

Deep Graph Neural Networks for Unsupervised Graph Learning

by Chun Wang

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Chengqi Zhang, Dr. Guodong Long and Dr. Shirui Pan

University of Technology Sydney Faculty of Engineering and Information Technology

December 2020

Certificate of Authorship/Originality

I, Chun Wang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

2021/06/20

ABSTRACT

Deep Graph Neural Networks for Unsupervised Graph Learning

by

Chun Wang

Graphs are widely used to represent networked data, which contains complex relationships among individuals, and therefore cannot be well represented by traditional flat-table or vector format. Network applications, like social networks or citation networks, have been developing rapidly in recent years. Consequently, graph learning has also attracted much more attention.

Unsupervised graph learning is an important branch of the field since label information is usually not easily accessible. It is much more challenging as unsupervised graph learning aims to model the networked data without training supervision. Associated downstream tasks of unsupervised graph learning may include clustering, link prediction, visualization, etc., which are also very popular in modern graph analysing.

To perform unsupervised graph learning, previous methods may (1) consider only one aspect of the graph information; (2) use shallow approaches to capture simple or linear relationships among the data; (3) separate graph embedding learning and the downstream task as two steps and learn sub-optimal results since the learned embedding could not best fit the downstream method; (4) not able to manage corrupted data and perform robust learning, and (5) not able to make use of side information. These limitations have held back the development of unsupervised graph learning.

Therefore, we aim to address of the following challenges in our research: (1) How to characterize the individual properties of each node, and at the same time capture complex relationships in the graph; (2) How to learn deep and informative representation for graph data; (3) How to perform end-to-end learning for a certain graph data-based task; and (4) How to deal with different types of abnormal graph data information.

In this thesis, we aim to perform effective graph learning, with deep graph neural networks in an unsupervised manner. Firstly, we propose a special marginalized graph autoencoder, to integrate both node content and graph structure information into a unified framework. We add noise to the graph data, and employ a marginalized process for efficient computation. By further stacking multiple layers of such autoencoder, we learn deep and informative unsupervised graph embedding for graph clustering; Secondly, we combine graph autoencoder with a self-training model, to conduct a goal-directed training framework. In such a process, the clustering and embedding learning are performed simultaneously. Both of them can benefit from the other, thereby learn better graph embedding and clustering. Facing possible data corruption, especially structural corruption for graph data, we develop a dual-autoencoder interaction framework Cross-Graph, which takes advantage of the deep learning memorization effect that DNNs fit clean and easy data first. Two auto encoders filter out untrusted edges alternatively and learn robust embedding from graphs with redundant edges. Finally, to take advantage of possible side information in graph learning, we also propose a contrastive regularized graph autoencoder, that can improve the unsupervised graph learning ability using constraint information. All these frameworks are validated with unsupervised tasks like clustering in the experiments.

Dissertation directed by Dr. Guodong Long, Dr. Shirui Pan and Prof. Chengqi Zhang

Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors: Dr. Guodong Long, Dr. Shirui Pan, and Prof. Chengqi Zhang. They have continuously provided me support and guidance in the past four years. I could not go through my Ph.D. study without their patient guidance, immense knowledge and help on all sides.

I am also grateful to Dr. Bo Han and Dr. Fan Zhang, they are both friends and mentors who have also provided me a lot of guidance and help during my research. And also thanks to Dr. Jing Jiang, who has supported me along with my study.

I would also like to thank my school mates and research fellows, who had a positive influence on my Ph.D. study, including but not limited to: Ruiqi Hu, Tao Shen, Xiaolin Zhang, Zonghan Wu, Lu Liu, Han Zheng, Fengwen Chen, and Mengyao Li. They are the ones who share both my joyful and stressful times and help me from different aspects.

Finally, I would like to thank my family. No words could possibly express my gratitude for their endless love, encouragement and support.

Chun Wang Sydney, Australia, 2020.

