaolin Zhang, declare that this thesis, is submitted in fulfilment of the requirements for

the award of Doctor of Philosophy, in the School of Computer Science at the University

of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This document has not been submitted for qualifications at any other academic insti-

tution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature removed prior to publication.

Date: 31 May 2021

Acknowledgements

I had a remarkable time at UTS pursuing my Ph.D. degree. My research journey have

been truly amazing thanks to all the great people who have helped and supported me. I

would like to express my sincere thanks to them all.

First and foremost, I would thank my supervisor, Prof. Yi Yang, for patient guidance

and kind encouragement. He has given me a lot of suggestions for my research and future

career. It is really the luckiest thing to have had him as my supervisor.

Also, I want to thank my co-supervisor, Dr. Yunchao Wei. He guided me through

the realm of deep learning. His patience and kindness give me great support to complete

every paper and finally finish my Ph.D. research work.

Then, I would like to thank the late Thomas S. Huang. I was so lucky to have met such

a honorable scientist and have him as my advisor when I visited the University of Illinois

Urbana-Champaign. His wisdom, kindness, and admirable faith in love really moved me.

And, I would like to thank my colleagues and friends for the help and support. I am

delighted to have spent four great years in Sydney with all these lovely people.

I appreciate the financial support from the CSC-UTS Program.

Finally, I would like to express my deepest thanks to my parents, sister, and girlfriend,

for their trust and love.

Xiaolin Zhang

November 2020 at UTS.

List of Publications

Conference Papers

- C-1. **X. Zhang**, Y. Wei, J. Feng, Y. Yang and T. Huang, "Adversarial Complementary Learning for Weakly Supervised Object Localization," *Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, 2018.
- C-2. **X. Zhang**, Y. Wei, G. Kang, Y. Yang and T. Huang, "Self-produced guidance for weakly-supervised object localization," *Proceedings of the European Conference on Computer Vision*, 2018.
- C-3. **X. Zhang**, Y. Wei and Y. Yang, "Inter-Image Communication for Weakly Supervised Localization," *Proceedings of the European Conference on Computer Vision*, 2020.

Journal Papers

- J-1. **X. Zhang**, Y. Wei, Y. Yang and T. Huang, "SG-One: Similarity Guidance Network for One-Shot Semantic Segmentation," *IEEE Transactions on Cybernetics*, vol. 50, 2020.
- J-1. X. Zhang, Y. Wei, Z. Li, C. Yan and Y. Yang, "Rich Embedding Features for One-Shot Semantic Segmentation," *IEEE Transactions on Neural Networks and Learn*ing Systems, 2021.

Submitted Papers

J-1. **X. Zhang**, Y. Wei, Y. Yang and F. Wu, "Rethinking Localization Map: Towards Accurate Object Perception with Self-Enhancement Maps," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Major revision, 2021.

Contents

	Cer	tificate		ii
	Ack	knowledg	gments	iii
	List	of Publi	cations	iv
	List	of Figu	res	ix
	Abł	oreviatio	n	XV
	Abs	stract		xvi
1	Int	roduct	ion	1
	1.1	Backgr	ound	1
		1.1.1	Object Localization	1
		1.1.2	Semantic Segmentation	3
		1.1.3	Imperfect Data	4
	1.2	Researc	ch Problem	6
		1.2.1	Weakly supervised object localization	6
		1.2.2	Few-Shot Semantic Segmentation	8
	1.3	Thesis	Structure	11
2	Lit	eratur	e Review and Related Works	13
	2.1	Weakly	Supervised Learning	13
		2.1.1	Weakly Supervised Object Localization	13
		2.1.2	Weakly Supervised Object Detection	15

T 7	1
v	

		2.1.3	Weakly Supervised Semantic Segmentation	16
	2.2	Few-Sh	ot Learning	18
		2.2.1	Few-Shot Semantic Segmentation	18
		2.2.2	Few-Shot Classification	19
		2.2.3	One-Shot Video Segmentation	20
3	Ad	versari	ial Complementary Learning for Weakly Supervised	
	Ob	ject Lo	ocalization	22
	3.1	Introduc	etion	22
	3.2	Adversa	arial Complementary Learning	24
		3.2.1	Revisiting CAM	24
		3.2.2	The Proposed ACoL	27
	3.3	Experin	nents	29
		3.3.1	Experiment Setup	29
		3.3.2	Comparisons with the State-of-the-arts	30
		3.3.3	Ablation Study	33
	3.4	Summa	ry	35
4	Sel	f-Produ	uced Guidance for Weakly Supervised Object Local-	
	iza	tion		36
	4.1	Introduc	ction	36
	4.2	Self-Pro	oduced Guidance	37
		4.2.1	Network Overview	37
		4.2.2	Self-Produced Guidance Learning	39
	4.3	Experin	nents	43
		4.3.1	Experiment Setup	43

