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Abstract: Remote sensing (RS) is one of the data collection technologies that help explore more earth
surface information. However, RS data captured by satellite are susceptible to particles suspended
during the imaging process, especially for data with visible light band. To make up for such deficiency,
numerous dehazing work and efforts have been made recently, whose strategy is to directly restore
single hazy data without the need for using any extra information. In this paper, we first classify the
current available algorithm into three categories, i.e., image enhancement, physical dehazing, and
data-driven. The advantages and disadvantages of each type of algorithm are then summarized in
detail. Finally, the evaluation indicators used to rank the recovery performance and the application
scenario of the RS data haze removal technique are discussed, respectively. In addition, some common
deficiencies of current available methods and future research focus are elaborated.

Keywords: remote sensing image; image dehazing; retinex; dark channel; dehazenet

1. Introduction

Remote sensing (RS) was widely used in military affairs [1], e.g., missile early warn-
ing [2], military reconnaissance [3], and surveying [4]. With the popularity of satellites, it is
also being used for civilian purposes increasingly, such as land planning and crop yield
surveys [5]. Despite its usefulness, RS images or data taken by satellites are easy to be
affected by the fog or haze during the imaging process, which makes images low contrast
or dim color [6] and decreases the performance of computer vision tasks such as object
detection [7]. This adverse effect not only reduces the visual quality of RS images, but also
limits such precious RS data from being effectively applied.

To collect high-quality RS data, the most intuitive way is to perform imaging under
good visibility and ideal illumination [8]. However, in some practical applications [9], it
is urgent to shoot the location of the incident in time and continuously. Once haze or fog
fills the atmosphere, RS imaging would lose its original worth. Therefore, a robust and
real-time haze removal algorithm is very critical for restoring the RS data.

Singh et al. [10] summarized the image dehazing algorithms from several perspectives
including: Theory, mathematical models, and performance measures. He divided dehazing
algorithms into seven categories, i.e., depth estimation, wavelet, enhancement, filtering,
supervised learning, fusion and meta-heuristic techniques, and introduced the strengths
and weaknesses, respectively. Although the content of Ref. [10] is very comprehensive, its
explanation of some related algorithms is not detailed enough. Unlike Ref. [10], this paper
would group the current RS image dehazing algorithms into three categories. The first one
is based on image enhancement, the main advantage of which is having a low complexity
to ensure real-time performance. However, it does not work well for most situations due to
the ignored imaging theory. The second one is physical dehazing [11], which is to impose
hand craft prior knowledge on the atmospheric scattering model (ASM) to estimate the
imaging parameters. Regrettably, the existing prior knowledge cannot be satisfied to all
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the scenes, thereby hindering the practicality of this type of algorithm. Benefiting from
a sharp development of deep-learning [12,13], the last one utilizes convolutional neural
network (CNN) [14], generative adversarial networks (GAN) [15] or other networks to
train an end-to-end dehazing system [16]. Although high-quality results can be restored
by these created networks, the recovery performance depends too much on the sample
dataset used.

The rest of the paper is organized as follows. Section 2 describes the haze imaging
model and gives the deriving of its formulas. Image enhancement such as Histogram
Equalization and Retinex are discussed in Section 3. Section 4 mainly describes two well-
known physical dehazing, i.e., dark channel prior and haze-lines prior dehazing. Since data-
driven methods have a strong learning ability, some data-driven dehazing techniques such
as Dehazenet, MSCNN, and AOD-NET, are discussed in Section 5. Section 6 describes the
different quality metrics used to evaluate the recovery performance of different techniques.
In Section 7, the significance and application of RS dehazing techniques to society are
discussed. Future work is elaborated in Section 8. The concluding remarks are presented
in Section 9.

2. Haze Degradation Model
2.1. Causes of Image Degradation in Hazy Weather

Haze is a common natural phenomenon in the real-world, which is formed by sus-
pended particles, e.g., aerosols, dust, compounds, and tiny water droplets in the atmo-
sphere [17]. These suspended particles, on the one hand, would interfere with the propa-
gation of scene reflected light during the imaging procedure, i.e., causing scattering and
refraction [18]. On the other hand, the atmospheric light will also participate in this imaging
process, which becomes more serious as the depth increases. Therefore, these two factors
lead to the massive loss of the reflected light of target object, and are bound to result in
blurred texture, excessive brightness, decreased contrast, and dim color [19].

2.2. Atmospheric Scattering Model

According to the above analysis, Nayer and Narasimhan [19–22] consider that the
scene reflected light in hazy atmosphere can be separated into two parts: Attenuation and
Airlight.

