UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Heartbeat Detection with complicated Noises Using FMCW Radar

by

Jingwei Liu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Master of Research

Sydney, Australia

2021

Certificate of Authorship/Originality

I, Jingwei Liu declare that this thesis, is submitted in fulfilment of the requirements for the award of Master of Computer Science, in the FEIT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

> Production Note: Signature removed Signature: prior to publication.

> > Date: 22/1/2021

ABSTRACT

Heartbeat Detection with complicated Noises Using FMCW Radar

by

Jingwei Liu

Remote heartbeat detection is particular useful for applications in smart home, digital health, and disaster relief (e.g. earthquakes) because of its ability to conduct accurate monitoring of heartbeats at a long distance. The millimeter wave band is of great sig-nificance for remote heartbeat detection, and the millimeter wave-based frequency modulated continuous radar (FMCW) radar is an excellent device for remote heartbeat detection. In the research of radarbased heartbeat detection, an important problem is the interference of human motion in the signal. Artifacts caused by motion appear across all frequency bands, thereby polluting the true heartbeat waveforms. Therefore, removing random body motion (RBM)'s interference to heartbeat detection has become the most challenging task at present. In this thesis, the heartbeat detection technology based on FMCW radar is studied and contributions to the research of the following two issues is made:

1. In heartbeat detection, greatly reduce the interference of motion artifacts and background noise when using the sparsity difference to extract the heartbeat waveform.

2. The subject's small degree of random movement (upper body movement, lower body static) caused greater interference.

For the first question, we use convolutional sparse coding (CSC) to replace the sparse coding (SC) in the previous work. In order to simulate complex phase noise and motion artifacts, we use gaussian mixture model (GMM) to model the noise. When solving the CSC problem, in order to speed up the entire process, we use (non-convex inexact accelerated proximal gradient)niAPG to achieve rapid decline. Simulations and experiments verify the effectiveness of our method. For the second question, we added an additional clustering step to the ordinary decomposition algorithm, and proposed new parameters to improve the accuracy of clustering. We extract the initial static data as the initial input, and compare the data of two adjacent time windows to extract the peak heartbeat. For the task of extracting the heartbeat from the target of the upper body motion (large range of random motion), our method proved effective.

Dedication

To my parents Yin Xu and Shengxi Liu.

Acknowledgements

First and foremost, I would like to extend my deepest gratitude to my principal professor Andrew. J. Zhang. His patience and enlightening instruction allowed me to see who a real professor is. Without his teachings, I would not have finished this thesis. I also extend my thanks to Professor Richard Xu. His professionalism and work attitude impressed me deeply. I also thank my parents. Finally, I' d like to thank all my friends, especially Chunrui Liu, Zhengguo Shi, and Andre Pearce. Thank you for your guidance and help.

> Jingwei Liu Sydney, Australia, 2021.

List of Publications

Conference Papers

Jingwei Liu, and J.Andrew.Zhang, "Gaussian Mixture Model based Convolutional Sparse Coding for Radar Heartbeat Detection," *Proc. IEEE Int. Conf. on ICSPCS*, Dec. 14-16, 2020.

Contents

Certificate	ii
Abstract	iii
Dedication	V
Acknowledgments	vi
List of Publications	vii
List of Figures	х
Abbreviation	xii
Notation	xiii
1 Introduction	1
1.1 Background of Human Activity Recognition	1
1.2 Motivation and Objectives	3
1.3 Approach and Contribution	4
1.4 Organisation of the Thesis	4
2 Literature review	6
2.1 CW Radar for Heartbeat Monitoring	6
2.2 FMCW Radar for Heartbeat Monitoring	13
2.3 RBM and RSM Cancellation	16
3 Gaussian Mixture Model Based Convolution	al Sparse
Coding for Radar Heartbeat Detection	28

