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Abstract—The ability to deal with uncertainty in machine
learning models has become equally, if not more, crucial to
their predictive ability itself. For instance, during the pandemic,
governmental policies and personal decisions are constantly made
around uncertainties. Targeting this, Neural Process Families
(NPFs) have recently shone a light on prediction with uncertain-
ties by bridging Gaussian processes and neural networks. Latent
neural process, a member of NPF, is believed to be capable of
modelling the uncertainty on certain points (local uncertainty)
as well as the general function priors (global uncertainties).
Nonetheless, some critical questions remain unresolved, such as
a formal definition of global uncertainties, the causality behind
global uncertainties, and the manipulation of global uncertainties
for generative models. Regarding this, we build a member
GloBal Convolutional Neural Process(GBCoNP) that achieves
the SOTA log-likelihood in latent NPFs. It designs a global
uncertainty representation p(z), which is an aggregation on a
discretized input space. The causal effect between the degree
of global uncertainty and the intra-task diversity is discussed.
The learnt prior is analyzed on a variety of scenarios, including
1D, 2D, and a newly proposed spatial-temporal COVID dataset.
Our manipulation of the global uncertainty not only achieves
generating the desired samples to tackle few-shot learning, but
also enables the probability evaluation on the functional priors.

Index Terms—uncertainty modelling, neural processes, deep
learning, few-shot learning, covid trend forecast

I. INTRODUCTION

In recent years, machine learning, especially deep learning,
has shown massive success on a range of prediction tasks,
such as time-series forecasting [1], geographical and spatial-
temporal inference in medical science, engineering, and fi-
nance domains [2]. Nonetheless, the uncertainty of machine
learning models is less considered than model predictions
themselves. When the existing knowledge of a task is not
abundant to present a deterministic prediction, uncertainty
provides a reasonable guess interval that includes major possi-
bilities of the predictions. In fact, uncertainty can be as equally
important as the prediction capability of models, considering
that it increases as the expansion of underlying factors. For
example, when estimating the life expectancy of a mechanical
part, it is more feasible to estimate an approximate time-
range than to predict an exact time stamp at which to discard
the part as there are more uncontrollable variants in the
long term. Besides, modelling the uncertainty helps increase
models’ tolerance to task diversities in datasets. For instance,

when exploring substances from satellite images of a planet,
modelling the uncertainty helps incorporate heterogeneous
substance candidates that can not be confidently distinguished
from the ground truth. Uncertainty is crucially important for
predictions related to the pandemic—it determines how much
we could trust the classification results of COVID-19 cases [3],
the anticipated virus spreading trends [4], and assessment of
lockdown policies [5], all of which have a vital impact on the
daily lives of many people.

Neural process families (NPF) recently shone a light on
predictions with uncertainties by bridging Gaussian processes
(GPs) and neural networks. Inherited from Gaussian processes,
they make predictions under a joint of correlated normal dis-
tributions and present each prediction along with a confidence
interval,i.e, uncertainty (See Fig 1). As neural networks show
competence in deep feature representation, NPFs advance GPs
in modelling complicated functions efficiently. In addition,
NPFs are suitable for solving meta-learning tasks, where each
task is sampled from a distribution of functions instead of
a single function. We illustrate predictions with uncertainties
using the examples shown in Fig 1. Given a context set with
a cluster of observable data (xC , yC) := (xi, yi)i∈C , an encoder
network infers a function f that can generate the context set.
Then, a decoder network uses the function to make predictions
with uncertainties on a target set (xT , yT ) := (xi, yi)i∈T ,
where only the locations xT are unveiled. The resulting
outputs follow a normal distribution p(yT |xT , f) = N (µy, σ

2
y ).

We call the standard deviation on local target points σyT
“local uncertainty” in contrast to the global uncertainty to be
introduced in latent neural processes later. Eventually, NPF
optimizes the parameters in neural nets by maximizing the
likelihood of actual target values yT .

Latent neural processes [6] hypothesize that the encoded
function should not come from a deterministic vector but
rather a distribution f ∼ p(f). As shown in Fig 1, two
descent function samples f1 and f2 with periodic differences
can be generated using the same context set. They both
represent the local uncertainty on the target points but ob-
viously have different priors, meaning there exists another
uncertainty that determines this general prior, which we call
“global uncertainty”. Despite some previous efforts [7] [6] [8]
empirically illustrate such global uncertainties there remains



Fig. 1. Predictions with uncertainties under two function samples f1 and f2

three unresolved issues:

• Formalization of global uncertainties. We wonder if the
global uncertainty can be quantified and compared in
ways other than empirical visualization of diverse sam-
ples.