Attenuation refers to the scene reflected light that reaches the observer after being
scattered by atmospheric particles, and this procedure is shown in Figure 1. As can be seen
from this figure, when the incident light (or reflected light) enters the scattering medium,
the intensity changes for each distance dx is:

dE(x, λ) = −β(λ)·E(x, λ)dx, (1)

where β(λ) is the scattering coefficient used to measure the ability of a medium to scatter
light at different wavelengths, and λ is the wavelength of light. To calculate definite
integrals on both sides of the above formula within the range of x ∈ [0, d], the following
equation is given as:

E(x, λ) = E0(λ)·e−
∫ d

0 β(λ)dx, (2)

where E0 (λ) represents the radiance at x = 0. Assuming that each point on the scene can
be regarded as a light source, the flux of light per unit area is inversely proportional to the
square of the distance, which yields:

E(d, λ) =
Lh(∞, λ)·ρ·e−β(λ)d

d2 , (3)

where Lh(∞, λ) stands for the atmospheric light at infinity, and ρ represents the ability of
an object to reflect light.
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Figure 1. Attenuation of a collimated beam of light by suspended particles. 
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transmission. In ASM, the first term on the right side, named Direct Attenuation, is used 
to describe the direct impact of scene reflection light caused by haze, which usually atten-
uates exponentially with the scene depth 𝑑. The second term is called airight, which in-
creases with the scene depth 𝑑 [23]. 

Figure 1. Attenuation of a collimated beam of light by suspended particles.

Airlight represents the component of atmospheric light involved in the imaging
process, which is depicted in Figure 2. Assuming that the imaging ranges are the same and
the angle between the tangential light and the horizontal light is dω, thus we can produce
its luminous intensity:

dI(x, λ) = dV·k·β(λ) = dω·x2dx·k·β(λ), (4)

where dV = dω ∗ x2 ∗ dx is the volume and k is a constant. If dV is regarded as a light
source with brightness d(x, λ), the scattered light intensity can be further expressed as:

dE(x, λ) =
dI(x, λ)·e−β(λ)x
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From the combination Equations (4) and (5) and dL(x, λ) = (dE(x, λ))/dω, we have

L(d, λ) = k
(

1− e−β(λ)d
)

, (6)

Now, extending the atmospheric scattering model to RGB space:

E(d) =
Lh(∞, λ)·ρ·e−β(λ)d

d2 ·D̃ + Lh(∞, λ)·
(

1− e−β(λ)d
)
·Ã, (7)
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where D̃ and Ã are the unit direction vectors of scene pixels and atmospheric color in RGB
space, respectively. Therefore, in the RGB space, ASM can be modeled as:

I(x) =
L∞(λ)·ρ(x)

d2 ·e−β(λ)dx + L∞(λ)·
(

1− e−β(λ)dx
)
= J(x)·t(x) + (1− t(x))·A, (8)

where x is the pixel coordinates, I is the observed intensity, J is the true radiance of
the scene point imaged at x, A is the global atmospheric light, and t is the medium
transmission. In ASM, the first term on the right side, named Direct Attenuation, is used to
describe the direct impact of scene reflection light caused by haze, which usually attenuates
exponentially with the scene depth d. The second term is called airight, which increases
with the scene depth d [23].

3. Dehazing Using Image Enhancement

Image enhancement based dehazing does not consider the physical model of image
degradation but improves the image quality by increasing the contrast of an image [24].
In these algorithms, the most representative is histogram equalization, Retinex algorithm,
and homomorphic filtering.

3.1. Histogram Equalization

Histogram equalization [25] is a classic image enhancement method. Mathematically,
it can be detailed by:

sk = T(rk) = (L− 1)·
k

∑
j=0

pr
(
rj
)
=

(L− 1)
MN

·
k

∑
j=0

nj, k = 0, 1, 2, . . . , L− 1, (9)

where M and N are the height and width of an image, nj is the total number of pixels in
the image with grayscale j, L is the total number of grayscale levels in the image (8-bit
image corresponding to 256), and r and s represent the pixel grayscale before and after
histogram equalization, respectively. MN is the total number of pixels in the image, and
pr
(
rj
)

is the probability of occurrence of grayscale j and pr
(
rj
)
=

nj
MN . The main advantage

of histogram equalization is low computational cost and easy to implement [26]. Therefore,
it has the potential to deal with RS data with a high resolution. However, it only works
well on an image with heavy haze due to its powerful overall contrast enhancement ability.
To address this issue, Kim et al. [27,28] proposed a local histogram equalization, which can
be divided into three strategies: Sub-block non-overlapped, fully overlapped sub-block,
and partially overlapped sub-block. Although they can produce a visual haze-free result
for most cases, the recovery color appears to be darker than the real one. In fact, due to the
same scene depth in RS data, these images usually have a uniform haze distribution, thus
histogram equalization is more suitable for the RS image.

3.2. Retinex

Retinex theory was found by Edwin Land et al. [29] in 1963, which is a combination of
retina and cortex and simulates the imaging process of the human eye. Based on this fact,
it is also called a cerebral cortex theory.

