UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Measurement, Modelling and State Estimation Techniques for Lithium-ion batteries

by

Qi Yao

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

Certificate of Authorship/Originality

I, Qi Yao, declare that this thesis, is submitted in fulfilment of the requirements for

the award of Doctor of Philosophy in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Production Note:

Signature: Qi Yao Signature removed prior to publication.

Date: 27/02/2021

Dedication

My Uncle, Chengjin Yao

Acknowledgements

First, I would like to express my gratitude to my supervisor, Professor Dylan Dah-Chuan Lu, for providing tremendous support and encouragement throughout these years. I appreciate for his mentoring and cultivating for my research work and my research habits that he told me no matter how we focus on current research work, it is important to keep reading latest papers. His persistent interest in research inspire me a lot. I convey my gratitude to my co-supervisor, Dr. Gang Lei, for his help and advises during this research.

I am grateful for all my colleagues and teammates in Dylan's Group. I feel so lucky to met Tian Cheng and Kaixin Wei that we share lots of happiness together. In particular, Tian Cheng is my colleague, my roommate and my friend. Moreover, it is important to express my thanks to Yang He, who provides me lots of help.

I want to express my appreciation to my parents and my grandmother, who give me endless love, help, and encouragement in my life. You always try to solve difficulties before I know them. How lucky to be your child.

Finally, I want to dedicate my most sincere miss and thanks to my uncle, Chengjin Yao, who passed away in 2018. During my study and growth, he has always given me selfless help, love and unreserved support. He is a reliable and heartwarming person, who respects his parents, loves his wife, and cares for younger generations in our family. One of my biggest regrets in my life is that I don't have a chance to share all my happiness and sadness in my PhD journey with him. Dear uncle, I hope you live happily in another world without suffering.

Qi Yao

Sydney, Australia, 2021.

List of Publications

Accepted Journal Papers

- J-1. Q. Yao, D. D. -C. Lu and G. Lei, "Rapid Open-Circuit Voltage Measurement Method for Lithium-ion Batteries Using One-cycle Bipolar-current Pulse," in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, doi: 10.1109/JESTIE.2020.3041711.
- J-2. Q. Yao, D. D. -C. Lu and G. Lei, "Accurate Online Battery Impedance Measurement Method with Low Output Ripples on Power Converters," in Energies, doi: https://doi.org/10.3390/en14041064

Accepted Conference Papers

- C-1. **Q. Yao**, D. Lu and G. Lei, "Battery Impedance Measurement Using Fast Square Current Perturbation," 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, 2019, pp. 1-5.
- C-2. Q. Yao, D. D. Lu and G. Lei, "A Simple Internal Resistance Estimation Method Based on Open Circuit Voltage Test Under Different Temperature Conditions," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, 2018, pp. 1-4.

Under Process Journal Papers

- J-3. Q. Yao, D. D. -C. Lu and G. Lei, "A Sensorless Temperature Estimation Method For Lithium-ion Battery Using Recurrent Neural Network With Gated Recurrent Unit"
- J-4. **Q. Yao**, D. D. -C. Lu and G. Lei, "An Empirical Comparison of Different Recurrent Neural Networks for Battery State of Charge Estimation

Contents

	Certificate		11
	Dedication		iii
	Acknowled	gments	iv
	List of Pul	olications	V
	List of Fig	ures	xi
	List of Tab	bles	XV
	Abbreviati	on	xvi
	Abstract	Y	cviii
1	Introdu	ction	1
	1.1 Backgr	round	1
	1.2 Introd	uction of Lithium-ion Batteries	4
	1.2.1	Working Principle	4
	1.2.2	Different Types of Lithium-ion Batteries	5
	1.2.3	Models	5
		1.2.3.1 Equivalent electric circuit models	6
		1.2.3.2 Physics-based electrochemical models	7
		1.2.3.3 Data-driven models	9
	1.3 Introd	uction of Battery Management of System	9
	1.3.1	Signal Measurement	10
	1.3.2	States Estimation	11

