FANTASTIC METALS & WHERE TO PHYT THEM

Assessing the Potential of Metal Accumulation in Edible Garden Plants

Annaclaire Gwendolyn McDonald

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Under the supervision of Megan L. Murray & Brad R. Murray

University of Technology Sydney

May 2021

DECLARATION

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Annie McDonald, declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy in the School of Life Science, Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 21/05/2021

ABSTRACT

Land contamination is a major threat to global food security. Heavy metals are ubiquitous contaminants contributing to agricultural land degradation across the globe. Their potential to cause serious harm to ecosystems and human health has led to the development of innovative remediation technologies. Harnessing the natural uptake ability of plants, phytoremediation offers an environmentally friendly, and cost-efficient method of remediating heavy metals from soils. Among known phytoremediators, many are plants with edible tissues, which can be deployed on degraded sites to promote decontamination.

However, plants that accumulate high quantities of heavy metals into their edible tissues are a risk to food safety. With urban gardens in Sydney and Melbourne exceeding Australia's Health Investigation Guideline level for heavy metals in residential soils, this thesis investigates the potential of edible plants in remediating legacy soil contamination in Australian environments and evaluates the associated risks of these species to food safety.

A database analysis of edible phytoremediator plants from the literature identified a research gap of edible species tested under Australian environmental conditions. This study was followed by a germination experiment investigating single and multi-metal contaminant effects on the germination of eight commercially important crop species. Carrots were the only species able to germinate under complex multi-metal conditions inferring a greater risk to food safety if they continue to grow and accumulate metals *in situ*. In a controlled glasshouse experiment, mature root vegetable plants (i.e., carrots and radishes) posed the greatest risk to food safety, while common beans were found to accumulate appreciable concentrations of lead into brown leaf tissues compared to green leaves. These results

ii

present a possible avenue for the application of common beans as phytoindicators in leadcontaminated environments. Leafy herbs presented greater risk in a real-world investigation of homegrown produce from residences in North Sydney, NSW. In addition, a landmark field garden trailed on the heritage-listed White Bay Power Station, NSW, showed potential for phytoremediation using edible plants as a non-invasive, long-term strategy for contaminated industrial sites.

The work presented in this thesis advances knowledge of the potential for edible plant phytoremediators to be used in Australian contexts with consideration of the associated risks to food safety. This research identifies crop species that pose lower or greater health risks based on edible tissue accumulation patterns. These findings inform species selection for the mitigation of risks to urban gardeners as well as providing candidates for future applications of phytoremediation in Australia.

ACKNOWLEDGEMENTS

Wait, who said never meet your heroes? I didn't just meet mine, I had the incredible fortune to be taken under her wing as her student. Megan's passion for science and teaching is infectious and I'm awed by her generosity, optimism, and spunk. Unlike other celebrities, I've got your autograph (on all the forms you've had to sign). Seriously though, you are an incredible supervisor. I am forever grateful to you for your mentorship, friendship and support of this work which went above and beyond. It has opened doors and made this achievement possible. I have learned so much from you over the years, both professionally and personally. I'm so stoked to be privy to your wisdom. Thank you from the bottom of my heart for taking me on, guiding me, and helping me grow as a scientist and a human.

I owe a lot of gratitude to co-superstar Brad for his invaluable feedback, contributions, and discussions on nitty gritty aspects of my research. It was through your guidance that I developed my statistical skills and pushed myself technically to think deeply about my data. Plus, a side thank you for the gentle introduction to R and graciously letting me bug you every single semester to fill out the same stipend reference.

Very special thanks to Daniel Krix for your wizardry statistical and chart contributions to parts of this research.

I wish to acknowledge the School of Life Sciences, Faculty of Science for financial support for my research including travel funds to present at the ESA19 conference.

To the incredibly hardworking and talented technical staff Sue Fenech, Gemma Armstrong, Helen Price and Rachel Keeys, thank you so much for your help; often dropping what you were doing to assist me. It also made my day chatting about your artistic talents.

iv

A special thank you to analytical magician Helen Price who spent countless hours schooling me in ICP-MS and MP-AES analysis and sample prep. Helen is *price*less for good banter and has a characteristic tough love approach "Glass is evil. Put it on a T-shirt" – so I did. I thank you not just for your gobsmacking scientific expertise but also your patience in teaching me, as well as introducing me to the wonderful sport of Bouldering. Helen is a machine whisperer and I've unconfirmed suspicions that she herself may be a machine...