3.2.1. Retinex Algorithm

Retinex algorithm holds that the image observed by the eye can be represented by the
product of the reflection and irradiation component:

Ii(x, y) = Ri(x, y)·Li(x, y), (10)

where i ∈ {R, G, B} represent the three color bands, Ii(x, y) represents the actual observed
value, Ri(x, y) represents the reflection component, and Li(x, y) represents the irradiation
component. Ri(x, y) can be obtained by calculating the irradiation component from the
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original image. For the convenience of calculation, Equation (10) is transformed into a
logarithm form, i.e.,

log[Ri(x, y)] = log[Ii(x, y)]− log[Li(x, y)], (11)

3.2.2. Single Scale Retinex

Jobson [30] proposed the Single Scale Retinex algorithm. It can estimate the irradiation
component by weighting the average of the pixels in the neighborhood, which is expressed
as follows:

Li(x, y) = Ii(x, y) ∗ G(x, y), (12)

where ∗ is the convolution operation, and G(x, y) is the Gaussian function, which can be
described by:

G(x, y) =
1√
2π

e−
(x2+y2)

2σ2 , (13)

where
s

G(x, y)dxdy = 1, σ is the radius range. When the value of σ is small, more details
will be displayed, but color distortion may occur. On the contrary, when the value of σ is
large, the color information in the image is more natural, while the details are easy to lose.
Combining Equations (12) and (13), it can be expressed as follows:

log[Ri(x, y)] = log[Ii(x, y)]− log[Ii(x, y) ∗ G(x, y)], (14)

Here, we remark that the SSR algorithm only uses a single scale to estimate the
unknown parameter, thus it may significantly reduce the enhancement quality [31].

3.2.3. Multi-Scale Retinex

To overcome the above flaw, MSR [32] is designed to weigh the average values of
different reflection components, and it is calculated as follows:

logRi(x, y) =
N

∑
k=1

ωk{logIi(x, y)− log[Ii(x, y) ∗ Gk(x, y)]}, (15)

where N represents the number of scales, Gk(x, y) represents the k-th Gaussian function,
and ωk is the weight of the k-th scale, satisfying ∑N

k=1 ωk = 1. If N = 1, the MSR is
transformed into SSR. Although MSR has the ability to make up for the shortcomings of
SSR, it still produces the halo effect and the overall luminance is insufficient.

3.2.4. Multi-Scale Retinex with Color Restoration

Since the MSR algorithm processes the three RGB channels separately, the change of
color ratio will inevitably lead to color distortion. Therefore, Rahman et al. [33] and Jobson
et al. [34,35] proposed MSRCR to adjust the reflection component R(x, y) by introducing a
color restoration factor, that is:

RMSRCRi (x, y) = Ci(x, y)·RMSRi (x, y) iε{R, G, B}, (16)

Ci(x, y) = log

[
αIi(x, y)

∑N
n=1 In(x, y)

]
, (17)

where Ci is the color restoration factor of the i-th channel, and α is a non-linear adjustment
factor. In general, MSRCR can have a stronger robustness and restore richer detailed
information than MSR. However, the complexity of the algorithm is increased undoubtedly.

3.3. Other Dehazing Algorithms Based on Image Enhancement

Homomorphic filtering [36] is one of the well-known image enhancement methods
and is based on the frequency domain of irradiation-reflection. In this method, the irradia-
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tion component is used to determine the image’s grayscale variation, mainly corresponding
to the low-frequency information. Moreover, the reflection component determines the
image’s edge details, mainly corresponding to the high-frequency information. The homo-
morphic filtering method aims to use a certain filter function to reduce the low-frequency
information and increase the high-frequency information [37]. This means that the homo-
morphic filtering method and the Retinex algorithm are very similar in the calculation [38].
Both of them divide the image into two parts: The irradiation component and the reflection.
However, the difference is that the former processes the image in the frequency domain,
and the latter is in the space domain. Homomorphic filtering is able to remove the shadows
caused by uneven illumination, and can maintain the original information of the image.
However, it needs two Fourier transforms, which take up a larger computing space. The
basic idea of wavelet transform is similar to the above homomorphic filtering. Different
frequency features of the original hazy image are obtained by the wavelet transform. It can
enhance the image’s detailed information to achieve the dehazing image [39], but it cannot
apply to a situation where the image is too bright or dark. Ancuti et al. [40] applied a
white balance and a contrast enhancing procedure to enhance the visibility of hazy images.
However, it has not been shown to be physically valid.

3.4. Remote Sensing Image Dehazing Based on Image Enhancement

Shi et al. [41] developed an image enhancement algorithm to restore hazy RS images by
combining the Retinex algorithm and chromaticity ratio. It introduces the color information
of the original image when using the Retinex algorithm, and also overcomes the color
distortion easily caused by the histogram equalization and the grayish image caused by
the Retinex algorithm. S. Huang et al. [42] proposed a dehazing algorithm called the new
Urban Remote Sensing Haze Removal (URSHR) algorithm for the dehazing urban RS
image. The URSHR algorithm combines phase consistency features, multi-scale Retinax
theory, and histogram features to restore haze-free images. This algorithm is a feasible and
effective method for haze removal of urban RS images and has a good application and
promotion value. Chaudhry et al. [43] proposed a framework for image restoration and
haze removal. It uses hybrid median filtering and accelerated local Laplacian filtering to
dehaze the image and has achieved good results on outdoor RGB images and RS images.

4. Physical Dehazing

As discussed in Section 2, the physical dehazing technique is based on the well-known
ASM and imposes one or more prior knowledge [44,45] or assumptions on it to reduce the
uncertainty of haze removal [46,47].

