UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Exploring Region-based Deep Learning to Understand Objects in Real-world Scenarios

by

Ruiheng Zhang Supervisor: A/Prof. Min Xu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2021

Certificate of Authorship/Originality

I, Ruiheng Zhang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

Also, I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with Beijing Institute of Technology, China.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

© Copyright 2021 Ruiheng Zhang

To my loving parents, my dear grandparents, my beloved wife and daughter.

ABSTRACT

Exploring Region-based Deep Learning to Understand Objects in Real-world Scenarios

by

Ruiheng Zhang Supervisor: A/Prof. Min Xu

One way to infer about the real scenes is by understanding the object that presents in it, involving object localization, object recognition, object tracking, etc. Despite many advances in computer vision techniques, object understanding in realworld scenarios still remains many challenging tasks. There is no universal algorithm that can solve all of the scenarios with their own practical difficulties. This dissertation focuses on exploring region-based deep learning to understand objects in three typical real-world scenarios.

The first part of the dissertation studies facial landmark detection in the condition of lack of finely labeled training data. We generate weakly labeled training data to replace finely labeled data using generative adversarial networks. Then, we propose a region-based convolutional neural network to detect facial components and landmarks simultaneously. Notably, our approach can handle the situation when large occlusion areas occur, as we localize visible facial components before predicting corresponding landmarks. Extensive evaluations on several datasets indicate the effectiveness of the proposed approach.

In the second part, multi-player identification and tracking tasks in sports video are discussed. We build a robust multi-camera multi-player tracking with identification framework, from player detection, to identification, to tracking. To handle the identity switches, we design a distinguishable deep representation for player identity, considering pose-guided partial features, team class, and jersey number. For data association, a robust multi-player tracker incorporating with player identity is further developed to produce identity-coherent trajectories. Experiment results illustrate that our framework handles the identity switches effectively, and outperforms state-of-the-art trackers on the sports video benchmarks.

Finally, we study vehicle detection in infrared images with poor texture information, low resolution and high noise levels. To deal with these difficulties, we propose a backbone network to exploit discriminative features, composing of a frequency feature extractor, a spatial feature extractor and a dual-domain feature resource allocation model. Hypercomplex Infrared Fourier Transform is developed to calculate the infrared intensity saliency, while a convolutional neural network is used to extract feature maps in the spatial domain. To efficiently integrate and recalibrate the frequency and spatial features, we propose a Resource Allocation model for Features based on the well-designed attention blocks. The experiments substantiate the merits of the proposed method through comparisons with state-of-the-art methods.

Dissertation directed by Associate Professor Min Xu School of Electrical and Data Engineering

Acknowledgements

First and foremost, I want to extend my heartfelt gratitude to my supervisor, A/ Prof. Min Xu. Her kind supervision, valuable suggestions and warm encouragement helped me to overcome difficulties and to successfully complete this thesis. She had empowered and inspired me to work on multiple research projects which led to publications in top journals and conferences. She will always be my most beloved supervisor. I have learned so much from her, not only how to be a successful scholar but also how to be a kind person in life. I also would like to appreciate my cosupervisor Dr. Xiaoying Kong for providing me with continuous support throughout my study and research.

Second, I wish to express my sincere appreciation to Prof. Lixin Xu and A/ Prof. Chengpo Mu, my Dual-PhD supervisors at Beijing Institute of Technology. Although we are far away from each other, they gave me many suggestions and much help.

Third, I would like to pay tribute to Prof. Dacheng Tao, Prof. Dayong Jin, Prof. Linlin Ge, Prof. Sean He, Prof. Qiang Wu, Prof. Shenghong Hu, Dr. Yu Peng, Dr. Wenguan Wang, Dr. Yang Yu, and Dr. Zhengyu Yu for their inspiring words, continued support, and elaborate instructions about my presentations and academic reports. They had a significantly positive influence on me during my Ph.D. career.

