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Figure 1.1. Schematic of the hypothesised endosymbiotic events leading to the 

evolution of diatoms. Primary endosymbiosis lead to the origin of green and red algal 

lineages as well as Glaucophytes and land plants from the engulfment of a 

cyanobacteria by a heterotrophic host cell. Secondary endosymbiosis is represented by 

two events, numbered boxes, where in the first event a green algal cell combined with a 

heterotrophic host followed by a second event where a red algal cell was subsequently 

combined leading to present-day diatoms. Red arrows represent gene loss and 

endosymbiotic gene transfer (EGT) events. Modified from Prihoda et al. 2012.  

 

Figure 1.2. Schematic of the thylakoid membrane embedding the components for 

oxygenic photosynthetic driven by the light energy captured by light harvesting 

complexes (LHC) of photosystem I and II (PSI and PSII, respectively). Light triggers 

the photolysis of water by the oxygen evolving complex (OEC) at PSII to initiate linear 

electron (e-) flow (LEF, blue line) via plastoquinone (PQ) pool, cytochrome b6f 

complex (Cyt b6f), plastocyanin (PC), PSI and ferredoxin (Fd). Fd-NADP+ 

oxidoreductase (FNR) transfers electrons to NADP+ to produce reductant (NADPH). 

When the photosynthetic electron transport chain is over-excited, processes such as 

midstream oxidases (MOX, black dashed lines) can alleviate pressure via oxygen 

consumption. The accumulation of protons (H+) in the lumen drive a proton motive 

force (PMF) through ATP-synthase to generate ATP. ATP and NADPH are required to 

fuel CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle to make glucose that can 

be used by other cellular processes. Modified from Allakhverdiev et al. (2010).  
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Figure 1.3. Energy budgets from nutrient limited cultures of Dunaliella tertiolecta and 

Thalassiosira weissflogii (left and middle plots) and light-limited cultures of 

Thalassiosira pseudonana (right plot) at a range of specific growth rates using carbon- 

and oxygen-based measurements. Components measured to build the energy budgets 

included gross primary production (GPO2 or GPPO2), gross carbon production (GPC), net 

primary production (NPO2 or NPO2/C) and net carbon production (NPC or NPPC). Sub-

divisions of energy allocation include light dependent respiration (LDR), nitrogen and 

sulfur (N+S) reduction, mitochondrial respiration, reductants from carbon catabolism 

which is equivalent to biosynthesis of macromolecules and net carbon production which 

is equivalent to biomass. Figures adapted from Halsey et al. 2013 (left and middle plots) 

and Fisher & Halsey 2016 (right plot).  

 

Figure 1.4. Photosynthesis-irradiance (PE) curves showing two fundamental 

descriptors of photosynthetic status: Ek-dependent variation (A) and Ek-independent 

variation (B) when photosynthesis is normalised to chlorophyll (subscript b). The PE 

curve is characterised by a light-saturated maximum rate of photosynthesis (Pmax), light-

limiting slope () and light saturation index (Ek). 

 

Figure 1.5. Phases of FRRf method measuring fluorescence transients. Roman 

numerals represent the different phases and the times found above correlate to the 

duration of each phase. Single turnover (ST) flashes (Phases I and V) encompass a 

series of high frequency (0.5-2 μs intervals) flashlets (80-120). Multiple turnover (MT) 

flashes (Phase III) is similar to ST with more flashlets (~4000) at lower frequency (20-
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200 μs intervals). Following each turnover phase (II, IV, and VI), there is a relaxation 

protocol of 40-80 flashlets at intervals exponentially varying (50 μs–50 ms). Each phase 

provides information on various fluorescence transients: I and V give variable 

fluorescence (Fv) from initial (Fo) and maximal (Fm) fluorescence, functional absorption 

cross-section (σPSII), and energy transfer between PSII reaction centres, RCII; II and VI 

give the kinetics of QA re-oxidation; IV give kinetics of PQ pool re-oxidation; III gives 

fluorescence yield under MT conditions thereby allowing the effects of earlier MT 

excitations on photosynthetic parameters to be quantified (V and VI). 
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Figure 2.1. Initial photophysiological monitoring of seven diatoms: Phaeodactylum 

tricornutum (orange inverted triangles), Chaetoceros muelleri (yellow circles), Ditylum 

brightwellii (green diamonds), Thalassiosira rotula (black Xs), Thalassiosira 

pseudonana (black squares), Thalassiosira weissflogii (blue triangles), and 

Thalassisosira oceanica (red circles). (A) Yield of non-photochemical quenching 

(YNPQ; see Eq 3) with increasing light intensity. (B) Dynamic non-photochemical 

quenching [1-Q] versus photochemical [1-C], where data points signify responses to 

stepped increases in light intensity starting from 0 (far right point) to 1304 µmol 

photons m-2 s-1 (far left point) for 4 min at each light intensity. Error bars represent the 

standard error of the mean of at least n=3 for independent biological replicates. 