List of Publications

 [1] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, Jing Jiang, "MGAE: Marginalized graph autoencoder for graph clustering", CIKM 2017 (CORE rank A, citations: 106)

[2] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi Zhang, "Attributed graph clustering: A deep attentional embedding approach",IJCAI 2019 (CORE rank A*, citations: 56)

[3] Chun Wang, Bo Han, Shirui Pan, Jing Jiang, Gang Niu, Guodong Long "Cross-Graph: Robust and Unsupervised Embedding for Attributed Graphs with Corrupted Structure", ICDM 2020 (CORE rank A*)

[4] Chun Wang, Shirui Pan, Celina P Yu, Ruiqi Hu, Guodong Long, Chengqi Zhang, "Deep Neighbor-aware Embedding for Node Clustering in Attributed Graphs", Pattern Recognition (CORE rank A*, under the 3rd review process with minor revision decision)

[5] Chun Wang, Shirui Pan, Bo Han, Guodong Long, Chengqi Zhang, "Constrained Node Clustering for Attributed Graphs with Regularized Autoencoder", (It will be submitted to a CORE rank A journal in 2021)

Contents

Certificate	ii
Abstract	iii
Acknowledgments	V
List of Publications	vi
List of Figures	xi
Abbreviation	xvi
Notation	xvii
1 Introduction	1
1.1 Background	1
1.2 Research Objectives	3
1.3 Thesis Organization	6
2 Literature Review	8
2.1 Graph Learning Overview	8
2.1.1 Deep Neural Networks for Graphs	8
2.1.2 Graph Embedding Models	9
2.1.3 Node Clustering in Graphs	10
2.2 Techniques Employed in Our Frameworks	11
2.2.1 Autoencoder	11
2.2.2 Deep Clustering Algorithms	12

		2.2.3	Co-training based Methods	12
		2.2.4	Outlier-Oriented Graph Models	13
		2.2.5	Contrastive Learning	13
		2.2.6	Constrained Clustering	14
	2.3	Baselin	e Methods	14
3	Lea	arning	g Using Two-aspects Information	
	M	GAE:	Marginalized Graph Autoencoder for Graph	
	Cl	usteri	ng	17
	3.1	Backgr	ound	17
	3.2	Probler	n Definition	23
	3.3	Propos	ed Method	23
		3.3.1	Graph Convolutional Network	24
		3.3.2	Marginalized Graph Autoencoder (MGAE)	26
		3.3.3	Graph Clustering Algorithm	30
	3.4	Experin	ments	32
		3.4.1	Benchmark Datasets	32
		3.4.2	Baseline Methods	33
		3.4.3	Evaluation Metrics & Parameter Settings	34
		3.4.4	Experiment Results	35
4	Lea	arning	g with Goal-directed Framework	
	De	ep Ne	eighbor-aware Embedding for Node Clustering	
	in	Attrik	outed Graphs	41
	4.1	Backgr	ound	41

		4.2.1	Overall Framework	45
	4.3	Propos	ed Method	45
		4.3.1	Graph Autoencoder	45
		4.3.2	Self-optimizing Embedding	51
		4.3.3	Joint Embedding and Clustering Optimization	53
	4.4	Experi	ments	54
		4.4.1	Benchmark Datasets	54
		4.4.2	Baseline Methods	54
		4.4.3	Evaluation Metrics & Parameter Settings	57
		4.4.4	Experiment Results	58
5	Lea	arning	g Corrupted Graph Data	
	\mathbf{Cr}	oss-G	raph: Robust and Unsupervised Embedding for	,
	Cr At	oss-G tribut	raph: Robust and Unsupervised Embedding for red Graphs with Corrupted Structure	69
	Cr At 5.1	oss-G tribut ^{Backgr}	raph: Robust and Unsupervised Embedding forced Graphs with Corrupted Structureound	69 69
	Cr At 5.1 5.2	oss-G tribut Backgr Probler	raph: Robust and Unsupervised Embedding for ced Graphs with Corrupted Structure ound	69 69 73
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos	raph: Robust and Unsupervised Embedding for ced Graphs with Corrupted Structure ound	69 69 73 74
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos 5.3.1	raph: Robust and Unsupervised Embedding for red Graphs with Corrupted Structure ound	69 69 73 74 74
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Problen Propos 5.3.1 5.3.2	raph: Robust and Unsupervised Embedding for ced Graphs with Corrupted Structure ound	69 69 73 74 74 76
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos 5.3.1 5.3.2 5.3.3	raph: Robust and Unsupervised Embedding for ad Graphs with Corrupted Structure ound	69 73 74 74 76 77
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos 5.3.1 5.3.2 5.3.3 5.3.4	raph: Robust and Unsupervised Embedding for ad Graphs with Corrupted Structure ound	69 73 74 74 76 77 80
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos 5.3.1 5.3.2 5.3.3 5.3.4 Experin	raph: Robust and Unsupervised Embedding for ced Graphs with Corrupted Structure ound	69 73 74 74 76 77 80 81
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos 5.3.1 5.3.2 5.3.3 5.3.4 Experin 5.4.1	raph: Robust and Unsupervised Embedding for ced Graphs with Corrupted Structure ound	69 73 74 74 76 77 80 81 81
	Cr At 5.1 5.2 5.3	oss-G tribut Backgr Probler Propos 5.3.1 5.3.2 5.3.3 5.3.4 Experin 5.4.1 5.4.2	raph: Robust and Unsupervised Embedding for ed Graphs with Corrupted Structure ound	69 73 74 74 76 77 80 81 81 82