• Causality behind global uncertainties. This concerns the
model-wise and data-wise factors that affect the global
uncertainty.

• Manipulation of the global uncertainty for data gener-
ation. This concerns tailoring the priors and sampling
a desired function once the causal effects of the global
uncertainty are examined.

We propose a GloBal Convolutional Neural Processes (GB-
CoNP) that make predictions with uncertainties to address the
above challenges. GBCoNP defines global uncertainty as the
learnt posterior of a functional distribution conditioned on a
small context set q(z|C). This formalization enables compar-
isons among datasets and different latent models, including
the causal-effect between the intra-task diversity and global
uncertainty. It further enables us to discover and edit insightful
semantic features with regards to global uncertainty during
sample generations. Finally, we evaluate the log-likelihood of
GBCoNP with peers on extensive 1D and 2D datasets, and
propose a COVID dataset using spatial-temporal uncertainty
prediction. This case study is expected to enhance our under-
standing of the patterns in virus spread and benefit the research
community. Our major contributions are three folds:

• A new discretized space for global uncertainty projection
that is suitable for out-of-range prediction while main-
taining the shared global prior.

• A causal-effect analysis of the global uncertainty, which
is seldom discussed in previous research. Our analysis
reveals dataset characteristics, such as intra-task diversity,
can depict the stochasticity.

• Manipulation of the global uncertainty that empowers
sampling with priors. We novelly generalize the appli-
cations to a high-dimensional spatial-temporal scenario.

II. METHODOLOGY

A. Global Uncertainty in Latent Neural Processes

We follow the notations of [7] and denote a context set by
(xC , yC) := (xi, yi)i∈C , where both the inputs and predictions
are given in a meta-regression task. The context set defines
a sample from a functional distribution. The objective is to
predict on the target inputs xT using this function sample and
maximize the likelihood of yT if the target set (xT , yT ) :=
(xi, yi)i∈T comes from the same function sample. Similar
to conditional variational autoencoders (CVAE), a latent NP
models the prediction with a conditional distribution (1):

p(yT |xT , xC , yC) := N (µy, σ
2
y )

=

∫
p(yT |xT , rC , z)p(z) dz

(1)

where rC := r(xC , yC) is a neural network that captures the
deterministic part of the functional sample. The prior latent
distribution p(z) := N (µz, σ

2
z ) captures the global uncertainty

of the functional sample. As shown in Fig 2(a), rC and z
forms the encoder. The decoder network takes the encoded
functional condition (rC , z) and the target inputs xT to make
predictions of yT . Depending on the inductive biases imposed
over the relationships within the context set and between
context and target sets, different neural network structures can
be adopted for encoders, such as equally weighted (neural
processes [6]) and attentively weighted aggregation (attentive
neural processes [7]).

Since this prior knowledge of the functional distribution,
i.e., global uncertainty p(z) is intractable, previous studies
turn to amortised variational posterior p(z) = N (µz, σ

2
z ) ≈

q(z|rC) = q(z|xC , yC) for inference. They typically pass rC

(a) Latent NP

(b) ConvCNP

Fig. 2. Workflows for latent NP families and ConvCNP



through an MLP to get the distributional parameters and then
optimize (1) with a differentiable network:

p(yT |xT , xC , yC) :=
∫
p(yT |xT , rC , z)q(z|xC , yC)) dz (2)

A predictive evidence-lower-bound (ELBO) is given based on
the variational inference of p(z):

log p(yT |xT , xC , yC) ≥ Eq(z|xT ,yT )log p(yT |xT , rC , z)
−KL(q(z|xT , yT )||q(z|xC , yC))

(3)

Now, the training process is to maximize the log-likelihood
log p(yT |xT , xC , yC) which equals maximizing its lower bound
comprised of a conditional log-likelihood based on latent z,
i.e., log p(yT |xT , rC , z), minus a non-negative KL divergence.
While CVAEs regularize the posterior with a standard normal
distribution KL(q(z)||N (0, I)), latent NPs differ in minimiz-
ing the divergence from the posterior (obtained from the target
set) to the context set during training when the target sets are
accessible.

During inference, the prior p(z) = N (µz, σ
2
z ) is replaced by

q(z|xC , yC). We formalize the global uncertainty as:

p(z) := N (µz, σ
2
z ) = q(z|C), s.t.|C| < ε (4)

where ε comprises a very small proportion of the index
set. We did not set the condition C = ∅ since in real-world
datasets and the empty set barely carries any function prior,
but |C| cannot be too large, otherwise it would leave no space
for uncertainty. The mean µz in (4) determines the sensitivity
of final predictions affected by the global uncertainty, whereas
the variance σ2

z implies the diversity of function priors on a
certain task.

