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Abstract. Deep neural networks currently achieve state-of-the-art per-
formance in many multivariate time series classification (MTSC) tasks,
which are crucial for various real-world applications. However, the black-
box characteristic of deep learning models impedes humans from obtain-
ing insights into the internal regulation and decisions made by classifiers.
Existing explainability research generally requires constructing separate
explanation models to work with deep learning models or process their
results, thus calling for additional development efforts. We propose a
novel explanation module pluggable into existing deep neural networks to
explore variable importance for explaining MTSC. We evaluate our mod-
ule with popular deep neural networks on both real-world and synthetic
datasets to demonstrate its effectiveness in generating explanations for
MTSC. Our experiments also show the module improves the classifica-
tion accuracy of existing models due to the comprehensive incorporation
of temporal features.

1 Introduction

The past decade has seen multivariate time series classification (MTSC) becom-
ing one of the most critical issues in data mining [11]. MTSC finds significance
in various practical tasks, such as activity recognition [40], disease diagnosis
[31], and weather forecasting [25]. Currently, deep neural networks have been
widely adopted for MTSC [12] and achieved state-of-the-art performance in var-
ious tasks, thanks to the ability to capture complicated, non-linear relations
between inputs and outputs [29]. Generally, deep neural networks stack multi-
ple neural layers to automate feature extraction and representation learning, and
their internal mechanisms remain unrevealed to the end-user. Nevertheless, many
real-world applications find the significance of gaining insights into the critical
variables that impact the decisions of classifiers [37] to approach a better under-
standing of specific domains. For example, in aquaculture, multiple environmen-
tal conditions (e.g., light) jointly affect the creature’s growth. However, although
researchers can monitor environmental variables and growth of creatures [16, 17]
and predict the growth trend by solving a multivariate time series classification
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(MTSC) problem, it is more desirable to derive human-understandable inter-
pretations of which factors play the major role in determining the classification
outcomes. Various applications in other domains, e.g., healthcare and medical
diagnosis [15, 32] call for explainable MTSC as well.

A deep neural network for multivariate time series classification usually con-
sists of two components: backbone and head. The backbone is responsible for
extracting temporal features and harnessing the inter-relationship of the vari-
ables to learn the representations of the input data, called feature-maps. The
head can map the feature-maps to the possibility distribution of the output la-
bels, i. e. the classes. The backbone conducts feature extraction by fusing the
temporal features from different variables. While it is beneficial for the model
to effectively harness the temporal features of the input time series, it leads
to challenges in finding the important information from variables. For exam-
ple, in convolutional neural networks, the filter in the first layer will harness all
the channels’ information simultaneously—the channels are fully connected for
information fusion across all the channels. Hence, as the networks go deep, it
is nearly impossible for the typical convolutional neural network to track the
variables’ importance during inference.

Although many studies have sought explanation for classification problems
[42, 1], they mostly design separate architectures that are specific to certain
deep neural-network types. They need to re-design the backbone architecture
(following the ad-hoc approach) or propose post-hoc techniques, which lack the
flexibility to be applied to different deep neural networks. Besides, the whole
architecture has to be re-evaluated when task or circumstance changes, leading
to extra efforts for model adaptation. All the above deficiencies call for a generic
module that is pluggable into various deep neural networks for MTSC. In this
regard, we propose an explanation module that can be seamlessly integrated into
deep neural networks to gain the importance of variables in MTSC. We make
the following contributions in this paper:

– We propose an explanation module that can be plugged into existing pop-
ular deep neural networks, such as CNN, RNN, to infer the importance of
variables in MTSC automatically.

– We conducted experiments on four benchmark multivariate time series datasets
using four variants of CNN and RNN to evaluate our proposed module. Our
experiments on input variables with added noises validate the effectiveness
of the module.

– Besides adding explainability, the experimental results show that our mod-
ule enables the MTSC models to better leverage the temporal feature and
achieve better accuracy.

– We provide implementation details of the proposed module and related ex-
periments to ensure our module can be re-implemented conveniently.