4.1. Dark Channel Prior

He et al. [48] observed a large number of outdoor haze-free images and found that in
most of the non-sky patches, at least one color channel has some pixels whose intensity
are very low and close to zero. For an arbitrary image J, its dark channel [49,50] Jdark is
given by:

Jdark(x) = min
y∈Ω(x)

(
min

cε{R,G,B}
Jc(y)

)
, (18)

where Jc is a color channel of J, and Ω(x) is a local patch centered at x. If J is an outdoor
haze-free image, then the value of Jdark should be very low or close to zero. Please note
that the low intensity in the dark channel is mainly due to shadows of scene, dark objects,
and colorful objects or surfaces.

4.1.1. Estimating the Transmission

Equation (18) can be normalized by:

Ic(x)
Ac = t(x)· J

c(x)
Ac + 1− t(x), (19)
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Assuming that the value of A is known and the transmission in a local patch Ω(x) is
constant, which is defined as t̃(x). Then, the minimization operation of Equation (19) is:

min
y∈Ω(x)

(
min

c

Ic(y)
Ac

)
= t̃(x)· min

y∈Ω(x)

(
min

c

Jc(y)
Ac

)
+ 1− t̃(x), (20)

By imposing DCP into Equation (20), we have:

Jdark(x) = min
y∈Ω(x)

(
min

cε{R,G,B}
Jc(y)

)
→ 0, (21)

Putting Equation (21) into Equation (20), the estimated transmission is simplified as:

t̃(x) = 1− min
y∈Ω(x)

(
min

c

Ic(y)
Ac

)
, (22)

In practice, even on clear days the atmosphere is not absolutely free of any particle.
Therefore, the haze still exists when we look at distant objects. Moreover, the presence of
haze is a fundamental cue for humans to perceive depth [51,52]. Therefore, it is necessary
to retain a certain degree of haze to obtain a better visual effect. It can be modified by
introducing a factor ω between [0, 1] in Equation (22), usually setting it to be 0.95, and then
Equation (22) is modified as:

t̃(x) = 1−ω min
y∈Ω(x)

(
min

c

Ic(y)
Ac

)
, (23)

4.1.2. Estimating the Atmospheric Light

To estimate the atmospheric light, He firstly picked the top 0.1% brightest pixels in
the dark channel and then recorded the coordinates of these pixels. Finally, the max value
of corresponding pixel in the original image is regarded as atmospheric light [48].

4.1.3. Recovering the Scene Radiance

Putting the estimated values of atmospheric light A and transmission t into Equation
(11), the haze-free can be obtained by:

J(x) =
I(x)−A

t(x)
+ A, (24)

The direct attenuation term J(x)t(x) will be very close to zero when the transmission t
is close to zero. Therefore, setting a lower bound value t0 for transmission. The final scene
radiance J is recovered by:

J(x) =
I(x)−A

max(t(x), t0)
+ A. (25)

Due to the fact that transmission is not always constant in a patch, the restored image
will have block artifacts using a rough transmission. He et al. proposed a soft matting
algorithm to optimize the transmission. However, it takes a long time to calculate. Later,
He et al. [53] used guided filtering to replace the soft matting. The complexity was reduced,
and the computational efficiency was greatly improved. The restored image by DCP has a
promising visual result. However, if the target scene is similar to atmospheric light, such as
snow, white walls, and sea, satisfactory results will not be obtained.

4.2. Non-Local Image Dehazing

According to the fact that a nature image usually contains a lot of repeated colors,
Berman et al. [54] develop a non-local dehazing technique, which is different from the
patch-wise and pixel-wise dehazing ones. The core idea is to adopt K-means [55] to cluster
the image input into 500 haze-line, and then estimate the transmission map using these
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haze-lines [56]. Having this estimated parameter, a haze-free result can be recovered from
single hazy images.

4.2.1. Haze-Lines Clustering

Firstly, IA was defined by the following equation:

IA(x) = I(x)−A, (26)

where the 3D RGB coordinate system is translated such that the air light is at the origin.
Combining Equation (11), we can get:

IA(x) = t(x)·[J(x)−A], (27)

Then, redefining IA(x) using spherical coordinates, i.e.,

IA(x) = [γ(x), θ(x), ϕ(x)], (28)

where γ is the distance to the origin, and θ and ϕ are the longitude and latitude, respectively.
It can be noticed from Equation (27) that scene points at different distances differ only
in the transmission value. In other words, pixels x and y have similar RGB values in the
underlying haze-free image if their [ϕ, θ ] are similar:

J(x) ≈ J(y)→ {ϕ(x) ≈ ϕ(y), θ(x) ≈ θ(y)}, ∀t, (29)

Therefore, pixels belong to the same haze-line if their [ϕ(x), θ(x) ] values are similar.