B. Out-of-range Predictions with Convolution

Out-of-range predictions is an essential characteristic when
scaling the NPF to real-world tasks. It requires the model
to generalize predictions when the testing task is out of the
training range. The recently proposed Convolutional Condi-
tional Neural Processes(ConvCNP) [9] tackle this issue with
convolutions and outperform peer NPF members. ConvCNPs
assume “translational invariance”, i.e., the prediction pattern
near a local context data is transferable to the rest of the input
space, which can be well addressed by convolution. They omit
the latent representation and only decode r and xT . However,
instead of directly encoding r from the raw context inputs xC ,
they introduce a discretization of the indefinite input space xS
that incorporates context and target inputs xC , xT and map the
deterministic representation on xS:

p(yT |xT , xC , yC) := N (µy, σ
2
y ) = p(yT |xT , ψ(rS)) (5)

where rS := r(xC , xS , yC) is the deterministic representation.
r(xC , xS , yC) is a DeepConvSet that resembles a simplified
attention. Given a query of a discretized set xS , DeepConvSet
projects the value yC to the space S based on the similarity
between the query xS and the key xC . Then, rS is passed
through a convolutional neural network ψ(·), which achieves
the inductive bias of transitional invariance (shown in Fig

2(b)). This guarantees that the function description only fo-
cuses on a local range of inputs so that the model is still
effective even when the testing inputs are out of the training
range. The DeepConvSet : C 7→ S and the CNN module
constitute the encoder. The decoder is another DeepConvSet
whose keys and values are xS and rS with queries xT . Without
the latent representation, the training and inference share the
same workflow.

C. GloBal Convolutional Neural Process(GBCoNP)

While ConvCNPs outperform NPF members on many sce-
narios, we believe the latent distribution p(z) has a great
impact on maintaining the stochasticity for NPs, particularly
on the global uncertainty. If the function sample representation
rS is deterministic, the resulting prediction will be precise
yet “dull” with single distribution parameters µy and σ2

y ;
In contrast, latent NPs can sample different z values which
correspond to diverse priors over the functions. Each prior is
able to generate a cluster of (µy, σ

2
y ). ConvCNP can potentially

be tailored to a latent NP, given that the mapping function to
the space S can be latent and shared between the context
and target set. Therefore, we introduce a member named
GloBal Convolutional Neural Process (GBCoNP) that also
adopts amortised variational inference on the global uncer-
tainty (shown in Fig 3).

The predictions of GBCoNP follow a conditional distribu-
tion with a latent path:

p(yT |xT , xC , yC) := N (µy, σ
2
y )

=

∫
p(yT |xT , ψ(rS , z))p(z) dz

(6)

where ψ(·) is the convolution module applied on both the
deterministic and the latent representation. rS := r(xC , xS , yC)
is a DeepConvSet. Given the convolved functional condition
ψ(rS , z) and the target inputs xT , a decoder DeepConvSet
maps the condition to the prediction distribution. We use a
new space xS instead of the original space xC to obtain the

Fig. 3. The model structure for GBCoNP



variational inference of the intractable prior p(z). Thus, (6)
can be optimized with another differentiable network (ψ(·)
omitted for better clarification):

p(yT |xT , xC , yC) :=
∫
p(yT |xT , rS , z)q(z|rS) dz (7)

According to [6], the joint distribution of p(yT ) must suffice
exchangeability to be a stochastic process:

p(yT1 , yT , ..., yTn |xT1 , ..., xTn , xC1 , ..., xCm , yC1 , ..., yCm)
= p(yTπ(1)

, ..., yTπ(n)
|xTπ(1)

, ..., xTπ(n)
,

xCπ′(1) , ..., xCπ′(m)
, yCπ′(1) , ..., yCπ′(m)

)

(8)

where π and π′ are permutations of the target index set
{1, ..., n} and the context index set {1, ...,m}, meaning the
permutation of the context and the target points cannot change
the prediction outcome. The previous latent NPs need an
aggregation module (mean, sum, etc.) on context and target
space to ensure q(z|xT , yT ) and q(z|xC , yC) are permutation
invariant and have the identical dimensions for divergence.

Similar to attention, the DeepConvSet already suffices the
exchangeability by calculating the inner product between the
key (xC or xT ) and query xS . This operation is insensitive to
the input order and thus the context and target are projected to
the same space S regardless of the order. Presumably, rS can
be directly passed through an MLP for z without aggregation.
However, we discovered that the aggregation on z can mitigate
the coherence deficiency in the samples, a drawback caused by
the independent prediction assumption in NPFs [8]. It maybe
attributed to the diminishing effect on the divergence between
q(z|rS) := q(z|xS , xC , yC) and q(z|r′S) := q(z|xS , xT , yT ) after
the fusion.