HUGE thanks to my brother Angus for our frequent coffee chats at the Startup Hub (you shouted way more than your fair share 谢谢弟弟), and older brother David for regularly asking how Uni was going but once admitting that he wasn't really interested – also fair. Love ya both.

3 borks for my best companion and confidant, Copper. Despite being a dog, Cop is tertiary qualified by proxy after supporting her human not just through high school, but a Bachelors degree and now a PhD. Most insistent on sitting within a 5m radius, under my desk, or first class (my lap), Cop has learned that Copper is essential to human health. She knows we're not just talking about the heavy metal.

Copper the Dog

Thanks to my lab buddy Kieran Young who made fumbling through countless mistakes that much easier. "You just do it ay? You just drink lots of water and do it."

Shoutout to my very good friend Philippa Alvarez for research chats, zooming through the pandemic, and sharing artistic and philosophical interests. "A seed scientist and a comedian walk into a silent meditation retreat? Just when 2020 couldn't get any weirder."

v

 Megan. Likewise, Ichia Chen for your friendship and chats about PhD puddles together. Pip and Ichia's magnificent scientific achievements inspired me a great deal.

Speaking of badass lady academics, thanks to Katherine Whitworth for PhD pep talks and what she called 'unsolicited advice' as well as providing valuable feedback on parts of my thesis. Thanks to Alex Pulkownik for lending me her thesis. A hearty thanks to the numerous research volunteers who helped me process a mountain of samples and/or made an appearance on my podcast 'HDR *what*'; Julia Fyvie-Neill, Liv Schmidt, Lisa Danzey, Miranda Crossley, Nicola Huber-Smith, Elisabeth Morley, Jagmeet Brar, Rebecca Cohen, Amelia Pezzano, and Jules Kidstan-Lattari. Y'all are 'chop & chat' superstars.

Cheers to my ukulele for accompanying me in research presentations including its 'instrumental' role in winning the 2019 International Visualise Your Thesis competition.

Thanks to UTS Football WAAB team (the best team ever and innovators of Bruise Day Tuesday), the Sydney University Dramatic Society (SUDS) 2020 KCD cast, and What She Said Comedy for warmly welcoming me into your shenanigans to keep me grooving outside of research. Credit to my friends June, Kien, Dakota and Kieran H. for supporting me through tough times with frank chats and banter. I loved that you repeatedly asked, "How's Uni going?" or "How long do you have left?" – My answer was always "Yes."

Finally, I'm blessed with absolutely extraordinary parents who have cheered me on all the way through my education. I can't thank you both enough for your unwavering love and encouragement. Your support has meant so much to me and I dedicate this thesis to you.

vi

PREFACE

All research presented here was completed for my PhD thesis.

A version of Chapter 3 has been published in the Australian Journal of Crop Science.

A version of Chapter 3 was also presented as a poster at the 2019 Ecological Society of

Australia's annual conference in Launceston.

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Acknowledgements	. iv
Preface	vii
Table of Contents	viii
List of Figures	xii
List of Tables	xvi
CHAPTER 1: SETTING THE SEED	1
1.1 Introduction	1
1.2 Plants as Conduits for Contaminants	2
1.3 Food Safety	7
1.4 Heavy Metal Contamination	9
1.5 Toxicology Profiles of Selected Metals in Australia	.11
1.6 Comparing Australian Soil and Food Safety Standards with International Limits	.15
1.7 Research Aims	.18
1.8 Thesis Structure	.19
CHAPTER 2: DATASET OF EDIBLE PHYTOREMEDIATORS	21
2.1 Introduction	.21
2.2 Methods	.22
2.2.1 Dataset Compilation	.22
2.2.3 Statistical Analyses	.23
2.3 Results	.23
2.4 Discussion	.28

2.4.1 Conclusion	
CHAPTER 3: THE EFFECTS OF COPPER, ZINC AND LEAD CONTAMINATION OF	N THE GERMINATION
OF EDIBLE CROP SPECIES	
3.1 Introduction	
3.2 Materials and Methods	
3.2.1 Study Species	
3.2.2 Experimental Design and Procedure	
3.2.3 Statistical Analyses	
3.3 Results	40
3.3.1 Germination inhibition	40
3.3.2 Germination onset	40
3.3.3 Germination duration	41
3.3.4 Total germination	41
3.4 Discussion	45
3.4.1 Conclusion	48
CHAPTER 4: LEAD ACCUMULATION IN THE TISSUES OF EDIBLE CROP SPECIES	s 49
4.1 What Pb us here?	49
4.2 Materials and Methods	51
4.2.1 Glasshouse Setup	51
4.2.2 Plants and Soils - Laboratory Processing	53
4.2.3 Statistical Analyses	55
4.2.4 Phytoremediation Index Calculation	56
4.3 Results	57
4.3.1 Species and plant tissues	57
4.3.2 Tissue age and location on plant	