4.2.2. Estimating Transmission

For a given haze-line defined by J and A, r(x) depends on the object distance:

r(x) = t(x)·‖J(x)−A‖, 0 ≤ t(x) ≤ 1, (30)

Thus, t = 1 corresponds to the largest radial coordinate:

rmax
def
= ‖J−A‖, (31)

Combining Equations (30) and (31), the estimated transmission can be simplified as:

t̃(x) = r(x)/r̂max, (32)

where r̂max(x) = max
x∈H
{r(x)}, H is a haze-line containing the haze-free pixel. After regular-

ization for t̃, the dehazed image can be obtained by ASM. This method can deal with most
hazy examples well. However, it may perform poorly for some hazy images that do not
satisfy the introduced priors.

4.3. Other Physical Dehazing Methods

TAN [57] observed that haze-free images have higher contrast compared with the
hazy images, and maximized the contrast per patch, while maintaining a global coherent
image. This algorithm enhances the contrast of the image and improves its visibility.
Unfortunately, color oversaturation and halo effect are visible in the images after dehazing.
Fattal [58] firstly assumed that the albedo of the local image regions is a constant, and
the transmission and surface shading are locally uncorrelated. Then, the independent
component analysis (LCA) is used to estimate the albedo. As expected, the performance of
this method mainly depends on the statistical characteristics of the input data to a certain
extent, thus insufficient color information is bound to lead to unreliable statistical estimates.
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4.4. Remote Sensing Image Dehazing Using DCP

Since RS images are imaged from a high altitude, they generally do not include the sky
area. Wang [59] believes that most areas’ dark channel value is maintained at a relatively
low level. Therefore, the blocking phenomenon has little effect on the dehazing RS image.
This enables omitting the transmission refinement process, thus simplifying the dehazing
process and improving the calculation efficiency. Zheng et al. [60] introduced the failure
point based on the DCP. They set the failure point threshold, and effectively avoided the
bright objects’ influence on dehazing RS images. Li et al. [61] used the median filter method
to refine the transmission and improve aerial images’ calculation efficiency. Wang et al. [62]
proposed a block-based DCP method for remotely sensed multispectral images, using the
atmospheric light surface hypothesis to replace the global atmospheric light, making RS
images better restored. Long et al. [63,64] used a low-pass Gaussian filter to refine the
atmospheric veil and redefined the transmission to eliminate color distortion. Dai et al. [65]
generated a dark channel image by directly obtaining the minimum of the three channels
of each pixel of the RS image.

5. Data-Driven Based Dehazing

With the continuous development of deep learning theory, convolution neural net-
work (CNN) [66–70] has been utilized and achieved good results in face recognition, image
segmentation, and other fields. Image dehazing, as an issue of great concern in image
processing, has also attracted many scholars’ attention. Most data-driven based dehaz-
ing techniques have achieved tremendous success compared with the traditional haze
removal methods.

5.1. DehazeNet

DehazeNet [71,72] was proposed by Cai et al. [73] in 2016. It uses a multi-level
architecture based on a CNN, which takes a hazy image as an input and outputs its
transmission map. Then, according to this estimated output, they restored the haze-free
image based on the ASM. The structure of DehazeNet is shown in Figure 3.
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DehazeNet employs feature extraction, multi-scale mapping, local extremum, and
nonlinear regression to calculate the transmission map of a hazy image.

Feature extraction: It consists of a convolutional layer and a Maxout unit [74], which
convolves the hazy image with appropriate filters, and then uses nonlinear mapping to
obtain the feature map. The Maxout unit is a simple feed-forward nonlinear activation
function used in multi-layer perceptron or CNNs. When it is used in CNNs, it generates a
new feature map by taking a pixel-wise maximization operation over k affine feature maps.
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Multi-scale mapping: It is composed of 16 convolution kernels with sizes of 3 × 3,
5 × 5, and 7 × 7 to adapt to features of different sizes and scales. In previous studies,
multi-scale features have been proven to have significant effects on image dehazing.

Local extremum: The neighborhood maximum is considered under each pixel to
overcome local sensitivity. In addition, the local extremum is in accordance with the
assumption that the medium transmission is locally constant, and it is common to overcome
the noise of transmission estimation.

Nonlinear regression: Since ReLU [75,76] is only prohibited when the value is less
than zero and the output value of the last layer of the image reconstruction task is between
0 and 1, it may cause the overflow. Therefore, the value greater than one is suppressed. To
this end, a Bilateral Rectified Linear Unit (BReLU) [77] activation function is proposed by
Cai et al. to overcome this limitation (as shown in Figure 4). As a novel linear unit, BReLU
maintains bilateral constraints and local linearity.
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Experiments show that the system has better performance than existing methods.
However, ASM relies on a single light source without considering multi-light source, and
the dehazing effect in the distant area needs to be improved.

5.2. MSCNN

DehazeNet extracts the feature map through a convolution neural network to get
the transmission map, but the transmission obtained through DehazeNet is not refined.
Therefore, Ren et al. [78] designed a multi-scale CNN for image dehazing. As shown in
Figure 5, the original hazy image is used as input, the transmission map first estimated by
a coarse-scale network and then refined by a fine-scale network.