The rest of this paper is organized as follows: Section 2 introduces some re-
lated works and techniques; Section 3 presents the structure of the proposed
explanation module; Section 4 reports our experiments; finally, Section 5 con-
cludes our works.
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2 Related Work

2.1 Multivariate Time Series Classification

Convolutional Neural Networks (CNNs) are firstly used for image recognition
[27]. Recent studies have found that 1D CNN can be used for temporal feature
extraction [19, 5, 22], hence inspiring researchers to use CNN for time series clas-
sification [13, 44, 28]. For 1D CNN, the convolution computation can harness the
potential temporal patterns while the information fusion across the channels is
helpful to tackle the inter-relations of the variables. As CNNs focus on the infor-
mation in the receptive field, it is challenging to capture a relatively long-range
time series.

Recurrent Neural Network (RNN) is a structure specifically designed for
temporal data [30, 33]. Two most well-known variants are called Long Short-
term Memory (LSTM) [21] and Recurrent Gated Unit (GRU) [8] which are
widely used in dealing with time series sequences [39, 6, 36]. RNNs have the
shortcomings of containing massive parameters. Besides, it is difficult to apply
parallel computation to RNNs, which further degrades the time consumption
[35].

The combination of CNN and RNN represents one effort to fix the short-
comings [4, 3]. CNN and RNN are constructed in the parallel or cascade style
to exploit the advantages of both CNN and RNN. This architecture is benefi-
cial for capturing various ranges of temporal feature extraction. LSTM-FCNs
[26] construct CNN and RNN in a two parallel stream style. Combining this
architecture with the attention layer called Squeeze-and-Excitation Net [24] can
achieve state-of-the-art performance on several benchmark multivariate time se-
ries classification datasets.

2.2 Explanation Methods

There have been several efforts exploring explanation methods for deep neural
networks in various tasks. Some efforts have tried to figure out the effect of the
input on the output [43]. Gradient-based methods have been used for exploring
the influence of the input changes [38, 7]. However, these types of methods are
only feasible for convolutional neural networks.

Another explanation approach is to design a separate architecture for expla-
nation purposes. Some studies [41, 18] select a critical subset of features to figure
out the most influential variables. While some work embeds attention mecha-
nisms to evaluate the effectiveness of the input data [2, 9], it may take consider-
able efforts to design a new architecture, not to mention the potential adverse
impact of the explanation module on performance. An example is LAXCAT [23]:
although it can visualize critical variables based on fully-grouped convolutions
and attention mechanisms, it lacks the ability to exploit the inter-relationship
among variables, resulting in suboptimal performance.



4 Chao Yang et al.

3 Our Approach

In a typical multivariate time series classification (MTSC) process (represented
by blue blocks in Fig. 1), the input firstly goes through the backbone (e.g., CNN
or RNN) to generate feature-maps (denoted by FMbackbone ∈ RN×L). Then, the
head (usually, a fully-connected layer or 1D convolutional layer) maps feature-
maps to a probability distribution of classes.

Fig. 1. The proposed module is pluggable into any existing deep learning model
(i.e., backbone network) in a backbone-head fashion. Yellow blocks represent our pro-
posed module and Blue ones stand for the original neural-network model. The module
obtains the importance of variables by calculating attention on top of the feature-
maps extracted by the backbone (FMbackbone) and by the grouped convolution layers
(FMinput), respectively. The module updates FMbackbone twice according to the out-
puts of Attention and SENet to enhance the backbone network’s performance.