				vii
		4.3.2	Comparison with the State-of-the-arts	43
		4.3.3	Ablation Study	48
	4.4	Summa	ry	50
5	Int	or Imo	ge Communication for Weakly Supervised Localiza-	
3			ge Communication for vveakly Supervised Localiza-	
	tio	n		51
	5.1	Introdu	ction	51
	5.2	Method	lology	54
		5.2.1	Object Seed Vectors	55
		5.2.2	Stochastic Consistency	56
		5.2.3	Global Consistency	57
	5.3	Experin	ments	59
		5.3.1	Experiment Setup	59
		5.3.2	Comparison with the State-of-the-arts	60
		5.3.3	Ablation Study	64
	5.4	Summa	ry	68
6	SG	-One:	Similarity Guidance Network for One-Shot Semantic	•
•			•	
	Seg	gmenta	.uon	70
	6.1	Introdu	ction	70
	6.2	Method	lology	73
		6.2.1	Problem Definition	73
		6.2.2	Proposed Model	74
		6.2.3	Similarity Guidance Method	75
	6.3	Experin	ments	77
		6.3.1	Dataset and Metric	77

				viii
		6.3.2	Implementation Details	78
		6.3.3	Comparison	79
		6.3.4	Multi-Class Segmentation	84
		6.3.5	Ablation Study	85
		6.3.6	Relationship with Video Object Segmentation	88
	6.4	Summa	ry	91
7	Ric	ch Emb	edding Features for Few-Shot Semantic Segmentation	93
	7.1	Introdu	ction	93
	7.2	Method	lology	95
		7.2.1	Problem Definition	95
		7.2.2	The Proposed Method	97
		7.2.3	The Network Structure	101
	7.3	Experin	nents	104
		7.3.1	Implementation Details	104
		7.3.2	Comparison on PASCAL-5 i Lg	105
		7.3.3	Comparison on COCO-20 ⁱ Lg	108
		7.3.4	Ablation Study	109
		7.3.5	Discussion	111

Conclusions and Future Work

List of Figures

1.1	Example of the object detection task	2
1.2	Example of the semantic segmentation task	3
1.3	Several techniques where imperfect data are involved. This thesis	
	focuses on weakly supervised learning and few-shot learning	4
1.4	This thesis focuses on the Weakly Supervised Object Localization	
	(WSOL) and Few-Shot Semantic Segmentation (FSSS) problem. In	
	WSOL, three approaches are proposed, i.e., ACoL, SPG and I ² C. In	
	FSSS, two methods are proposed, <i>i.e.</i> , SG-One and REF	6
1.5	The framework of the WSOL methods	7
1.6	An example framework, i.e., SG-One (Zhang et al., 2020c) of FSSS	8
3.1	Comparison of methods for generating localization maps. Our method	
	can produce the same-quality maps as CAM (Zhou et al., 2016) but in a	
	more convenient way	25
3.2	Overview of the proposed ACoL approach. The input images are	
	processed by Backbone to extract mid-level feature maps, which are then	
	fed into two parallel-classifiers for discovering complementary object	
	regions. Each classifier consists of several convolutional layers followed	
	by a global average pooling (GAP) layer and a softmax layer. Different	
	from Classifier A, the input feature maps of Classifier B are erased with	
	the guidance of the object localization maps from Classifier A. Finally,	
	the object maps from the two classifiers are fused for localization	26