			1.3.2.1 State of Charge (SOC)	11
			1.3.2.2 State of Health (SOH)	11
		1.3.3	Balancing	12
	1.4	Researc	ch Objectives	13
	1.5	Thesis	Organization	14
2	\mathbf{A}	Rapid	OCV Measurement Method for Battery Mod-	
		ing		16
	2.1	Introdu	ction	16
	2.2	Related	Works and Research Gap	17
	2.3	Propose	ed Rapid OCV Measurement Method Using OCBCP	20
		2.3.1	Physical Description of the Battery Model	22
		2.3.2	Second-Order Relaxation Model Analysis	24
		2.3.3	Experimental Setup	26
			2.3.3.1 Experimental Platform	26
			2.3.3.2 Battery Information	27
			2.3.3.3 Battery Relaxation Test	27
		2.3.4	OCBCP based OCV acceleration measurement method	28
			2.3.4.1 Battery Relaxation Model Parameters Identification	30
			2.3.4.2 OCBCP Acceleration Method	33
			2.3.4.3 Improved Current Pulses Considering Hysteresis	
			Voltage	36
	2.4	Discuss	ion of Results	38
		2.4.1	Verifying the Experiment Procedure	38
		2.4.2	Validation Results	39

			2.4.2.1 Validation Results at Incremental OCV Tests	39
			2.4.2.2 Validation Results at Dynamic Conditions	43
	2.5	Summa	ry	43
3	Ba	ttery	Impedance Measurement Method	46
	3.1	Introdu	action	46
	3.2	EIS Me	easurement Techniques	46
		3.2.1	Single-Frequency Measurement	47
		3.2.2	Multi-Frequency Measurement	48
	3.3	Related	l Works and Research Gap	48
	3.4	Review	of Converter Normal Operation	51
	3.5	Review	Converter-Based Duty-Cycle Perturbation Battery	
		Impeda	ance Measurement Method	52
	3.6	Propose	ed Switched Resistor Circuit Perturbation Method for Output	
		Voltage	Ripples Reduction	54
		3.6.1	Principle of the SRC Perturbation Method	54
		3.6.2	SRC Parameter Selection	55
		3.6.3	Theoretical Verification of Output Voltage Ripple Reduction	
			in Proposed SRC Perturbation Method	56
		3.6.4	Simulation Verification of Output Voltage Ripple Reduction	
			in Proposed SRC Perturbation Method	60
		3.6.5	Experimental Verification of Output Voltage Ripples	
			Reduction in Proposed SRC Method	65
	3.7	Battery	Impedance Measurement Validation	66
		3.7.1	Battery Multi-frequencies Impedance Calculation Algorithm .	66

		3.7.2	Online Battery Impedance Test at 50% SOC, 1C Discharge
			Current Rate
		3.7.3	Online Battery Impedance Tests at Various Battery SOC 71
		3.7.4	Online Battery Impedance Tests at Various Discharge
			Current Rate
	3.8	Summa	ry
4	Se	nsorle	ss Battery Surface Temperature Estimation 73
	4.1	Introdu	etion
		4.1.1	Related Works and Research Gap
	4.2	Battery	Temperature Distribution is a Time-Sequence Task
		(Theore	etical Analysis)
	4.3	Propose	ed GRU-RNN Sensorless Battery Temperature Estimation
		Method	1
	4.4	Experir	ment and Result Discussion
		4.4.1	Platform for Data Collection
		4.4.2	Data Preparation and Experimental Procedure 81
		4.4.3	Experiment: GRU-RNN Model Training and Evaluation 81
		4.4.4	Experimental Result Discussion
	4.5	Summa	ary
5	Re	currei	nt neural network based online SOC estimation 87
	5.1	Introdu	action
		5.1.1	Related Works for RNN-based SOC Estimation
	5.2	Models	
		521	Traditional RNN

		5.2.3	GRU-RNN	. 94
		5.2.4	Bidirectional RNN	. 95
	5.3	Experi	mental Setup	. 96
		5.3.1	Experimental Platform	. 96
		5.3.2	Experimental Data	. 97
		5.3.3	Experimental Procedure	. 98
	5.4	Experi	mental Results and Discussion	. 100
		5.4.1	Different Numbers of The Hidden Nodes	. 100
		5.4.2	Different Numbers of The Layers	. 104
		5.4.3	Different Numbers of Mini-Batch	. 104
		5.4.4	Result Discussion	. 104
	5.5	Summa	ary	. 105
6	Co	nclusi	lon	106
	6.1	Conclu	sion	. 106
	6.2	Future	Work	. 108
	Bil	bliogra	aphy	110