Our proposed module (represented yellow blocks in Fig. 1) aims to explore the
importance of variables for pluggable explanation in MTSC. Our module works
in the following steps. Given input fed to a total grouped convolution layer, the
convolution filters conduct separate calculations on each variable. Normal convo-
lution is fully connected in the channel perspective causing the information flow
among the channels. Total grouped convolution splits channel of the input data
and does convolutions on each channel. In this manner, the number of filters
is equal to the number of the variables. Hence, during this process, the mod-
ule does not consider any inter-relationship of the variables. The feature-map
of each channel is the representation of each variable. The output feature-map
is indicated by FMinput ∈ RM×L, where M is the number of variables, and L
is the length of the feature-map. Noted, the length of the FMinput should be
the same as FMbackbone for the attention calculation. Generally, the backbone
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downsamples the input that leads to the small length of FMbackbone than the
input time series sequence. If necessary, the module will adjust the kernel size
of the total grouped convolution according to the two feature-maps to ensure
their lengths are equal. Typically, using a large stride for downsampling helps
ensure the feature-maps’ lengths meet the module’s requirements. Since no in-
formation flows across variables, each channel of FMinput can be considered as
the vectorized representation of the corresponding variable.

After this, the attention between the FMbackbone and FMinput is calculated.
In this step, we have the importance of the variables according to the channels of
FMbackbone, indicated by Attnnm ∈ RN×M , it also can be seen as the weights of
the variables. Besides, FMbackbone is updated based on the results. In the next
step, FMbackbone is sent to the SENet to obtain the importance of the channels
or the weights of the channels. As the importance is learnt according to the inter-
relationship of the channels and the importance of different channels regarding
to the output, we indicate it using SelfAttnn ∈ RN , while the FMbackbone

is updated the second time. Then, we have the importance of the variables
regarding to the channels of the FMbackbone Attnnm as well as the importance
of the channels of the FMbackbone SelfAttnn. At the last step, the module does
weight sum to obtain the importance of the variables as Eq. (1):

Importance m =

N∑
1

Attn nm × Self Attn n (1)

where Importancem ∈ RM . In this way, the importance of the M variables on
the decision-making process of the classifier is obtained.

As the feature-maps FMbackbone are updated twice based on the results of two
attention calculation steps, the model can utilize the temporal information more
effectively to achieve better performance. Specifically, the FMinput contains dif-
ferent granular feature-maps compared with FMbackbone. Hence, the module can
harness more feature-maps to achieve better classification accuracy. Besides, our
module can be integrated into the classifier following a backbone-head style. It
has nearly no difficulty and limitation for combining the proposed module with
the existing models to figure out the importance of MTSC variables.

4 Experiments

4.1 Datasets

We conducted experiments on four carefully selected public multivariate time
series datasets (Table 1), which are representative of different sizes and domains.
Table 1 includes the number of the classes, number of the variables for each input
sequence, the length of the sequence, and the train-test split ratio. More details
are as follows:

– AREM [10]: AREM dataset contains time series sequences recorded by
sensors placed in different positions of the body to recognize the activities.
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Table 1. Experimental datasets

Dataset Classes Number of variables Sequence length Train-test ratio

AREM [10] 7 7 480 50:50
LP5 [10] 5 6 15 39:61

ArabicDigits [10] 10 13 93 75:25
Wafer [34] 5 18 214 25:75

The dataset consists of six activity types: cycling, lying, sitting, standing,
walking, bending1, and bending2.

– LP5 [10]: LP5 dataset is for robot failures detection in motion. It contains
five classes, including normal, bottom collision, bottom obstruction, collision
in part, and collision in tool.

– ArabicDigits [10]: ArabicDigits is used to detect which Arabic digits the
writer is writing. So it is very intuitive that the dataset contains 10 classes,
including the digits ranging from 0 to 9.

– Wafer [34]: The wafer database comprises a collection of time-series data
sets where each file contains the sequence of measurements recorded by one
vacuum-chamber sensor during the etch process applied to one silicon wafer
during the manufacture of semiconductor microelectronics. It contains two
classes: normal or abnormal.

For each dataset, we normalized it to zero mean and unit standard deviation;
we also applied zero paddings to cope with sequences with different lengths.

4.2 Baseline Methods

We select two representative variants of CNN and two representative variants
of RNN to demonstrate the feasibility of plugging our proposed module into
existing models. These models also serve as baseline methods for comparative
experiments.

– ResNet [20] and Res2Net [14]: Popular Convolutional Neural Network-
based models. We train ResNet on AREM dataset and train Res2Net on
LP5 dataset. ResNet and Res2Net contain 4 convolutional layers. Each con-
volutional layer is 1D convolution to ensure the model is adaptable for time
series data.

