
Deep Graph Neural Networks for
Unsupervised Graph Learning

by Chun Wang

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Prof. Chengqi Zhang, Dr. Guodong
Long and Dr. Shirui Pan

University of Technology Sydney
Faculty of Engineering and Information Technology

December 2020

Certificate of Authorship/Originality

I, Chun Wang declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

2021/06/20

Production Note:
Signature removed
prior to publication.

ABSTRACT

Deep Graph Neural Networks for Unsupervised Graph Learning

by

Chun Wang

Graphs are widely used to represent networked data, which contains complex

relationships among individuals, and therefore cannot be well represented by tra-

ditional flat-table or vector format. Network applications, like social networks or

citation networks, have been developing rapidly in recent years. Consequently, graph

learning has also attracted much more attention.

Unsupervised graph learning is an important branch of the field since label infor-

mation is usually not easily accessible. It is much more challenging as unsupervised

graph learning aims to model the networked data without training supervision. As-

sociated downstream tasks of unsupervised graph learning may include clustering,

link prediction, visualization, etc., which are also very popular in modern graph

analysing.

To perform unsupervised graph learning, previous methods may (1) consider

only one aspect of the graph information; (2) use shallow approaches to capture

simple or linear relationships among the data; (3) separate graph embedding learn-

ing and the downstream task as two steps and learn sub-optimal results since the

learned embedding could not best fit the downstream method; (4) not able to man-

age corrupted data and perform robust learning, and (5) not able to make use of

side information. These limitations have held back the development of unsupervised

graph learning.

Therefore, we aim to address of the following challenges in our research: (1)

How to characterize the individual properties of each node, and at the same time

capture complex relationships in the graph; (2) How to learn deep and informative

representation for graph data; (3) How to perform end-to-end learning for a certain

graph data-based task; and (4) How to deal with different types of abnormal graph

data information.

In this thesis, we aim to perform effective graph learning, with deep graph neu-

ral networks in an unsupervised manner. Firstly, we propose a special marginalized

graph autoencoder, to integrate both node content and graph structure informa-

tion into a unified framework. We add noise to the graph data, and employ a

marginalized process for efficient computation. By further stacking multiple layers

of such autoencoder, we learn deep and informative unsupervised graph embedding

for graph clustering; Secondly, we combine graph autoencoder with a self-training

model, to conduct a goal-directed training framework. In such a process, the cluster-

ing and embedding learning are performed simultaneously. Both of them can benefit

from the other, thereby learn better graph embedding and clustering. Facing pos-

sible data corruption, especially structural corruption for graph data, we develop a

dual-autoencoder interaction framework Cross-Graph, which takes advantage of the

deep learning memorization effect that DNNs fit clean and easy data first. Two au-

toencoders filter out untrusted edges alternatively and learn robust embedding from

graphs with redundant edges. Finally, to take advantage of possible side information

in graph learning, we also propose a contrastive regularized graph autoencoder, that

can improve the unsupervised graph learning ability using constraint information.

All these frameworks are validated with unsupervised tasks like clustering in the

experiments.

Dissertation directed by Dr. Guodong Long, Dr. Shirui Pan and Prof. Chengqi

Zhang

Australian Artificial Intelligence Institute, Faculty of Engineering and Information

Technology

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors: Dr. Guodong

Long, Dr. Shirui Pan, and Prof. Chengqi Zhang. They have continuously provided

me support and guidance in the past four years. I could not go through my Ph.D.

study without their patient guidance, immense knowledge and help on all sides.

I am also grateful to Dr. Bo Han and Dr. Fan Zhang, they are both friends and

mentors who have also provided me a lot of guidance and help during my research.

And also thanks to Dr. Jing Jiang, who has supported me along with my study.

I would also like to thank my school mates and research fellows, who had a posi-

tive influence on my Ph.D. study, including but not limited to: Ruiqi Hu, Tao Shen,

Xiaolin Zhang, Zonghan Wu, Lu Liu, Han Zheng, Fengwen Chen, and Mengyao Li.

They are the ones who share both my joyful and stressful times and help me from

different aspects.

Finally, I would like to thank my family. No words could possibly express my

gratitude for their endless love, encouragement and support.

Chun Wang

Sydney, Australia, 2020.

List of Publications

[1] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, Jing Jiang, “MGAE:

Marginalized graph autoencoder for graph clustering”, CIKM 2017 (CORE rank A,

citations: 106)

[2] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi

Zhang, “Attributed graph clustering: A deep attentional embedding approach”,

IJCAI 2019 (CORE rank A*, citations: 56)

[3] Chun Wang, Bo Han, Shirui Pan, Jing Jiang, Gang Niu, Guodong Long

“Cross-Graph: Robust and Unsupervised Embedding for Attributed Graphs with

Corrupted Structure”, ICDM 2020 (CORE rank A*)

[4] Chun Wang, Shirui Pan, Celina P Yu, Ruiqi Hu, Guodong Long, Chengqi

Zhang, ”Deep Neighbor-aware Embedding for Node Clustering in Attributed Graphs”,

Pattern Recognition (CORE rank A*, under the 3rd review process with minor re-

vision decision)

[5] Chun Wang, Shirui Pan, Bo Han, Guodong Long, Chengqi Zhang, ”Con-

strained Node Clustering for Attributed Graphs with Regularized Autoencoder”,

(It will be submitted to a CORE rank A journal in 2021)

Contents

Certificate ii

Abstract iii

Acknowledgments v

List of Publications vi

List of Figures xi

Abbreviation xvi

Notation xvii

1 Introduction 1

1.1 Background . 1

1.2 Research Objectives . 3

1.3 Thesis Organization . 6

2 Literature Review 8

2.1 Graph Learning Overview . 8

2.1.1 Deep Neural Networks for Graphs 8

2.1.2 Graph Embedding Models . 9

2.1.3 Node Clustering in Graphs . 10

2.2 Techniques Employed in Our Frameworks 11

2.2.1 Autoencoder . 11

2.2.2 Deep Clustering Algorithms 12

viii

2.2.3 Co-training based Methods . 12

2.2.4 Outlier-Oriented Graph Models 13

2.2.5 Contrastive Learning . 13

2.2.6 Constrained Clustering . 14

2.3 Baseline Methods . 14

3 Learning Using Two-aspects Information

MGAE: Marginalized Graph Autoencoder for Graph

Clustering 17

3.1 Background . 17

3.2 Problem Definition . 23

3.3 Proposed Method . 23

3.3.1 Graph Convolutional Network 24

3.3.2 Marginalized Graph Autoencoder (MGAE) 26

3.3.3 Graph Clustering Algorithm 30

3.4 Experiments . 32

3.4.1 Benchmark Datasets . 32

3.4.2 Baseline Methods . 33

3.4.3 Evaluation Metrics & Parameter Settings 34

3.4.4 Experiment Results . 35

4 Learning with Goal-directed Framework

Deep Neighbor-aware Embedding for Node Clustering

in Attributed Graphs 41

4.1 Background . 41

4.2 Problem Definition and Overall Framework 44

ix

4.2.1 Overall Framework . 45

4.3 Proposed Method . 45

4.3.1 Graph Autoencoder . 45

4.3.2 Self-optimizing Embedding . 51

4.3.3 Joint Embedding and Clustering Optimization 53

4.4 Experiments . 54

4.4.1 Benchmark Datasets . 54

4.4.2 Baseline Methods . 54

4.4.3 Evaluation Metrics & Parameter Settings 57

4.4.4 Experiment Results . 58

5 Learning Corrupted Graph Data

Cross-Graph: Robust and Unsupervised Embedding for

Attributed Graphs with Corrupted Structure 69

5.1 Background . 69

5.2 Problem Definition . 73

5.3 Proposed Method . 74

5.3.1 Graph Autoencoder . 74

5.3.2 Cross-Graph Learning Framework 76

5.3.3 Algorithm Description and Deeper Insights 77

5.3.4 Time Complexity Analysis . 80

5.4 Experiments . 81

5.4.1 Datasets . 81

5.4.2 Baselines . 82

5.4.3 Node Clustering on Corrupted Data 82

x

5.4.4 Link Prediction on Corrupted Data 88

5.4.5 Experiments on Uncorrupted Data 91

5.4.6 Network Visualization on Corrupted Data 91

6 Learning from Side Information

Constrained Graph Clustering with Contrastive Regu-

larized Autoencoder 93

6.1 Background . 93

6.2 Problem Definition . 96

6.3 Proposed Method . 96

6.3.1 Graph Autoencoder . 97

6.3.2 Contrastive Regularizer . 99

6.3.3 Joint Embedding Learning . 100

6.3.4 Framework Description . 100

6.4 Experiments . 101

6.4.1 Benchmark Datasets . 101

6.4.2 Baselines . 101

6.4.3 Evaluation Metrics . 103

6.4.4 Experimental Setup . 103

6.4.5 Experimental Results . 104

6.4.6 Parameter Study . 105

6.4.7 Network Visualization . 108

7 Conclusion 110

List of Figures

3.1 The effectiveness of using marginalization for graph clustering.

Marginalization introduces a small amount of disturbance to the node

content, resulting in a dynamic environment for node content and

structures to interact. Because the optimization process is well informed

in relation to data disturbance, marginalization will cancel out the

disturbance and the underlying graph autoencoders can learn optimized

outcomes. Results are based on the accuracy (ACC) and normalized

mutual information (NMI) of the spectral clustering before and after

marginalization. 21

3.2 Conceptual framework of Marginalized Graph Autoencoder

(MGAE) for graph clustering. Given a graph G = (V,E,X), MGAE

firstly learns a graph convolutional network (GCN) by using a

mapping function f(X̃, A) based on the adjacency matrix A and

corrupted node content X̃. By minimizing the error between the

output of GCN f(X̃, A) and X, we will get a latent representation

Z(1). By stacking multiple GCNs and performing layer-wise

training, our algorithm can learn a deep representation Z(Γ).

Finally, a spectral clustering algorithm is performed on the refined

representation Z(Γ) of the last layer. 24

3.3 Parameters study on noise and number of layers. 36

3.4 Runtime comparisons of different methods. 39

3.5 2D visualization on representations learned from MGAE of various

layers. 40

xii

4.1 The difference between two-step embedding learning models and our

model. 43

4.2 The conceptual framework of Deep Neighbor-aware Embedded

Graph Clustering (DNEGC). Given a graph G = (V,E,X), DNEGC

learns a hidden representation Z through a graph autoencoder, and

manipulates it with a self-training clustering module, which is

optimized together with the autoencoder and perform clustering

during training. The two variants share similar framework and differ

as their autoencoder encode the inputs through different strategy. . . 46

4.3 Parameters study on clustering coefficient γ. 62

4.4 Parameters study on embedding size. 64

4.5 Parameters study on number of layers. 65

4.6 2D visualization of various methods using the t-SNE algorithm on

the Cora and Citeseer dataset. 66

4.7 2D visualization of the DNEGC-Att algorithm using the t-SNE

algorithm on the Cora and Citeseer dataset during training (the top

line for the Cora dataset, and the bottom line for the Citeseer

dataset). The first visualization of each line illustrates the

embedding training with the graph autoencoder only, followed by

visualizations showing subsequent equal epochs in which the

self-training component is included, till the last one being the final

embedding visualization. 67

5.1 We randomly add spurious edges to the Cora and Citeseer graph

structure and then run Graph Autoencoder (GAE) on them for 10

times to record the average clustering performance evaluated by 3

clustering metrics. The X-axis shows the number of added edges

represented as percentage to the number of original edges. It shows

that spurious edges can easily ruin the performance of the graph. . . 71

xiii

5.2 Conceptual framework of Cross-Graph Autoencoder. Given a graph

G with graph structure A and node content X, we maintain two

autoencoders. Each autoencoder encodes A and X into a latent

embedding Z, and then a decoder tries to reconstruct the structure

A from Z and obtains A′. We regard A′ partly as a reliability score

of the edges in A and manipulate A according to it. Two updated

A’s are thereby formed and passed to the peer-autoencoder as the

input for the next iteration. 74

5.3 The Cross-Graph Working Mechanism. The reconstruction level

(the reconstruction’s similarity to the input graph) could show its

opinion of the possibility of each edge being spurious, represented by

the sparsity degree of the dotted line. So, based on it and the input

graph, our Cross-Graph constructs a new updated graph, which

devalue those suspected edges. The edge value is positively

correlated with the reconstruction level, represented by the

gradation of the edge color. This updated graph is provided to the

peer-autoencoder for the next iteration update. 79

5.4 The devalue of two types of edges (original edges and redundancy

edges we added) along with the Cross-Graph training process. 87

5.5 The clustering performance under different percentage of

redundancy edge corruption. 88

5.6 The clustering performance with different Cross-Graph coefficient γ. . 89

5.7 Box plots of the 20 times’ clustering accuracy from the Cross-Graph

Dual-autoencoders interactive process, compared with a single

autoencoder framework. For each box, the five lines from top to

bottom represents the maximum, the first quartiles, the sample

median, the third quartiles and the minimum of the clustering results. 89

5.8 The devalue of inner-edges and inter-edges comparison along with

the Cross-Graph training process on uncorrupted Cora dataset. . . . 90

xiv

5.9 Visualizations of the corrupted Cora dataset, based on the

embedding learned from various algorithms. The dots represent

nodes and the seven different colors represent the ground-truth

clusters the nodes belongs to. 92

6.1 The difference between constrained node clustering and normal node

clustering. Constraint information (the green arrow in the Figure)

can define some pairs of nodes that should be in the same cluster,

and therefore may help partition some equivocal marginal nodes to

the right cluster. 95

6.2 Conceptual framework of the Contrastive Regularized Autoencoder

for Constrained Graph Clustering. Given a graph G with graph

structure matrix A, node content matrix X, and a list of node pairs

that are constrained to the same cluster, we aim to learn effective

clustering assignment. We train a graph autoencoder to integrate

graph structure and node content information into a latent node

embedding. When optimizing the autoencoder reconstruction loss,

we together minimize a contrastive loss function that forces the

constrained node pairs to learn similar embedding at the same time.