Forth, I thank my fellow lab mates and my excellent friends: Tianrong Rao, Haimin Zhang, Lingxiang Wu, Wanneng Wu, Yukun Yang, Lei Sang, Zhongqin Wang, Xiaoxu Li, Qiyu Liao, Shuo Yang, Jiahao Xia, Caoyuan Li, Yang He, Yaxin Shi, Shilei Zhou, Huan Li, Wei Wei, Xiaofeng Xu, Qi Zhang, Zhibin Li, Yan Huang, Huidong Xu, Deyang Liu, Yuexi Zhang, Jiayan Qiu, Ye Shi, Yulong Sun and others that I cannot list them all for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the funs we have had. I thank, School of Electrical and Data Engineering, Faculty of Engineering and IT, University of Technology Sydney for providing the infrastructures, computing power, and financial support.

Finally, I am grateful for my dear family, especially my father Bin Zhang, my mother Juan Li, my grandpa Wenhua Li, my grandma Yachun Liu, my father in law Shengchun Shi, my mother in law Conghua Lin, my uncle Donghai Zhang and Yunhai Ma, my brother Zhe Yuan and Zichao Ma, who had been supportive during my PhD candidature stages, researching and writing my thesis. I am sincerely grateful for everything and especially the opportunities given in this life, from being born to the completion of this Doctor of Philosophy thesis.

Special thanks to my wife Dr. Qiaolin Shi, who is always being with me. She was the one who encouraged me to grow as a real man and gave the pretty birth to my beloved daughter Yuxi Zhang.

Ruiheng Zhang Sydney, Australia, 2020.

List of Publications

Journal Papers

- J-1. R. Zhang, L. Wu, Y. Yang, W. Wu, Y. Chen, M. Xu, 'Multi-camera Multiplayer Tracking with Deep Identification in Sports Video', *Pattern Recognition*, Volume 102, 2020, 107260, ISSN 0031-3203.
- J-2. R. Zhang, C. Mu, M. Xu, L. Xu, Q. Shi, J. Wang, 'Synthetic IR Image Refinement using Bidirectional Mappings with Adversarial Learning', *IEEE Access*, 2019, 7: 153734-153750.
- J-3. R. Zhang, C. Mu, M. Xu, L. Xu, X. Xu, 'Facial Component-Landmark Detection with Weakly-supervised LR-CNN', *IEEE Access*, 2019, 7: 10263-10277.
- J-4. R. Zhang, L. Xu, Z. Yu, Y. Shi, C. Mu, M. Xu, 'Deep-IRTarget: An Automatic Target Detector in Infrared Imagery using Dual-domain Feature Extraction and Allocation', *IEEE Transactions on Multimedia*, 2021.
- J-5. Q. Liang, W. Wu, Y. Yang, R. Zhang, Y. Peng, M. Xu, 'Multi-Player Tracking for Multi-View Sports Videos with Improved K-Shortest Path Algorithm', *Applied Sciences*, 2020, 10, 864.
- J-6. Q. Zhang, R. Zhang, L. Ge, M. Xu, 'A High Accuracy Burned Area Detection Framework Based on The Joint Processing of Sentinel-1&2 Data', *Remote Sensing of Environment*. (under review)
- J-7. Y. Yang, R. Zhang, W. Wu, M. Xu, '3D Localization for Multiple Players in Multiview Sport Videos with Deep Identification Reasoning', *Pattern Recognition*. (under review)

Conference Papers

- C-1. R. Zhang, M. Xu, Y. Shi, J. Fan, C. Mu, L. Xu, 'Infrared Target Detection using Intensity Saliency and Self-Attention', 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020.
- C-2. Y. Yang, R. Zhang, W. Wu, Y. Peng, M. Xu, 'Multi-camera sports players 3D localization with identification reasoning', 2020 25 th IEEE International Conference on Pattern Recognition(ICPR). IEEE, 2020.
- C-3. Y. Yang, M. Xu, W. Wu, R. Zhang, and Y. Peng, '3D Multiview Basketball Players Detection and Localization Based on Probabilistic Occupancy', 2018 Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2018.

