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ABSTRACT

Deep Graph Neural Networks for Unsupervised Graph Learning

by

Chun Wang

Graphs are widely used to represent networked data, which contains complex

relationships among individuals, and therefore cannot be well represented by tra-

ditional flat-table or vector format. Network applications, like social networks or

citation networks, have been developing rapidly in recent years. Consequently, graph

learning has also attracted much more attention.

Unsupervised graph learning is an important branch of the field since label infor-

mation is usually not easily accessible. It is much more challenging as unsupervised

graph learning aims to model the networked data without training supervision. As-

sociated downstream tasks of unsupervised graph learning may include clustering,

link prediction, visualization, etc., which are also very popular in modern graph

analysing.

To perform unsupervised graph learning, previous methods may (1) consider

only one aspect of the graph information; (2) use shallow approaches to capture

simple or linear relationships among the data; (3) separate graph embedding learn-

ing and the downstream task as two steps and learn sub-optimal results since the

learned embedding could not best fit the downstream method; (4) not able to man-

age corrupted data and perform robust learning, and (5) not able to make use of

side information. These limitations have held back the development of unsupervised

graph learning.

Therefore, we aim to address of the following challenges in our research: (1)

How to characterize the individual properties of each node, and at the same time

capture complex relationships in the graph; (2) How to learn deep and informative



representation for graph data; (3) How to perform end-to-end learning for a certain

graph data-based task; and (4) How to deal with different types of abnormal graph

data information.

In this thesis, we aim to perform effective graph learning, with deep graph neu-

ral networks in an unsupervised manner. Firstly, we propose a special marginalized

graph autoencoder, to integrate both node content and graph structure informa-

tion into a unified framework. We add noise to the graph data, and employ a

marginalized process for efficient computation. By further stacking multiple layers

of such autoencoder, we learn deep and informative unsupervised graph embedding

for graph clustering; Secondly, we combine graph autoencoder with a self-training

model, to conduct a goal-directed training framework. In such a process, the cluster-

ing and embedding learning are performed simultaneously. Both of them can benefit

from the other, thereby learn better graph embedding and clustering. Facing pos-

sible data corruption, especially structural corruption for graph data, we develop a

dual-autoencoder interaction framework Cross-Graph, which takes advantage of the

deep learning memorization effect that DNNs fit clean and easy data first. Two au-

toencoders filter out untrusted edges alternatively and learn robust embedding from

graphs with redundant edges. Finally, to take advantage of possible side information

in graph learning, we also propose a contrastive regularized graph autoencoder, that

can improve the unsupervised graph learning ability using constraint information.

All these frameworks are validated with unsupervised tasks like clustering in the

experiments.

Dissertation directed by Dr. Guodong Long, Dr. Shirui Pan and Prof. Chengqi

Zhang

Australian Artificial Intelligence Institute, Faculty of Engineering and Information

Technology
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Abbreviation

NMF - Non-negative Matrix Factorization

GCN - Graph Convolutional Network

GAT - Graph Attention Network

DNN: Deep Neural Networks

AE - Autoencoder

GAE - Graph (Convolutional) Autoencoder

DA - Denoising Autoencoder

SDA - Stacked Denoising Autoencoder

DEC - Deep Embedded Clustering

KL - Kullback-Leibler

2D: Two-dimensional

SGD: Stochastic Gradient Descent

NMI: Normalized Mutual Information

AE: Average Entropy

ARI: Adjusted Rand Index



Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

(.)T denotes the transpose operation.

In is the identity matrix of dimension n× n.

R, R+ denote the field of real numbers, and the set of positive reals, respectively.

n is the number of nodes in the graph.

m is the number of individual attributes of each node.

k is the number of clusters for the node clustering task.

X is a n×m matrix representing the node attribute information, each row xn is a

m-dimensional vector representing the attribute values of node n.

A is a n×n adjacency matrix representing the graph structure information, in which

Ai,j = 1 representing there is an edge between node i and j, and Ai,j = 0 otherwise.

‖.‖2
F represents the squared Frobenius norm.

.̃ represents the corrupted or approximated version.

tr(.) represents the trace of the matrix.

Z(l) is the learned node embedding in the l-th neural network layer.
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