The learned embedding is influenced by all three aspects of the

information and used for clustering. 97

6.3 Average clustering performance evaluated by ACC and NMI, with

different temperature parameter τ , from 0.01 to 0.1. 105

6.4 Average clustering performance with different number of

constrained node pairs. The percentage is based on the total

potential constraint links Nm. 106

xv

6.5 Visualizations of the Cora and Citeseer datasets, based on the

embedding learned from GAE and our CRA. The dots represent

nodes and the seven different colors represent the ground-truth

clusters the nodes belong to. 107

Abbreviation

NMF - Non-negative Matrix Factorization

GCN - Graph Convolutional Network

GAT - Graph Attention Network

DNN: Deep Neural Networks

AE - Autoencoder

GAE - Graph (Convolutional) Autoencoder

DA - Denoising Autoencoder

SDA - Stacked Denoising Autoencoder

DEC - Deep Embedded Clustering

KL - Kullback-Leibler

2D: Two-dimensional

SGD: Stochastic Gradient Descent

NMI: Normalized Mutual Information

AE: Average Entropy

ARI: Adjusted Rand Index

Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

(.)T denotes the transpose operation.

In is the identity matrix of dimension n× n.

R, R+ denote the field of real numbers, and the set of positive reals, respectively.

n is the number of nodes in the graph.

m is the number of individual attributes of each node.

k is the number of clusters for the node clustering task.

X is a n×m matrix representing the node attribute information, each row xn is a

m-dimensional vector representing the attribute values of node n.

A is a n×n adjacency matrix representing the graph structure information, in which

Ai,j = 1 representing there is an edge between node i and j, and Ai,j = 0 otherwise.

‖.‖2
F represents the squared Frobenius norm.

.̃ represents the corrupted or approximated version.

tr(.) represents the trace of the matrix.

Z(l) is the learned node embedding in the l-th neural network layer.

1

Chapter 1

Introduction

1.1 Background

Graphs are essential data formats that can handle complex structured data.

With the rapid development of network applications in recent years, the data min-

ing of various scenarios like social networks, citation networks, or protein-protein

interaction networks, all demand high-quality network analysis. These facts have

made graph learning (Zhu et al., 2020; Wang et al., 2020a; Wu et al., 2020b) practical

and important.

Most of these networked data basically consist of two sides of information, the

property of each object, and the relationships among the objects. Therefore, most

recent graph learning works focus on attributed graphs for more comprehensive

graph information, which contain both information from the graph structure and

the node attributes.

Since label information is usually expensive and not easily accessible, unsuper-

vised learning for attributed graph (Wu et al., 2020a), and its related tasks like

node clustering and link prediction, has attracted much attention. It is especially

challenging since it aims to characterize the individual properties of each node and

capture the pairwise structure relationship between nodes in the networks, effectively

model the complex graph information without supervision.

Graph clustering, or more precisely node clustering for attributed graph, is the

most common task to evaluate the unsupervised learning effectiveness, and also a

task we mostly focuses on. It aims to partition the nodes in the graph into k disjoint

2

groups, so that: (1) nodes within the same cluster are close to each other while nodes

in different clusters are distant in terms of graph structure; and (2) nodes within

the same cluster are more likely to have similar attribute values.

To enable such unsupervised learning, a vast number of algorithms and theories

have been developed, most of which can be considered as shallow methods that

directly perform clustering, learn simple or linear representations from the given

graph.

Early methods on graphs mainly focus on graph structure only. They either cap-

ture the betweenness of edges (Girvan and Newman, 2002), compute eigenvectors

of the graph Laplacian (Newman, 2006a,b), or employ belief propagation (Hastings,

2006) to exploit the graph structure. Recently, overlapping community detection al-

gorithms, like BigClam (Yang and Leskovec, 2013) and AgmFit (Yang and Leskovec,

2012), have also been developed. However, these algorithms are suboptimal because

they only use one channel of information and ignore the other.

When considering integrating both node content and network information, early

methods in (Cai et al., 2008; Gu and Zhou, 2009) apply a nonnegative matrix factor-

ization (NMF) strategy to decompose node content matrix and use graph structure

as regularization terms. Relational topic model methods (Chang and Blei, 2009; Sun

et al., 2009) try to simultaneously model both the links and the contents for clus-

tering. Zhou et al. add virtual attribute nodes and edges in a network and compute

the similarity based on the augmented network (Zhou et al., 2009). By consider-

ing a graph as a dynamic system and modeling its structure as a consequence of

interactions among nodes, Liu et al. proposed an algorithm from the view of con-

tent propagation and then modeled the interactions with influence propagation and

random walk (Liu et al., 2015) .

However, all these methods, explicitly or implicitly, only capture the linear or

3

shallow relationships between node content and network information, while better

non-linear or deep representation learning techniques are not extensively explored.

To solve this problem, more recent studies have resorted to deep learning tech-

niques to learn compact representation to exploit the rich information of both the

content and structure data (Wu et al., 2019b). Based on the learned graph em-

bedding, simple task-oriented algorithms such as k-means for clustering are applied.

Autoencoder is a mainstream solution for this kind of embedding-based approach

(Cao et al., 2016; Tian et al., 2014), as the autoencoder based hidden representation

learning approach can be applied to purely unsupervised environments.

Nevertheless, all these embedding-based methods are two-step approaches. The

drawback is that the learned embedding may not be the best fit for the subsequent

graph clustering task, and the graph clustering task is not beneficial to the graph

embedding learning. To achieve mutual benefit for these two steps, a goal-directed

training framework is highly desirable.

Moreover, most of these embedding methods are based on the assumption that

they have no difficulty accessing perfect graph-structure data. This assumption is

too ideal to hold in real-world problems and may limit the efficacy of the learnt

embedding. Also, these methods did not consider the situation if there could be

some side information provided to help with the learning process.

1.2 Research Objectives

We highlight that the aims of this research are to perform effective unsuper-

vised graph learning for tasks like clustering. Based on the above observations, we

could summarize that previous graph learning methods are not efficient and effective

enough, because they are not able to (1) learn from different aspects of the graph

information; (2) take advantage from deep learning; (3) perform goal-directed graph

4

learning; and (4) deal with unconventional data, including imperfect data and extra

data. Therefore, to take a step forward in this area, we realize that we need to

confront the following challenges:

1) How to integrate both graph structure and node content information for graph

learning;

2) How to learn deep and informative representation;

3) How to design goal-directed framework for joint embedding learning and down-

stream tasks like clustering;

4) How to deal with different unconventional conditions like corrupted graph

data;

5) How to make use of available side information.

Specifically, we conduct research studies to achieve our objectives, which could

be separated into the following topics:

i. To address the challenge (1) and (2), we propose a marginalized graph autoen-

coder (MGAE) for graph clustering. Our algorithm takes the graph structure

and content as input and learns a content and structure augmented autoen-

coder upon them, with the graph convolutional network (GCN) as a building

block. To learn a better representation from the graph autoencoder, we fur-

ther corrupt the content features with noise and propose to marginalize noise

for efficient computation. By stacking multiple layers of graph autoencoder,

our algorithm can further learn a deep representation for network nodes. Fi-

nally, the learned representation is refined and fed into the spectral clustering

framework for the final clustering results.

5

ii. For challenge (3), we propose a Deep Neighbor-aware Embedded Graph Clus-

tering framework (DNEGC) with two variants, namely DNEGC-Att (with

graph attentional autoencoder) and DNEGC-Con (with graph convolutional

autoencoder). To exploit the interrelationship of various-typed graph data,

we develop a neighbor-aware graph autoencoder to learn latent representation,

which integrates both content and structure information. The encoder pro-

gressively aggregates information from its neighbor via a convolutional style or

an attentional mechanism, and multiple layers of encoders are stacked to build

a deep architecture for embedding learning. The decoder on the other side, re-

constructs the topological graph information and manipulates the latent graph

representation. Furthermore, a carefully designed self-training module, which

takes the “confident” clustering assignments as soft labels, is employed to

guide the optimizing procedure. By forcing the current clustering distribution

to approach a hypothetical better distribution, in contrast to the separated

two-step embedding learning-based methods, this specialized clustering com-

ponent makes it possible to simultaneously learn the embedding and perform

clustering in a unified framework, thereby achieving better clustering perfor-

mance.

iii. To deal with challenge (4), we propose a novel Cross-Graph framework, to

learn robust graph embedding, strengthened against structural corruption. We

use autoencoders to perform purely unsupervised learning. Our autoencoder-

based method can learn effective embedding without access to, not only the

label guidance, but also clean graph-structure data. We are inspired by the

Co-training approach (Blum and Mitchell, 1998), and designed a dual graph

interaction framework called Cross-Graph Learning. Based on the deep learn-

ing memorization effect that deep neural networks fit clean data first (Arpit

et al., 2017; Zhang et al., 2016), we maintain two autoencoders and update

6

them alternatively. In each iteration, since the trustworthy edges fit faster

and will be closer to the ground-truth, the two autoencoders can evaluate the

reliability of every graph edge with their reconstructed graph structure. Each

autoencoder then updates its structure by slightly devaluing those distrusted

edges. This updated graph structure is then passed to its peer-autoencoder,

working as a provided “opinion” on how the real structure should present.

The peer-autoencoder would take this updated structure as the input to the

next iteration. Through the learning process, those redundant edges will be

devalued faster, over and over again, and eventually filtered out. Since the two

autoencoders have different embedding abilities, different types of corruption

may be selected out, including some misjudgments. Meanwhile, benefit from

our interactive process, these misjudgments caused by a single autoencoder,

can be reduced by its peer one. This fact further strengthened the robustness

of our model.

iv. To deal with the last challenge, we propose a constrained node clustering

framework for attributed graphs which can improve the clustering performance

using pair-wise constraint information. To explore the interaction between the

graph structure and node content, we employ a graph convolution-based au-

toencoder, which learns node representation from the graph. A contrastive

loss-based graph regularizer is further designed, to manipulate the embedding

learning according to the prior pair-wise limitation. The learned embedding

could therefore involve the constraint information. The pairs of nodes indi-

cated to belong to the same community by the prior will learn similar embed-

ding in the latent space, and further naturally assigned to the same cluster.

1.3 Thesis Organization

This thesis is organised as follows:

7

• Chapter 2: This chapter presents a survey of recent unsupervised graph learn-

ing models, and also researches that are related to our proposed frameworks.

• Chapter 3: In this chapter, we introduce our first work, “MGAE: Marginal-

ized Graph Autoencoder for Graph Clustering”, which designs a marginalized

autoencoder to integrate graph structure and node content information for

clustering-oriented graph embedding learning.

• Chapter 4: This chapter presents another proposed model for graph clus-

tering: “Deep Neighbor-aware Embedding for Node Clustering in Attributed

Graphs”. It adopts a self-training module, to jointly learn graph embedding

and clustering simultaneously, and perform goal-directed learning for graph

clustering.

• Chapter 5: We further consider the data corruption problem in this chap-

ter. We design a “Cross-Graph: Robust and Unsupervised Embedding for

Attributed Graphs with Corrupted Structure” to deal with redundant edge

problem.

• Chapter 6: We present “Constrained Graph Clustering with Contrastive Reg-

ularized Autoencoder” to make use of constraint information to improve the

graph learning.

• Chapter 7: We conclude the thesis in this chapter with a summary of our

research content and contribution.

8

Chapter 2

Literature Review

In the Literature Review chapter, we first briefly review the research field, from

the general deep neural networks for graph data, to graph embedding models and

especially those for unsupervised learning tasks like node clustering. Then, we in-

troduce particular techniques with related papers that we employ in our proposed

algorithms. Finally, we list those representative algorithms we use as baselines in

our experiments.

2.1 Graph Learning Overview

2.1.1 Deep Neural Networks for Graphs

Deep learning has made remarkable achievements in many domains like voice

recognition and image processing. Recently deep learning has also been generalized

to graph structured data (Wu et al., 2019b).

The graph convolutional network, in particular, attracts wide attention in the

community. Bruna et al. made the first attempt as we are aware of in (Bruna et al.,

2013; Henaff et al., 2015). By using the recurrent Chebyshev polynomials, Defferrard

et al. (Defferrard et al., 2016) further optimized the filtering scheme and avoided the

expensive computation of the Laplacian eigenvectors. Graph convolutional networks

(GCN) (Kipf and Welling, 2016a) further simplifies the filtering for only 1-step

neighborhood nodes and, convolution is thereby considered as a multiplication of

the Fourier-transform of a signal in the spectral domain. There are also several other

recent works using convolution on graphs (Atwood and Towsley, 2016; Duvenaud

9

et al., 2015), vary as different convolutional filtering schemes are used.

Graph attention can be considered a special kind of graph convolution which

place more value on the most relevant parts. Graph attention networks (GATs) is

presented for node classification of graph-structured data (Velickovic et al., 2017).

It performs self-attention on the graph, computing the hidden representation of each

graph node by attending over its neighbor nodes.

2.1.2 Graph Embedding Models

Without regard to more complex structure for certain tasks like heterogeneous

graphs (Zhu et al., 2019b) or time series-oriented graphs (Wu et al., 2020c), based

on the information available, graph embedding models can be separated into two

categories: topological and attributed graph.

Topological embedding models are provided only with the graph structure infor-

mation and subsequently focus on exploring and preserving this information. Deep-

Walk (Perozzi et al., 2014) uses random walk to generate context for graph nodes

embedding learning; matrix factorization approaches like M-NMF (Wang et al.,

2017b) and HOPE (Ou et al., 2016) learn graph representation from the transfor-

mation of the adjacency matrix; probabilistic models, like LINE (Tang et al., 2015)

and node2vec (Grover and Leskovec, 2016), have also been developed.

Later, graph research focuses more on attributed graph embedding, since it has

proven effective when node attributes are available. Many algorithms have been

proposed to exploit and embed them simultaneously. TADW (Yang et al., 2015)

uses a matrix factorization approach to model the content and graph structure

interaction.

These models employ various approaches. However, these are generally old or

traditional approaches that cannot compete with recent deep embedding methods.

10

Also, these models all consider their data real and clean and, as such, are vulnerable

to corruptions.

2.1.3 Node Clustering in Graphs

Node clustering has been a long-standing research topic in the graph domain.

Early methods have taken various shallow approaches to node clustering. Girvan

and Newman used centrality indices to find community boundaries and detect social

communities (Girvan and Newman, 2002). Hastings applied belief propagation to

community detection and determined the most likely arrangement of communities

(Hastings, 2006). Newman computed the eigenvectors of the graph Laplacian to

perform clustering (Newman, 2006a,b).