Contents

	Certificate	ii
	Abstract	iv
	Acknowledgments	vi
	List of Publications vi	iii
	List of Figures xi	iv
	List of Tables xvi	iii
1	Introduction	1
	1.1 Background and Motivation	1
	1.2 Summary of Contributions	4
	1.3 Organization	5
2	Literature Review	7
	2.1 Deep Learning-based Object Detection	7
	2.2 Facial Component and Landmark Detection	LO
	2.3 Multi-object Identification and Tracking in Sports Video	1
	2.4 Infrared Target Detection and Recognition	14
3	Facial Component and Landmark Detection With Weakly	-
	Supervised LR-CNN 1	6
	3.1 Introduction $\ldots \ldots 1$	16
	3.2 Data Preprocessing and Augmentation	19

		3.2.1	Weakly-supervised Training Data	21
		3.2.2	Fully-supervised Training Data	23
	3.3	Weakly	-supervised LR-CNN Framework	24
		3.3.1	Region-based Component Detection	24
		3.3.2	Two Branch Landmark Detection	27
		3.3.3	Weakly-supervised Learning and Loss	29
		3.3.4	Training	30
	3.4	Experi	ments and Discussions	31
		3.4.1	Dataset and Evaluation Metrics	31
		3.4.2	Comparison with Other State-of-the-art Methods \hdots	32
		3.4.3	Ablation Study	39
	3.5	Conclu	sion	45
4	3.5 M 1	Conclu ulti-ca	mera Multi-player Tracking with Deep Player	45
4	3.5 Mu Ide	Conclu ulti-ca entific	mera Multi-player Tracking with Deep Player	45 46
4	3.5 M u Ide 4.1	Conclu ulti-ca entific Introdu	mera Multi-player Tracking with Deep Player ation	45 46 46
4	 3.5 Mu Ide 4.1 4.2 	Conclu ulti-ca entific Introdu DeepPl	sion	45 46 46 50
4	 3.5 Mu Ide 4.1 4.2 	Conclu ulti-ca entific Introdu DeepPl 4.2.1	sion mera Multi-player Tracking with Deep Player ation action	45 46 46 50 51
4	 3.5 Mu Ide 4.1 4.2 	Conclu ulti-ca entific Introdu DeepPl 4.2.1 4.2.2	mera Multi-player Tracking with Deep Player ation ation ation A second structure of the second structu	45 46 46 50 51 54
4	 3.5 Mu Ide 4.1 4.2 	Conclu ulti-ca entific Introdu DeepPl 4.2.1 4.2.2 4.2.3	sion mera Multi-player Tracking with Deep Player ation ation action aver Model for Player Identification Cascade Mask RCNN aver Model for Player Identification Pose-guided Partial Feature Embedding aver Model for Player Identification	45 46 50 51 54 56
4	 3.5 Mu Ide 4.1 4.2 4.3 	Conclu ulti-ca entific Introdu DeepPl 4.2.1 4.2.2 4.2.3 Individ	sion mera Multi-player Tracking with Deep Player ation action	45 46 50 51 54 56 57
4	 3.5 Mu Ide 4.1 4.2 4.3 	Conclu ulti-ca entific Introdu DeepPl 4.2.1 4.2.2 4.2.3 Individ 4.3.1	sion mera Multi-player Tracking with Deep Player ation netion netion action	45 46 50 51 54 56 57 58
4	 3.5 Mu Ide 4.1 4.2 4.3 	Conclu ulti-ca entific Introdu DeepPl 4.2.1 4.2.2 4.2.3 Individ 4.3.1 4.3.2	sion mera Multi-player Tracking with Deep Player ation metric action	45 46 50 51 54 56 57 58 59
4	 3.5 Mu 4.1 4.2 4.3 	Conclu ulti-ca entific Introdu DeepPl 4.2.1 4.2.2 4.2.3 Individ 4.3.1 4.3.2 4.3.3	sion mera Multi-player Tracking with Deep Player ation metric action	45 46 50 51 54 56 57 58 59 59

