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ABSTRACT

Blockchain Meets IoT: What Needs To Be Addressed

by

Guangsheng Yu

The connection between Blockchain and Internet of Things (IoT) has no longer

been futuristic. However, the research of Blockchain-based IoT is challenging. The

traditional Blockchain technologies become gradually incapable of satisfying the

growing market of IoT networks, and demand for significant improvements. This

research proposes a variety of novel approaches, aiming to point out and address

the key challenges from di↵erent aspects, i.e., consensus algorithms, Blockchain

scalability, privacy/access control, and integration of the system.

The main contributions of this thesis are summarized as follows.

• This thesis proposes a Markov model explicitly capturing the weighted resource

distribution of Proof-of-X (PoX) schemes in large-scale networks and unifying

the analysis of di↵erent PoX schemes. The new model leads to the development

of three new unified metrics for the evaluation, namely, Resource Sensitivity,

System Convergence, and Resource Fairness, accounting for security, stability,

and fairness, respectively. The generality and applicability of our model are

validated by simulations in the context of the proposed metrics.

• This thesis proposes detailed comparison and quantitative evaluation of major

Blockchain-based sharding mechanisms in a systematic and comprehensive

way. Specifically, the contents include our insights analyzing the features and

restrictions of the existing solutions. We also provide theoretical upper-bound

of the throughput for each considered sharding mechanism. The remaining

challenges and future research directions are also reviewed.



• This thesis proposes a new Blockchain-based IoT system which is compat-

ible with attribute-based encryption (ABE) technique, and fine-grained ac-

cess control is implemented with the attribute update enabled by integrating

Chameleon Hash (CH) algorithms into the Blockchains. We design, and im-

plement a new verification scheme over, a multi-layer Blockchain architecture

to guarantee the tamper-resistance against malicious and abusive tampering.

We also provide analysis and simulations showing that our system outper-

forms other solutions in terms of overhead, searching complexity, security, and

compatibility.

• This thesis proposes a novel Dual-Blockchain-based Long Range (LoRa) sys-

tem providing global cross-validated security, as a case study of integration be-

tween Blockchain and IoT. The rational behaviours of participators, the state-

of-the-art contract-theoretic incentive mechanism, and the newly designed flow

control protocol, can be secured by the tamper-resistance of Blockchains. Be-

ing part of the proposed incentive mechanism, the self-driven flow control

scales both the Dual-Chain system and the LoRa network. We provide analy-

sis and simulations showing that the system motivates the self-deployed LoRa

Gateways in a more secure way, thus optimize the utilization of coverage while

improving the Blockchain scalability and flexibility.
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