An observation that supports the aggregation is the non-
translational invariance of the pre-aggregated z. Normally, ψ(·)
in (6) comprises several cascaded convolutional nets; when we
directly convolve on rS concatenated with the pre-aggregated
z, the local pattern near a context point (e.g., a fluctuation) is
propagated to the entire space S. Besides, similar patterns are
obtained when z is derived from an intermediate convolution
state of ψ(rS) and get aggregated afterwards, meaning rS is
convolved by a subset of the cascaded nets. Both cases above
imply that local patterns on z cannot be as transferable to
the whole space as rS can. Therefore, we add an aggregation
module to z to ensure every point in the space S gets the same
latent prior.

Adopting the variation inference, the objective function for
GBCoNP now becomes (9):
Prop 1. Evidence-Lower-BOund for GBCoNP:

log p(yT |xT , xC , yC) ≥ Eq(z|r′S)log p(yT |xT , rS , z)
−KL(q(z|r′S)||q(z|rS))

(9)

Proof. The conditional probability of the prediction can be
built on the marginalization of a joint distribution with a latent

variable z.

log p(yT |xT , xC , yC) = log

∫
p(yT , z|xT , rS) dz

= log

∫
p(yT |xT , rS , z)p(z) dz

= log

∫
p(yT |xT , rS , z)p(z)
q(z|xT , yT , xS)

q(z|xT , yT , xS) dz

= logEq(z|r′S)
p(yT |xT , rS , z)p(z)

q(z|r′S)

(10)

Since the prior z is intractable, it is replaced by the conditional
posterior q(z|rS) on the space S. Using Jensens Inequality and
the concave log function, we get the lower bound of (10):

≥ Eq(z|r′S)log p(yT |xT , rS , z) + Eq(z|r′S) log
q(z|rS)
q(z|r′S)

= Eq(z|r′S)log p(yT |xT , rS , z)−KL(q(z|r
′
S)||q(z|rS))

(11)

Computational complexity. An attention layer takes
O(nmd), where n and m are the key and query lengths,
and d implies the weight dimension [10]. A convolutional
layer costs O(nkdf), where k and f refer to the kernel size
and channel depth. Therefore, two DeepConvSets in encoder
and decoder cost O(msd) and O(nsd), where m and n refer
to the context and target set sizes, and s refers to the grid
length of the discretization (s � m,n). The computationally
expensive part ψ(·) costs O(skdf) for convolutions on the S
space. Compared with ConvCNP, the latent path in GBCoNP
brought in two MLP modules: the latent MLP from rS to z
and the merger MLP (which compress the concatenation of
(rS , z) to a low dimension before convolution). Both modules
cost O(s). Such modifications preserve the total number of
parameters in convolution and are thus affordable.

III. EXPERIMENTS

We evaluate our proposed model on three groups of datasets
covering 1D, 2D and spatial temporal scenarios across a broad
range of domains. All the models are built with Python 3.6.8
and Pytorch 1.4.0. Two TITAN RTX GPUs are used for
training. Wall-clock time for training one epoch of GBCoNP
and ConvCNP is shown in Appendix B.

A. 1D Datasets

In 1D scenarios, each task deals with a series of context
points. The objective is to predict the values and uncertainty
for the unseen target set (The datasets are detailed in Appendix
A). For each task, x values are normalized to [-1, 1] and y
values are standard normalized before training. The number
of context points range within U(1, 50), and the target set
comprises all the data points in the task. Each dataset is trained
for 100 epochs and tested for 6 runs.

Table I shows the log-likelihood of the latent neural process
families along with their conditional members on 1D datasets.
The poor results of a neural network (NN) that abandons
the context set yT = f(xT ) reflect that non-NP models are
probably unsuitable for the meta-setting. ConvCNP and ANP
achieve the best baseline log-likelihood in their category; their



predictions are compared further with the proposed GBCoNP
in Fig 4.

Almost all the ground truths lie in the predicted uncertainties
for the three methods (except for the periodic kernel), validat-
ing that NP families are capable of modeling uncertainty. The
highest uncertainty is normally achieved at the furthest point
away from all the context points. The latent NP members
generate more diverse samples when compared with their
counterpart conditional members at the expense of slight per-
formance drop. This may be attributed to the inference of the
intractable latent variables z using context data—the resulting
distributional gap KL(q(z|r′S)||q(z|rS) causes information loss
in exchange for global uncertainty. GBCoNP and ConvCNP
produce smoother mean values whereas ANP achieves more
diverse samples on real-world datasets. The most fluctuated
predictive means tend to occur in the middle of two context
points (see RBF, Matern, and HousePricing in Fig 4), where
the target points are sensitive to both context points. By virtue
of their convolution filters, GBCoNP and ConvCNP are able
to mitigate those fluctuations.