4.1	Learning process of Self-produced guidance. Given an input image, we	
	first generate corresponding attention map through a classification	
	network. Then the attention map is roughly split, following the rule that	
	the region with high confidence should be the object, whereas that with	
	low confidence should be background. The regions with medium	
	confidence remain undefined. All these three regions constitute the seed.	
	Self-produced guidance is defined as the multi-stage pixel-level object	
	mask supervised by the seed	37
4.2	Overview of the proposed SPG approach. The input images are	
	processed by Stem to extract mid-level feature maps, which are then fed	
	into SPG-A for classification. Localization map is then generated from	
	the feature maps from the last convolutional layer. Self-produced	
	guidance maps are then calculated according to the map, then it is	
	gradually learned using SPG-B. SPG-C utilizes the self-produced	
	guidance map to train the classification network for learning pixel	
	correlation. GAP refers to global average pooling	38
4.3	Illustration of the attention maps and predicted bounding boxes of the	
	SPG network on ILSVRC and CUB-200-2011. The predicted bounding	
	boxes are in green and the ground-truth boxes are in red	46
4.4	Output maps of the proposed SPG approach. The localization maps	
	usually only highlight small region of the object. We extract the seeds of	
	the self-produced guidance by segmenting the confident regions of the	
	localization maps as foreground (white) and background (black), and	
	ignore the left regions (grey). These seeds are applied as supervision to	
	learn better self-produced guidance maps. Finally, the learned maps are	
	leveraged to encourage the network to improve the quality of the	
	localization maps	47

5.1	(a) Convolutional operations preserve the relative pixel positions.	
	Inconsistent response scores of different pixels on the class activation	
	map are essentially caused by the inconsistent learned features. (b) The	
	proposed Stochastic Consistency (SC) and Global Consistency (GC) are	
	to align the object-related feature vectors	52
5.2	The structure of the proposed approach. Given a pair of images (I_i^y, I_j^y)	
	of the same category y , the localization maps (M_i^y, M_j^y) can be obtained	
	by forwarding them through the classification network f_{θ} . Object seed	
	vectors (V_i^y, V_j^y) are extracted from the high-level feature maps (F_i, F_j)	
	according to the confident regions in the maps. Finally, the SC loss is	
	employed on the object seed vectors. Also, the GC loss is employed on	
	the averaged object feature a^y from a batch and the global class-specific	
	center w^y . GAP refers to Global Average Pooling. AVG refers to the	
	average operation.	55
5.3	Comparison of the predicted bounding boxes with ACoL (Zhang et al.,	
	2018a). Our method obtains better localization maps and better	
	bounding boxes. The predicted boxes are in green and the ground-truth	
	boxes are in red	62
5.4	(a): histogram of the number of object pixels with the threshold of 0.7 on	
	the ILSVRC training set. (b): identified object regions (in red) according	
	to the localization maps	67
5.5	Classification (left), localization (middle) and Gt-known Loc (right)	
	error rates with the changes of hyper-parameters, i.e., λ_1 , λ_2 and K	68

6.1	The network of the proposed SG-One approach. A query image and a	
	labeled support image are input into the network. Guidance Branch is to	
	generate the representative vector of the target object in the support	
	image. Segmentation Branch is to predict the segmentation masks of the	
	query image. We calculate the cosine distance between the vector and	
	the intermediate features of the query image. The CosineSimilarty maps	
	are then employed to guide the segmentation process. The blue arrows	
	indicate data streams of support images, while the black are for query	
	images. Stem is the conv1 to conv3 of VGG16. Interp refers to the	
	bilinear interpolation operation. Conv is a convoluational block. Conv	
	$k \times k$ is the convolutional filter with a kernel size of $k \times k$	72
6.2	Segmentation results on unseen classes with the guidance of support	
	images. For the failure pairs, the ground-truth is on the <i>left</i> side while the	
	predicted is on the <i>right</i> side	80
6.3	Qualititive illustration of the one-shot and five-shot segmentation	81
6.4	Similarity maps of different categories. With the reference to the support	
	objects, the objects in the query images of the same categories will be	
	highlighted, while the distracting objects and the background are	
	depressed. The predicted mask can precisely segment the target objects	
	under the guidance of the similarity maps	81
6.5	Comparison between the few-shot image segmentation and few-shot	
	video segmentation tasks. The object and background environment keep	
	consistent in between video frames, while both objects and environment	
	are greatly various in the image segmentation task	89