– LSTM [21] and GRU [8]: Popular Recurrent Neural Network-based models.
We train LSTM on the ArabicDigits dataset and train GRU on the Wafer
dataset. As LSTM and GRU contain 2 RNN layers, we use the last hidden
state as the information vector. The vector is sent to a fully connected layer
to map the information vector to the probability distribution of the classes.

4.3 Evaluation Procedure

For each model, we followed the given train-test split regulation and firstly train
it on the training set. We train our model on a single GTX 3090 GPU with 24
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GB memory. We apply oversampling to classes with fewer samples to mitigate
the impact of imbalanced class distribution. Then, considering the importance of
variables vary across classes, for each dataset, we select a particular class from
the test set to evaluate the importance of variables produced by our module.
Specifically, we select the sixth class (i.e., bending2), the third class (i.e., bottom
obstruction), the first class (i.e., digit 0), and the first class (normal) from the
four datasets (AREM, LP5, ArabicDigits, and Wafer), respectively, to evaluate
our experimental results.

We also generate synthetic datasets by adding random noises to the orig-
inal datasets to further validate the soundness of the importance of variables
produced by our module. Specifically, we sample the noise data from normal
distribution and add to the variables separately and text the model with the
contaminated data. Intuitively, if the variable is important when adding the
noise to it, it should dramatically influence the decision-making by the classifier.
In other words, if the influence of the variable is significant, then the accuracy
will fall significantly when the variable is affected by the noise and vice versa.

We use accuracy as the evaluation metric, which is commonly used as the
sole performance indicator in MTSC. We tested the model for five times on the
datasets and calculate the average accuracy and the standard deviation. Since
we concentrate on the effectiveness of the proposed module, accuracy suffice to
suggest the quality of different methods’ results.

4.4 Results

Performance on real datasets Tables 2–5 show our experimental results on
the four datasets. Our module can be implemented to be combined with various
models without much extra efforts. Through the utilization of our module, we
can obtain the importance of the variables quantitatively. To make the results
more convenient to understand, we execute softmax on the results. Thus, all
the weights are in [0,1], and the sum is 1. We select a specific class and use
the synthetic dataset and test the importance given by the module, i.e., we add
noise manually to the variables separately; then, we explore the accuracy changes
thanks to the noise. We present the accuracy on the specific dataset before and
after adding noise to the variable separately. Intuitively, a more critical variable
bears a great change in classification accuracy. Our results on the Wafer dataset
(shown in Table 2) show a classification accuracy is 99.87% on the selected class.
The results produced by the module indicate that the 5th and 6th variables are
most important and least important, respectively. As we repeat the experiments
five times, we also give the standard deviations of the average accuracy with and
without the noise.

Validating explanation ability We tested adding noises to the variables man-
ually, which results in drastic changes in the accuracy on the 5th variable while
little change on the 6th variable. The results indicate that noises can influence
the crucial variables, and the regulation has well-matched the hypothesis. On the
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Table 2. Experimental results on Wafer dataset

Accuracy (sd) (w/o noise) 99.87% (0.68%)

Variable id 1 2 3 4 5 6
Importance of variables 0.101 0.129 0.158 0.261 0.276 0.075
Accuracy (%) (w/ noise) 99.01 96.38 96.38 96.38 94.38 99.75

Standard Deviation (w/noise) 0.05 0.39 0.38 0.42 0.76 0.04
Accuracy change (∆%) 0.86 3.49 3.49 3.49 4.9 0.12

Table 3. Experimental results on LP5 dataset

Accuracy (sd) (w/o noise) 96.15% (2.58%)

Variable id 1 2 3 4 5 6
Importance of variables 0.225 0.157 0.186 0.082 0.148 0.202
Accuracy (%) (w/ noise) 46.15 88.46 76.92 92.30 92.30 73.07