With regard to global uncertainty causal-effect analysis,
we present the values of µz and σz in (4) after training
(Table II). Considering that z is a high dimensional distribution
and each task batch presents a pair of (µz, σz), we therefore
averaged the results on both the dimension and batch levels.
Table II indicates that the global uncertainty depends largely
on model representation capacity and the intra-task diversity.
Model representation capacity refers to constraints a model
impose on the global uncertainty. For instance, NP constrains
equally loose for all the points, ANP only constrains stricter
to the points closer to the context while GBCoNP constrain
almost all the points differently with the convolution on S.
As the constraints grow (NP < ANP < GBCoNP), the global
uncertainty decreases (σz: NP > ANP > GBCoNP). Intra-
task diversity implies the meta-setting characteristic of the
dataset – how many possibilities there are in this dataset
given the same context. For example, although Periodic and
SmartMeter are both seasonal datasets, the possible target
sets, given a certain context set for Periodic, are not unique;
therefore, GBCoNP can predict seasonal means with different
amplitudes. In contrast, in SmartMeter, there is only one
possible target set corresponding to a context set; causing a
smaller σz in this case( < Periodic).

To manipulate global uncertainty for increasing intra-task
diversity, we reduce the latent dimension of z from 128 to 4
and display µyT with different priors in Fig 5. The variance
bound in the prior(4) is relaxed from σz to 40 σz for Stock50
and Periodic to amplify the effects. The results show that
a group of different functions can be sampled meanwhile
fitting well with context data. As highlighted in Fig 5 (a),
some dimension controls the trend of the curve after a context
point (up/down) while some others control the amplitude of
the trend. Fig 5 (b) shows the controlling factors become the
amplitude and the phase of a wave, and the resulting positions
of context data in the prediction curves shift from a “crest” to
a “trough”.

B. 2D Datasets

MNIST, SVHN, CelebA32. In 2D scenarios, we aim to
inpaint the whole image with uncertainties given a set of
context pixels, and we select three image datasets (MNIST,
SVHN, CelebA32) for the task. For convolutional-based meth-
ods, the context values (x) are built using a binary mask
∈ RW×H , where U(0, 0.3(W ×H)) pixels are unveiled. For
non-convolutional baselines, the mask is transformed into a
list of 2d inputs representing the relative pixel locations (pixel
index/image size). Y values are either 1d or 3d implying the
pixel intensity. Each datasets is trained for 50 epochs and
tested for 6 runs. Table III shows the log-likelihood of the
latent and the conditional neural process families on the 2D
datasets. GBCoNP achieves the SOTA performance among the
latent members. ConvCNP performs the best conditional result
on MNIST, and ACNP outperforms on SVHN and CelebA32.

Fig 6 shows the predictive means and variances on the
three datasets. Overall, all the three methods give reasonable
results, even with only 5% of the total pixels. The local
uncertainty occurs on the strokes of a digit for MNIST and
SVHN, while in CelebA, the variances lie in the profile of
a face, including face shape, hair, eyes, noise and mouth.
The variance on SVHN and CelebA plummets as the amount
of context data increases. With 30% of unveiled pixels, all
the models can recover the whole image with little local
uncertainty. GBCoNP and ConvCNP can generate smoother
predictive means (see Fig 6 MNIST digits “2” and “5”, and
the plate numbers “42” and “25” in SVHN). ANP achieves
more coherent local uncertainties regarding variances while
GBCoNP and ConvCNP tend to reduce the variances around
context points to zero.

As shown in Table II, when the intra-task diversity is large
enough, the global uncertainties achieved by several methods
are quite similar (NP ≈ ANP ≈ GBCoNP in MNIST). For
instance, given a small set of pixels indicating a number
“6”, there are plenty of possibilities in this dataset to finish
the inpainting, therefore producing a large uncertainty σz .To
manipulate this global uncertainty, we generate images with
respect to different priors in Fig 7. Similar to 1D, we relax
the prior standard deviation to 12 σz . For MNIST, the global
uncertainty in ANP determines the thickness and extension
of a stroke, e.g., a “1” can be transformed to a “9” then
to a “4” if the upper stroke of “1” is gradually extended
and thickened. Besides, extension towards different directions
can result in variants of orientations of a digit (see digit
“6” in Fig 7). The results of GBCoNP comply with this
extension pattern yet with limited variation due to the model
representation capacity as discussed in 1D. For CelebA32,
global uncertainty depicts the background and appearance.
Changing values across the prior can transit the background
color from completely black to white with different shades of
brightness. Appearance variations range from the size of the
eyes, noses, face shape, to the hair volume and color.