To handle attributed graphs with both content and structure information, NMF-

based methods (Cai et al., 2008; Gu and Zhou, 2009), probabilistic model (Cohn and

Hofmann, 2001), relational topic models (Sun et al., 2009; Chang and Blei, 2009),

and content propagation (Liu et al., 2015) have also been widely used.

The limitations of these methods are that (1) they only capture either parts of

the network information or shallow relationships between the content and structure

data, and (2) they are directly applied on original sparse graphs. As a result,

these methods cannot effectively exploit the topological information or the interplay

between the graph structure and the node content.

Benefiting from the development of deep learning, graph node clustering has

progressed significantly in recent years. Many algorithms employ a deep architec-

ture, adopting either sparse autoencoder (Tian et al., 2014; Hu et al., 2017) or

denoising autoencoder (Cao et al., 2016) to exploit the deep structure information

for clustering. For attributed graphs, graph convolution-based autoencoders are

also developed (Kipf and Welling, 2016b), and are combined with marginalized pro-

cess (Wang et al., 2017a), adversarial regularization (Pan et al., 2018, 2019), etc.

11

for node clustering, link prediction, and other unsupervised tasks. However, these

methods are two-step methods, whereas the algorithm presented in this paper is a

joint learning approach.

2.2 Techniques Employed in Our Frameworks

2.2.1 Autoencoder

Autoencoder has been a widely used tool in the deep learning area long before

adopted to the graph domain, especially for unsupervised learning tasks such as

clustering and anomaly detection (Zhou and Paffenroth, 2017). The autoencoder

basically consists of an encoder mapping the input feature X to some hidden rep-

resentation h(X) and a decoder mapping it back to reconstruct the input feature.

The parameters of the autoencoder can be learned by minimizing the reconstruction

error.

Denoising autoencoders (DAs) corrupt the input features and then try to learn a

hidden representation which best reconstructs the original input from its corrupted

version also by minimizing the reconstruction error. Further, by regarding every

hidden representation as the input feature of the next DA and stacking these hid-

den representations learned into a single matrix, the stacked denoising autoencoder

(SDA) proposed by Vincent et al. could obtain a higher-level representation (Vin-

cent et al., 2008).

A marginalized denoising autoendcoder (mSDA) was proposed in (Chen et al.,

2012) inspired by SDA. It uses linear denoisers as the basic building blocks and

marginalizes out the random feature corruption. It avoids iterative optimization

and significantly simplifies parameter estimation while retaining a state-of-the-art

classification performance.

Benefitting from the acceleration of mSDA, Shao et al. proposed a deep structure

12

with a linear coder building block for graph clustering, which jointly learns the

feature transform function and codings (Shao et al., 2015).

However, this series of autoencoder-based methods handles only one channel of

data and therefore could not best suit attributed graph problems.

2.2.2 Deep Clustering Algorithms

Deep Embedded Clustering (DEC) is an autoencoder-based clustering technique

for plain data (Xie et al., 2016). It employs a stacked denoising autoencoder learn-

ing approach. After obtaining the hidden representation of the autoencoder with

the pre-train, rather than minimizing the reconstruction error through a decoder,

the encoder pathway is fine-tuned by a defined Kullback-Leibler divergence cluster-

ing loss. Guo et al. considered that the defined clustering loss could corrupt the

feature space, leading to non-representative features and a reduction in clustering

performance. They improved the DEC algorithm by adding back the decoder and

minimizing the reconstruction error as well as the clustering loss (Guo et al., 2017a).

There have since been many algorithms based on such deep clustering framework

(Dizaji et al., 2017; Guo et al., 2017b). However, as far as we know, they are only

designed for data with flat-table representation. For graph data, complex structure

and content information need to be carefully exploited, and end-to-end clustering

for graph data is still an open problem in this area.

2.2.3 Co-training based Methods

To learn from noisy data, a promising approach is to filter out some clean data for

training. The Co-training strategy (Blum and Mitchell, 1998), though not focusing

on this problem, has made it easy to solve by training two learning algorithms sep-

arately and has derived many methods based on this approach. MentorNet (Jiang

et al., 2018) pre-trains an extra network to select clean instances and supervise the

13

training of the StudentNet; Decoupling (Malach and Shalev-Shwartz, 2017) trains

two networks simultaneously, and only uses those samples leading to different predic-

tions in the two networks for updating; Co-teaching (Han et al., 2018) also maintains

two networks, and each network selects small-loss instances in each mini-batch to

guide its peer-network.

Unfortunately, all these methods are designed for one channel of plain data, like

images, and not well-suited to the graph domain.

2.2.4 Outlier-Oriented Graph Models

Outlier has been a significant research topic for decades. For plain graph, Zhang

et al. proposed an outlier edge detection method (Zhang et al., 2017) by comparing

the actual and expected number of edges in an ego-network.

Specially for outliers in attributed graph data, most previous methods only try

to detect outlier nodes. Radar (Li et al., 2017) defines three kinds of outlier nodes in

the attributed graph, and detects them by analyzing the residuals of the attribute

information; ALAD (Liu et al., 2017) exploits the attributed graph information by

context extraction and a mini-batch SGD-based method is developed to accelerate

its optimization.

Nevertheless, these methods only consider detecting isolated outlier, not robust

learning on the corrupted graph, and they are not able to recover the graph from

large-scale corruption. What is more, they investigate only outlier nodes, neglecting

the possibility of edges being the outlier.

2.2.5 Contrastive Learning

Contrastive learning (Hadsell et al., 2006) aims to find similar and dissimilar

things, and learn discriminative representations contrasting positive and negative

samples. It is widely used in computer vision tasks to classify between different

14

images, by contrasting different views of the images (He et al., 2020; Wu et al.,

2018). Recently it has also been extended to learn graph representation (Qiu et al.,

2020). The key to contrastive learning is a score function that measures the similar

and dissimilar between features. In our proposed work, we are inspired by the loss

function from InfoNCE (Oord et al., 2018).

2.2.6 Constrained Clustering

Pair-wise constraints have been long a piece of additional accessible information

that can help clustering tasks. Constrained clustering has been widely used in

clustering plain data (Zhu et al., 2015; Pathak et al., 2015; Ren et al., 2019).

Recently some methods have tried to help graph-based analyzing using constraint

information. Eaton and Mansbach used a statistical physics model to combine

external information into the community detection (Eaton and Mansbach, 2012).

Ma et al. tried to encode the pair-wise constraints into the adjacency matrix and

then factorized it for node embedding (Ma et al., 2010); Zhang et al. directly

modified the graph structure information using the must-link and cannot-link priors

(Zhang, 2013; Zhang et al., 2013); Yang et al. proposed a unified framework to

integrate topological information with must-link priors (Yang et al., 2014).

Unfortunately, most of these methods are designed for plain data like images or

structural-only network data. None, to the best of our knowledge, can be well-suited

to the attributed graph problems.

2.3 Baseline Methods

We summarize all baselines we employ in our experiments for comparison with

our proposed methods. For a particular method we propose, not all baselines are

employed for comparison, since only some of them best suit the problem setting and

can perform well.

15

Methods Using Structure or Content Only

• K-means is the base of many clustering methods. Many advanced clustering

algorithms involve some kind of transformation of k-means clustering or use

k-means on their embeddings. Here we run k-means on our original content

data as a benchmark.

• Spectral clustering uses the eigenvalues of the similarity matrix to perform

dimensionality reduction before clustering and is widely used in graph cluster-

ing.

• Big-Clam (Yang and Leskovec, 2013) is a non-negative matrix factorization

approach for community detection which takes only the network structure into

account.

• DeepWalk (Perozzi et al., 2014) is a structure-only representation learning

method. It obtains random walks on graphs and then trains the representation

through neural networks.

• GraphEncoder (Tian et al., 2014) employs deep learning into graph cluster-

ing by training a stacked sparse autoencoder and gets new representation for

clustering.

• DNGR (Cao et al., 2016) is recent work which uses stacked denoising autoen-

coders and encodes each vertex into a low dimensional vector representation.

• M-NMF (Wang et al., 2017b) is a Nonnegative Matrix Factorization model

targeted at community-preserved embedding.

Methods Using Both Structure and Content

• Circles (Leskovec and Mcauley, 2012) is an attributed graph clustering al-

gorithm which represents overlapping hard-membership approaches for graph

16

clustering.

• RTM (Chang and Blei, 2009) is a relational topic model capturing both struc-

ture and content information to learn the topic distributions of documents.

• RMSC (Xia et al., 2014), the robust multi-view spectral clustering method

via low-rank and sparsity decomposition, tries to recover a shared low-rank

transition probability matrix for clustering using a transition probability ma-

trix from each view. We regard structure and content data as two views of

information.

• TADW (Yang et al., 2015), text-associated DeepWalk. It re-interprets Deep-

Walk as a matrix factorization method and adds the text features of vertices

into representation learning.

• GAE & VGAE (Kipf and Welling, 2016b) are representation learning algo-

rithms. They combine the graph convolutional network with the (variational)

autoencoder.

• ARGA & ARVGA (Pan et al., 2018) are graph convolutional autoencoder-

based methods that manipulate GAE & VGAE learned embedding with an

adversarial regularizer.

• AGC (Zhang et al., 2019) is an adaptive graph convolution method that

exploits high-order graph convolution and captures global cluster structure.

17

Chapter 3

Learning Using Two-aspects Information
MGAE: Marginalized Graph Autoencoder for Graph

Clustering

In this chapter, we introduce our first proposed algorithm MGAE, which aims to

address the first and second challenge mentioned in the Introduction: to integrate

both graph structure and node content information for graph learning, and learn

deep informative graph representation.

3.1 Background

Network applications, such as social networks (Wang et al., 2019), citation net-

works, and protein interaction networks, have emerged increasingly and have at-

tracted much attention in the last decade. Unlike traditional data which are rep-

resented as a flat-table or vector format, networked data are naturally represented

as graphs for characterizing the individual properties of each node and capturing

the pairwise structure relationship between nodes in the networks. The complexity

of networked data has imposed many challenges on machine learning tasks, such

as graph clustering. Given a graph (network) with node content and structure

(link) information, graph clustering aims to partition the nodes in the graph into

a number of disjoint groups. This has become one of the most important tasks in

many applications, such as community detection (Fortunato, 2010), customer group

segmentation (Kim et al., 2006), and functional group discovery in enterprise so-

cial networks (Hu et al., 2016). The major challenge of graph clustering is how to

effectively utilize the information contained in the graph.

18

Shallow Representation for Graph Clustering: To enable graph clustering, a

vast number of algorithms and theories have been developed, most of which can be

considered as shallow methods that directly perform clustering or learn simple or

linear representations from the given graph.

Early clustering methods on graphs mainly focus on graph structure only. They

either capture the betweenness of edges (Girvan and Newman, 2002), compute eigen-

vectors of the graph Laplacian (Newman, 2006a,b), or employ belief propagation

(Hastings, 2006) to exploit the graph structure. Recently, overlapping community

detection algorithms, like GDPSO (Cai et al., 2015), BigClam (Yang and Leskovec,

2013) and AgmFit (Yang and Leskovec, 2012), have also been developed; however,

these algorithms are suboptimal because they only use one channel of information

and ignore the other.

When considering integrating both node content and network information, early

methods in (Cai et al., 2008; Gu and Zhou, 2009) apply a nonnegative matrix factor-

ization (NMF) strategy to decompose node content matrix and use graph structure

as regularization terms. Relational topic model methods (Chang and Blei, 2009; Sun

et al., 2009) try to simultaneously model both the links and the contents for clus-

tering. Zhou et al. add virtual attribute nodes and edges in a network and compute

the similarity based on the augmented network (Zhou et al., 2009). By consider-

ing a graph as a dynamic system and modeling its structure as a consequence of

interactions among nodes, Liu et al. proposed an algorithm from the view of con-

tent propagation and then modeled the interactions with influence propagation and

random walk (Liu et al., 2015). However, all these methods, explicitly or implicitly,

only capture the linear or shallow relationships between node content and network

information, while better non-linear or deep representation learning techniques were

not extensively explored.

19

Deep Representation for Graph Clustering: Deep learning sheds light on

modeling nonlinear or complex relationships, which has been successfully applied

in many domains, such as speech recognition (Dahl et al., 2012), computer vision

(Lawrence et al., 1997), and network representations (Pan et al., 2016). Of the deep

learning methods, the autoencoder is the most commonly used approach for situ-

ations such as clustering where label information is unavailable, as the autoencoder

based representation learning approach can be applied to purely unsupervised learn-

ing. There are indeed several existing autoencoder based deep methods for graph

clustering (Tian et al., 2014; Cao et al., 2016). By showing that autoencoders and

spectral clustering have the same optimization objectives, Tian et al. proposed to

learn a non-linear mapping from the original graph before applying the K-means

algorithm (Tian et al., 2014). By using a random surfing model to capture graph

structural information, Cao et al. proposed a deep graph representation model for

clustering (Cao et al., 2016). However, these approaches can only handle one kind of

information (structure), and the underlying architecture cannot handle the complex

structure and content information as a whole.

Motivated by these observations, we address the following challenges in dealing

with graph clustering in the deep learning (e.g., autoencoder) framework.

• Content and Structure Integration: Graph data have rich and complex in-

formation where content and structure information are inter-dependent. How

to effectively integrate both structure and content information in a unified

framework, and also analyze the interplay between content and structure?

• Deep Representation for Graph Clustering: Deep and nonlinear repre-

sentation have achieved impressive results in many supervised learning tasks.

How to learn an informative representation on graph data for the task of clus-

tering?

20

To address the first challenge, in this paper, we propose a content and structure

augmented autoencoder for graph clustering. Instead of learning a fully connected

layer from the content or/and structure information, we develop a convolutional

network as our building block in the autoencoder architecture. Our convolutional

network combines both structure and content information, and performs the con-

volution operation in the spectral domain, which is motivated by the most recently

developed graph convolutional network (GCN) (Kipf and Welling, 2016a). In GCN,

the convolution is considered to be multiplication of the Fourier-transform of a sig-

nal, and it has proved very effective in classification tasks in graphs. In this paper,

we further extend it into graph clustering, a purely unsupervised task in data mining.

When content and structure information are integrated, the interplay between

them plays an important role in learning rich representation for graph clustering.