 

Figure 2.2. YNPQ vs. de-epoxidation state (DPS) of the XC for T. weissflogii (blue 

triangles), T. oceanica (red circles), and T. pseudonana (black squares) under 10 min 

exposure to growth irradiance (Ig, 85 µmol photons m-2 s-1, solid symbols) and high 
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light (HL, 1200 µmol photons m-2 s-1, open symbols). Dashed lines highlight the extent 

of changes observed between light treatments for each measured parameter. Data 

averaged from three independent replicates for DPS and at least four independent 

replicates for YNPQ with errors bars representing SE of the mean. 

 

Figure 2.3. Representative photo-inhibition and recovery time courses for T. oceanica 

(To), T. pseudonana (Tp) and T. weissflogii (Tw). Black points show individual 

determinations of Fv/Fm or Fv/Fm from FRRf measurements of cultures with PSII 

repair active (absence of lincomycin). Dashed orange line connects Fv/Fm measures 

taken immediately after exposure to HL (1200 µmol photons m-2 s-1) over 0 – 120 min 

or recovery light (15 µmol photons m-2 s-1) at 150 and 180 min, influenced by combined 

effects of non-photochemical quenching induction and net photo-inactivation (if any). 

Solid green line connects Fv/Fm taken after 10 min of subsequent dark for HL time 

points, to allow relaxation of non-photochemical quenching, or taken immediately 

during the recovery light period. These points were used to fit the Kok model of PSII 

photo-inactivation countered by repair. Note the different patterns and amplitudes of 

short-term (10 min) relaxation of non-photochemical quenching, among the species 

(black dots). The dotted red line shows Fv/Fm data from separate lincomycin treated 

cultures to show the underlying photo-inactivation in the absence of counteracting 

repair.  

 

Figure 2.4. Mean YNPQ and YNPQ relaxation amplitude for T. weissflogii, T. 

oceanica and T. pseudonana after 120 min high light exposure. (A) Mean values of 

YNPQ vs. the rate constant for PSII repair, kREC, over 120 min HL exposure showing 
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nonphotochemical quenching measured immediately after light exposure (larger 

symbols) or after 10 min dark FRRf incubation (smaller symbols) for T. weissflogii 

(Tw, blue triangles), T. oceanica (To, red diamonds) and T. pseudonana (Tp, black 

squares). (B) The amplitude of YNPQ relaxation (also green arrows in (A)). Error bars 

show standard errors of the estimates for 3 or 4 independent biological replicates. 

 

Figure 2.5. Proportions of total photochemical energy (GPO2) allocated to various 

oxygen pathways over a 20 min incubation under growth irradiance (Ig) and high light 

(HL). Fractional percentages of GPO2 included net oxygen production (NetO2, grey), 

dark respiration (RDARK, black) and light dependent respiration (LDR, white) in T. 

weissflogii, T. oceanica, and T. pseudonana under Ig (85 µmol photons m-2 s-1) and HL 

(1200 µmol photons m-2 s-1). Data averaged from 2 or 3 independent biological 

replicates with error bars representing SE of the mean.  

 

Figure 2.6. The yield of non-photochemical quenching (YNPQ) versus light dependent 

respiration (LDR) as a % of GPO2 for T. weissflogii (blue triangles), T. oceanica (red 

circles), and T. pseudonana (black squares) under 20 min exposure to growth irradiance 

(Ig, 85 µmol photons m-2 s-1, solid data points) and high light (HL, 1200 µmol photons 

m-2 s-1, open data points). Data averaged from 2 or 3 independent replicates for LDR 

and at least 4 independent replicates for YNPQ. Error bars represent SE of the mean. 

 

Figure 2.7. Energy flux yields including YNPQ (dark blue), YNO (light blue) and YII, 

which was then further divided into fractions of LDR (white), RDARK (balck) and NetO2 

(grey), of T. pseudonana, T. oceanica and T. weissflogii under 85 mol photons m-2 s-1 
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(Ig) and 1200 mol photons m-2 s-1 (HL). Data averaged from 3 independent biological 

replicates and error bars represent SE of the mean. 

