
Deep Graph Neural Networks for
Unsupervised Graph Learning

by Chun Wang

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Prof. Chengqi Zhang, Dr. Guodong
Long and Dr. Shirui Pan

University of Technology Sydney
Faculty of Engineering and Information Technology

December 2020

Certificate of Authorship/Originality

I, Chun Wang declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

2021/06/20

Production Note:
Signature removed
prior to publication.

ABSTRACT

Deep Graph Neural Networks for Unsupervised Graph Learning

by

Chun Wang

Graphs are widely used to represent networked data, which contains complex

relationships among individuals, and therefore cannot be well represented by tra-

ditional flat-table or vector format. Network applications, like social networks or

citation networks, have been developing rapidly in recent years. Consequently, graph

learning has also attracted much more attention.

Unsupervised graph learning is an important branch of the field since label infor-

mation is usually not easily accessible. It is much more challenging as unsupervised

graph learning aims to model the networked data without training supervision. As-

sociated downstream tasks of unsupervised graph learning may include clustering,

link prediction, visualization, etc., which are also very popular in modern graph

analysing.

To perform unsupervised graph learning, previous methods may (1) consider

only one aspect of the graph information; (2) use shallow approaches to capture

simple or linear relationships among the data; (3) separate graph embedding learn-

ing and the downstream task as two steps and learn sub-optimal results since the

learned embedding could not best fit the downstream method; (4) not able to man-

age corrupted data and perform robust learning, and (5) not able to make use of

side information. These limitations have held back the development of unsupervised

graph learning.

Therefore, we aim to address of the following challenges in our research: (1)

How to characterize the individual properties of each node, and at the same time

capture complex relationships in the graph; (2) How to learn deep and informative

representation for graph data; (3) How to perform end-to-end learning for a certain

graph data-based task; and (4) How to deal with different types of abnormal graph

data information.

In this thesis, we aim to perform effective graph learning, with deep graph neu-

ral networks in an unsupervised manner. Firstly, we propose a special marginalized

graph autoencoder, to integrate both node content and graph structure informa-

tion into a unified framework. We add noise to the graph data, and employ a

marginalized process for efficient computation. By further stacking multiple layers

of such autoencoder, we learn deep and informative unsupervised graph embedding

for graph clustering; Secondly, we combine graph autoencoder with a self-training

model, to conduct a goal-directed training framework. In such a process, the cluster-

ing and embedding learning are performed simultaneously. Both of them can benefit

from the other, thereby learn better graph embedding and clustering. Facing pos-

sible data corruption, especially structural corruption for graph data, we develop a

dual-autoencoder interaction framework Cross-Graph, which takes advantage of the

deep learning memorization effect that DNNs fit clean and easy data first. Two au-

toencoders filter out untrusted edges alternatively and learn robust embedding from

graphs with redundant edges. Finally, to take advantage of possible side information

in graph learning, we also propose a contrastive regularized graph autoencoder, that

can improve the unsupervised graph learning ability using constraint information.

All these frameworks are validated with unsupervised tasks like clustering in the

experiments.

Dissertation directed by Dr. Guodong Long, Dr. Shirui Pan and Prof. Chengqi

Zhang

Australian Artificial Intelligence Institute, Faculty of Engineering and Information

Technology

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors: Dr. Guodong

Long, Dr. Shirui Pan, and Prof. Chengqi Zhang. They have continuously provided

me support and guidance in the past four years. I could not go through my Ph.D.

study without their patient guidance, immense knowledge and help on all sides.

I am also grateful to Dr. Bo Han and Dr. Fan Zhang, they are both friends and

mentors who have also provided me a lot of guidance and help during my research.

And also thanks to Dr. Jing Jiang, who has supported me along with my study.

I would also like to thank my school mates and research fellows, who had a posi-

tive influence on my Ph.D. study, including but not limited to: Ruiqi Hu, Tao Shen,

Xiaolin Zhang, Zonghan Wu, Lu Liu, Han Zheng, Fengwen Chen, and Mengyao Li.

They are the ones who share both my joyful and stressful times and help me from

different aspects.