TABLE I
LOGLIKELIHOOD ON 1D DATASETS (MEAN ± STD)

Model Dataset Name
Name RBF Periodic Matrn-3/2 Stock50 SmartMeter HousePricing

NN -1.42 ± 0.00 -1.42 ± 0.00 -1.42 ± 0.00 -1.40 ± 4E-3 -1.42 ± 7E-5 -1.16 ± 4E-3
CNP [11] -0.73 ± 0.03 -1.27 ± 2E-3 -0.89 ± 8E-3 -0.53 ± 0.05 -0.43 ± 0.03 0.33 ± 0.08

ACNP 0.74 ± 0.12 -1.08 ± 7E-3 0.23 ± 0.03 -0.11 ± 0.11 -0.33 ± 0.05 1.07 ± 0.15
ConvCNP [9] 1.19 ± 0.15 0.71 ± 0.03 0.41 ± 0.04 0.03 ± 0.16 0.09 ± 0.07 1.25 ± 0.18

NP [6] -1.08 ± 0.03 -1.30 ± 2E-3 -1.04 ± 0.01 -0.79 ± 0.08 -0.47 ± 0.02 -1.20 ± 0.39
ANP [7] 0.74 ± 0.12 -1.06 ± 8E-3 0.19 ± 0.03 -0.19 ± 0.15 -0.33 ± 0.05 0.80 ± 0.37
GBCoNP 1.24 ± 0.14 0.25 ± 0.04 0.37 ± 0.03 0.03 ± 0.13 0.02 ± 0.05 1.11 ± 0.24

Fig. 4. Model predictions with uncertainty for ANP, ConvCNP and GBCoNP on 6 datasets. For latent based models, 10 different global latent values are
sampled and displayed. Each Solid line represents one sample of the predicted mean. The shaded areas, µ± 2σ, indicate 95% confidence intervals. Ground
truths are showed in dotted lines, with the context data highlighted in big dots.

C. Spatial-Temporal Dataset

COVID1. In spatial temporal scenarios, we use this dataset
that contains daily total confirmed coronavirus cases in all

1https://www.kaggle.com/fireballbyedimyrnmom/
us-counties-covid-19-dataset

counties of US from 21/01/2020 to 20/04/2021. We use a
window of 14 days with daily total confirmed cases sampled in
each task to build temporal features that could depict the trend.
Each element is normalized by log (x− xmin + 1), where
xmin suggests the lowest cases therein. Since three points are
sufficient to describe the curve, i.e., the last 7 days, the last



TABLE II
GLOBAL UNCERTAINTY FOR LATENT NEURAL PROCESS FAMILIES

Model NP ANP GBCoNP
µz σz µz σz µz σz

Dataseta (e-3) (e-3) (e-3)
RBF -7.25 0.48 -0.48 0.20 0.29 0.19

Periodic -1.26 0.52 7.21 0.57 -3.12 0.21
Matrn-3/2 -0.61 0.35 -0.80 0.35 0.12 0.19
Stock50 0.74 0.29 5.93 0.36 -0.05 0.11

SmartMeter -2.67 0.45 -0.21 0.28 10.66 0.11
HousePricing 3.76 0.46 6.58 0.25 4.53 0.18

MNIST -1.00 0.32 55.01 0.34 -1.77 0.29
SVHN -12.08 0.49 -8.61 0.13 35.76 0.11

CelebA32 18.30 0.18 2.83 0.14 50.04 0.13
Covid -2.25 0.52 -10.56 0.13 -55.88 0.44

a ε in (4) for 1D, 2D datasets are 1, and 5% total pixels respectively.
Covid datasets remains providing all previous records as a context set.

(a) ANP on Stock50

(b) GBCoNP on Periodic

Fig. 5. Manipulation of global uncertainty for sample generation. A grid of
7 × 7 latent variables z is sampled to generate predictive means µyT . The
sampling distribution N (µz , σ2

z) is obtained from the dotted context data.
Sampling values vary from the 5th to the 95th percentile values.

3 days and today, according to our observation, these context
points are used for predicting the logged relative growth 7
days after. To fully utilize spatial information, the data for each
county are projected on a geographic map (shown in the first
row Fig 8), where spatial relationships between counties are
displayed while preserving temporal information with color
intensity.