We come up with the idea that the disturbance caused by random noise in training

provides a more effective representation. In existing representation learning, the

setting is rather static, where the structure and/or content are given and directly

fed into the algorithms (Yang et al., 2015; Tian et al., 2014; Cao et al., 2016). We ar-

gue that such a simple solution can only provide a simple integration of information

from a structure and content perspective, but cannot effectively exploit the interplay

between them, and hence may result in suboptimal performance in representation

and clustering. In our paper, we propose a marginalization process, marginalized

graph autoencoder, which introduces some sort of ”dynamics” by respectively adding

random noises many times to the content information. The effectiveness of marginal-

ization is illustrated in Fig. 3.1. Our marginalized autoencoder provides a number

of advantages for graph clustering: (1) the marginalized process enables the in-

terplay between content and structure, which is sufficiently exploited, resulting in

better results; (2) by adding random corruptions (masking some feature values as

0) into the graph content information multiple times, the dataset is considerably

21

Figure 3.1 : The effectiveness of using marginalization for graph clustering. Marginaliza-
tion introduces a small amount of disturbance to the node content, resulting in a dynamic
environment for node content and structures to interact. Because the optimization process
is well informed in relation to data disturbance, marginalization will cancel out the distur-
bance and the underlying graph autoencoders can learn optimized outcomes. Results are
based on the accuracy (ACC) and normalized mutual information (NMI) of the spectral
clustering before and after marginalization.

enlarged, which enables our algorithm to be trained with a larger dataset; (3) com-

pared to traditional autoencoders (where dropout techniques are employed), which

requires iteratively feeding the data to learn the neural networks in multiple epochs,

the marginalized process enables the derivation of a closed form solution for our

autoencoder, providing a much more efficient solution.

For the second challenge, we stack multiple layers of graph autoencoder to build

a deep architecture for learning effective representation. Each graph autoencoder

is trained sequentially with corrupted content information, and optimization is per-

formed to minimize the reconstruction error between the encoded content and clean

content information without corruption. After obtaining the representation of each

node, we feed it into a spectral clustering algorithm to get the graph clustering

results. As the building block in the autoencoder of our algorithm is the spectral

convolutional network algorithm which performs in the spectral domain, employing

spectral clustering on the representation turns out to be a good solution for graph

clustering.

22

To summarize, in this paper, we propose a marginalized graph autoencoder

(MGAE) for graph clustering. Our algorithm takes the graph structure and content

as input and learns a content and structure augmented autoencoder upon them,

with the graph convolutional network (GCN) as a building block. To learn a better

representation from the graph autoencoder, we further corrupt the content features

with noise and propose to marginalize noise for efficient computation. By stacking

multiple layers of graph autoencoder, our algorithm can further learn a deep repre-

sentation for network nodes. Finally, the learned representation is refined and fed

into the spectral clustering framework for the final clustering results. Experimental

results on real-life graph datasets validate our designs.

Our contributions can be summarized as follows:

• We propose a graph autoencoder algorithm to effectively integrate both struc-

ture and content information in a deep learning framework. This approach

essentially advances the deep learning research to graph clustering with node

attributes.

• We propose a marginalization process to corrupt content features of graphs

in our deep learning framework, which enables us to (1) exploit the interplay

between content and structure information; (2) learn on a larger dataset; and

(3) obtain a closed form solution in an autoencoder framework.

• While convolutional networks are mainly used in classification tasks, we take

this a step further by using graph convolutional networks for learning graph

representation for clustering.

• We conduct extensive experiments and compare to 12 algorithms in total. The

results demonstrate that our algorithm significantly outperforms all state-of-

the-art methods on three benchmark datasets.

23

3.2 Problem Definition

We consider graphs with node content in the paper. A graph is represented as

G = (V,E,X), where V = {vi}i=1,··· ,n consists of a set of vertices, E = {eij} is a set

of edges, and X = {x1; . . . ;xn} is a set of attribute values. xi ∈ Rm is a real-value

attribute vector associated with vertex vi. Formally, the graph can be represented

by two types of information, the content information X ∈ Rn×m and the structure

information A ∈ Rn×n, where A is an adjacency matrix of G and Ai,j = 1 if ei,j ∈ E

otherwise 0 (we consider only attributed graph with undirected and unweighted

edges in our setting).

Given a graph G, graph clustering aims to partition the nodes in G into k

disjoint groups {G1, G2, · · · , Gk}, so that: (1) vertices within the same cluster are

close to each other while vertices in different clusters are distant in terms of graph

structure; and (2) vertices within the same cluster are more likely to have similar

attribute values.

3.3 Proposed Method

Graphs have rich information in terms of node content and structure interaction.

To fully exploit this information, we propose an effective content and structure aug-

mented autoencoder for graph clustering. Instead of learning a fully connected layer

from the content and structure information, in this paper, we develop a convolu-

tion network as our building block in our neural network architecture. The graph

convolutional network is inspired by the most recently developed graph convolution

network (Kipf and Welling, 2016a) for classification tasks for graphs, which learns

a convolution on the structure information with node content in the spectral do-

main. We extend it to a purely unsupervised clustering task. Then we reconstruct

the corrupted node content features with a marginalized autoencoder. A stacked

24

Figure 3.2 : Conceptual framework of Marginalized Graph Autoencoder (MGAE)
for graph clustering. Given a graph G = (V,E,X), MGAE firstly learns a graph

convolutional network (GCN) by using a mapping function f(X̃, A) based on the

adjacency matrix A and corrupted node content X̃. By minimizing the error between
the output of GCN f(X̃, A) and X, we will get a latent representation Z(1). By
stacking multiple GCNs and performing layer-wise training, our algorithm can learn
a deep representation Z(Γ). Finally, a spectral clustering algorithm is performed on
the refined representation Z(Γ) of the last layer.

architecture is further employed for learning a deep representation. Finally a suc-

cessful clustering algorithm, spectral clustering, is used to obtain the final clustering

results. Our framework is illustrated in Fig. 3.2.

The first component of our method is the construction of an autoencoder. We

discuss the graph convolutional network of our autoencoder in Section 3.3.1, and

then propose our marginalized graph autoencoder in Section 3.3.2.

3.3.1 Graph Convolutional Network

Graph convolutional networks (GCNs) define the concept of convolution from

the spectral domain (Kipf and Welling, 2016a). Given the adjacency matrix A and

content matrix X of graph G, a GCN aims to learn a layer-wise transformation by

a spectral convolution function f(Z(l), A), i.e.,:

Z(l+1) = f(Z(l), A), (3.1)

Here, Z l ∈ Rn×m (n nodes and m features) is the input for convolution, and Z(l+1)

is the output after convolution. We have Z0 = X for our problem. If f(Z(l), A) is

25

well defined, one can build arbitrary deep convolutional neural networks efficiently.

Spectral convolution on a single feature: Consider each feature s ∈ Rn over

all the nodes of the graph as a signal. The spectral convolution function f(s, A)

on a graph is defined as the multiplication of s ∈ Rn with a filter gθ = diag(θ)

(parameterized by θ ∈ Rn) in the Fourier domain, such as:

gθ ? s = UgθU
T s, (3.2)

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −

D−
1
2AD−

1
2 = UΛUT , with Dii =

∑
j Aij, IN is the identity matrix, and Λ is a

diagonal matrix in which the diagonal elements are the eigenvalues of L. gθ can be

considered as a function of the eigenvalues, i.e., gθ(Λ).

It is expensive to compute the eigen-decomposition of L for large graphs. g(Λ)

can be approximated in terms of Chebyshev polynomials (Hammond et al., 2011):

gθ(Λ) ≈
Γ∑
γ=0

θγTγ(Λ̃), (3.3)

where Λ̃ = 2
λmax

Λ − IN . λmax is the largest eigenvalue of L. θ is the Chebyshev

coefficients, T0(a) = 1 and T1(a) = a. By further limiting the layer wise convolution

operation to Γ = 1 and approximate λmax ≈ 2, we could get a linear function on the

graph Laplacian spectrum.

gθ ? s ≈ θ(IN +D−
1
2AD−

1
2)s, (3.4)

where θ is the shared filter parameter over the whole graph and IN +D−
1
2AD−

1
2 can

be approximated by D̃−
1
2 ÃD̃−

1
2 with Ã = A+ IN and D̃ii =

∑
j Ãij.

Spectral Convolution on multiple features: When considering multiple fea-

tures (signals), i.e., Z l ∈ Rn×m, the spectral convolution Eq. (3.4) can be generalized

as:

26

H = gW ? Z(l) = D̃−
1
2 ÃD̃−

1
2Z(l)W, (3.5)

whereW ∈ Rm×m is a matrix of filter parameters, and H ∈ Rn×m is the convolved

signal matrix, which can be computed efficiently inO(|E|d2). Formally, then we have

our layer-wise propagation rule for GCN,

f(Z(l), A) = σ(D̃−
1
2 ÃD̃−

1
2Z(l)W (l)). (3.6)

Here, σ is a activation function such as Relu(t) = max(0, t) or sigmoid(t) = 1
1+e−t .

3.3.2 Marginalized Graph Autoencoder (MGAE)

With knowledge of the graph convolutional network, we now present our novel

Marginalized Graph Autoencoder (MGAE) approach, which learns a hidden repre-

sentation for each node in a network.

Content and Structure Augmented Autoencoder: Our model is built

on a single-layer autoencoder. Different from the two-level encoder and decoder,

it reconstructs the input X = {x1; . . . ;xn} ∈ Rn×m by using a single mapping

function f(), that minimizes the squared reconstruction loss:

‖X − f(X)‖2. (3.7)

f(X) is traditionally represented as f(X) = σ(WX). By using graph convolution

networks f(X,A) in Eq. (3.6) instead of f(X), our loss function becomes:

‖X − D̃−
1
2 ÃD̃−

1
2XW‖2 + λ‖W‖2

F . (3.8)

Here we use the linear activation function. W ∈ Rm×m is our parameter matrix.

‖W‖2
F is a regularization term with coefficient λ being a tradeoff. Our idea is

27

to learn a graph convolutional network from a given graph G, and minimize the

reconstruction error of the autoencoder.

Marginalized Graph Autoencoder: Our autoencoder (Eq. (3.8)) provides

an effective way to integrate both content and structure information. However, it

cannot further exploit the interplay between content and structure information. To

solve this problem, we propose a marginalization process for our graph autoencoder

by randomly introducing some randomness into the content features (as shown in

Fig. 3.2). Suppose X̃ = {x̃1; . . . ; x̃n} is the corrupted version of the original input

X. We can get the corrupted sample x̃i by randomly removing some features (setting

them to 0) from xi.

Furthermore, to train the autoencoder, we need to pass the data multiple times.

To this end, we generate corrupted X multiple times as input. Let us suppose we

repeat it for m times as [X̃1, · · · , X̃m], then our final objective function becomes:

1

m

m∑
i=1

‖X − D̃−
1
2 ÃD̃−

1
2 X̃iW‖2 + λ‖W‖2

F . (3.9)

If we further define Â = D̃−
1
2 ÃD̃−

1
2 , our objective function becomes:

J = Tr[(X − ÂX̄W)T (X − ÂX̄W)] + λ‖W‖2
F ,

where Tr(·) is the trace of a matrix. X̄ = 1
m

∑m
i=1 X̃i. We can then get the solution

for W :

L(W) = tr[XTX −W T X̄T ÂTX −XT ÂX̄W

+W T X̄T ÂT ÂX̄W] + λ‖W‖2
F ,

∂L

∂W
= −X̄T ÂTX − X̄T ÂTX + 2X̄T ÂT ÂX̄W + 2λW = 0,

2(X̄T ÂT ÂX̄ + λ)W = 2X̄T ÂTX,

28

W = X̄T ÂTX(X̄T ÂT ÂX̄ + λ)−1.

W = PQ−1 with P = X̄T ÂTX and Q = X̄T ÂT ÂX̄ + λ.

Let us define Y = X̄T ÂT for convenience, Y = {y1, . . . ,yn} and yi ∈ Rd , then

P and Q can be expressed as

P = Y X and Q = Y Y T + λ.

We are interested in the limit case where m → ∞, so that we have enough

samples to smooth out the corruption. In such a condition, matrices P and Q

converge to their expected value by the weak law of large numbers and our W can

be expressed as

W = E[P](E[Q])−1. (3.10)

For E[Q], we have

E[Q] =
n∑
i=1

E[yiyi
T] + λ, (3.11)

Let us assume that each feature is corrupted with a probability p, then the

diagonal entries have a (1 − p) probability of surviving the corruption while for

the other entries, the probability is (1 − p)2 as they have to survive two features

at the same time. Therefore, we can form a corruption probability vector u =

[1−p, . . . , 1−p, 1] for each feature (the last item should be 1 as the constant feature

is never corrupted), and then the expectation of the matrix Q is obtained as

E[Q]i,j =


Squ + λ, i = j

Squ
2 + λ, i 6= j

,

where Sq = XT ÂT ÂX is the uncorrupted version of Y Y T .

29

Similarly, we have E[p]i,j = Spu, where Sp = XT ÂTX. Then we can directly

obtain the weight for W according to Eq. (3.10) above.

Algorithm 1 Marginalized Graph Autoencoder

Require:

X: the attribute matrix of the graph;

A: Adjacency matrix of the graph;

p: the corruption probability;

Ensure:

W : the hidden representation in the autoencoder;

Z: the reconstructed representation of the input X;

Ã← A+ IN ; D̃ii ←
∑

j Ãij;

Â← D̃−
1
2 ÃD̃−

1
2 ;

u← [1− p, . . . , 1− p, 1];

Sq ← XT ÂT ÂX;

Sp ← XT ÂTX;

E[Q]i,j ←


Squ + λ, i = j

Squ
2 + λ, i 6= j

;

E[P]i,j ← Spu;

W ← E[P]E[Q]−1;

Z ← ÂXW ;

And the final graph representation Z is given as follows:

Z = ÂXW. (3.12)

The proposed marginalized graph convolutional autoencoder algorithm is given

in Algorithm 1.

Stacked Graph Convolutional Autoencoder: Our model also has the ca-

30

pability of stacking multiple layers of autoencoders to create a deep learning archi-

tecture. We feed the output of the (l− 1)th layer Z(l−1) as the input of the lth layer.