7.1	An overview of our Rich Embedding Features (REF) approach. Given a	
	query image from an unseen category, e.g.cat, its semantic mask is	
	precisely segmented with the reference to only one annotated example of	
	this category. The proposed REF module are employed to extract rich	
	embeddings of the annotated support image. We then calculate the	
	similarity maps by computing the feature distance between the	
	embeddings and features of the query image. Similarity Maps are further	
	applied to help the network segment the target object	94
7.2	The overview of the proposed REF. (a) Given a pair of images including	
	a query image and an annotated support image, they are first fed into the	
	Stem module to obtain low-level features. Then, two branches, i.e.,	
	Guidance Branch and Segmentation Branch, are applied to compute the	
	guidance maps and the final masks. The input of Guidance Branch is	
	both features of the query and support images. The corresponding output	
	of the support image is fed into the proposed REF module to obtain the	
	three kinds of embeddings. The final outputs in Guidance Branch are	
	Similarity Maps obtained by computing the similarity distance between	
	support embeddings and query features. The input of Segmentation	
	Branch is the low-level query features and the high-level features from	
	Guidance Branch. Similarity Maps can guide the segmentation process	
	to focus on the targeted object regions by multiplying the maps with the	
	acquired feature maps. We further propose to employ the depth-priority	
	context module to enhance the segmentation masks. The black arrows	
	indicate data streams of support images, while the red ones are for query	
	images. (b) The proposed three kinds of rich embedding features which	
	are applied to capture the diverse features of support objects	96
7.3	The input feature maps are downsampled via convolution filters of stride	
	2 for several stages. The output feature maps of these filters are then	
	upsampled and concatenated before putting into another convolution	
	layer for adjusting dimensions	99

7.4	Segmentation results on unseen classes with the guidance of support	
	images. The proposed REF approach can successfully predict the masks	
	for the target objects with the guidance of only one image	103
7.5	Failure cases where the predicted masks of query images do not well	
	match the ground-truth masks. There are generally two reasons for the	
	failure predictions. One is that the appearance of the mismatched objects	
	are too similar to the target objects, and another one is that too many	
	noises and obstacles interfere the model from predicting accurate masks.	104
7.6	Segmentation result comparison of the embedding methods. REF can	
	obtain more robust segmentation masks with the combination of the	
	three proposed embedding methods	109

Abbreviation

AP	- A	verag	e Pr	ecis	ion
7 11	7 1	, or un	U 1 1	CCID	1011

bbox - Bounding Boxes

CAM - Class Activation Map

CNN - Convolutional Neural Network

DNN - Deep Neural Network

FCN - Fully Convolutional Network

FSL - Few-Shot Learning

FSSS - Few-Shot Semantic Segmentation

GAP - Global Average Pooling

IoU - Intersection-over-Union

PR - Precision Recall

WSL - Weakly Supervised Learning

WSOL - Weakly Supervised Object Localization

WSOD - Weakly Supervised Object Detection

WSSS - Weakly Supervised Semantic Segmentation

ABSTRACT

LEARNING FOR OBJECT LOCALIZATION WITH IMPERFECT DATA

by

Xiaolin Zhang

Deep learning has achieved countless remarkable successes in recent years. Learning deep neural networks usually needs tremendous well-labeled examples, which requires intensive investments. A feasible solution for reducing the budget is to learn from imperfect data, *e.g.*, noisy data, synthetic data, weak labels, and datasets with few annotated examples. This thesis dedicates to the weakly supervised learning and few-shot learning.

The first task is to address the challenging object localization problem using weak annotations as supervision. Objects in images are expected to be precisely located with only image-level labels, *i.e.*, category information. Specifically, convolutional networks can only find the most discriminative object regions leading to the unsatisfied predictions of bounding boxes. This thesis tries to solve this problem in three perspectives: 1) forcing the networks to mine more object areas by erasing the discovered object pixels; 2) learning pixel correlations within images under the supervision of self-produced object masks; 3) communicating with different images to obtain more consistent features, and therefore, activating target object more accurately.

The second task is to predict the semantic masks of objects in a few-shot approach. Finding every pixel of target objects can also be considered as the most delicate localization problem. In the few-shot regime, only few annotated examples are available for an unseen class, and networks are required to locate the semantic category of each pixel with minimal information. This thesis will present two approaches to improve the quality of predicted object masks. Notably, a similarity-guided network is proposed to endow the segmentation process with rough position cues for locating the object pixels. To enhance the guidance process and improve the robustness, we further enrich the guidance embed-

dings and propose to employ multiple diverse support vectors to generate the similarity maps.

In addition, each of the proposed methods is comprehensively verified and analyzed by conducting various experiments.