List of Figures

1.1	Global greenhouse gas emissions [1]	2
1.2	EV sale data (x axis: year, y axis: sale number (million)) [2] \dots	3
1.3	Schematic of P2D model and SP model [3]	8
1.4	Illustration of data driven model procedure	9
1.5	Key functions of the BMS	10
1.6	Energy and capacity loss of the lithium-ion batteries under imbalance	12
1.7	Battery balancing methods [4]	13
2.1	Online SOC estimation process, problem of the conventional	
	incremental OCV test method and the contribution of this work	21
2.2	The second-order battery model. (a) The operation mode model	
	when the switch is on; (b) The relaxation model model when the	
	switch is off	23
2.3	Battery experimental platform	27
2.4	Terminal voltage during discharging by 12 mins under $\mathrm{C}/2$ and	
	measured open circuit voltage after stopping discharge for different	
	times. (a) After 2 hour; (b) After 8 hour	29
2.5	Polarization voltage variations with time	30
2.6	The relationship between current pulse amplitude and duration of	
	the polarization voltage zero-crossing point	31

2.7	The measured terminal voltage of battery by discharging 10% SOC followed by the calculated one-cycle bipolar-current pulse (1C,880s).	33
2.8	Comparison of the polarization voltage curves after the proposed three sets of OCBCPs and the reference. (a) The measured voltage; (b) The polarization voltage (measured voltage minus the OCV)	37
2.9	Comparisons of polarization voltage curves of INR-18650 battery between the conventional incremental OCV method and the rapid OCV method under different settings	41
2.10	Comparisons of polarization voltage curves of NRC-18650 battery between the conventional incremental OCV method and the rapid OCV method under different settings	42
2.11	Comparison of the conventional OCV performance (reaches to OCV at 1800s) and rapid OCV method performance (reaches OCV at 1100s) after the same dynamic current profile	44
3.1	EIS acquired at healthy and weak batteries [5]	47
3.2	Illustration diagrams for battery impedance measurement methods: conventional duty-cycle perturbation method [6] (left), the proposed SRC perturbation method (right)	53
3.3	Small-signal model of boost converter operating in CCM (Reproduced with permission from [7],IEEE, 2019)	57
3.4	(a) Step response of $v_{o,ac}$ due to $\frac{d_{ac}}{2}$ =0.02 (b) Step response of $v_{o,ac}$ due to $v_{B,ac}$ =0.015	62
3.5	(a) Waveforms of converter under normal power delivery mode (no perturbation) (b) Waveforms of the converter under impedance measurement mode with duty-cycle perturbation (c) Waveforms of the converter under impedance measurement mode with the	

3.6	Experimental bench	65
3.7	The experimental waveforms of the proposed SRC perturbation	
	method	65
3.8	Online battery impedance under 50% SOC, 1C discharge current rate.	68
3.9	Online battery impedance results (50Hz to 500Hz) under different	
	SOC values (a) under 1C, 20% SOC (b) under 1C, 30% SOC (c)	
	under 1C, 50% SOC	69
3.10	Online battery impedance results (50Hz to 500Hz) under different	
	discharge current rates (a) under 0.5C, 50% SOC (b) under 1C, 50%	
	SOC (c) under 1.5C, 50% SOC	70
4.1	Conventional battery surface measurement method (left), which has	
	four sensors: voltage sensor, current sensor, battery surface	
	temperature sensor, and ambient temperature sensor; the proposed	
	sensorless surface temperature estimation method (right), which	
	only has three sensors: voltage sensor, current sensor, and ambient	
	temperature sensor	76
4.2	(a) Battery equivalent electric model. (b) Battery equivalent	
	thermal model	77
4.3	Illustration diagram of GRU-RNN principle: x is the input vector,	
	GRU is the GRU cell, h is the hidden state, and y is the output vector	78
4.4	(a) GRU cell structure. (b) Overall structure of the proposed	
	GRU-RNN model	79
4.5	Experimental procedure for GRU-RNN model training and	
	tomporature estimation	80

4.6	Temperature estimation with GRU-RNN under different different	
	loading profiles and temperature from: (a) US06 at -10° C; (b)	
	US06 at 25°C; (c) US06 at 50°C; (d) FUDS at -10 °C; (d) FUDS at	
	25°C; (f) FUDS at 50°C	86
5.1	(a)Illustration diagram of RNN working principle; (b) Traditional	
	RNN cell	91
5.2	LSTM cell structure	92
5.3	GRU cell structure	94
5.4	Internal structure of BiRNN	96
5.5	FUDS drive cycle recorded at 45°C. The data are shown from the	
	top to bottom: current, terminal voltage and SOC	98