On the other hand, according to the rule Z l = ÂX lW l, each hidden representation

W l is learned to reconstruct Z l from Z l−1 which is regarded as the corrupted form

of Z l. Finally, we regard the output of the last layer as the representation of the

graph. The experiment results show that it improves the performance.

Attractive Properties: Our algorithm has a number of attractive properties:

i. Interplay Exploitation. Similar to the denoising autoencoder, the random-

ness injected into the content information allows us to better exploit the deep

interplay between content and structure, which will help improve the perfor-

mance.

ii. Larger dataset. The marginalization process enables our algorithm to be

trained on a larger dataset due to the assumption that we repeat the corruption

m times (m→∞).

iii. High Efficiency. Unlike traditional gradient descent based optimization al-

gorithms that require large iterations to obtain convergence, benefit from our

single-layer autoencoder and marginalized process, we can get a global optimal

solution for the weight matrix.

3.3.3 Graph Clustering Algorithm

We have so far thoroughly described our autoencoder and gained the output

ZΓ, which can be regarded as our learned representation for the graph. As the

new representation is ensured, we only need to run the clustering method. Here we

use the spectral clustering algorithm in our work because the graph convolutional

network is actually performed in the spectral domain, which makes the spectral

clustering algorithm an ideal choice.

31

Algorithm 2 Clustering with MGAE Algorithm

Require:

Graph G with n nodes, each node with d-dimension attribute value; Constructed

attribute matrix X ∈ Rn×d and adjacency matrix A ∈ Rn×n of G; Number

of clusters k; Corruption probability p; Stacked autoencoder layers number Γ;

Z(l) ∈ Rn×d is the output of layer l except Z(0) = X is the input to the first layer.

Ensure:

Final clustering results.

for l = 1 to Γ do

1. Construct a single layer denoising autoencoder with input data Z(l−1);

2. Learn the autoencoder output representation Z(l) according to Algorithm 1;

end for

Z0 ⇐ Z(Γ);

Z1 ⇐ Z0Z
T
0 ;

Z2 ⇐ 1
2
(|Z1|+ |ZT

1 |);

Run spectral clustering on Z2.

32

Table 3.1 : Experimental Results on Cora Dataset

Information ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)

K-means Content 0.4922 0.3210 0.3680 0.3685 0.3693 1.7979 0.2296

Spectral Structure 0.3672 0.1267 0.3180 0.1926 0.9144 2.4408 0.0311

Big-Clam Structure 0.2718 0.0073 0.2812 0.1797 0.6452 2.6287 0.0011

GraphEncoder Structure 0.3249 0.1093 0.2981 0.1817 0.8330 2.4598 0.0055

DeepWalk Structure 0.4840 0.3270 0.3917 0.3612 0.4348 1.8140 0.2427

DNGR Structure 0.4191 0.3184 0.3401 0.2660 0.4798 1.8816 0.1422

Circles Both 0.6067 0.4042 0.4691 0.5010 0.4410 1.5563 0.3620

RTM Both 0.4396 0.2301 0.3067 0.3319 0.2851 2.0208 0.1691

RMSC Both 0.4066 0.2551 0.3305 0.2265 0.6410 2.1097 0.0895

TADW Both 0.5603 0.4411 0.4805 0.3963 0.6289 1.6052 0.3320

VGAE Both 0.5020 0.3292 0.3784 0.4087 0.3523 1.7541 0.2547

MGAE Both 0.6806 0.4892 0.5312 0.5648 0.5016 1.3315 0.4361

In order to run spectral clustering, we need to refine our representation. We

simply apply a linear kernel function Z1 = Z0Z
T
0 to learn the pairwise relationship for

the graph nodes. Then, similar to the multi-view representation learning algorithm

clustering problems (Xia et al., 2014; Wang et al., 2016), we calculate Z2 = 1
2
(|Z1|+

|ZT
1 |) to make sure our representation is symmetric and nonnegative. Finally we

run the spectral clustering procedure on Z2 to obtain clusters results, and the whole

clustering algorithm is summarized in Algorithm 2.

3.4 Experiments

3.4.1 Benchmark Datasets

Three benchmark datasets are used in our experiments.

33

Cora: A citation network with 2708 nodes and 5294 links between them, in

which the nodes correspond to publications described by binary vectors of 1433

dimensions and classified into 7 classes.

Citeseer: A citation network consisting of 3312 publications labeled into 6 sub-

fields. Each publication is described by a binary vector of 3703 dimensions and there

are 4732 links between them.

Wiki: A network with 2405 documents and 17981 links. These documents have

4973-dimension vectors representing them and are divided into 19 classes.

Table 3.2 : Experimental Results on Citeseer Dataset

Information ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)

K-means Content 0.5401 0.3054 0.4087 0.4052 0.4128 1.7543 0.2786

Spectral Structure 0.2389 0.0557 0.2990 0.1786 0.9169 2.4451 0.0100

Big-Clam Structure 0.2500 0.0357 0.2881 0.1817 0.6954 2.4614 0.0071

GraphEncoder Structure 0.2252 0.0330 0.3007 0.1786 0.9492 2.4785 0.0100

DeepWalk Structure 0.3365 0.0878 0.2699 0.2481 0.2998 2.3079 0.0922

DNGR Structure 0.3259 0.1802 0.2997 0.1996 0.6093 2.1675 0.0429

Circles Both 0.5716 0.3007 0.4238 0.4089 0.4399 1.7751 0.2930

RTM Both 0.4509 0.2393 0.3421 0.3492 0.3353 1.9154 0.2026

RMSC Both 0.2950 0.1387 0.3200 0.2037 0.8051 2.2770 0.0488

TADW Both 0.4548 0.2914 0.4140 0.3119 0.6407 1.9160 0.2281

VGAE Both 0.4670 0.2605 0.3452 0.3505 0.3403 1.8630 0.2056

MGAE Both 0.6691 0.4158 0.5257 0.5362 0.5156 1.4671 0.4250

3.4.2 Baseline Methods

Twelve algorithms in total are compared in the experiments. As previously

mentioned, advanced graph clustering algorithms differ as some use only network

34

structure or node attributes, while others combine both. We take both classes of

methods into consideration and compare our algorithms with the baselines as shown

in the tables. Detailed description of these baselines could be found in Chapter 2.

For the representation learning based algorithms, such as DeepWalk, DNGR and

TADW, we first get the representations from these algorithms, and then apply the

K-means algorithm on the representations respectively, the best results are reported

in the paper.

Table 3.3 : Experimental Results on Wiki Dataset

Information ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)

K-means Content 0.4172 0.4402 0.2628 0.2108 0.4488 2.1241 0.1507

Spectral Structure 0.2204 0.1817 0.1757 0.1055 0.5243 3.0891 0.0146

Big-Clam Structure 0.1563 0.0900 0.1638 0.0946 0.6117 3.3690 0.0070

GraphEncoder Structure 0.2067 0.1207 0.1717 0.1006 0.5936 3.2770 0.0049

DeepWalk Structure 0.3846 0.3238 0.2574 0.2418 0.2779 2.4514 0.1703

DNGR Structure 0.3758 0.3585 0.2538 0.2773 0.2353 2.2605 0.1797

Circles Both 0.4241 0.4180 0.3035 0.3662 0.2592 2.0038 0.2420

RTM Both 0.4364 0.4495 0.2481 0.1920 0.3539 2.0458 0.1384

RMSC Both 0.3976 0.4150 0.2344 0.1672 0.3975 2.2201 0.1116

TADW Both 0.3096 0.2713 0.2068 0.1203 0.7538 2.9080 0.0454

VGAE Both 0.4509 0.4676 0.3278 0.3687 0.2957 1.8510 0.2634

MGAE Both 0.5293 0.5104 0.4294 0.5178 0.3671 1.6676 0.3787

3.4.3 Evaluation Metrics & Parameter Settings

Evaluation Metrics: We use seven quality metrics (Xia et al., 2014) to mea-

sure the clustering result, namely Accuracy (ACC), Normalized Mutual Information

(NMI), F-score (F), Precision (P), Recall (R), Average Entropy (AE) and Adjusted

35

Rand Index (ARI). A better clustering result should lead to a lower value of average

entropy and higher values for the other metrics.

Parameter Settings: we set the corruption level p to 0.4, the number of layers to

3, and λ is fixed to 10−5 for our algorithm. For the other algorithms, we carefully

select the parameters for each algorithm following the procedures in the original

papers. For instance, in the Circle method, we set the regularization parameter

λε ∈ {0, 1, 10, 100}, and choose the best values as the final results; in TADW, we

select the dimension k = 80 and the harmonic factor λ = 0.2 for Cora and Citeseer

but k = 100, 200 and λ = 0.2 for Wiki; for DNGR, we stack three layers for the

autoencoder with 512 and 256 nodes in the hidden layers, etc.. For a fair comparison,

we run each algorithm 50 times on each dataset and report the average results.

3.4.4 Experiment Results

We first compare MGAE with 11 baseline methods on graph clustering. After

this, we perform a detailed analysis on the marginalization process, deep stacked

architecture, time, and network visualization.

Clustering Performance Comparison:

Our experiment results on the three datasets are respectively summarized in

Tables 3.1, 3.2, and 3.3, where the bold values in the text indicate the best results.

It is obvious that our method outperforms all the baselines across different evaluation

metrics except for Recall. In particular on the Cora data, our method’s performance

represents a relative increase of 12.18%, 10.90%, 10.55% and 12.73% w.r.t. accuracy,

NMI, F-score and precision compared to the best baseline result.

One side vs both side information: From the comparison, it is shown that

methods using both structure and content information perform better than those

using only one side of information in general. For instance, in the Cora dataset,

36

(a) ACC on Cora (b) NMI on Cora

(c) F-score on Cora (d) Precision on Cora

(e) ACC on Citeseer (f) NMI on Citeseer

(g) F-score on Citeseer (h) Precision on Citeseer

Figure 3.3 : Parameters study on noise and number of layers.

Circles and TADW algorithms significantly outperform the k-means, Spectral, and

Big-Clam algorithms. This manifestation demonstrates that node content contains

useful information for graph clustering.

Deep learning models: The results show that GraphEncoder and DNGR algo-

rithms, both of which employ deep autoencoder architectures for graph clustering,

are not necessarily an improvement over the other algorithms. This is because they

only exploit the structure information and completely ignore the content information

in the networks. In contrast, our MGAE algorithm achieves superior performance

37

across all datasets because (1) we employ a graph convolutional network that effec-

tively integrates both structure and content information in the spectral domain; (2)

we use a deep marginalized architecture to learn a more informative representation,

which results in better clustering results.

It is worth noting that our algorithm outperforms the VGAE algorithm, which is

based on the variational autoencoder and convolutional network for graphs. This is

because the marginalization process enables our algorithm to learn on much larger

dataset (m → ∞) and it can better exploit the interplay between content and

structure information.

Marginalization & Deep Stacking Analysis

As the key innovation of the MGAE, the disturbance of the node content, through

random noise, allows network structures and nodes to interact in a dynamic setting,

so the graph autoencoder can learn effective feature representation. In this sub-

section, we study the impact of marginalization on MGAE performance by varying

the disturbance noise level p and the number of stacked layers Γ, and report the

performance of MGAE w.r.t. different performance metrics in Fig. 3.3.

Effectiveness of Marginalization: The results in Fig. 3.3 confirm that adding a

certain level of disturbance noise (corruption) indeed helps improve the clustering

performance. Overall, compared to noise-free settings, the best performance is likely

to be achieved with a noise disturbance level between 0.3 to 0.5. The disturbance

noise resembles a dynamic factor in our framework. Adding a small amount of noise

to disturb the data is one way to generate different copies of data with minor vari-

ances. This helps to deliver a dynamic setting, allowing network node content and

structures to interact. Because our marginalization process has sufficient knowledge

of the disturbance noise, the corrupted data are canceled out through the optimiza-

tion process and the graph autoencoder can leverage the dynamic data settings to

38

learn better representation.

Effectiveness of Deep Stacking: Fig. 3.3 also show that when increasing the

number of stacked layers Γ from 1 to 3, the performance of MGAE, including ACC,

NMI, F-score and Precision, also increases accordingly. This validates that using a

stacked architecture instead of a single-layer architecture can improve the clustering

performance. However, when we continuously increase the number of layers Γ (from

6-9), the performance of MGAE reduces sharply in terms of all the evaluation met-

rics, especially on the Citeseer dataset. This is because a more complex architecture

is more difficult to train and is subject to the risk of the information loss.

Time Consumption Analysis:

We also depict the training time for different methods in Fig. 3.4. We run all

these methods on the same hardware and the time result is plotted in log scale. It can

be observed that: 1) fundamental clustering methods such as k-means and spectral

clustering are quite fast, whereas the recent developed methods are all slower as

they have a much more complicated training procedure; 2) RMSC is the slowest of

the observed methods because learning transition probability matrix via low-rank

and sparse decomposition is time-consuming; 3) VGAE is a similar method to our

MGAE, using a GCN-based autoencoder for attributed graph learning, however it

is much slower, as it is based on a traditional kind of autoencoder and needs to

iteratively train the graph convolutional network for optimization; 4) our MGAE

is quite efficient compared to the other clustering methods, benefitting from its

closed-form solution of the eigen-decomposition computing and avoidance of iterative

optimization.

39

Figure 3.4 : Runtime comparisons of different methods.

Network Visualization:

To intuitively show the quality of our learned representation, we follow (Tang

et al., 2015) to learn low-dimensional representations for each node, and map Cora

and Citeseer into 2D space in Fig. 3.5.

For both datasets, in order to show the need for our deep structure, we list and

compare the visualization using representations learned from each stacked layer.

We also show the results obtained by using the original content data representation.

Similar to preprocessing for spectral clustering, we regard these representations as

Z0 in Algorithm2 and calculate Z2 for visualization training.

We can see from Fig. 3.5 that the visualization by the original representation

is highly overlapping. The results obtained by our method are more clear with less

overlapping and each node is better gathered to its own group. Moreover, as we

stack our MGAE training layers from 1 to 3, the result becomes increasingly better

as each group of nodes gradually gets away from each other.

40

(a) Cora - before training (b) Cora - 1 layer

(c) Cora - 2 layers (d) Cora - 3 layers

(e) Citeseer - before training (f) Citeseer - 1 layer

(g) Citeseer - 2 layers (h) Citeseer - 3 layers

Figure 3.5 : 2D visualization on representations learned from MGAE of various
layers.