The coarse-scale CNN predicts the scene’s overall transmission map, which is com-
posed of a multi-scale convolution layer, a pooling layer, an up-sampling layer [79–82],
and a linear combination layer. The convolutional layer is designed to have different sizes
of convolution kernels to learn multi-scale features. Each convolutional layer is followed
by a ReLU layer, a pooling layer, and an upsampling layer. The linear combination layer
linearly combines the features of the previous layer to obtain a rough transmission map,
which will be used as the input of the fine-scale CNN.

The fine-scale CNN is to refine the transmission map output by the coarse-scale neural
network. It is similar to the coarse-scale network. The rough transmission map is input
into a fine-scale CNN. They work together to obtain a refined transmission map.

As discussed in [78], the performance of haze-free results using this training network
can be improved compared to those of traditional techniques. Despite this, the max-pooling
adopted in the model will result in loss of details, and the image dehazing at nighttime is
not reliable as well.
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5.3. AOD-NET

DehazeNet and MSCNN estimate the atmospheric light by DCP. However, the es-
timated value may cause errors when the color of the object in the hazy image is close
to the atmospheric light. Moreover, the separate estimation of transmission and atmo-
spheric light may further increase the error and affect the result. To solve this problem,
Li et al. [83] proposed the first end-to-end trainable dehazing model, which can directly
restore the haze-free image from the hazy image rather then relying on any intermediate
parameter estimation. The AOD-Net [83] model transforms the ASM Equation (11), and it
is calculated as:

J(x) =
1

t(x)
·I(x)−A· 1

t(x)
+ A, (33)

The core idea is to combine the transmission t and the atmospheric light value A into
K(x), which is calculated as:

J(x) = K(x)·I(x)−K(x) + b,

where,

K(x) =
1

t(x) ·(I(x)−A) + (A− b)

I(x)− 1
, (34)

b is a constant bias, and the default value is 1.
AOD-Net is composed of two parts: K-estimation module and clean image generation

module (as shown in Figure 6). Parameters in K(x) vary with the input hazy image. The
model is trained by minimizing the loss between the output image J and the clear image.
Continuously reducing the loss, thereby outputting the haze-free image J. This model has
greatly improved in terms of PSNR and SSIM. In addition, this end-to-end design can
easily embed the model into other data-driven ones, thereby improving the performance
of image processing tasks.
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5.4. FD-GAN

Yu et al. [84] proposed a fully end-to-end Generative Adversarial Network with Fusion-
discriminator (FD-GAN) for image dehazing. FD-GAN consists of Generator and Fusion-
discriminator (as shown in Figure 7). The Generator including decoder and encoder can
directly generate the dehazed images G(I) without estimation of parameters. The encoder
contains three dense blocks, including a series of convolutional, batch normalization (BN),
and ReLU layers. The decoder uses the nearest-neighbor interpolation for up-sampling to
recover the size of feature maps to the original resolution gradually. The low-frequency
(LF) component and high-frequency (HF) component were obtained by Gaussian filter and
Laplace operator, respectively. Yu et al. concatenate the G(I) (or Ground truth image J)
and its corresponding LF and HF as a sample, then feed it into the Fusion-discriminator.
The LF and HF can assist the discriminator to distinguish the differences between hazy and
ground truth images well, and can guide the generator to output more natural and realistic
hazy-free images.

5.5. Remote Sensing Image Dehazing Using Data-Driven

Guo et al. [85] proposed an end-to-end RSDehazeNet for haze removal. Guo et al.
utilize both local and global residual learning strategies in RSDehazeNet for fast conver-
gence with superior performance. To obtain enough RS images for CNN training, Guo et al.
proposed a novel haze synthesis method to generate realistic hazy multispectral images
by modeling the wavelength-dependent and spatial-varying characteristics of haze in RS
images. Jiang et al. [86] proposed a multi-scale residual convolutional neural network
(MRCNN) for haze removal of RS images. MRCNN uses three-dimensional convolution
kernels to extract spatial-spectral correlation information and abstract features from the
surrounding neighborhoods for haze transmission estimation, achieving extremely low
verification error and test error. Qin et al. [87] proposed a novel dehazing method based on
a deep CNN with the residual structure for multispectral RS images. First, connect CNN in-
dividuals with multiple residual structures in parallel, and each individual is used to learn
the regression from a hazy image to a clear image. Then, the individual output of CNN is
fused with the weight map to produce the final dehazing result. This method can accu-
rately remove the haze in each band of multispectral images under different scenes. Chen
et al. [88] proposed an end-to-end hybrid high-resolution learning network framework
termed H2RL-Net to remove a single satellite image haze. It can deliver significant im-
provements in RS image owing to its novel feature extraction architecture. Mehta et al. [89]
proposed SkyGAN for haze removal in aerial images, including a hazy-to-hyperspectral
(H2H) module, and a conditional GAN (cGAN) module for dehazing. A high-quality
result can be produced when evaluating this algorithm on the SateHaze1k dataset and the
HAI dataset. Huang et al. [90] proposed the self-supporting dehazing network (SSDN) to
improve the efficiencies in the restoration of content and details. The SSDN introduced
the self-filtering block to raise the representation abilities of learned features and achieved
good performance.
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6. Remote Sensing Dehazing Image Quality Evaluation

After realizing the RS image haze removal according to the aforementioned algorithms,
it is also crucial to use some quality metrics to evaluate the image quality. This section first
introduces several commonly used metrics in detail and then uses them to assess the result
dehazed by different methods.
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6.1. Mean Squared Error (MSE)

The mean squared error (MSE) is a metric used to estimate the error between the
actual image and the restored image, which is computed as [91,92]:

MSE =
1

P·Q
P

∑
x=1

Q

∑
y=1

( f (x, y)− h(x, y))2, (35)

where f (x, y) and h(x, y) represent the real image and the restored image, respectively. P
and Q represent the length and width of the image, and x and y are the coordinate of the
pixel in an image.