xi

	4.5	Experin	nents and Discussions	64
		4.5.1	Dataset	64
		4.5.2	Experiments Settings	64
		4.5.3	Baselines	65
		4.5.4	Evaluation Metrics	66
		4.5.5	Results	67
		4.5.6	Ablation Study	70
	4.6	Conclus	sion	74
5	Int	frared	Target Detection using Dual-domain Feature	е
	Ex	tracti	on and Allocation	75
	5.1	Introdu	lction	75
	5.2	Overall	of The Deep-IRTarget Framework	. 78
	5.3	Dual-de	omain feature extraction	. 79
		5.3.1	Infrared Saliency using Hypercomplex Infrared Fourier	
			Transform in the Frequency Domain	80
		5.3.2	CNN-based Feature Extraction in the Spatial Domain	85
	5.4	Resour	ce Allocation for Feature	85
		5.4.1	CNN-based Feature Integration	86
		5.4.2	Channel SE-Attention Block	. 87
		5.4.3	Position SE-Attention Block	91
		5.4.4	Allocated Feature	93
	5.5	Detecti	on Head	93
	5.6	Experin	nents and Discussions	. 94
		5.6.1	Implementation Details	. 94

	Bił	oliogra	aphy	111
6	Co	nclusi	ons	109
	5.7	Conclus	sion	. 108
		5.6.9	Ablation Study	. 104
		5.6.8	Discussions	. 102
		5.6.7	Evaluation on WCIR Dataset	. 101
		5.6.6	Evaluation on BITIR Dataset	. 101
		5.6.5	Evaluation on MWIR Dataset	. 98
		5.6.4	Evaluation Metrics	. 97
		5.6.3	Baseline	. 95
		5.6.2	Datasets	. 95

List of Figures

1.1	In the era of big data, image, video and other media data show	
	'explosive' growth.	2
1.2	Deep learning technology promotes the development of vision	
	application.	3
2.1	Object detection milestones	7
2.2	The architecture of YOLO and SSD	8
2.3	The architecture of the RCNN series	9
3.1	The whole pipeline. Blue boxes and lines represent fully labeled	
	data and fully-supervised learning processing, while red boxes and	
	lines show weakly labeled data and weakly-supervised learning. $\ . \ .$	19
3.2	Data preprocessing and augmentation.	20
3.3	The proposed LR-CNN architecture. Blue lines represent	
	fully-supervised process, and red lines show weakly-supervised process.	25
3.4	Cumulative error curves. The red line (Ours) is our	
	weakly-supervised method and the green one (Ours(non-weakly)) is	
	our LR-CNN without generated weakly labeled data	36

3.5	Some detection results on Helen testset (the first row), LFPW	
	testset (the second row) and 300-W testset (the rest row). The	
	different color bounding boxed show facial component detection and	
	the text and number pairs denote the probabilities of bounding	
	boxes belong to the corresponding categories. The predicted	
	landmark coordinates are plotted by different color points	
	corresponding their component	37
3.6	Some detection results of our method on extreme illuminations and	
	occlusions in first row. The second row shows the result of LDDR	39
3.7	Left image is weakly-supervised result, right image is	
	non-weakly-supervised result	40
4.1	An example of identity switch in player tracking. The identities of	
	Player 11, Player 14 and Player 15 exchange when players interchange.	47
4.2	The overall framework consists of three modules: (1) the	
	DeepPlayer model for players' 2D localization, instance	
	segmentation and identification, (2) the IPOM model to localize	
	players' 3D coordinates with ID, (3) the KSP-ID model for the	
	ID-enhanced multi-player tracking	48
4.3	The architecture of the DeepPlayer model. This model consists of	
	two part: (1) the Cascade Mask RCNN for coarse-grained player	
	detection(Cascade Mask-RCNN-P) and fine-grained jersey number	
	recognition(Cascade Mask-RCNN-J); (2) the player mask	
	embedding into the deep representation using PoseID. Finally, the	
	player identity is decided by the jersey number class, the team class	
	and the deep representation	51
4.4	PoseBox construction. Given a mask, the player pose is estimated	
	by OpenPose. PoseBox1 = torso + arms + legs; PoseBox2 = head	
	+ torso $+$ arms $+$ legs; PoseBox3 = head $+$ arms $+$ legs	56