	3.1	System	Model	. 28	
	3.2	3.2 Methods of GMM-CSC			
		3.2.1	APG	33	
	3.3	Simula	tion and Experimental Results	. 37	
		3.3.1	Simulation	38	
		3.3.2	Experimental Results	39	
4	Ac	lvance	ed Singular Spectrum Analysis Method for Rada	ar	
	He	eartbe	at Detection	46	
	4.1	Cluster	Methods	. 46	
	4.2	Pre-Pre-	ocessing and System Structure	. 50	
	4.3	Advanc	ced SSA for Heartbeat Extraction	. 52	
		4.3.1	Signal Decomposition	. 52	
		4.3.2	Reconstruction and Clustering	53	
		4.3.3	HR Estimation	55	
	4.4	Experin	ment of ASSA	. 58	
5	Co	onclusi	ion	65	
	5.1	Conclu	sion	. 65	
	5.2	Future	work	. 66	
	Bi	bliogra	aphy	67	

List of Figures

2.1	$\rm I/Q$ output and vital signs detected \ldots	7
2.2	Simple CW radar block diagram	8
2.3	Detection result at null observation point	10
2.4	Harmonics in normalized baseband spectrum	12
2.5	Predicted and measured spectrum density of baseband phase	
	fluctuation at baseband for different time delays $\ldots \ldots \ldots \ldots$	13
2.6	T-A and T-F of chirps	14
2.7	Overview of FMCW structure	15
2.8	IF signal change according to small distance change	16
2.9	Data constellation with or without DC information	17
2.10	The result measured at null point compared with wired finger pulse	
	sensor	18
2.11	The build of RBM noise elimination method based on the detection	
	of both sides of the human body	21
2.12	The build of RBM noise elimination method based on a	
	radar-camera sensing system	22
2.13	The build of RBM noise elimination method based on a self- and	
	mutually injection-locked radar architecture	23
2.14	The build of RSM noise elimination method based on a bi-static	
	structure	27
2.15	The build of RSM noise elimination method based on a RF tag	27

3.1	System structure and signal pre-processing	29
3.2	Constellation correction of the received complex signal $\ldots \ldots \ldots$	30
3.3	Structure of GCSC	30
3.4	Simulation result	40
3.5	CSC and GMM-CSC results in frequency domain	41
3.6	Scene setup for experiment.	42
3.7	Unwrapped-phase signal with time period 25 seconds $\ldots \ldots \ldots$	42
3.8	Change in frequency domain after GMM-CSC	43
3.9	Heartbeat signal extracted	43
3.10	Two-target experimental set up	44
3.11	Range-FFT figure.	45
4.1	System structure and signal pre-processing	51
4.2	Comparison between two components with different S	55
4.3	Scene setup for experiment.	59
4.4	Signal from different groups in experiment	61
4.5	Cluster of components in reconstructed signal	62
4.6	Chosen cluster in Frequency domain	63
4.7	Heartbeat Times(per minute) with different processing methods	64

Abbreviation

APG - Accelerated Proximal Gradient

BSS - Blind Source Separation

CSC - Convolutional Sparse Coding

ECG - Electrocardiography

EM - Expectation Maximization

EMD - Empirical Mode Decomposition

FMCW - Frequency Modulated Continuous Wave

ICA - Independent Component Analysis

GMM - Gaussian Mixture Model

IF - Intermediate Frequency

LO - Local Oscillator(In some down-convert process, LO signal can be treated as transmitted signal)

MIMO - Multi input multi output

MA - Motion Artifact

PPG - Photoplethysmography

RBM- Random Body Movement

RMSE - Root Means Square error

RSM - Random System Movement

SHSC - Second Harmonic Signal Component

SSA - Singular Spectrum Analysis

Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

 $(.)^T$ denotes the transpose operation.

 I_n is the identity matrix of dimension $n\times n.$

- 0_n is the zero matrix of dimension $n \times n$.
- \mathbb{R} , \mathbb{R}^+ denote the field of real numbers, and the set of positive reals, respectively.