41

Chapter 4

Learning with Goal-directed Framework
Deep Neighbor-aware Embedding for Node Clustering in

Attributed Graphs

We design another framework for node clustering here in this chapter. Aiming

at the third challenge described in the Introduction, the proposed DNEGC is a

goal-directed framework that can joint learn graph embedding and clustering simul-

taneously.

4.1 Background

The development of networked applications has resulted in an overwhelming

number of scenarios in which data is naturally represented in graph format rather

than flat-table or vector format. Attributed graph-based representation character-

izes individual properties through node attributes, and at the same time captures

the pairwise relationship through the graph structure. Many real-world tasks, such

as the analysis of citation networks, social networks, protein-protein interaction and

knowledge graphs (Ji et al., 2020), all rely on graph-data analytics skills. How-

ever, the complexity of graph structure has imposed significant challenges on these

graph-related learning tasks, including clustering, which is one of the most popular

topics.

Graph clustering aims to partition the nodes in the graph into disjoint groups

(Bojchevski and Günnemann, 2018; Chen and Wu, 2017; Guo et al., 2018). Typical

applications include community detection (Reihanian et al., 2018; Xie et al., 2018; Li

et al., 2018a), group segmentation (Kim et al., 2006), and functional group discovery

42

in enterprise social networks (Hu et al., 2016). Further for attributed graphs, a key

problem is how to capture the structural relationship between nodes and exploit the

node content information.

To solve this problem, more recent studies have resorted to deep learning tech-

niques to learn compact representation or embedding to exploit the rich information

of the graph data (Pan et al., 2016; Shen et al., 2018; Gao et al., 2018). Based on the

learned graph embedding, simple clustering algorithms such as k-means are applied

to obtain the clustering result. Autoencoder is a mainstream solution for this kind of

embedding-based approach (Cao et al., 2016; Tian et al., 2014), as the autoencoder

based hidden representation learning approach can be applied to purely unsuper-

vised environments. Many autoencoder based graph clustering algorithms already

exist: Tian et al. considered the similarity of autoencoder and spectral clustering

and learned a latent representation for clustering through sparse autoencoder(Tian

et al., 2014). Cao, Lu, and Xu proposed a deep graph representation model for

clustering by capturing structure information through random surfing (Cao et al.,

2016). The recently developed GAE and VGAE (Kipf and Welling, 2016b) based

on graph convolutional network (GCN) can also be adopted for graph clustering

analysis.

Nevertheless, all these embedding-based methods separate the embedding learn-

ing and clustering as two steps. The drawback is that the learned embedding may

not be the best fit for the subsequent graph clustering task, and the graph clus-

tering task is not beneficial to the graph embedding learning. To achieve mutual

benefit for these two steps, a goal-directed training framework is highly desirable.

However, traditional goal-directed training models are mostly applied to the classi-

fication task. Fewer studies on goal-directed graph clustering exist, to the best of

our knowledge.

43

Figure 4.1 : The difference between two-step embedding learning models and our
model.

Our ApproachMotivated by the above observations, we propose aDeep Neighbor-

aware Embedded Graph Clustering framework (DNEGC) with two variants, namely

DNEGC-Att (with graph attentional autoencoder) and DNEGC-Con (with graph

convolutional autoencoder) in this paper. To exploit the interrelationship of various-

typed graph data, we develop a neighbor-aware graph autoencoder to learn latent

representation, which integrates both content and structure information. The en-

coder progressively aggregates information from its neighbor via a convolutional

style or an attentional mechanism, and multiple layers of encoders are stacked to

build a deep architecture for embedding learning. The decoder on the other side,

reconstruct the topological graph information and manipulates the latent graph rep-

resentation. Furthermore, a carefully designed self-training module, which takes the

“confident” clustering assignments as soft labels, is employed to guide the optimizing

procedure. By forcing the current clustering distribution approaching a hypothetical

better distribution, in contrast to the separated two-step embedding learning-based

methods (shown in Fig. 4.1), this specialized clustering component makes it possible

to simultaneously learn the embedding and perform clustering in a unified frame-

44

work, thereby achieving better clustering performance. Our contributions can be

summarized as follows:

• We introduce a neighbor-aware framework, by developing the first graph attention-

based autoencoder, as well as a graph convolution-based autoencoder, to ef-

fectively integrate both the structure and content information for attributed

graph representation learning.

• We propose a new end-to-end deep learning framework for graph clustering.

The framework jointly optimizes the embedding learning and graph clustering,

to the mutual benefit of both components.

• The experimental results show that our algorithm outperforms state-of-the-art

graph clustering methods.

4.2 Problem Definition and Overall Framework

We consider clustering task on attributed graphs in this paper. An attributed

graph is represented as G = (V,E,X), where V = {vi}i=1,··· ,n consists of a set of

nodes, E = {eij} is a set of edges between these nodes. The topological structure of

graph G can be represented by an adjacency matrix A, where Aij = 1 if (vi, vj) ∈ E;

otherwise Aij = 0. X = {x1; . . . ;xn} are the attribute values where xi ∈ Rm is a

real-value attribute vector associated with vertex vi.

Given the graph G and cluster number k, graph clustering aims to partition

the nodes in G into k disjoint groups {G1, G2, · · · , Gk}, so that nodes within the

same cluster are generally: (1) close to each other in terms of graph structure while

distant otherwise; and (2) more likely to have similar attribute values.

45

4.2.1 Overall Framework

In this paper, we construct a graph-based neighbor-aware network to solve this

problem. Our framework is shown in Fig. 4.2 and consists of two parts: a graph

autoencoder and a self-training clustering module.

• Graph Autoencoder: Our neighbor-aware autoencoder takes the attribute

values and graph structure as input, and learns the latent representation by

minimizing the reconstruction loss.

• Self-training Clustering: The self-training module performs clustering based

on the learned representation, and in return, manipulates the latent represen-

tation according to the current clustering result.

We jointly learn the graph embedding and perform clustering in an end-to-end

manner, so that each component benefits the other.

4.3 Proposed Method

In this section, we present our proposed Deep Neighbor-aware Embedded Graph

Clustering (DNEGC). We will first develop a graph autoencoder which effectively in-

tegrates both structure and content information to learn a latent representation.

Based on the representation, a self-training module is proposed to guide the clus-

tering algorithm towards better performance.

4.3.1 Graph Autoencoder

The graph autoencoder aims to learn a low-dimension embedding of the graph

G based on both the node content and the graph structure. The basic idea is to

progressively aggregate neighbor information to learn a more informative represen-

tation in a deep neural network architecture. To this end, we develop two variants,

46

Figure 4.2 : The conceptual framework of Deep Neighbor-aware Embedded Graph
Clustering (DNEGC). Given a graph G = (V,E,X), DNEGC learns a hidden rep-
resentation Z through a graph autoencoder, and manipulates it with a self-training
clustering module, which is optimized together with the autoencoder and perform
clustering during training. The two variants share similar framework and differ as
their autoencoder encode the inputs through different strategy.

namely graph attentional encoder and graph convolutional encoder. They differ as

they employ an attentional mechanism or a convolutional style respectively in their

encoding strategies.

Graph Attentional Encoder

To represent both graph structure A and node content X in a unified framework,

we develop a variant of the graph attention network (Velickovic et al., 2017) as a

graph encoder for DNEGC-Att. The idea is to learn hidden representations of each

node by attending over its neighbors, to combine the attribute values with the

graph structure in the latent representation. The most straightforward strategy to

attend the neighbors of a node is to integrate its representation equally with all

its neighbors. However, in order to measure the importance of various neighbors,

different weights are given to the neighbor representations in our layer-wise graph

47

attention strategy:

z
(l+1)
i = σ(

∑
j∈Ni

αijW
(l)z

(l)
j). (4.1)

Here for layer l, z
(l+1)
i denotes the output representation of node i, and Ni de-

notes the neighbors of i. αij is the attention coefficient that indicates the importance

of neighbor node j to node i, W l ∈ Rm2×m1 is the parameter matrix for our autoen-

coder to learn, with m1 and m2 being the input and output dimension of the layer

respectively, and σ is a nonlinerity function. To calculate the attention coefficient

αij, we measure the importance of neighbor node j from both the aspects of the

attribute value and the topological distance.

From the perspective of attribute values, the attention coefficient αij can be

represented as a single-layer feedforward neural network on the concatenation of xi

and xj with weight vector a ∈ R2m2 :

cij = aT [Wxi||Wxj]. (4.2)

Topologically, neighbor nodes contribute to the representation of a target node.

GAT considers only the 1-hop neighboring nodes (first-order) for graph attention

(Velickovic et al., 2017). As graphs have complex structure relationships, we propose

to exploit high-order neighbors in our encoder. We obtain a proximity matrix by

considering t-order neighbor nodes in the graph:

M = (B +B2 + · · ·+Bt)/t, (4.3)

here B is the transition matrix where Bij = 1/di if eij ∈ E and Bij = 0 otherwise.

di is the degree of node i. Therefore Mij denotes the topological relevance of node

j to node i up to t orders. In this case, Ni means the neighboring nodes of i in M .

i.e., j is a neighbor of i if Mij > 0.

The attention coefficients are usually normalized across all neighborhoods j ∈ Ni

48

with a softmax function to make them easily comparable across nodes:

αij = softmaxj(cij) =
exp(cij)∑
r∈Ni

exp(cir)
. (4.4)

Adding the topological weights M and an activation function δ (here LeakyReLU

is used), the coefficients can be expressed as:

αij =
exp(δ(Mij(a

T [Wxi||Wxj])))∑
r∈Ni

exp(δ(Mir(aT [Wxi||Wxr])))
. (4.5)

We have xi = z
(0)
i as the input for our problem, and stack two graph attention

layers:

z
(1)
i = σ(

∑
j∈Ni

αijW
(0)xj), (4.6)

z
(2)
i = σ(

∑
j∈Ni

αijW
(1)z

(1)
j), (4.7)

in this way, our encoder encodes both the graph structure and the node attributes

into a hidden representation, i.e., we will have zi = z
(2)
i .

Graph Convolutional Encoder

On the other hand for DNEGC-Con, the encoder is defined as a variant of convo-

lutional network from graph data. It extends the operation of convolution to graph

data in a spectral domain and was formerly used in semi-supervised classification

tasks (Kipf and Welling, 2016a). Our graph convolutional encoder aims to learn

a layer-wise transformation combining both the adjacency matrix A representing

the graph structure and the feature matrix X by a spectral convolution function

f(z
(l)
i , A):

z
(l+1)
i = f(z

(l)
i , A). (4.8)

Here, zli ∈ Rm (m features) is the input for convolution and z
(l+1)
i is the convolution

output. We view the convolution part from the graph level, therefore define Z l ∈

Rn×m and Z l =
∏n

i=1 z
l
i for later use.

49

We first consider each feature of the graph s ∈ Rn as a signal, the convolution

function can be defined as the multiplication of the signal with a filter such as:

gθ ? s = UgθU
T s, (4.9)

where gθ is a filter parameterized by θ ∈ Rn, U is the eigenvectors of the nor-

malized graph Laplacian L = UΛUT = IN −D−
1
2AD−

1
2 , with Dii =

∑
j Aij, and IN

the identity matrix, Λ represents a diagonal matrix where the diagonal elements are

the eigenvalues of L. We can consider gθ to be a function of the eigenvalues gθ(Λ),

and UT s be the graph Fourier transform of s.

Computing the eigen-decomposition of L could be expensive for large graphs.

Hence, Hammond et al. suggested g(Λ) to be approximated in terms of Chebyshev

polynomials (Hammond et al., 2009):

gθ(Λ) ≈
Y∑
y=0

θyTy(Λ̃), (4.10)

where Λ̃ = 2
λmax

Λ− IN . λmax is the largest eigenvalue of L. θ is the Chebyshev

coefficients, T0(a) = 1 and T1(a) = a. By further constraint Y = 1 and approximate

λmax ≈ 2, a linear function on the graph Laplacian spectrum is obtained:

gθ ? s ≈ θ(IN +D−
1
2AD−

1
2)s, (4.11)

where θ is the shared filter over the whole graph and IN + D−
1
2AD−

1
2 could be

approximated by D̃−
1
2 ÃD̃−

1
2 with Ã = A+ IN and D̃ii =

∑
j Ãij.

To extend this function to the graph level, or in other words for multiple features

Z l ∈ Rn×m, the convolution function could be adjusted as:

H = gW ? Z(l) = D̃−
1
2 ÃD̃−

1
2Z(l)W, (4.12)

50

where H ∈ Rn×m is the convolved signal matrix, and W is a matrix of filter

parameters replacing θ. Then the layer-wise propagation of the GCN is:

f(Z(l), A) = σ(D̃−
1
2 ÃD̃−

1
2Z(l)W (l)), (4.13)

with σ being an activation function such as Relu(t) = max(0, t) or sigmoid(t) =

1
1+e−t . This convolution propagation function can be computed efficiently inO(|E|m2).

We adopt this convolution propagation function and construct a two-layer en-

coder for our autoencoder:

Z(1) = fRelu(X,A|W (0)); (4.14)

Z(2) = flinears(Z
(1), A|W (1)). (4.15)

Our encoder encodes both node content and graph structure into a unified hidden

representation Z = Z(2).

Inner Product Decoder

There are various kinds of decoders, which reconstruct either the graph structure,

the attribute value, or both. In our method, we choose to reconstruct the graph

structure, as our algorithm will be more flexible and will thus fit situations in which

no content information is available. We use a simple inner product decoder which

predicts whether there is a link between two nodes. The reconstructed link prediction

layer is trained based on the hidden graph representation:

Âij = sigmoid(zi
>zj), (4.16)

where Â is the reconstructed structure matrix of the graph.

51

Reconstruction Loss

We minimize the reconstruction error by measuring the difference between A

and Â:

Lr =
n∑
i=1

loss(Aij, Âij). (4.17)

In our paper, the binary cross-entropy loss function is used as the reconstruction loss.

By optimizing the autoencoder reconstruction, we can learn the encoder parameter

W (0) and W (1), and thereupon the optimized latent embedding Z.