The whole map is segmented into a grid of 104 of 40×40
cells and a model only processes one cell at a time to minimize
the computational cost. For convolutional methods, context
values x is a binary mask ∈ RT×W×H , where only the last
time channel is set to zero. For non-convolutional baselines,
the mask is transformed into a list of 3d inputs with the relative
spatial and temporal locations where Y values correspond to
the log-relative growth. The dataset is trained for 100 epochs
and tested for 6 runs.

The last column of table III compares the log-likelihood
metrics among NP families. GBCoNP and ACNP achieve

TABLE III
LOGLIKELIHOOD ON 2D AND SPATIAL-TEMPORAL DATASETS (MEAN ±

STD)

Model Dataset Name
Name MNIST SVHN CelebA32 Covid

NN 1.15 ± 0 0.06 ± 0 -0.06 ± 0 -3.03 ± 0.07
CNP [11] 2.03 ± 0.03 1.26 ± 7E-3 0.97 ± 0.03 -1.91 ± 0.29

ACNP 2.04 ± 0.03 2.48 ± 0.02 1.89 ± 0.10 0.53 ± 0.58
ConvCNP 2.68 ± 0.07 1.84 ± 0.28 1.87 ± 0.11 0.34 ± 0.41

NP [6] -8.87 ± 2.09 -1.34 ± 0.41 0.24 ± 0.23 -1.50 ± 0.42
ANP [7] 1.36 ± 0.19 2.48 ± 0.03 1.66 ± 0.16 0.67 ± 0.69
GBCoNP 2.72 ± 0.06 2.57 ± 0.03 1.82 ± 0.15 0.83 ± 0.10

Fig. 6. Model predictions with uncertainties on MNIST, SVHN and
CelebA32. For each task, four samples are presented with differed proportions
of the unveiled context pixels ∈ {5%, 10%, 15%, 30%}. Each sample gives
three consecutive images: masked images, predictive means, and standard
deviations.

the SOTA performance in their categories, and GBCoNP
outperforms ConvCNP in stability. Most models have high
log-likelihood variances due to random sampling of the cell.
In contrast with non-convolutional neural processes that could
only handle a maximum of 40×40×3 = 4800 (one cell in the
grid) context points each time, GBCoNP is the only one that
can process the whole grid (104 cells) by convolutions which
results in a more stabilized metric. Interestingly, the locations
with the low mean values tend to have high uncertainty
(regions with whiter means have redder variances), as shown
in Fig 8(b) and (c)—the model believes that these “safer”
regions surrounded by high risk neighbourhoods have higher
tendency to be infected in the future. Besides, GBCoNP yileds
more precise mean values (purple line in Fig 8(c)) with



Fig. 7. Manipulation of the global uncertainty for ANP and GBCoNP on MNIST and CelebA32. A grid of 10 × 10 different latent variables z is sampled
to generate predictive means. Four bounding boxes in the grid are enlarged at the bottom line for clarity. The first element is the masked image, i.e., context
data. The other three are diverse samplings for comparison.

higher standard deviations compared with ANP (see Fig 8(b)).
Our supplementary experiments on global uncertainty reveal
that the COVID dataset has the highest intra-task diversity
compared with other datasets, as this covid spread trend has
the most diverse possibilities. Manipulation on different priors
show the standard deviation change of a region from fairly low
risk to high risk.

IV. RELATED WORKS

Neural Processes. To enhance uncertainty modelling with
Gaussian Process(GPs), previous efforts [12] [13] focus
on representing deep kernels in GPs before Neural Pro-
cesses(NPs) were proposed. Although they inherited the pow-
erful feature representation from neural networks(NNs), they
still suffer from computationally expensive matrix inversion
O(n3). NPs novelly represent stochastic processes with neural
netorks under two constraints: exchangeability and consis-
tency, which frees the model from inversion with fully back-
propagation and induces the whole neural processes family
[14]. There are two major branches in the family: conditional
NPs(CNP) [11] and latent NPs. Others members add different
inductive biases on context and target relationships; some
famous ones include Attentive NPs(ANPs) [7], Sequential
NPs(SNPs) [15], and Convolutional CNPs (ConvCNPs) [11].
A recent work, ConvNP [8], adds latent path to ConvCNP; but
instead of using variational inference, it adopts Monte Carlo
estimation for z and focuses on local coherence. Inspired by
this, our work further elaborates on the global uncertainty and
the related effect.