Finally, I would like to thank my family. No words could possibly express my

gratitude for their endless love, encouragement and support.

Chun Wang

Sydney, Australia, 2020.

List of Publications

[1] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, Jing Jiang, “MGAE:

Marginalized graph autoencoder for graph clustering”, CIKM 2017 (CORE rank A,

citations: 106)

[2] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi

Zhang, “Attributed graph clustering: A deep attentional embedding approach”,

IJCAI 2019 (CORE rank A*, citations: 56)

[3] Chun Wang, Bo Han, Shirui Pan, Jing Jiang, Gang Niu, Guodong Long

“Cross-Graph: Robust and Unsupervised Embedding for Attributed Graphs with

Corrupted Structure”, ICDM 2020 (CORE rank A*)

[4] Chun Wang, Shirui Pan, Celina P Yu, Ruiqi Hu, Guodong Long, Chengqi

Zhang, ”Deep Neighbor-aware Embedding for Node Clustering in Attributed Graphs”,

Pattern Recognition (CORE rank A*, under the 3rd review process with minor re-

vision decision)

[5] Chun Wang, Shirui Pan, Bo Han, Guodong Long, Chengqi Zhang, ”Con-

strained Node Clustering for Attributed Graphs with Regularized Autoencoder”,

(It will be submitted to a CORE rank A journal in 2021)