4.3.2 Self-optimizing Embedding

One of the main challenges for graph clustering methods is the nonexistence

of label guidance. The graph clustering task is naturally unsupervised and feed-

back during training as to whether the learned embedding is well optimized cannot,

therefore, be obtained. To confront this challenge, we develop a self-optimizing

embedding algorithm as a solution.

Apart from optimizing the reconstruction error, we input our hidden embedding

into a self-optimizing clustering module which optimizes the following objective:

Lc = KL(P ||Q) =
∑
i

∑
u

piulog
piu
qiu
, (4.18)

Where qiu measures the similarity between node embedding zi and cluster center

embedding µu. We measure it with a Student’s t-distribution so that it could handle

different scaled clusters and is computationally convenient (Maaten and Hinton,

2008):

qiu =
(1 + ||zi − µu||2)−1∑
k (1 + ||zi − µk||2)−1

, (4.19)

it can be seen as a soft clustering assignment distribution of each node with the

current embedding. On the other hand, piu is the target distribution defined as:

piu =
q2
iu/

∑
i qiu∑

k (q2
ik/

∑
i qik)

. (4.20)

52

Soft assignments with high probability (nodes close to the cluster center) are con-

sidered to be trustworthy in Q. So the target distribution P raises Q to the second

power to emphasize the role of those “confident assignments”. The minimizing of

the KL distance then force the current distribution Q to approach the target distri-

bution P , so as to set these “confident assignments” as soft labels to supervise Q’s

embedding learning.

To this end, we first train the autoencoder without the self-optimize clustering

part to obtain a meaningful embedding z as described in Eq.(4.7) and Eq.(4.15).

Self-optimizing clustering is then performed to improve this embedding. To obtain

the soft clustering assignment distributions of all the nodes Q through Eq.(4.19),

the k-means clustering is performed just once on the embedding z before training

with the self-optimize clustering part, to obtain the initial cluster centers µ.

It is worth mentioning that in the following iterative training, the k-means clus-

tering is never used again, and the cluster centers µ are updated using Stochastic

Gradient Descent (SGD) based on the gradients of the clustering loss Lc with respect

to µ:

µu = µu − ϕ
∂Lc
∂µu

, (4.21)

where ϕ is the step size. Similarly, ∂Lc/∂zi is also computed and passed down

to update the parameter matrix W in the encoder together with the gradient from

the reconstruction loss of the autoencoder, so as to benefit the embedding learning.

We calculate the target distribution P according to Eq.(4.20), and the clustering

loss Lc according to Eq.(4.18).

The target distribution P works as “ground-truth labels” in the training pro-

cedure, but also depends on the current soft assignment Q which updates at every

iteration. It would be hazardous to update P at every iteration with Q as the con-

53

stant change of target would obstruct learning and convergence. To avoid instability

in the self-optimizing process, we update P every T iterations. As detailed choice

of T will not affect clustering performance, we simply set it to 5 in our experiments.

In summary, we minimize the clustering loss to help the autoencoder manip-

ulate the embedding space using the embedding’s own characteristics and scatter

embedding points to obtain better clustering performance.

4.3.3 Joint Embedding and Clustering Optimization

We jointly optimize the autoencoder embedding and clustering learning, and

define our total objective function as:

L = Lr + γLc, (4.22)

where Lr and Lc are the reconstruction loss and clustering loss respectively, γ ≥ 0

is a coefficient that controls the balance in between. It can be optimized by directly

back-propagate the gradient from both Lr and Lc to updateW , or utilize the unrolled

optimization strategy (Schmidt and Roth, 2014; Diamond et al., 2017; Liang et al.,

2019). It is worth mentioning that we could gain our clustering result directly from

the last optimized Q, and the label estimated for node vi could be obtained as:

ri = arg max
u

qiu, (4.23)

which is the most likely assignment from the last soft assignment distribution Q.

Our method is summarized in Algorithm 3. Our algorithm has the following

advantages:

• Interplay Exploitation. The graph neural network-based autoencoder effi-

ciently exploits the interplay between both the graph structure and the node

content information.

54

Table 4.1 : Benchmark Graph Datasets

Dataset Nodes Features Clusters Links Content Words

Cora 2,708 1,433 7 5,429 3,880,564

Citeseer 3,327 3,703 6 4,732 12,274,336

Pubmed 19,717 500 3 44,338 9,858,500

• Clustering Specialized Embedding. The proposed self-training cluster-

ing component manipulates the attributed graph embedding to improve the

clustering performance.

• End-to-end Learning. The framework jointly optimizes the two parts of the

loss functions, learns the embedding and performs clustering in an end-to-end

manner.

4.4 Experiments

4.4.1 Benchmark Datasets

We use three benchmark datasets in our experiments, which are widely used in

assessment of attributed graph-based algorithms (Velickovic et al., 2017; Kipf and

Welling, 2016a), summarized in Table 4.1. All these datasets consist of scientific

publications as nodes, citation relationships as edges and unique words in the doc-

uments as features. Publications in these datasets are labeled as they could be

assigned to different sub-fields.

4.4.2 Baseline Methods

We compared a total of 13 algorithms with our method in our experiments. The

graph clustering algorithms include approaches that use only node attributes or

55

Algorithm 3 Unsupervised Deep Neighbor-aware Embedded Graph Clustering

Require:

Graph G with n nodes, each node with m-dimension attribute value;

Number of clusters k;

Number of iterations Iter;

Target distribution update interval T ;

Clustering Coefficient γ.

Ensure:

Final clustering results.

Update the autoencoder variable W by minimizing Eq.(4.17) to get the autoen-

coder hidden embedding Z;

Compute the initial cluster centers µ based on Z;

for l = 0 to Iter − 1 do

Calculate soft assignment distribution Q with Z and µ according to Eq.(4.19);

if l%T == 0 then

Calculate target distribution P with Q by Eq.(4.20);

end if

Calculate reconstruction loss Lr according to Eq.(4.17)

Calculate clustering loss Lc according to Eq.(4.18);

Update the variable W and thereupon the embedding Z by minimizing

Eq.(4.22);

end for

Get the clustering results with final Q by Eq.(4.23)

56

Table 4.2 : Algorithm Comparison

Content Structure Self-training GCN encoder GAT encoder Recover A

K-means F

Spectral F

GraphEncoder F F

DeepWalk F F

DNGR F F

M-NMF F

RTM F F

RMSC F F

TADW F F

GAE&VGAE F F F F

ARGA&ARVGA F F F F

AGC F F

DNEGC-Att F F F F F

DNEGC-Con F F F F F

network structure information, and also approaches that combine both. Deep rep-

resentation learning-based graph clustering algorithms were also compared. These

algorithms are summarized in Table 4.2. Detailed description of these algorithms

could be found in Chapter 2.

For representation learning algorithms such as DeepWalk, TADW and DNGR

which do not specify the clustering algorithm, we first learned the representation

from these algorithms, and then applied the k-means algorithm on their respective

representations, but for algorithms like RMSC which require spectral clustering or an

alternative algorithm, we followed their preference and used the specified algorithms.

The best results we got are reported in this paper.

57

4.4.3 Evaluation Metrics & Parameter Settings

Evaluation Metrics: We follow (Xia et al., 2014) and use seven metrics to

evaluate the clustering result namely Accuracy (ACC), Normalized Mutual Infor-

mation (NMI), F-score (F), Precision (P), Recall (R), Average Entropy (AE) and

Adjusted Rand Index (ARI). A better clustering result should lead to a lower value

of average entropy and higher values for all the other metrics.

• ACC is the average performance of label matching clustering results and can

be represented as
∑

i(yi == f(li))/n, where f is the mapping function which

maps category labels to cluster labels.

• NMI measures the mutual information entropy between the resulting cluster

labels and ground truth labels followed by a normalization operation.

• F-score is the harmonic mean value of Precision and Recall;

• Precision is the fraction of correctly clustered nodes among the retrieved

nodes;

• Recall is the fraction of correctly clustered nodes that have been retrieved

over the total number of relevant nodes;

• Average Entropy =
∑k

i=1
mi

m
ei, where k is the cluster number and m is

the number of nodes, and ei = −
∑k

j=1
mij

mi
log2

mij

mi
, with mi representing the

number of nodes in cluster i and mij representing the number of nodes in

cluster i and labeled j.

• ARI is the adjusted rand index (RI) that guarantees a value close to 0, where

RI measures the percentage of correct clustering decisions;

Parameter Settings: For the baseline algorithms, we carefully select the pa-

rameters for each algorithm, following the procedures in the original papers. In

58

TADW, for instance, we set the dimension of the factorized matrix to 80, the di-

mension of the text feature to 200 and the regularization parameter to 0.2; For the

DNGR algorithm, we build a three-layers denoising autoencoder with the number of

nodes set as 512 and 256 in the hidden layers; For the RMSC algorithm, we regard

graph structure and node content as two different views of the data and construct a

Gaussian kernel on them. We run the k-means algorithm 50 times for all embedding

learning methods for fair comparison.

For our method, we set the clustering coefficient γ to 10 for DNEGC-Att and 1

for DNEGC-con. For the variant DNEGC-Att with attentional encoder, we consider

second-order neighbors and set M = (B + B2)/2. The encoder is constructed with

a 256-neuron hidden layer and a 16-neuron embedding layer for all datasets. For

DNEGC-Con with convolutional encoder, a 32-neuron hidden layer and a 16-neuron

embedding layer is used instead.

4.4.4 Experiment Results

We compare our DNEGC with baselines mentioned above on graph clustering

first. Then we perform detailed analysis on coefficients in the model.

Clustering Performance Comparison

The experiment results on the three benchmark datasets are summarized in

Tables 4.3, 4.4 and 4.5. C, S, and C&S indicate if the algorithm uses only content,

structure, or both content and structure information, respectively. We can see that

our methods clearly outperform most of the baselines across most of the evaluation

metrics. AGC is able to outperform our method on the Pubmed dataset, may

because Pubmed is a large and simple dataset which adverse to our deep architecture.

One Side v.s Both Side of Information: We can easily observe from these

results that methods using both the structure and content information of the graph

59

Table 4.3 : Experimental Results on Cora Dataset

Info. ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)

K-means C 0.500 0.317 0.376 0.376 0.376 1.810 0.239

Spectral S 0.398 0.297 0.332 0.312 0.355 1.871 0.174

GraphEncoder S 0.301 0.059 0.230 0.214 0.253 2.496 0.046

DeepWalk S 0.529 0.384 0.435 0.392 0.504 1.681 0.291

DNGR S 0.419 0.318 0.340 0.266 0.480 1.882 0.142

M-NMF S 0.423 0.256 0.320 0.304 0.342 1.977 0.162

RTM C&S 0.440 0.230 0.307 0.332 0.285 2.021 0.169

RMSC C&S 0.466 0.320 0.347 0.345 0.352 1.808 0.203

TADW C&S 0.536 0.366 0.401 0.342 0.492 1.749 0.240

GAE C&S 0.530 0.397 0.415 0.431 0.401 1.583 0.293

VGAE C&S 0.592 0.408 0.456 0.489 0.429 1.545 0.347

ARGA C&S 0.669 0.489 0.666 0.680 0.686 1.322 0.422

ARVGA C&S 0.581 0.426 0.560 0.562 0.588 1.492 0.329

AGC C&S 0.689 0.522 0.656 0.672 0.675 1.273 0.448

DNEGC-Att C&S 0.704 0.528 0.682 0.704 0.706 1.229 0.496

DNEGC-Con C&S 0.683 0.512 0.659 0.665 0.689 1.269 0.477

generally perform better than those using only one side of information. In the Cora

dataset, for example, TADW, GAE, VGAE, AGC and our method outperform all

the baselines using one side of information. This observation demonstrates that

both the graph structure and node content contain useful information for graph

clustering, and illustrates the significance of capturing the interplay between two-

sides information.

Deep Learning Models: The results of most of the deep learning models are sat-

60

Table 4.4 : Experimental Results on Citeseer Dataset

Info. ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)

K-means C 0.544 0.312 0.413 0.411 0.416 1.738 0.285

Spectral S 0.308 0.090 0.257 0.241 0.276 2.300 0.082

GraphEncoder S 0.293 0.057 0.213 0.215 0.211 2.380 0.043

DeepWalk S 0.390 0.131 0.305 0.282 0.336 2.201 0.137

DNGR S 0.326 0.180 0.300 0.200 0.609 2.168 0.043

M-NMF S 0.336 0.099 0.255 0.228 0.291 2.288 0.070

RTM C&S 0.451 0.239 0.342 0.349 0.335 1.915 0.203

RMSC C&S 0.516 0.308 0.404 0.383 0.430 1.767 0.266

TADW C&S 0.529 0.320 0.436 0.376 0.532 1.781 0.286

GAE C&S 0.380 0.174 0.297 0.291 0.304 2.093 0.141

VGAE C&S 0.392 0.163 0.278 0.251 0.315 2.131 0.101

ARGA C&S 0.559 0.289 0.544 0.578 0.539 1.795 0.257

ARVGA C&S 0.598 0.323 0.570 0.583 0.566 1.703 0.322

AGC C&S 0.672 0.414 0.627 0.635 0.631 1.500 0.420

DNEGC-Att C&S 0.672 0.397 0.636 0.639 0.640 1.521 0.410

DNEGC-Con C&S 0.692 0.426 0.639 0.640 0.644 1.456 0.449

isfactory since they generally perform better than those shallow ones. The GraphEn-

coder and DNGR algorithm are not necessarily an improvement over the other al-

gorithms, although they both employ deep autoencoder for representation learning.

This observation may result from their neglect at the node content information.

