EVALUATION OF METHODS TO DETECT LEGACY EFFECTS IN CARDIOVASCULAR POST-TRIAL STUDIES

Lin Zhu

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

School of Public Health, Faculty of Health University of Technology Sydney

2021

Certificate of Original Authorship

I, Lin Zhu declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Public Health, Faculty of Health at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: F

Production Note: Signature removed prior to publication.

Date: 20/12/2020

Abstract

Post-trial follow-up studies after randomized controlled trials (RCT) are increasingly used to investigate the clinical effectiveness of an intervention in the long term. "Legacy effect", which was proposed in the context of such studies, describes the effects of an intervention that are only observed after the end of trial and are not due to the direct effects observed during the trial period itself. Much of the clinical interest in legacy effects has been in the drug treatments for cardiovascular disease prevention, as the finding of such effect could provide support for earlier initiation of the intervention. However, limited attention has been paid to the methodological challenges of analysing post-trial data.

In this thesis, I provide a summary of the methods used, and evaluate the potential for bias, in the cardiovascular post-trial studies. I also investigate how we might best analyze data from a matching RCT and post-trial follow-up study, specifically, the choice of time period and trial participants to include in analysis and the strategy to correct for potential selection bias and confounding. Simulations are conducted to compare the performance of different methods. I use data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial and its follow-up data to illustrate the application of different approaches.

Analyses combining both the initial trial period and the post-trial follow-up period have often been incorrectly interpreted as evidence of a legacy effect, which is better assessed on the basis of separate post-trial analysis. To address the issues of selection bias and potential confounding requires appropriate study designs and rigorous methods of analysis. The choice of statistical methods should consider the availability of post-trial data, size of direct treatment effect and causal pathway of legacy effect. It is recommended to conduct a sensitivity analysis to check the robustness of the findings. Better reporting of legacy effects is needed to realize their full value in informing clinical practice and health policy.

Acknowledgements

First and foremost, I would like to thank my two supervisors, Professor Andrew Hayen and Associate Professor Katy Bell, for their patient guidance, invaluable advice and huge investment of time in me. It has been a privilege to work under their supervision over the past four years. Andrew gave me the freedom to pursue my study interest and provided his best support. His positive outlook in my research inspired me and made me more confident. Katy provided a great deal of insightful feedback on my research ideas and written works, from where I learnt a lot. Her enthusiasm for research has always motivated me to work harder and aim higher.

I gratefully acknowledge the funding received towards my Ph.D. from Australian Government Research Training Program Scholarship. I am also grateful to University of Technology Sydney for providing me the financial support to attend conferences and training courses. I thank the National Heart, Lung, and Blood Institute for providing the data used in this thesis.

I would also like to thank my colleagues and staff members in the Faculty of Health, Sarita, Kirsten, Krishna, Pauline, Penny, Zhuoyang, Priya and Julia for their support and encouragement along the way. I am grateful to my friends, Lei, Peng, Tao, Yu, Zhaoqing, Juanwen and Xiaohang, for their help in my study and life, and the wonderful times we shared in Sydney.

Finally, I wish to express my deepest gratitude to my partner and parents. This would not have been possible without their unselfish support and love at all times.

List of Publications

Journal Publications

- Zhu L, Bell K, Nayak A, Hayen A. A Methods Review of Post-trial Follow-up Studies of Cardiovascular Prevention Finds Potential Biases in Estimating Legacy Effects Journal of Clinical Epidemiology 131, 51-58 (2021)
- Zhu L, Hayen A, Bell K. Legacy effect of fibrate add-on therapy in diabetic patients with dyslipidemia: a secondary analysis of the ACCORDION study. *Cardiovascular Diabetology* 19, 28 (2020)
- Zhu L, Bell K, Hayen A. Estimated legacy effects from simulated post-trial data were less biased than from combined trial/post-trial data. *Journal of Clinical Epidemiology* 114, 30–37 (2019).
- Nayak A, Hayen A, Zhu L, McGeechan K, Glasziou P, Irwig L, Doust J, Gregory G, Bell K. Legacy effects of statins on cardiovascular and all-cause mortality: A meta-analysis. *BMJ Open* 8, 1–11 (2018)*

Conference Publications

- Zhu L, Bell K, Hayen A. Using marginal structural models to account for selection bias in the analysis of legacy effect. 2020 World Congress of Epidemiology
- Zhu L, Bell K, Hayen A. Statistical methods for estimating legacy effect: a simulation study. 2018 Australasian Epidemiological Association Annual Scientific Meeting

^{*}This article was published during my candidature. It is not a part of this thesis.

