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ABSTRACT

Convolutional Neural Network for Accurate Crowd Counting and

Density Estimation

by

Saeed Amirgholipour Kasmani

Nowadays, crowd and object counting has become an important task for a variety

of applications, such as traffic control, public safety, urban planning, and video

surveillance. It has also become a crucial part of building a high-level monitoring

system such as video surveillance and crowd analysis. In these cases, dynamic crowd

monitoring and analysis is extremely important for control management and social

safety.

Like the other computer vision issues, crowd counting and density estimation

come with various kinds of challenges such as high clutters, occlusions, non-uniform

distributions of objects or people, and intra-scene and inter-scene variations in ap-

pearance. Researchers and industrial partners have attempted to design and develop

many sophisticated models to address various issues that exist in crowd counting.

Especially in recent years, the number of researches in the crowd counting era be-

came overwhelming with the domination of deep-learning and Convolution Neural

Networks (CNNs) based models in various computer vision tasks. In this thesis, we

revisit the crowd counting and propose various novel solutions to this problem.

At first, we propose an Adaptive Counting Convolutional Neural Network (A-

CCNN) and consider the scale variation of objects in a frame adaptively to improve

the accuracy of counting. Our method takes advantages of contextual information

to provide more accurate and adaptive density maps and crowd counting in a scene.

Then, we focus on CNN pruning to further enhance the crowd counting models for

real-time application and increase the performance of CCNN model. Thus, a new



pruning strategy is proposed by considering the contributions of various filters to the

final result. The filters in the original CCNN model are grouped into positive, neg-

ative, and irrelevant types. We prune the irrelevant filters, of which feature maps

contain little information, and the negative filters determined by a mask learned

from the training dataset. Our solution improves the results of the counting model

without fine-tuning or retraining the pruned model. Finally, we propose a novel

Pyramid Density-Aware Attention-based network, abbreviated as PDANet, which

leverages the attention, pyramid scale feature and two branch decoder modules

for density-aware crowd counting. The PDANet utilises these modules to extract

different scale features, focus on the relevant information, and suppress the mislead-

ing ones. Extensive evaluations conducted on the challenging benchmark datasets

well demonstrate the superior performance of the proposed models in terms of the

accuracy of counting as well as generated density maps over the well-known state-

of-the-art approaches.

Dissertation directed by Professor Xiangjian (Sean) He

School of Electrical and Data Engineering
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Nomenclature and Notation

Capital letters denote matrices.
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