4.3.3 Phytoremediation Indices	62
4.4 Discussion	63
4.4.1 Conclusion	66
CHAPTER 5: HEAVY METAL ACCUMULATION IN HOMEGROWN GARDEN PLANT	TS IN NORTH
SYDNEY, NSW	67
5.1 Introduction	67
5.2 Materials and Methods	70
5.2.1 Study Location	70
5.2.2 Promoting Citizen Participation	71
5.2.3 Donated Plants and Soils - Laboratory Processing	71
5.2.4 Statistical Analyses	72
5.3 Results	73
5.3.1 Study Species	73
5.3.2 Heavy Metals in North Sydney Garden Soils	75
5.3.3 Soil and Plant Tissue Relationships	75
5.4 Discussion	80
5.4.1 Food Safety	80
5.4.2 Soil Concentrations and Site-Specific Features	81
5.4.3 In the Context of Heavy Metal Guidelines	84
5.4.4 Conclusion	85
CHAPTER 6: 'POWER PLANTS' – PHYTOREMEDIATION OF WHITE BAY POWER S	STATION, ROZELLE
NSW	86
6.1 Introduction	86
6.1.1 White Bay Power Station: Site History	87
6.1.2 Phytoremediation of White Bay Power Station	

6.2 Materials and Methods	92
6.2.1 Study Location	92
6.2.2 Project stakeholders	92
6.2.3 Phytoremediation Garden & Sampling Design	93
6.2.4 Laboratory Processing	95
6.2.5 Statistical Analyses	96
6.3 Results	97
6.3.1 <i>Soils</i>	97
6.3.2 Edible Tissue and Soil Relationships	100
6.3.3 Plant Compartmentalisation – Above vs. Below-ground Tissues	105
6.3.4 Garden Growth	108
6.4 Discussion	109
6.4.1 Conclusion	113
Chapter 7: Synthesis	115
7.1 Were the aims of this thesis met?	115
7.2 Safe Gardening	120
7.3 Edible Outlooks and the Ongoing Search for Fantastic Plants	121
7.4 Final Conclusions	123
Appendices	124
References	152

LIST OF FIGURES

Figure 1.1. Summary of phytoremediation processes for inorganic heavy metal pollutants4
Figure 1.2. Sources of heavy metals in the environment10
Figure 2.1. Percentage of species by family where contaminants in edible tissues were
within or exceeded Australian and New Zealand Food Standards (FSANZ 2016). Chart shows
data for the 9 most specious families of 25 recorded in the database24
Figure 2.2. Percentage of species by culinary plant type and whether edible tissues recorded
contaminants within or over FSANZ (2016) guideline levels. Due to expected values
recording < 5, categories 'Within Guidelines' and 'No Guidelines or Untested' were pooled
for χ^2 contingency test analysis25
Figure 2.3. Percentage of species commonly grown in domestic gardens and association
with edible tissues exceeding FSANZ (2016) guidelines26
Figure 2.4. Number of phytoremediation papers on edible species by location of study27
Figure 2.5. Percentage of papers from the top 8 contributors (of a total of 28 countries) of
studies by country and proportion of <i>in situ</i> and <i>ex situ</i> study designs27
Figure 2.6. Percentage of species categorised as having low, moderate, and high potential
for phytoremediation and the application of additional phytoremediation enhancing
substances
Figure 3.1. Germination onset across the eight study species in relation to the heavy metal
treatments (mean + SE). An asterisk shows those treatments that differed significantly (P <
0.05) from the uncontaminated control within each species
Figure 3.2. Germination duration across the eight study species in relation to the heavy
metal treatments (mean + SE). An asterisk shows those treatments that differed significantly

Figure 3.3. Total germination across the eight study species in relation to the heavy metal	
treatments (mean + SE). An asterisk shows those treatments that differed significantly (P \cdot	<
0.05) from the uncontaminated control within each species	.44