Standard Deviation (%) (w/noise) 2.81 2.59 2.57 2.96 2.28 2.70
Accuracy change (∆%) 50.00 7.69 19.23 3.85 3.85 23.08

Table 4. Experimental results on AREM dataset

Accuracy (sd) (w/o noise) 100% (0)

Variable id 1 2 3 4 5 6 7
Importance of variables 0.215 0.150 0.060 0.115 0.174 0.229 0.057
Accuracy (%) (w/ noise) 0.00 0.00 71.43 71.43 14.28 0.00 71.43

Standard Deviation (%) (w/noise) 6.32 4.90 6.46 7.07 4.99 6.91 6.18
Accuracy change (∆%) 100.00 100.00 28.57 28.57 85.71 100.00 28.57

Table 5. Experimental results on ArabicDigits dataset

Accuracy (sd) (w/o noise) 100% (0)

Variable id 1 2 3 4 5 6 7
Importance of variables 0.071 0.001 0.074 0.042 0.076 0.386 0.024
Accuracy (%) (w/ noise) 98.83 99.10 98.83 99.10 97.54 29.24 98.83

Standard Deviation (%) (w/noise) 0.35 0.21 0.25 0.24 0.34 0.33 0.36
Accuracy change (∆%) 0.27 0.00 0.27 0.00 1.56 69.86 0.27

Variable id 8 9 10 11 12 13
Importance of variables 0.100 0.030 0.110 0.031 0.052 0.002
Accuracy (%) (w/ noise) 85.10 98.04 61.72 98.43 98.83 98.83

Standard Deviation (%) (w/noise) 0.38 0.33 0.49 0.46 0.91 0.45
Accuracy change (∆%) 14.00 1.06 37.38 0.67 0.27 0.27

other datasets, the results are similar. Hence, we can say that the importance
the module obtains is convincing.

It is worth noting that the accuracy of all the datasets given in Tables 2–5 is
quite high. That is because we select the specific class to evaluate our results. We
have found that a satisfying performance is crucial to obtain reasonable results.
Because when the classification accuracy is high, that means the model focuses
on the right variables.
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Table 6. Training time consumption comparison between the model with the proposed
module and without the proposed module on Wafer dataset

Average Training Time (s) Standard Deviation (s)

Without the module 32.95 3.9
With the module 36.02 2.76

Fig. 2. Accuracy comparison between the original model and the model combined with
our proposed module

Impact on performance Besides explanation ability, our module can improve
the performance of the baseline models on the respective datasets. Specifically,
Fig. 2 suggests that all the selected classifiers achieve better classification accu-
racy on each dataset, which indicates the superiority of the proposed module.
The model better harnesses the temporal features as it updates the feature-maps
(extracted by the backbone) twice according to the self-attention of the feature-
maps and the attention between feature-maps and input. The module helps the
original model to fuse various levels of feature-maps and improve the classifier’s
performance. The accuracy given in Fig. 2 is the average accuracy of all the
classes instead of a specific class. Hence the accuracy is different from the results
of the tables shown in the previous contents.

Besides, the proposed module does not significantly cause extra time con-
sumption. To indicate that, we record the training time consumption, which is
shown in Table 6, on the Wafer dataset. The corresponding method we use on
the Wafer dataset is the LSTM with three layers. We train the model on Intel
Core i7-8550 with 16GB RAM instead of GTX 3090 GPU, because the GPU
is too powerful to demonstrate the time consumption difference. In Table 6, we
can see the average training time increased by 9%, thus we can say the proposed
module is efficient.
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5 Conclusion and Future Work

We propose an explanation module to explore the importance of the variables for
multivariate time series classification. Our module can be easily plugged into the
existing models and quantitatively figure out the importance of the variables for
classification. Our extensive experiments demonstrate its effectiveness. Besides,
the module can improve the model’s performance further, as it is beneficial for
leveraging the temporal information of the input. We also provide some tricks
for implementing our module. However, the module is not feasible for finding
the important time interval for the outcome, which leads to limitations. In the
future, we plan to refine the module to make it feasible for figuring out the
importance of both temporal aspects and variable aspects.
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