Contents

Certificate ii

Abstract iii

Acknowledgments v

List of Publications vi

List of Figures xi

Abbreviation xvi

Notation xvii

1 Introduction 1

1.1 Background . 1

1.2 Research Objectives . 3

1.3 Thesis Organization . 6

2 Literature Review 8

2.1 Graph Learning Overview . 8

2.1.1 Deep Neural Networks for Graphs 8

2.1.2 Graph Embedding Models . 9

2.1.3 Node Clustering in Graphs . 10

2.2 Techniques Employed in Our Frameworks 11

2.2.1 Autoencoder . 11

2.2.2 Deep Clustering Algorithms 12

viii

2.2.3 Co-training based Methods . 12

2.2.4 Outlier-Oriented Graph Models 13

2.2.5 Contrastive Learning . 13

2.2.6 Constrained Clustering . 14

2.3 Baseline Methods . 14

3 Learning Using Two-aspects Information

MGAE: Marginalized Graph Autoencoder for Graph

Clustering 17

3.1 Background . 17

3.2 Problem Definition . 23

3.3 Proposed Method . 23

3.3.1 Graph Convolutional Network 24

3.3.2 Marginalized Graph Autoencoder (MGAE) 26

3.3.3 Graph Clustering Algorithm 30

3.4 Experiments . 32

3.4.1 Benchmark Datasets . 32

3.4.2 Baseline Methods . 33

3.4.3 Evaluation Metrics & Parameter Settings 34

3.4.4 Experiment Results . 35

4 Learning with Goal-directed Framework

Deep Neighbor-aware Embedding for Node Clustering

in Attributed Graphs 41

4.1 Background . 41

4.2 Problem Definition and Overall Framework 44

ix

4.2.1 Overall Framework . 45

4.3 Proposed Method . 45

4.3.1 Graph Autoencoder . 45

4.3.2 Self-optimizing Embedding . 51

4.3.3 Joint Embedding and Clustering Optimization 53

4.4 Experiments . 54

4.4.1 Benchmark Datasets . 54

4.4.2 Baseline Methods . 54

4.4.3 Evaluation Metrics & Parameter Settings 57

4.4.4 Experiment Results . 58

5 Learning Corrupted Graph Data

Cross-Graph: Robust and Unsupervised Embedding for

Attributed Graphs with Corrupted Structure 69

5.1 Background . 69

5.2 Problem Definition . 73

5.3 Proposed Method . 74

5.3.1 Graph Autoencoder . 74

5.3.2 Cross-Graph Learning Framework 76

5.3.3 Algorithm Description and Deeper Insights 77

5.3.4 Time Complexity Analysis . 80

5.4 Experiments . 81

5.4.1 Datasets . 81

5.4.2 Baselines . 82

5.4.3 Node Clustering on Corrupted Data 82

x

5.4.4 Link Prediction on Corrupted Data 88

5.4.5 Experiments on Uncorrupted Data 91

5.4.6 Network Visualization on Corrupted Data 91

6 Learning from Side Information

Constrained Graph Clustering with Contrastive Regu-

larized Autoencoder 93

6.1 Background . 93

6.2 Problem Definition . 96

6.3 Proposed Method . 96

6.3.1 Graph Autoencoder . 97

6.3.2 Contrastive Regularizer . 99

6.3.3 Joint Embedding Learning . 100

6.3.4 Framework Description . 100

6.4 Experiments . 101

6.4.1 Benchmark Datasets . 101

6.4.2 Baselines . 101

6.4.3 Evaluation Metrics . 103

6.4.4 Experimental Setup . 103

6.4.5 Experimental Results . 104

6.4.6 Parameter Study . 105

6.4.7 Network Visualization . 108

7 Conclusion 110

List of Figures

3.1 The effectiveness of using marginalization for graph clustering.

Marginalization introduces a small amount of disturbance to the node

content, resulting in a dynamic environment for node content and

structures to interact. Because the optimization process is well informed

in relation to data disturbance, marginalization will cancel out the

disturbance and the underlying graph autoencoders can learn optimized

outcomes. Results are based on the accuracy (ACC) and normalized

mutual information (NMI) of the spectral clustering before and after

marginalization. 21

3.2 Conceptual framework of Marginalized Graph Autoencoder

(MGAE) for graph clustering. Given a graph G = (V,E,X), MGAE

firstly learns a graph convolutional network (GCN) by using a

mapping function f(X̃, A) based on the adjacency matrix A and

corrupted node content X̃. By minimizing the error between the

output of GCN f(X̃, A) and X, we will get a latent representation

Z(1). By stacking multiple GCNs and performing layer-wise

training, our algorithm can learn a deep representation Z(Γ).