List of Tables

1.1	Several commercial EVs and employed lithium-ion batteries	6
1.2	The list of different ECMs	7
2.1	Specifications of the batteries in the experiment	27
2.2	Battery Identification Results (OCV from 3.662V to 3.619V)	32
2.3	Relaxation Time Comparison	44
3.1	Parameters of the theoretical analysis and simulation for ripple	
3.1	v •••	۲.
	analysis	98
3.2	Battery perturbation signals and output voltage ripples comparison .	64
3.3	Main Specification of the Experimental Prototype	66
4.1	Hyperparameter setting	83
4.2	Temperature estimation results with the proposed GRU-RNN and	
	FNN	85
5.1	Specifications of the batteries in the experiment	97
5.2	Comparison results using different numbers of hidden nodes	102
5.3	Comparison results using different numbers of layers	102
5.4	Comparison results using different numbers of mini-batch	103

Abbreviation

BMS - Battery Storage System

EV - Electric Vehicle

BMS - Battery Management System

SOC - State of Charge

SOH - State of Health

 $LMO - LiMn_2O_4$

 $NCM - LiCo_xNi_yMn_zO_2$

 $NCA - LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$

 $LFP - LiFePO_4$

ECM - Electric Circuit Model

RC - Resistor Capacitor

OCV - Open Circuit Voltage

RNN - Recurrent Neural Network

AI - Artificial Intelligence

EIS - Electrochemical Impedance Spectroscopy

RMSE - Root Means Square Error

MAE - Mean Absolute Error

PDE - Partial Differential Equations

P2D - Pseudo-Two-Dimensional

SPM - Single Particle Model

OCBCP - One Cycle Biopolar Curennt Pulse

SRC - Switched Resistor Circuit

ESR - Equivalent Series Resistance

DC - Direct Current

AC - Alternating Current

DAQ - Data Acquisition

DTF - Discrete-time Fourier transform

PWM -Pulse Width Modulation

CCM -Continuous Conduction Mode

FNN - Feedforward Neural Network

AHC - Ampere Hour Counting

DD - Data Driven

MB - Model-Based

LSTM - Long Short-Term Memory

GRU - Gated Recurrent Unit

BiRNN - Bidirectional Recurrent Neural Network

LSTM-RNN - Long Short-Term Memory Recurrent Neural Network

GRU-RNN - Gated Recurrent Unit Recurrent Neural Network

BiLSTM-RNN - Bidirectional Long Short-Term Memory Recurrent Neural Network

ABSTRACT

Measurement, Modelling and State Estimation Techniques for Lithium-ion batteries

by

Qi Yao

Lithium-ion batteries have been widely adopted in energy storage systems for electric vehicles (EVs), electric portable devices, smart grid, and renewable energy systems because of their high energy density, long lifetime, and low self-release rate. When lithium-ion batteries are used in real applications such as EVs, they normally work with power converters, which can deliver power from the batteries to the load and regulate the system output voltage. However, Lithium-ions batteries also have a critical safety concern. As chemical products, the battery states such as state of charge (SOC) cannot be directly measured by sensors; the only directly measurable signals of lithium-ion batteries during battery operation are terminal voltage, operational current and temperature. Some models have been established to calculate information of the battery states using measured signals. However, the inherent chemical characteristics of lithium-ion batteries mean that it is difficult to achieve a highly accurate online battery state monitoring or estimation. When the battery state is estimated inaccurately, it will waste the available capacities, reduce battery lifetime, and could even lead to fire or explosion. To avoid these issues, lithium-ion batteries should be well-monitored and managed by a battery management system (BMS).

This thesis focuses on improving the efficiency, reliability and estimation accuracy for the BMS of lithium-ion batteries from signals measurement, battery modelling and state estimation perspectives. First, this thesis develops an improved battery modelling techniques by proposing a rapid and accurate open circuit volt-

age (OCV) measurement method. Second, this thesis develops practical battery impedance measurement techniques, which can be used for offline battery modelling and online states monitoring. Third, a sensorless battery surface temperature estimation has been proposed to improve the reliability and reduce the cost of the BMS. Fourth, as artificial intelligence (AI) technology has developed, more recurrent neural network (RNN) based battery SOC estimation methods have been proposed. This thesis comprehensively evaluates previous methods from theoretical and experimental perspectives and proposes a RNN model with suitable hyper-parameter setting for online SOC estimation with high accuracy and low computational burden.