Figure 4.2. Proportion of edible tissues by species exceeding the FSANZ (2016) guideline	
level for lead in food (0.1 ppm Pb)	59

Figure 4.3. Mean lead concentration (ppm) in chilli pepper and tomato plant tissues. Red letters indicate statistically different groups. Grey boxes represent the 95% confidence interval of the model's estimated mean, indicated with a black bar......60

Figure 4.4. Lead concentration (ppm) in upper (red) and lower (blue) tissues of fruits, leaves	
and stems of chilli pepper and tomato species61	1

 Figure 5.1. Study location map of suburbs Northbridge and Castlecrag in North Sydney,

 Australia.
 70

Figure 5.4. Plot of robust linear regressions between soils and paired tissue type for heavy
metal concentrations, performed on log transformed data. Red lines show the line of best fit
for a given relationship, with significance values shown at the top of each plot. Blue plots
indicate significant correlations while red plots are non-significant. Fruits/edible tissues
were omitted due to low replication78
Figure 5.5. Geospatial map of maximum soil concentration (ppm) of lead (a), arsenic (b),
cadmium (c) and copper (d)79
Figure 6.1. White Bay Power Station, Rozelle NSW
Figure 6.2. Features from the northern aspect of White Bay Power Station
Figure 6.3. Study location of White Bay Power Station and phytoremediation garden, Robert
Street, Rozelle, NSW
Figure 6.4. White Bay Power Station from a northern aspect of the garden prior to planting.
Figure 6.5. Phytoremediation garden design (From Ware <i>et al.</i> 2018)
Figure 6.6. (Above) The first garden plot (monoculture circles) from the south facing north.
Figure 6.7. (Right) Evidence of rusting pipe material in the 7 th garden plot (monoculture
circle of <i>Cucurbita pepo</i>) facing north95
Figure 6.8. Boxplot of mean heavy metal concentrations in soil samples collected at White
Bay Power Station from original condition to January 2019, analysed with MP-AES98
Figure 6.9. Boxplot of mean heavy metal concentrations in soil samples collected at White
Bay Power Station from February 2019 to May 2019, analysed with ICP-MS98
Figure 6.10. Plots of mean heavy metal concentrations in soils (log transformed data).
Pearson's correlation value and significance values are shown at the top of each plot. Blue
points indicate significant associations while red indicate non-significant associations99

Figure 6.12. Relationship of edible or reproductive tissue concentration of chromium (ppm) and paired soil concentration (ppm). Tissues below detection limits are indicated as 0 ppm.

Figure 6.13. Relationship of edible or reproductive tissue concentration of copper (ppm) and paired soil concentration (ppm). Tissues below detection limits are indicated as 0 ppm....103

Figure 6.14. Relationship of edible or reproductive tissue concentration of lead (ppm) and paired soil concentration (ppm). Tissues below detection limits are indicated as 0 ppm....104

Figure 6.15. Relationship of edible or reproductive tissue concentration of nickel (ppm) and paired soil concentration (ppm). Tissues below detection limits are indicated as 0 ppm....105

Figure 6.16. Heavy metal concentrations in below-ground and above-ground tissues (ppm)
of plants harvested in May 2019. Individuals of the same species harvested from different
garden plots are indicated by mean ± SEM106
Figure 6.17. Heavy metal concentrations in below-ground and above-ground tissues (ppm)
of plants harvested in April 2019107
Figure 6.18. Heavy metal concentrations in below-ground and above-ground tissues (ppm)
of plants harvested in October 2018

Figure 6.19. White Bay Power Station with phytoremediation garden in the foreground. .108

LIST OF TABLES

Table 1.1. Guidelines for heavy metals in soils and food17
Table 3.1. Study species used in the experiments to assess seed germination responses to
copper, zinc and lead contamination. Solanum lycopersicum has been grouped with
vegetables commonly grown in domestic gardens because many domestic growers consider
it a vegetable crop based on its culinary function (Bergougnoux 2014)
Table 4.1. Study species, harvest dates, and number of replicates by species' family
Table 4.2. Leaf and soil bioconcentration factors (BCF _{leaf} and BCF _{root}), and fruit translocation
factor (TF _{fruit}) of lead in crop species (mean ± SD). Values > 1 are marked in bold62
Table 5.1. List of donated species by taxonomic family
Table 6.1. Descriptive statistics for heavy metal concentrations in soils at White Bay Power
Station97