6.2. Mean Absolute Error (MAS)

The mean absolute error (MAE) represents the mean of the absolute error between
the predicted and the observed. Compared to MSE, it can avoid the problem of errors
cancelling each other out and basically provides a positive integer ranging from 0 to 255
for an 8-bit image. Formally, it is computed by:

MAE =
1

P·Q

p

∑
x=1

Q

∑
y=1
| f (x, y)− h(x, y)|, (36)

6.3. Peak Signal-to-Noise Ratio (PSNR)

PSNR is the most common and widely used objective metric for ranking the quality of
images. It evaluates the ratio of actual pixels value and the evaluated error using MSE. It
can be computed by [91,92]:

PSNR = 10log10
M2P·Q

∑P
x=1 ∑Q

y=1( f (x, y)− h(x, y))2 = 10log10
M2

MSE
, (37)

where M is the image gray level, generally taking 255, and n is the binary digit used by a
pixel, generally 8-bits.

6.4. Structural Similarity Index (SSIM)

SSIM is a metric used to measure the similarity of pictures and can also be used
to judge the quality of pictures after compression [93]. In general, a larger SSIM value
means a smaller image distortion. Natural images are extremely structural and reflect the
correlation among pixels. It carries essential information about the structure of the object
in the visual scene, and is computed as [92]:

SSIM =

(
2µxµy + c1

)
·
(
2σxy + c2

)(
µ2

x + µ2
y + c1

)
·
(

σ2
x + σ2

y + c2

) , (38)

where µx, µy and σ2
x , σ2

y are the mean and variance of x and y, respectively, c1 = (r1T)2,

c2 = (r2T)2 is a constant used to maintain stability, r1 = 0.01, r2 = 0.03, σxy is the covariance
of x and y, and T is the dynamic range of the pixel value, generally T = 255.

6.5. Quantitative Comparison

To check the recovery performances of different techniques, the above mentioned
methods (including HE, Retinex, DCP, Non-Local, DehazeNet, MSCNN, AOD-NET, and
GCANet [94]) were tested on eight challenging real-world RS hazy pictures. The selected
RS images and the results dehazed by the compared approaches are shown in Figure 8. It
can be seen from this figure that RS images dehazed by traditional enhancement methods,
i.e., HE and Retinex, have high contrast, while they lose some details, e.g., the brighter area
in the upper right corner of E1 and the darker area on the left in E2. Moreover, the results
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of the physical dehazing, i.e., DCP and Non-Local, may lead to some darker RS outputs
than they should be (see the DCP result of E5). In contrast, despite the fact that data-driven
dehazing is able to produce a high-quality haze-free scene for most given examples, they
may fail to the case with heavy haze.
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To accurately rank the performance of above compared techniques, we also tested them
on eight simulated RS data consisting of hazy image and ground truth. The corresponding
recovery results are shown in Figure 9. As expected, the results on simulated input also
confirm that both image enhancement, physical model, and data-driven have a somewhat
ability to remove the haze cover in an image, i.e., having a good output on a special
example. However, they do not work well on the images with various scenes.

Furthermore, we employ MSE, MAE, PSNR, and SSIM to access the restoration quality
of selected dehazing methods, as summarized in Table 1. It can be found that data-driven
dehazing has more potential to achieve RS image dehazing since it roughly wins the best
score in terms of all used evaluation index.
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Table 1. Cont.

Metric Image HE Retinex DCP Non-Local DehazeNet MSCNN AOD-NET GCANet

PSNR

E1 11.3018 17.3161 19.9218 16.1124 20.5306 16.7291 19.1775 16.4637
E2 12.4495 17.3834 16.0288 21.2499 22.6673 19.2980 19.1143 20.1044
E3 10.0178 15.0239 17.2843 12.5169 15.3483 16.9267 18.1787 14.5837
E4 9.1166 12.3160 14.7143 12.9381 14.2402 16.4077 17.4782 15.5258
E5 9.9918 12.0322 19.2096 13.7839 16.9787 17.3780 17.9371 13.0886
E6 8.2387 10.8556 14.9927 10.4802 12.7805 16.1591 17.7590 12.0327
E7 8.6274 14.0277 14.9921 13.4883 15.6290 15.9782 17.6301 14.5927
E8 12.1672 19.9542 17.5611 21.0496 22.7793 15.2877 20.5717 21.1517