 

Figure 2.8. Summary of relative reliance (low to high; light grey to black) on various 

energy dissipation strategies when subject to transient HL including (i) de-epoxidation 

state (DPS) of xanthophyll cycle pigments, (ii) induction/relaxation of 

nonphotochemical quenching (parameterised as YNPQ), (iii) inactivation/repair of PSII 

and (iv) O2 consuming pathways (LDR/RDARK) for the three Thalassiosira diatom 

species examined here.  
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Figure 3.1. Changes in Ek,YII for T. oceanica (circles) and T. weissflogii (triangles) 

acclimated to a 12:12 L:D cycle under sinusoidal light with max irradiance of 400 mol 

photons m-2 s-1 (grey solid line). Ek,YII was calculated using FRRf-derived YII values 

collected from a FLC. The spectrally corrected light intensities for FRRf-incubated 

samples are shown for T. oceanica (dotted line) and T. weissflogii (dashed line). 

Sampling occurred along the photoperiod at 1, 3, 6, 9 and 11 hours after the onset of 

illumination. Error bars represent SE of the mean for at least 3 independent biological 

replicates.  

 

Figure 3.2. Total respiration (RTOTAL, pmol O2 [pg Chl a h]-1) for T. oceanica and T. 

weissflogii acclimated to a sinusoidal light regime (maximum 400 mol photons m-2 s-1) 

at sample time points along the photoperiod. The light incubations representing 
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variations in LDR (Sine – dotted white, and SineHL – solid white) were plotted 

separately and both included the dark respiration (RDARK – black) for each 

corresponding timepoint. Error bars represent SE of the mean for at least three 

independent replicates. Note that the RDARK value at each timepoint does not change 

between light incubation treatments but LDR values do reflect the response to light 

intensity shifts between treatments (Sine and SineHL) and the y-axis scale is different 

between species. 

 

Figure 3.3. Respiratory components of gross oxygen production (GPO2): (A,D) total 

respiration (RTOTAL) as a percentage of gross O2 production. GPO2 separated into the 

fraction of net oxygen production (NetO2, grey), dark respiration (RDARK, black) and 

light dependent respiration (LDR, white) under Sine (B,D) and SineHL (C,F) for T. 

oceanica (A-C) and T. weissflogii (D-F) sampled over the photoperiod. Error bars 

represent SE of the mean for at least three independent replicates.  

 

Figure 3.4. Correlations between YII (dimensionless) and GPO2 (pmol [pg Chl a h]-1) 

for T. oceanica (circles, solid lines) and T. weissflogii (inverted triangles, dashed lines) 

for incubations at Sine and SineHL over the integrated photoperiod. Lines of best fit 

were generated using a simple linear regression model where the shaded areas represent 

the 95% confidence intervals for significant correlations (p < 0.05) only. Model 

parameters are displayed in S3.2 Table. 

 

Figure 3.5. Energy flux yields for the sum of YNPQ (teal), YNO (purple) and YII, 

which was then further divided using GPO2 fractions of LDR (white), RDARK (black) and 
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NetO2 (grey) for T. oceanica and T. weissflogii exposed to Sine and SineHL. Data 

averaged from at least 3 independent replicates with error bars representing SE of the 

mean. 

 

Figure 3.6. Correlations between fluorescence- and oxygen-derived parameters for T. 

oceanica (circles) and T. weissflogii (inverted triangles) at growth irradiance (Sine) 

and 3x growth irradiance (SineHL) collated over a 12-h photoperiod. Correlations 

included RTOTAL to YII (Panel A), YNPQ (Panel B) and YNO (Panel C). Data points 

represent three individual replicate measures for each sample timepoint (1, 3, 6, 9, 11 

h). Regression lines were included for both T. oceanica (solid line) and T. weissflogii 

(dashed line) and 95% CI (grey shaded area) displayed only for significant correlations 

(p < 0.05). Model parameters are displayed in S3.2 Table. 

