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ABSTRACT

Exploring Region-based Deep Learning to Understand Objects in

Real-world Scenarios

by

Ruiheng Zhang

Supervisor: A/Prof. Min Xu

One way to infer about the real scenes is by understanding the object that

presents in it, involving object localization, object recognition, object tracking, etc.

Despite many advances in computer vision techniques, object understanding in real-

world scenarios still remains many challenging tasks. There is no universal algorithm

that can solve all of the scenarios with their own practical difficulties. This disserta-

tion focuses on exploring region-based deep learning to understand objects in three

typical real-world scenarios.

The first part of the dissertation studies facial landmark detection in the condi-

tion of lack of finely labeled training data. We generate weakly labeled training data

to replace finely labeled data using generative adversarial networks. Then, we pro-

pose a region-based convolutional neural network to detect facial components and

landmarks simultaneously. Notably, our approach can handle the situation when

large occlusion areas occur, as we localize visible facial components before predict-

ing corresponding landmarks. Extensive evaluations on several datasets indicate the

effectiveness of the proposed approach.

In the second part, multi-player identification and tracking tasks in sports video

are discussed. We build a robust multi-camera multi-player tracking with identifica-

tion framework, from player detection, to identification, to tracking. To handle the

identity switches, we design a distinguishable deep representation for player iden-

tity, considering pose-guided partial features, team class, and jersey number. For



data association, a robust multi-player tracker incorporating with player identity is

further developed to produce identity-coherent trajectories. Experiment results illus-

trate that our framework handles the identity switches effectively, and outperforms

state-of-the-art trackers on the sports video benchmarks.

Finally, we study vehicle detection in infrared images with poor texture informa-

tion, low resolution and high noise levels. To deal with these difficulties, we propose

a backbone network to exploit discriminative features, composing of a frequency

feature extractor, a spatial feature extractor and a dual-domain feature resource

allocation model. Hypercomplex Infrared Fourier Transform is developed to calcu-

late the infrared intensity saliency, while a convolutional neural network is used to

extract feature maps in the spatial domain. To efficiently integrate and recalibrate

the frequency and spatial features, we propose a Resource Allocation model for Fea-

tures based on the well-designed attention blocks. The experiments substantiate the

merits of the proposed method through comparisons with state-of-the-art methods.

Dissertation directed by Associate Professor Min Xu

School of Electrical and Data Engineering
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