4.5	Overview of the IPOM model. The input includes player's	
	segmentations and IDs. The 3D localization model processes the	
	players with identified ID and the players with ambiguous ID,	
	followed by a post-process with a threshold. The output is the final	
	3D localization results	58
4.6	A simplified flow system for a directed graph. The yellow and blue	
	color represent two different players. Given a depth of one, a player	
	occupying the location i at time t can arrive at one of the three	
	neighbor locations at time $t + 1$. The weight $e_{i,j}^t$ of edge depend on	
	not only the marginal posterior probability ρ_i^t of the presence of the	
	player, but also the proposed player ID correlation coefficient $\varrho_{i,j}^t$ of	
	the node pairs.	61
4.7	Illustrative tracking results on the APIDIS dataset. Different color	
	indicates different team, and the number indicates the identity	
	across frames.	68
4.8	Illustration of the APIDIS dataset in Camera 3 and 6 indicate that	
	the proposed method is able to avoid identity switch among Player	
	11, Player 14, and Player 15 in the dashed box	70
4.9	Illustration of our tracking results on the STU dataset in Camera 1,	
	4 and 6. Red and yellow color boxes indicate black and white teams	
	respectively. The blue dotted boxes show that our method avoids	
	identity switch between Player 6 of the white team and Player 11 of	
	the black team.	71
4.10	Results of the three types of PoseBoxes on the APIDIS and STU	
	dataset. PoseBox1 = torso + arms + legs; PoseBox2 = head +	
	torso + arms + legs; PoseBox3 = head + arms + legs. \ldots .	73

5.1	The architecture of the Deep-IRTarget framework mainly consists
	three parts, (1) Dual-domain Feature Extraction(DFE) in frequency
	and spatial domain; (2) Resource Allocation for Feature(RAF) with
	channel-wise and position-wise attention; (3) Detection head based
	on the Region Proposal Network (RPN)
5.2	The pipeline of the Hypercomplex Infrared Fourier Transform 80
5.3	The details of the Channel SE-Attention block and the Position
	SE-Attention block are illustrated in (a) and (b). Different colored
	lines represent different streams
5.4	An illustration of the detection results on MWIR, BITIR and
	WCIR dataset, comparing with other methods. The first group of
	two rows is related to the MWIR dataset, the second group of two
	rows is related to the BITIR dataset, the last six to the WCIR
	dataset. The first column is the ground truth of the samples.
	Different colored bounding boxes mean different classes 99
5.5	The performance of the Deep-IRTarget with HFT, PFT, and HIFT
	on MWIR, BITIR and WCIR
5.6	The performance of the Deep-IRTarget with DANet, SENet, and
	RAF on MWIR, BITIR, and WCIR

List of Tables

3.1	The landmark indexes and the vector length of each facial	
	component in the 68-landmark annotation	21
3.2	The component detection result (AP) compared with other methods.	33
3.3	The landmark detection results (average error distance) compared	
	with other methods, on Helen, LFPW and 300-W test set separately.	34
3.4	The component detection result (AP) compared with other methods.	41
3.5	The 51-landmark detection result (average error distance) compared	
	with our methods with variants on different test set. \ldots	42
3.6	Detection results of our algorithm on Helen test set using different	
	settings of anchors. The network is ResNet-50	43
3.7	Detection results with various RoI layers	43
3.8	Landmark detection results with various architectures. \ldots	44
4.1	Training parameters of the DeepPlayer model in three steps	65
4.2	The characteristics of the datasets and the corresponding parameters.	65
4.3	Quantitative comparison results of the proposed method with	
	state-of-the-art trackers on the APIDIS dataset	69
4.4	Ablation experiments on the APIDIS dataset	72
4.5	Ablation experiments on the STU dataset	72
4.6	Ablation studies on player identification on the STU dataset	73

5.1	The architecture of CNN-Spatial
5.2	The architecture of CNN-Fuse
5.3	The performance of our method and the baselines on the MWIR
	dataset
5.4	The results on the BITIR dataset
5.5	The results on the WCIR dataset
5.6	The ablation study of our method