 

Figure 3.7. Correlations between Ek,YII and (A) RTOTAL, (B) NetO2, and (C,D) carbon 

(pg cell-1) for T. oceanica (circles) and T. weissflogii (inverted triangles). Regression 

lines with 95% CI (grey shaded area) are displayed only for significant correlations (p < 

0.05). Model parameters are displayed in S3.2 Table. 
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Figure 4.1. (A) PCA of relative metabolite abundances for constant light treatments 

(24:0 L:D) at high (yellow circles), medium (green circles) and low (blue circles) 

intensities. (B) PLS-DA of relative metabolite abundances for high and low constant 

(high and low) and pulse (high – orange triangles, low – purple triangles) light 

treatments. Light intensities for high, medium and low are 200, 60 and 5 mol photons 
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m-2 s-1, respectively. Data for relative metabolite abundances was normalised by 

internal standard then ‘metabolite extract biomass’. Explained variances are shown as a 

percentage in brackets and shaded area is the 95% confidence region. Individual data 

points represent independent biological replicates (n=4).  

 

Figure 4.2. Significant metabolites (green circles) identified by SAM between constant 

light treatments (high - HC, medium - MC, low - LC). Significant metabolites 

determined from an ANOVA are distinguished in bold followed by post-hoc 

correlations in italics for a significance level of p < 0.05.  

 

Figure 4.3. Significant metabolites (green circles) identified by SAM between high and 

low constant and pulse light treatments (HC – high constant, HP – high pulse, LC – low 

constant, LP – low pulse). Significant metabolites are distinguished in bold followed by 

post-hoc analysis generated from an ANOVA (p < 0.05). 

 

Figure 4.4. Summary metabolic pathway schematic of metabolites identified using GC-

MS with overlaying plots of relative metabolite concentrations for high constant (HC, 

yellow bars), low constant (LC, blue bars), high pulse (HP, orange bars) and low pulse 

(LP, purple bars) light treatments. 

 

Figure 4.5. Schematic of the general metabolic changes for significant metabolites in T. 

pseudonana grown under high vs low light intensity for both constant and pulse light 

dose treatments. Blue indicates upregulation of relative metabolite concentrations for 

corresponding processes under lower light acclimation and red correlates to processes 
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with associated significant metabolites that were upregulated under high light 

acclimation. Black indicates intermediary steps/processes that were not significantly up 

or down regulated according to the metabolites identified across all light treatments.  

 

 Chapter 5 

Figure 5.1. Schematic of diatom responses to high light from species found in open 

ocean (T. oceanica) and estuary (T. weissflogii) in which coastal diatoms exhibit an 

intermediate response. The main flow of energy involves light energy harvested at 

photosystem II (PSII) where excitons are passed along the linear electron transport 

chain to PSI where NADPH is generated to fuel, in addition to ATP, the Calvin-

Benson-Bassham (CBB) cycle. Products generated from the CBB cycle enter the 

cytoplasm (yellow box) to glycolysis which feeds into the tricarboxylic acid cycle 

(TCA) cycle in the mitochondria (red box) to build macromolecules to support growth. 

Alternatively, gluconeogenesis diverts energy away from TCA cycle to build carbon 

reserves. Sources of energy dissipation from high light before reaching PSII are the 

yield of constitutive losses via fluorescence and heat (YNO) and the yield of regulated 

thermal dissipation via nonphotochemical quenching (YNPQ) Once photolysis occurs 

at the PSII reaction centre, electrons can enter processes of light-dependent respiration 

(LDR) via oxidase activity within the chloroplast (green box) which can be a way to 

dissipate excess electrons or generate additional ATP. Additionally, mitochondrial 

respiration can supplement ATP demands via the catabolism of carbon molecules to 

supply to the CBB cycle or assimilation of nutrients (i.e. nitrogen, N). Nitrogen is 

particularly essential to build pigments and proteins that are fundamental components 

of the nonphotochemical quenching mechanism. The arrow thickness correlates to the 
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upregulation of pathways by these diatoms under high light as observed in Chapters 2 

and 3. 