SSIM

E1 0.6244 0.8533 0.8687 0.7670 0.8870 0.7742 0.8429 0.8416
E2 0.6290 0.8297 0.6681 0.8649 0.8900 0.8723 0.8373 0.8581
E3 0.5179 0.6285 0.7921 0.6042 0.7909 0.7427 0.8061 0.7321
E4 0.4934 0.6150 0.7554 0.6082 0.6434 0.5457 0.7807 0.7662
E5 0.6196 0.6911 0.8652 0.7251 0.7991 0.8230 0.8231 0.7827
E6 0.3996 0.3357 0.7244 0.5104 0.6864 0.7246 0.7937 0.4873
E7 0.4193 0.7345 0.7478 0.6231 0.7745 0.7045 0.7783 0.6874
E8 0.5479 0.8689 0.7142 0.8267 0.8776 0.3633 0.8445 0.8437

7. Remote Sensing Technology Application
7.1. Monitoring and Control of Geological Disaster

Geological disasters, such as landslides, mudslides, and ground fissures, seriously
endanger human life and wealth security. A high-quality RS image can help us roughly
investigate the overall damage in the disaster area. However, RS data may lose its value
when it is obscured by clouds and haze. Therefore, removing the haze from hazy RS images
is very significant in geological disaster monitoring and control.

7.2. Urban Planning

The main task of urban planning is to obtain comprehensive urban spatial information.
Using RS technology to take city images can easily and accurately capture such information,
but there are many factories and construction sites located in cities, which result in a large
number of smoke over cities, and thus blurs the RS images. After dehazing the RS data,
comprehensive planning and development of the city can be carried out reliably.

7.3. Military Application

It is well-known that valuable military intelligence can be obtained from clear RS
images, which can be used to discover missiles, identify troops, confirm airports, monitor
changes in forces, and make operation plans. Due to the haze interference, the data collected
in military will also have the characteristics of low contrast and dim colors. Therefore, the
haze removal technique can be useful to handle this issue.

8. Future Efforts

Researchers have done a large amount of research work on RS image dehazing and
have achieved a promising result for most cases. However, there is still a lot of vital work
to be further studied.

8.1. Drawback of ASM

The image dehazed by ASM will have a dim effect since ASM fails to consider the light
trapping phenomenon related to the texture density and scene depth. In other words, ASM
considers that all scenes in the image are directly illuminated by the atmospheric light,
while ignoring the influence of uneven illumination. To address the above problems, many
useful methods [18,23] which optimize the robustness of the ASM are proposed. Although
the dim effect is solved to a certain extent, uneven haze remains a challenge. Therefore, it
is a challenging problem to use a more robust physical model to describe complex scenes.
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8.2. Priori Limitation

Most of the current existing methods are based on ASM, and achieve haze removal
using latent prior on ASM. However, due to the fact that prior cannot fully satisfy all
images or data, it is difficult to ensure the recovery performance of these approaches. In
some conditions, especially for an image with heavy haze, haze removal using prior will
be ineffective. Benefitting from the learning mechanism, building a deep architecture or
Bayesian framework to integrate the remarkable merit of each algorithm is a good choice,
so that a better haze-free result can be obtained.

8.3. Real-Time Dehazing

Although current dehazing algorithms are able to effectively remove haze for a single
image, most of them still have a common problem, i.e., lacking real-time performance. This
means that these dehazing methods still cannot support the normal operation of computer
vision systems that need high efficiency processing. In a word, a “good” haze removal
algorithm must have reliable recovery capability and low computational complexity simul-
taneously. To the best of our knowledge, all the existing algorithms reduce the complexity
by optimizing the algorithm itself. In fact, using hardware (graphics processing unit) to
accelerate the processing may be more effective than the previous work.

8.4. Drawback of Data-Driven

On the one hand, the data-driven restoration quality depends on the selection of
the training dataset. However, almost all open datasets are artificially synthesized rather
than being collected from the real-world, especially for RS data. This is bound to lower
the dehazing effect on real-world RS data. On the other hand, data-driven dehazing is
similar to a “black box”, which lacks interpretability and is specifically theoretical despite
its effectiveness. Therefore, researchers could combine statistical learning with symbolic
computation and construct an uneven haze image dataset to obtain more natural and
realistic hazy-free images.

9. Conclusions

In conclusion, this paper details the degradation mechanism of hazy data and the
corresponding physical model, i.e., ASM. Then, a brief introduction of RS images and
attributes of each type of dehazing algorithm were discussed categorically. In short, image
enhancement neglects the imaging theory of hazy data and only stresses the enhancement
of local or global contrast as much as possible. In addition, physical dehazing extracts the
parameters by imposing latent prior knowledge on ASM, thereby it can restore a haze-free
scene from the hazy image physically. Moreover, data-driven dehazing makes use of the
powerful learning ability of neural network to find the mapping relationship between
hazy data and the corresponding haze-free one or transmission map. Therefore, its success
on dehazing performance mainly lies in the training dataset used to drive the expected
models. Finally, the commonly used quantitative metrics and the application scenario of RS
dehazing approaches were also illustrated. Furthermore, we emphasized some challenging
problems faced by these RS dehazing methods that enlighten the future efforts in this topic.
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