Generative model with priors. Generative models help
increase intra-diversity of data distributions and mitigate few
shot learning issues. They generally generate sythetic samples
with priors over model condition. For deep learning-based
time series generation, [16] applies LSTMs to capture context
information and fill the missing values. [17] uses adversarial
nets to generate sequence with temporal dynamics across
time. In image inpainting with priors, conditional VAEs [18]
and GANs [19], [20] manipulate the semantic features in an
image (e.g., ”smile”, ”eyeglasses”, ”age”). However, very few
existing studies have meta-learning settings for a distribution
of sampling functions, even fewer have considered model
uncertainty. [21] employs a meta-agnostic structure for rein-
forcement learning but uses GPs rather than NPs.

V. CONCLUSION

In this paper, we answered three important questions about
the global uncertainty in latent neural processes: How to
formalize global uncertainty? What causes and affects global
uncertainty? How to manipulate the global uncertainty for data
generation? We define the global uncertainty as a prior of
z from a latent functional distribution given a small set of
context data. We discovered that global uncertainty is affected
by the model representation capacity and the data intra-task
diversity. Our manipulation of the global uncertainty not only
achieves generating the desired samples to tackle few-shot
learning, but also enables the probability evaluation on the
functional priors.



(a) Context and target ground truth

(b) Spatial predictions with uncertainties

(c) Temporal predictions with uncertainties

Fig. 8. Model predictions with uncertainties on COVID (sample date: 01-April-21). (a): Context data include the last 7, 3 days and the present day. The
shades of color represent the relative growth compared with the data in the last 14 days. Saturation of the colors in context data are adjusted in the plot to
increase contrast for better visualization. (b) Spatial predictions with uncertainties for ANP and GBCoNP. Each model processes one cell in the grid at a time.
(c) Temporal predictions on two 40× 40 cells. Nine pixels are presented in each cell. The ground truth are depicted as solid lines. Predictions are shown in
dotted lines with the shaded area indicating uncertainty.

APPENDIX A
DATASET DETAILS

For 1d datasets, We use synthetic Gaussian processes with 3
kernels to sample values. The kernel functions are as follows:

• RBF : K(x, x′) = e−
1
2 (
x−x′
0.2 )2

• Periodic : K(x, x′) = e−2(
sin 2π(|x−x′|)

0.5 )2

• Matern− 3
2 : K(x, x′) = (1+ 5

√
3|x− x′|)e−5

√
3|x−x′|

where the x values lie within x ∈ [-2, 2], and the function
values y are sampled from y ∼ GP(0,K(x, x′)). Training,
validating, and testing data sizes are set to 50,000, 10,000 and
5,000.

Stock502 contains daily trading volumes of 50 stocks from
National Stock Exchange India. In each sampling task, 200
days of data are sampled starting from a random date between
11/2016 to 11/2017. X values represent the days count from
the first day, and y values represent the corresponding volume
weighted average price. Training, validating and testing sizes
of the stocks are 36, 10, and 4, respectively.

2https://www.kaggle.com/rohanrao/nifty50-stock-market-data

SmartMeter3 includes half-hourly average energy con-
sumption readings from 5,567 London households during
03/12/2011 – 28/02/2014 [22]. For each task, 100 hours of
data are sampled with a random timestamp. X values refer to
the relative time gaps measured in days, and y values refer
to the consumption in kWh/half-hour. The proportions of the
training, validating and testing sizes are 7:2:1 based on time
line.

HousePricing 4 comprises monthly average house prices in
9,473 American cities from 01/1996 to 03/2020. One hundred
months of data are sampled per sampling task. X values are the
time differences measured in months, and values y are prices in
dollars. The proportions of the training, validating and testing
sets are 7:2:1 based on total number of cities index.

3https://www.kaggle.com/jeanmidev/smart-meters-in-london/version/11
4https://www.kaggle.com/paultimothymooney/zillow-house-price-data?

select=City Zhvi AllHomes.csv



APPENDIX B
TRAINING DETAILS

The running time costs of GBCoNP and ConvCNP are
compared in Table IV. The total number of epochs for 1D,
2D and Covid datasets is 100, 50, 100 respectively.

TABLE IV
WALL-CLOCK TIME COSTS IN SECONDS (MEAN ± STD) ON 5 EPOCHS

Model GBCoNP ConvCNP
Dataset mean std mean std

RBF 17.53 0.11 7.60 0.06
Periodic 17.59 0.07 7.48 0.11

Matrn-3/2 17.54 0.10 7.49 0.14
Stock50 33.42 0.14 20.86 0.14

SmartMeter 50.87 0.10 38.49 0.41
HousePricing 41.61 0.09 21.97 0.24

MNIST 618.30 6.04 188.60 0.78
SVHN 763.44 7.14 234.04 0.36

CelebA32 2322.96 3.53 854.94 2.32
Covid 93.46 3.53 82.05 0.18
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