 Zhu L, Hayen A, Bell K. Research methods for detecting legacy effect: a scoping review. 2017 Australasian Epidemiological Association 30th Anniversary Scientific Meeting

Contents

Certificate of Original Authorship	i
Abstract	ii
Acknowledgments	iv
List of Publications	V
List of Tables	Х
List of Figures	xii
Abbreviation	xiv
1 Introduction	1
1.1 Background	1
1.2 Research Objectives	4
1.3 Thesis Organization	5
1.4 Ethics	6
2 A Methods Review of Post-trial Follow-up S	tudies of
Cardiovascular Prevention	7
2.1 Abstract	8
2.2 Introduction	8
2.3 Methods	9
2.4 Results	10
2.5 Discussion	13

	2.6 Conclusion	14
3	Simulations to investigate the choice of time period and	
	trial participants to include in the analysis of legacy	
	effect	16
	3.1 Abstract	17
	3.2 Introduction	17
	3.3 Methods	18
	3.4 Results	20
	3.5 Discussion	22
	3.6 Conclusion	23
4	4 Simulations to explore methods for correcting the bias	
	and confounding arising in the analysis of legacy effect	25
	4.1 Introduction	26
	4.2 Notation and Definition	27
	4.3 Different Modeling Strategies	28
	4.4 Simulation to Compare Different Modeling Strategies	29
	4.5 Motivating Example : ACCORD and Its Follow-up Study	34
	4.6 Discussion	36
	4.7 Conclusion	38
5	Analysis of data from ACCORDION to investigate the	
	legacy effect of fibrate add-on therapy in diabetic pa-	
	tients with dyslipidemia	42
	5.1 Abstract	43

	5.2	Background	43
	5.3	Methods	44
	5.4	Results	45
	5.5	Discussion	47
	5.6	Conclusion	50
6	Di	scussion	52
	6.1	Summary of Key Findings	52
	6.2	Strengths and Limitations	58
	6.3	Recommendations For Further Research	59
	6.4	Conclusion	60
R	efei	rences	61
A	ppe	endices	75
	А	Search Strategy of the Methods Review	75
	В	Information of the Studies Included in the Methods Review	82
	С	Summary of Findings for the Studies Included in the Methods Review	92
	D	Between-group-difference in Covariates, Surrogate Outcomes and	
		Medication Taking in Post-trial Follow-up	98
	Е	R Syntax for Data Generation	102
	F	Covariates of the ACCORD Trial Participants at Baseline and the	
		First Post-trial Visit	104
	G	Directed Acyclic Graph of Legacy Effects with the Unmeasured	100
			106
	Н	Results of Sensitivity Analysis	107

List of Tables

Table 2.1	Inclusion and exclusion criteria for study selection	10
Table 2.2	Characteristics of the RCTs and post-trial follow-up	12
Table 3.1	Summary of variables used in the simulation I	20
Table 4.1	Summary of variables used in the simulation II	32
Table 4.2	Direct treatment effects and percentages of enrollment into the post-trial follow-up	35
Table 4.3	The estimates of different modelling strategies in ACCORD study	36
Table 5.1	Characteristics of the participants at baseline and 1st post-trial visit	46
Table 5.2	Trial adherence and use of lipid-modifying medication post-trials	46
Table 5.3	Clinical outcomes by randomized treatment during ACCORD-lipid trial, ACCORDION and full follow-up period	48
Table 7.1	Studies included in the methods review	82
Table 7.2	Summary of findings for the studies included in the methods review	92
Table 7.3	Between-group-difference in covariates, surrogate outcomes and medication taking in post-trial follow-up	98
Table 7.4	Covariates of the ACCORD-BP trial participants at baseline and the first post-trial visit	104

Table 7.5	.5 Covariates of the ACCORD-Lipid trial participants at baseline	
	and the first post-trial visit	. 105
Table 7.6	Result of sensitivity analysis	. 107

List of Figures

Figure 1.1	Design of post-trial study and legacy effect	3
Figure 2.1	Flow diagram of the post-trial study selection process $\ . \ . \ .$.	11
Figure 2.2	The design, analysis and reporting of the post-trial studies $\ . \ .$	13
Figure 3.1	The basic design of study for evaluating legacy effect: randomized controlled trials and post-trial follow-up	18
Figure 3.2	Hazard ratios estimated by different methods in simulated scenarios	21
Figure 3.3	Mean square error of different methods in simulated scenarios $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$.	21
Figure 3.4	Coverage probabilities of 95% confidence interval (CI) of different methods in simulated scenarios	22
Figure 3.5	Empirical power/size of different methods in simulated scenarios	23
Figure 4.1	An illustration of legacy effect through directed acyclic graph	27
Figure 4.2	Causal diagrams for different modeling strategy	30
Figure 4.3	Estimated legacy effects (hazard ratios) using the different modelling strategies when the pathway $A_0 \rightarrow L_1$ does not exist	33
Figure 4.4	Estimated legacy effects (hazard ratios) using the different modelling strategies when the pathway $A_0 \rightarrow L_1$ exists	34
Figure 5.1	Plasma lipid levels of patients with dyslipidemia at each study visit	47

Figure 5.2	Kaplan–Meier cumulative event curves for primary and	
	secondary outcomes	
Figure 7.1	Directed acyclic graph of legacy effects with the unmeasured	
	variable	

Abbreviation

ACCORD	Action to Control Cardiovascular Risk in Diabetes
ACCORDION	Action to Control Cardiovascular Risk in Diabetes Follow-on
CHD	Coronary Heart Disease
CI	Confidence Interval
CVD	Cardiovascular Disease
DAG	Directed Acyclic Graph
HbA1c	Hemoglobin A1c
HDL	High-density Lipoprotein
HF	Heart Failure
HR	Hazard Ratio
IPW	Inverse Probability Weighting
LDL	Low-density Lipoprotein
МІ	Myocardial Infarction
MSE	Means Square Error
MSM	Marginal Structural Model
PS	Propensity Score
RCT	Randomized Controlled Trial
SD	Standard Deviation
SE	Standard Error
T2DM	Type 2 Diabetes Mellitus
TRIG	Triglycerides