 

Figure 5.2. Development of energy budget models using cellular currencies – carbon 

(green background), oxygen (blue background) and fluorescence (yellow background) – 

from (A) historical, (B) current to (C) proposed future models. Historical energy budget 

models typically include two cellular currencies and a separate biofractionation of 

macromolecules. Current energy budgets account for the three cellular currencies but 

does not include that deeper carbon insight gained from metabolomics. Future energy 

budgets models could integrate all cellular currencies including the information gained 

from further partitioning of carbon molecules (e.g. metabolites). Such comprehensive 

energy budgets will provide more accurate accounting of energy that ultimately is 

retained in biomass under various environmental stressors. Data adapted from (A) 

Fisher & Halsey (2016) and (B) Chapters 2 and 3 where sub-fractionations within 

cellular currencies are measurements that were collected from diatoms in response to 

light. 
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oceanica, T. pseudonana and T. weissflogii, after acclimated growth at 85 µmol photons 
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low light recovery (15 µmol photons m-2 s-1) (Fig 2.3). Values derived from curve fits 

(Kok 1956; Campbell & Serôdio 2020) of data from 3 independent replicates. Values in 

parentheses represent SE of the mean. 
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Table 4.1. Physiological characteristics of Thalassiosira pseudonana measured at the 

time of metabolomics sampling during steady-state acclimated growth to five different 
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squares), Thalassiosira weissflogii (blue triangles), and Thalassisosira oceanica (red 

circles) with increasing light intensity. Error bars represent the standard error of the 

mean of at least n=3 for independent biological replicates. 
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circles) and oxygen (white LED, grey squares) incubations and analyzed via FRRf and 
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730 nm of T. weissflogii (red dots) and T. oceanica (blue dots) weighting blue LED 
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light to white LED light over photosynthetically active radiation (PAR, 400-700 nm) 
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panel graphs represent SEM while the error associated with ‘cell volume’ 

normalisations were calculated using the percentage of uncertainty to get the 

propagation of error for averages from at least three independent biological replicates. 
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S4.1 Figure. PCAs of the relative metabolite abundances for (A) pulse (12:12 L:D) 
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S4.2 Figure. Significant metabolites (green circles) identified by SAM between high 

and low pulse light treatments (HP – high pulse, LP – low pulse). Significant 

metabolites are distinguished in bold (p < 0.05) and a false detection rate (FDR) < 10%. 
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Thesis Abstract 

Diatoms are the evolutionarily youngest phytoplankton group and considered to be the 

most productive across diverse ocean, coastal and freshwater environments. Based on 

their evolutionary history in diverse environments, diatoms have acquired unique 

diverse mechanisms to cope with fluctuating availability of resources required for 

cellular maintenance and growth. Yet how these mechanisms actually operate to 

moderate metabolic functioning by the energetic tracking of light energy to carbon 

capture – commonly measured as “emergent signatures” or photosynthesis rates via 

fluorescence, O2 evolution and/or CO2 uptake –remains somewhat of a black box. 

This thesis addresses the response of diatoms to light, with particular emphasis on the 

gaps in current energy budgets that quantify trade-offs in O2 evolution and carbon-

assimilation. An initial assessment of a variety of diatom species revealed distinct 

categories of photo-protective capacities (i.e. nonphotochemical quenching) that 

correlated with ecological niche, i.e. taxa originating from estuarine, coastal and open 

ocean environments. Low capacity to dissipate light energy via nonphotochemical 

quenching by open ocean diatoms was compensated for by an upregulation of 

midstream oxidase activity highlighting a key trade-off between light harvesting and 

light utilization strategies. Diurnal monitoring of diatoms with divergent photo-

protective capacities further revealed species-specific dynamic respiratory trends, 

whereby diatoms with high nonphotochemical quenching capacity exhibited more 

dynamic RDARK while diatoms with low nonphotochemical quenching capacity 

exhibited more dynamic light-dependent respiration (LDR). Fluorescence-derived 

measures of photoacclimation (Ek,YII) were found to be significantly correlated to 

oxygen cycling and carbon retained as biomass. Subsequent metabolomic profiling 

provided deeper insight into these processes via the underlying light-driven metabolite 
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reorganisation. Using the model coastal diatom (T. pseudonana), high light metabolic 

profiles were reflective of pathways that support higher growth rate (e.g. glycolysis and 

TCA cycle) compared to low light metabolic profiles associated with carbon conserving 

pathways (e.g. gluconeogenesis and glyoxylate cycle).  

Together these outcomes uncovered previously hidden dynamics of energy processing 

by diatoms – including dynamic respiration rates between taxa and with time of day, 

which also mapped differences in inherent metabolic pathways as well as “emergent” 

metabolic signatures (e.g. fluorescence, O2 and CO2 measures of primary productivity). 

Combining information from cellular currencies (fluorescence, oxygen and carbon) thus 

provides a more robust mechanistic understanding of metabolic processes. This thesis 

has created a foundation for future research to compile more comprehensive energy 

budgets and a framework for improved estimates of primary productivity models. 
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