5.4.4	Link Prediction on Corrupted Data	88
5.4.5	Experiments on Uncorrupted Data	91
5.4.6	Network Visualization on Corrupted Data	91

6 Learning from Side Information Constrained Graph Clustering with Contrastive Regu-93 larized Autoencoder 93 96 6.26.3Proposed Method 96 6.3.197 6.3.2 99 6.3.36.3.46.4 Experiments 6.4.16.4.26.4.36.4.46.4.56.4.66.4.7Conclusion 1107

х

List of Figures

3.1	The effectiveness of using marginalization for graph clustering.	
	Marginalization introduces a small amount of disturbance to the node	
	content, resulting in a dynamic environment for node content and	
	structures to interact. Because the optimization process is well informed	
	in relation to data disturbance, marginalization will cancel out the	
	disturbance and the underlying graph autoencoders can learn optimized	
	outcomes. Results are based on the accuracy (ACC) and normalized	
	mutual information (NMI) of the spectral clustering before and after	
	marginalization.	21
3.2	Conceptual framework of Marginalized Graph Autoencoder	
	(MGAE) for graph clustering. Given a graph $G = (V, E, X)$, MGAE	
	firstly learns a graph convolutional network (GCN) by using a	
	mapping function $f(\widetilde{X}, A)$ based on the adjacency matrix A and	
	corrupted node content \widetilde{X} . By minimizing the error between the	
	output of GCN $f(\tilde{X}, A)$ and X, we will get a latent representation	
	$Z^{(1)}$. By stacking multiple GCNs and performing layer-wise	
	training, our algorithm can learn a deep representation $Z^{(\Gamma)}$.	
	Finally, a spectral clustering algorithm is performed on the refined	
	representation $Z^{(\Gamma)}$ of the last layer	24
3.3	Parameters study on noise and number of layers	36
3.4	Runtime comparisons of different methods.	39
3.5	2D visualization on representations learned from MGAE of various	
	layers.	40

4.1	The difference between two-step embedding learning models and our	
	model	43
4.2	The conceptual framework of Deep Neighbor-aware Embedded	
	Graph Clustering (DNEGC). Given a graph $G = (V, E, X)$, DNEGC	
	learns a hidden representation ${\cal Z}$ through a graph autoencoder, and	
	manipulates it with a self-training clustering module, which is	
	optimized together with the autoencoder and perform clustering	
	during training. The two variants share similar framework and differ	
	as their autoencoder encode the inputs through different strategy. $\ . \ .$	46
4.3	Parameters study on clustering coefficient γ	62
4.4	Parameters study on embedding size	64
4.5	Parameters study on number of layers	65
4.6	2D visualization of various methods using the t-SNE algorithm on	
	the Cora and Citeseer dataset	66
4.7	2D visualization of the DNEGC-Att algorithm using the t-SNE	
	algorithm on the Cora and Citeseer dataset during training (the top	
	line for the Cora dataset, and the bottom line for the Citeseer	
	dataset). The first visualization of each line illustrates the	
	embedding training with the graph autoencoder only, followed by	
	visualizations showing subsequent equal epochs in which the	
	self-training component is included, till the last one being the final	
	embedding visualization	67

5.1 We randomly add spurious edges to the Cora and Citeseer graph structure and then run Graph Autoencoder (GAE) on them for 10 times to record the average clustering performance evaluated by 3 clustering metrics. The X-axis shows the number of added edges represented as percentage to the number of original edges. It shows that spurious edges can easily ruin the performance of the graph. . . 71