Finally, a spectral clustering algorithm is performed on the refined

representation Z(Γ) of the last layer. 24

3.3 Parameters study on noise and number of layers. 36

3.4 Runtime comparisons of different methods. 39

3.5 2D visualization on representations learned from MGAE of various

layers. 40

xii

4.1 The difference between two-step embedding learning models and our

model. 43

4.2 The conceptual framework of Deep Neighbor-aware Embedded

Graph Clustering (DNEGC). Given a graph G = (V,E,X), DNEGC

learns a hidden representation Z through a graph autoencoder, and

manipulates it with a self-training clustering module, which is

optimized together with the autoencoder and perform clustering

during training. The two variants share similar framework and differ

as their autoencoder encode the inputs through different strategy. . . 46

4.3 Parameters study on clustering coefficient γ. 62

4.4 Parameters study on embedding size. 64

4.5 Parameters study on number of layers. 65

4.6 2D visualization of various methods using the t-SNE algorithm on

the Cora and Citeseer dataset. 66

4.7 2D visualization of the DNEGC-Att algorithm using the t-SNE

algorithm on the Cora and Citeseer dataset during training (the top

line for the Cora dataset, and the bottom line for the Citeseer

dataset). The first visualization of each line illustrates the

embedding training with the graph autoencoder only, followed by

visualizations showing subsequent equal epochs in which the

self-training component is included, till the last one being the final

embedding visualization. 67

5.1 We randomly add spurious edges to the Cora and Citeseer graph

structure and then run Graph Autoencoder (GAE) on them for 10

times to record the average clustering performance evaluated by 3

clustering metrics. The X-axis shows the number of added edges

represented as percentage to the number of original edges. It shows

that spurious edges can easily ruin the performance of the graph. . . 71

xiii

5.2 Conceptual framework of Cross-Graph Autoencoder. Given a graph

G with graph structure A and node content X, we maintain two

autoencoders. Each autoencoder encodes A and X into a latent

embedding Z, and then a decoder tries to reconstruct the structure

A from Z and obtains A′. We regard A′ partly as a reliability score

of the edges in A and manipulate A according to it. Two updated

A’s are thereby formed and passed to the peer-autoencoder as the

input for the next iteration. 74

5.3 The Cross-Graph Working Mechanism. The reconstruction level

(the reconstruction’s similarity to the input graph) could show its

opinion of the possibility of each edge being spurious, represented by

the sparsity degree of the dotted line. So, based on it and the input

graph, our Cross-Graph constructs a new updated graph, which

devalue those suspected edges. The edge value is positively

correlated with the reconstruction level, represented by the

gradation of the edge color. This updated graph is provided to the

peer-autoencoder for the next iteration update. 79

5.4 The devalue of two types of edges (original edges and redundancy

edges we added) along with the Cross-Graph training process. 87

5.5 The clustering performance under different percentage of

redundancy edge corruption. 88

5.6 The clustering performance with different Cross-Graph coefficient γ. . 89

5.7 Box plots of the 20 times’ clustering accuracy from the Cross-Graph

Dual-autoencoders interactive process, compared with a single

autoencoder framework. For each box, the five lines from top to

bottom represents the maximum, the first quartiles, the sample

median, the third quartiles and the minimum of the clustering results. 89

5.8 The devalue of inner-edges and inter-edges comparison along with

the Cross-Graph training process on uncorrupted Cora dataset. . . . 90

xiv

5.9 Visualizations of the corrupted Cora dataset, based on the

embedding learned from various algorithms. The dots represent

nodes and the seven different colors represent the ground-truth

clusters the nodes belongs to. 92

6.1 The difference between constrained node clustering and normal node

clustering. Constraint information (the green arrow in the Figure)

can define some pairs of nodes that should be in the same cluster,

and therefore may help partition some equivocal marginal nodes to

the right cluster. 95

6.2 Conceptual framework of the Contrastive Regularized Autoencoder

for Constrained Graph Clustering. Given a graph G with graph

structure matrix A, node content matrix X, and a list of node pairs

that are constrained to the same cluster, we aim to learn effective

clustering assignment. We train a graph autoencoder to integrate

graph structure and node content information into a latent node

embedding. When optimizing the autoencoder reconstruction loss,

we together minimize a contrastive loss function that forces the

constrained node pairs to learn similar embedding at the same time.

The learned embedding is influenced by all three aspects of the

information and used for clustering. 97

6.3 Average clustering performance evaluated by ACC and NMI, with

different temperature parameter τ , from 0.01 to 0.1. 105

6.4 Average clustering performance with different number of

constrained node pairs. The percentage is based on the total

potential constraint links Nm. 106

xv

6.5 Visualizations of the Cora and Citeseer datasets, based on the

embedding learned from GAE and our CRA. The dots represent

nodes and the seven different colors represent the ground-truth

clusters the nodes belong to. 107

Abbreviation

NMF - Non-negative Matrix Factorization

GCN - Graph Convolutional Network

GAT - Graph Attention Network

DNN: Deep Neural Networks

AE - Autoencoder

GAE - Graph (Convolutional) Autoencoder

DA - Denoising Autoencoder

SDA - Stacked Denoising Autoencoder

DEC - Deep Embedded Clustering

KL - Kullback-Leibler

2D: Two-dimensional

SGD: Stochastic Gradient Descent

NMI: Normalized Mutual Information

AE: Average Entropy

ARI: Adjusted Rand Index

Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

(.)T denotes the transpose operation.

In is the identity matrix of dimension n× n.

R, R+ denote the field of real numbers, and the set of positive reals, respectively.

n is the number of nodes in the graph.

m is the number of individual attributes of each node.

k is the number of clusters for the node clustering task.

X is a n×m matrix representing the node attribute information, each row xn is a

m-dimensional vector representing the attribute values of node n.

A is a n×n adjacency matrix representing the graph structure information, in which

Ai,j = 1 representing there is an edge between node i and j, and Ai,j = 0 otherwise.

‖.‖2
F represents the squared Frobenius norm.

.̃ represents the corrupted or approximated version.

tr(.) represents the trace of the matrix.

Z(l) is the learned node embedding in the l-th neural network layer.

	Title Page
	Certificate of Authorship/Originality
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	Abbreviation
	Nomenclature and Notation