5.2	Conceptual framework of Cross-Graph Autoencoder. Given a graph	
	G with graph structure A and node content X , we maintain two	
	autoencoders. Each autoencoder encodes A and X into a latent	
	embedding Z , and then a decoder tries to reconstruct the structure	
	A from Z and obtains A' . We regard A' partly as a reliability score	
	of the edges in A and manipulate A according to it. Two updated	
	$A\sp{s}$ are thereby formed and passed to the peer-autoencoder as the	
	input for the next iteration.	74
5.3	The Cross-Graph Working Mechanism. The reconstruction level	
	(the reconstruction's similarity to the input graph) could show its	
	opinion of the possibility of each edge being spurious, represented by	
	the sparsity degree of the dotted line. So, based on it and the input	
	graph, our Cross-Graph constructs a new updated graph, which	
	devalue those suspected edges. The edge value is positively	
	correlated with the reconstruction level, represented by the	
	gradation of the edge color. This updated graph is provided to the	
	peer-autoencoder for the next iteration update	79
5.4	The devalue of two types of edges (original edges and redundancy	
	edges we added) along with the Cross-Graph training process	87
5.5	The clustering performance under different percentage of	
	redundancy edge corruption	88
5.6	The clustering performance with different Cross-Graph coefficient $\gamma.$.	89
5.7	Box plots of the 20 times' clustering accuracy from the Cross-Graph	
	Dual-autoencoders interactive process, compared with a single	
	autoencoder framework. For each box, the five lines from top to	
	bottom represents the maximum, the first quartiles, the sample	
	median, the third quartiles and the minimum of the clustering results.	89
5.8	The devalue of inner-edges and inter-edges comparison along with	
	the Cross-Graph training process on uncorrupted Cora dataset. $\ . \ .$	90

5.9	Visualizations of the corrupted Cora dataset, based on the
	embedding learned from various algorithms. The dots represent
	nodes and the seven different colors represent the ground-truth
	clusters the nodes belongs to
6.1	The difference between constrained node clustering and normal node
	clustering. Constraint information (the green arrow in the Figure)
	can define some pairs of nodes that should be in the same cluster,
	and therefore may help partition some equivocal marginal nodes to
	the right cluster
6.2	Conceptual framework of the Contrastive Regularized Autoencoder
	for Constrained Graph Clustering. Given a graph G with graph
	structure matrix A , node content matrix X , and a list of node pairs
	that are constrained to the same cluster, we aim to learn effective
	clustering assignment. We train a graph autoencoder to integrate
	graph structure and node content information into a latent node
	embedding. When optimizing the autoencoder reconstruction loss,
	we together minimize a contrastive loss function that forces the
	constrained node pairs to learn similar embedding at the same time.
	The learned embedding is influenced by all three aspects of the
	information and used for clustering
6.3	Average clustering performance evaluated by ACC and NMI, with
	different temperature parameter τ , from 0.01 to 0.1
6.4	Average clustering performance with different number of
	constrained node pairs. The percentage is based on the total
	potential constraint links N_m

xiv

6.5	Visualizations of the Cora and Citeseer datasets, based on the
	embedding learned from GAE and our CRA. The dots represent
	nodes and the seven different colors represent the ground-truth
	clusters the nodes belong to

Abbreviation

- NMF Non-negative Matrix Factorization
- GCN Graph Convolutional Network
- GAT Graph Attention Network
- DNN: Deep Neural Networks
- AE Autoencoder
- GAE Graph (Convolutional) Autoencoder
- DA Denoising Autoencoder
- SDA Stacked Denoising Autoencoder
- DEC Deep Embedded Clustering
- KL Kullback-Leibler
- 2D: Two-dimensional
- SGD: Stochastic Gradient Descent
- NMI: Normalized Mutual Information
- AE: Average Entropy
- ARI: Adjusted Rand Index

Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

 $(.)^T$ denotes the transpose operation.

 I_n is the identity matrix of dimension $n \times n$.

 \mathbb{R} , \mathbb{R}^+ denote the field of real numbers, and the set of positive reals, respectively.

n is the number of nodes in the graph.

m is the number of individual attributes of each node.

k is the number of clusters for the node clustering task.

X is a $n \times m$ matrix representing the node attribute information, each row x_n is a *m*-dimensional vector representing the attribute values of node *n*.

A is a $n \times n$ adjacency matrix representing the graph structure information, in which $A_{i,j} = 1$ representing there is an edge between node *i* and *j*, and $A_{i,j} = 0$ otherwise.

 $\|.\|_F^2$ represents the squared Frobenius norm.

 $\widetilde{.}$ represents the corrupted or approximated version.

tr(.) represents the trace of the matrix.

 ${\cal Z}^{(l)}$ is the learned node embedding in the l-th neural network layer.