Superiority of DNEGC: It is worth mentioning that our algorithms, both

DNEGC-Con and DNEGC-Att, significantly outperform GAE and VGAE. On the

Cora dataset for example, our method DNEGC-Att represents a relative increase

61

Table 4.5 : Experimental Results on Pubmed Dataset

Info. ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)

K-means C 0.580 0.278 0.544 0.488 0.621 1.133 0.246

Spectral S 0.496 0.147 0.471 0.407 0.561 1.323 0.098

GraphEncoder S 0.531 0.210 0.506 0.456 0.569 1.231 0.184

DeepWalk S 0.663 0.256 0.539 0.532 0.555 1.142 0.272

DNGR S 0.468 0.153 0.445 0.387 0.523 1.314 0.059

M-NMF S 0.470 0.084 0.443 0.391 0.529 1.411 0.058

RTM C&S 0.575 0.194 0.444 0.456 0.433 1.230 0.149

RMSC C&S 0.629 0.273 0.521 0.511 0.532 1.116 0.247

TADW C&S 0.565 0.224 0.481 0.465 0.500 1.196 0.177

GAE C&S 0.632 0.249 0.511 0.518 0.505 1.146 0.246

VGAE C&S 0.619 0.216 0.478 0.492 0.464 1.194 0.201

ARGA C&S 0.632 0.235 0.636 0.636 0.669 1.167 0.221

ARVGA C&S 0.390 0.004 0.311 0.335 0.342 1.525 0.002

AGC C&S 0.679 0.306 0.688 0.733 0.695 1.082 0.311

DNEGC-Att C&S 0.671 0.266 0.659 0.677 0.687 1.122 0.278

DNEGC-Con C&S 0.677 0.275 0.675 0.675 0.699 1.105 0.278

of 18.97% and 29.49% w.r.t. accuracy and NMI against VGAE, and the increase is

even greater on the Citeseer dataset. The reasons for this are that (1) we employ

a graph convolutional/attentional network that effectively integrates both content

and structure information of the graph; (2) we use a deep architecture to learn the

representation, which captures more underlying information; (3) Our self-training

clustering component is specialized and powerful in improving the clustering effi-

ciency.

62

DNEGC-Att v.s. DNEGC-Con: The results show that DNEGC-Att outper-

forms DNEGC-Con on Cora dataset, while DNEGC-Con outperforms DNEGC-Att

on Citeseer and Pubmed datasets. But their performance is very close to each other.

This is because both of them are clustering-directly approaches. While there may be

some difference on the learned embedding, the embedding will be regularized via the

clustering objective, and finally they achieve very similar results for the clustering

task.

(a) ACC of DNEGC-Con (b) NMI of DNEGC-Con

(c) ACC of DNEGC-Att (d) NMI of DNEGC-Att

Figure 4.3 : Parameters study on clustering coefficient γ.

Parameter Study

We also investigated the sensitivity of the parameters for our algorithm.

63

Clustering Coefficient γ: We vary the clustering coefficient γ to study the effect

of the self-training clustering component. The results are shown in Fig. 4.3.

We could find that experiment on the Cora and Citeseer datasets show similar

trends. For DNEGC-Con, we observe the best performance with γ around 1. Before

γ is increased to that peak, the clustering performance measured by ACC and NMI

steadily rise; As we keep adding γ up after that, the performance plummeted as a

whole. However, for DNEGC-Att, the result keeps good as γ rises.

It shows that our self-training clustering component does work and improve

the clustering result. However, a too large value of γ, which means excessively

emphasis on the clustering loss, may distort the latent feature space since its trained

on estimated targets and could lead to abnormal clustering result. DNEGC-Att

avoids such plummeting may because the embedding learned with weighted neighbor

features are more robust and effective, leading to more accurate initial targets, and

make the self-training more stable.

Embedding Size: We also vary the dimension of embedding from 8 neurons to

1024 and report the clustering results on the Cora dataset in Fig. 4.4.

The results show that when increasing the dimension of embedding from 4-

neuron to 16-neuron, the performance on clustering steadily rises; if we further

increase the dimension, the performance of DNEGC-Con fluctuates but still have

an overall tendency of rising, but the performance of DNEGC-Att does not improve

as well, since the 8-neuron or 16-neuron embedding is already sufficient with its

more efficient attention strategy as argued above. It is worth mentioning that we

set the embedding size to 16 to obtain a stable and efficient model, but it could get

markedly better performance when the embedding size is continuously enlarged, to

for example, 128-neuron, 256-neuron or 1024-neuron.

Number of Layers: To show the effectiveness of deep architecture, we stack differ-

64

(a) ACC on Cora (b) NMI on Cora (c) ARI on Cora

Figure 4.4 : Parameters study on embedding size.

ent numbers of layers to observe the alteration of the performance on DNEGC-Con.

For the autoencoder with only one hidden layer, we encoder the input feature di-

rectly into 16-neuron embedding; for the one with two layers, we add a 32-neuron

layer in between and construct a d-32-16 encoder like the one we adopted, where d is

the input layer dimension; for more layers, we construct d-64-32-16, d-128-64-32-16,

etc. encoders with each newly added hidden layer doubling the dimension of its

embedding. The performance of all these models on the Cora and Citeseer dataset

are reported in Fig. 4.5.

We could observe that, when we stack 2 encoder layers to the model, the perfor-

mance significantly improve compared with the model with only 1 hidden layer. The

performance of the model with 3 stacked hidden layers is also satisfactory. These

observations demonstrate that using a stacked architecture instead of a single-layer

one can improve the model performance. However, as we continuously add more

layers to the model, the performance reduces sharply in terms of all the observa-

tions. This is because stacking too many layers will increase the complexity of the

architecture, raise the possibility of information loss and enhance the difficulty to

the training process.

65

Figure 4.5 : Parameters study on number of layers.

66

(a) GraphEncoder on Cora (b) GAE on Cora (c) VGAE on Cora

(d) DNEGC-Con on Cora (e) DNEGC-Att on Cora

(f) GraphEncoder on Citeseer (g) GAE on Citeseer (h) VGAE on Citeseer

(i) DNEGC-Con on Citeseer (j) DNEGC-Att on Citeseer

Figure 4.6 : 2D visualization of various methods using the t-SNE algorithm on the
Cora and Citeseer dataset.

67

Figure 4.7 : 2D visualization of the DNEGC-Att algorithm using the t-SNE algo-
rithm on the Cora and Citeseer dataset during training (the top line for the Cora
dataset, and the bottom line for the Citeseer dataset). The first visualization of
each line illustrates the embedding training with the graph autoencoder only, fol-
lowed by visualizations showing subsequent equal epochs in which the self-training
component is included, till the last one being the final embedding visualization.

68

Network Visualization

We visualize the Cora and Citeseer datasets in two-dimensional space by apply-

ing the t-SNE algorithm (Van Der Maaten, 2014) on the learned embedding. The

results in Fig. 4.6 show that we obtain outstanding embedding as well as clearer clus-

tering results, compared with the baseline methods, benefit from our self-clustering

components which contribute to both clustering and embedding learning.

We also visualize the variation of the embedding on the Cora and Citeseer

datasets during training as shown in Fig. 4.7. We can observe that, after train-

ing with our graph attentional autoencoder, the embedding is already meaningful.

However by applying self-training clustering, the embedding becomes more evident

as our training progresses, with less overlapping and each group of nodes gradually

gathered together.

69

Chapter 5

Learning Corrupted Graph Data
Cross-Graph: Robust and Unsupervised Embedding for

Attributed Graphs with Corrupted Structure

In this chapter, we extend our research to imperfect graph data settings. To confront

the fourth challenge of dealing with corrupted graph data, we propose a novel Cross-

Graph framework, to learn robust graph embedding for unsupervised tasks against

structural corruption.

5.1 Background

Graphs have attracted much more attention in recent years with the develop-

ment of networked applications, such as social networks, citation networks, wireless

networks (Wang et al., 2020b) and protein-protein interaction networks (Wu et al.,

2019b). Unlike traditional data format, graphs are adept at characterizing individ-

ual properties as well as capturing the pairwise relationships between the individuals

in the networks. The complexity of graph information has made graph analyzing

significant, yet challenging.

For the past few years, graph embedding has evolved as a general solution to

various graph analyzing tasks (Cai et al., 2018; Zhang et al., 2018). Its main strength

is to preserve and combine different sides of graph information into a unified low-

dimensional feature space. Based on the learnt embedding, classical task-oriented

methods could be applied to handle various tasks such as classification (Kipf and

Welling, 2017), clustering (Wang et al., 2017a) or link prediction (Wang et al.,

2017c), which would otherwise be complicated for graph data.

70

Recent graph embedding methods lean towards embedding attributed graphs for

more comprehensive graph information. Attributed graph information consists of

node content and edge connections between the nodes. Corruption, like noise or

outliers, can occur in both aspects and affect the analysis of graph data. However,

previous embedding works have not pay enough attention to the corruption in at-

tributed graphs. A few works tried to detect isolated outlier nodes out of the graph

(Li et al., 2017; Liu et al., 2017), but they were not able to recover the graphs’ prop-

erty from systematic corruption. So, they are not able to benefit the other graph

analyzing tasks applied to the same graph. On the other hand, little previous works

question the structure information in the provided graph data.

Edges could be citations among academic papers or friend relationships in a

social network, etc.. They only represent some certain kinds of relationship between

the two nodes. In other words, the disconnection of two nodes is commonplace in

graphs and could always make some sense. Furthermore, current existing studies

are able to help against one aspect of structural corruption, namely missing edges.

This problem can be solved quite well by various link-prediction methods (Al Hasan

and Zaki, 2011). Our intention, in this paper, is to focus on the other aspect of

structural corruption, namely spurious edges. We therefore define the structural

corruption in this paper as spurious edge connections, rather than the missing ones.

Broadly speaking, that spurious edges improperly connect two nodes is ubiqui-

tous and considerably more problematical. These edges can be generated by ma-

licious nodes, like robot account, to influence its neighbors or hide itself, or might

be created unintentionally by the users or systems (Zhang et al., 2017). Adversarial

poisoning attacks on graph data also tend to add edges to bring noise to the learnt

node embedding (Zügner et al., 2018; Zhu et al., 2019a; Wu et al., 2019a). Fur-

thermore, with the rapid development of graph learning, many CV or NLP-oriented

methods also employ graph neural networks. They construct graphs from their plain

71

(a) Cora dataset (b) Citeseer dataset

Figure 5.1 : We randomly add spurious edges to the Cora and Citeseer graph struc-
ture and then run Graph Autoencoder (GAE) on them for 10 times to record the
average clustering performance evaluated by 3 clustering metrics. The X-axis shows
the number of added edges represented as percentage to the number of original
edges. It shows that spurious edges can easily ruin the performance of the graph.

data with a graph kernel. Such constructed graphs are always dense with a high

percentage of redundancies. Even in a hypothetical “clean” graph, some of the edges

could be regarded as partly abnormal for a given task. For instance, in citation net-

works, it is common for academic papers to cite weakly-related papers, which will

appear the same as those key citations in the graph; in social networks, a parent-

child connection may be considered abnormal when classifying users according to

their hobbies, since they are connected due to family relationship and are unlikely

to have similar hobbies.

Though many effective graph embedding methods have been proposed in recent

years, most of these embedding methods are based on the assumption that they have

no difficulty accessing perfect graph-structure data. This assumption is too ideal

to hold in real-world problems and may limit the efficacy of the learnt embedding.

As illustrated in Fig. 5.1, the performance of the embedding can be ruined easily,

simply by adding random spurious edges to the graph. In a word, a graph embedding

method robust against structural corruption is highly desirable.

72

To deal with this problem, we propose a novel Cross-Graph framework, to learn

robust graph embedding, strengthened against structural corruption. Since label

information is not easily accessible either, we decide to use autoencoders to perform

unsupervised learning. Our autoencoder-based method can learn effective embed-

ding without access to, not only the label guidance, but also clean graph-structure

data. We are inspired by the Co-training approach (Blum and Mitchell, 1998), and

designed a dual graph interaction framework called Cross-Graph Learning. Based

on the deep learning memorization effect that deep neural networks fit clean data

first (Arpit et al., 2017; Zhang et al., 2016), we maintain two autoencoders and up-

date them alternatively. In each iteration, since the trustworthy edges fit faster and

will be closer to the ground-truth, the two autoencoders can evaluate the reliability

of every graph edge with their reconstructed graph structure. Each autoencoder

then updates its structure by slightly devaluing those distrusted edges. This up-

dated graph structure is then passed to its peer-autoencoder, working as a provided

“opinion” on how the real structure should present. The peer-autoencoder would

take this updated structure as the input to the next iteration. Through the learn-

ing process, those spurious edges will be devalued faster, over and over again, and

eventually filtered out. Since the two autoencoders have different embedding abili-

ties, different types of corruptions may be detected, including some misjudgments.

Meanwhile, benefit from our interactive process, these misjudgments caused by a

single autoencoder, can be reduced by its peer. This fact further strengthens the

robustness of our model.

Our contribution can be summarized as follows:

• To the best of our knowledge, we are the first to discuss the influence of struc-

tural corruption, especially spurious edges, on attributed graph embedding.

We show that corrupted graph structure could ruin the performance of the

73

graph embedding learned on the basis of it.

• We propose a Cross-Graph strategy to learn graph embedding based on the

graph structure and node content, which is unsupervised and robust against

structural corruption.

• We conduct extensive experiments, compare our model with novel unsuper-

vised graph embedding baselines on various kinds of structure-corrupted graphs.

The results show that our Cross-Graph strategy significantly improves the per-

formance when confronting structural corruption.

5.2 Problem Definition

We consider unsupervised graph embedding on attributed graphs in this paper.

A graph is represented as G = (V,E,X), in which V = {vi}i=1,··· ,n consists of a set

of nodes, E = {eij} is a set of edges between nodes. The topological structure of

graph G can be simplified as an adjacency matrix A, where Ai,j = 1 if (vi, vj) ∈ E;

otherwise Ai,j = 0. X = {x1; . . . ;xn} are the attribute values where xi ∈ Rm is a

m-dimension real-value attribute vector associated with vertex vi.

In our setting, the graph structure is a corrupted one with spurious edges. In

other words, the adjacency matrix A 6= Aclean, where it has many more extra 1

values instead of 0 in the corresponding positions of the spurious edges.

Our purpose is to learn latent representations Z ∈ Rn×d to map the nodes vi ∈ V

to a low-dimensional space, in which z>i mapping vi is the i-th row of the matrix

Z. For previous graph embedding methods, learning with the corrupted structure A

would result in much worse embedding result compared with the one learned from

Aclean, while we aim to keep up its performance against the structural corruption.

74

Figure 5.2 : Conceptual framework of Cross-Graph Autoencoder. Given a graph G
with graph structure A and node content X, we maintain two autoencoders. Each
autoencoder encodes A and X into a latent embedding Z, and then a decoder tries
to reconstruct the structure A from Z and obtains A′. We regard A′ partly as a
reliability score of the edges in A and manipulate A according to it. Two updated
A’s are thereby formed and passed to the peer-autoencoder as the input for the next
iteration.

5.3 Proposed Method

We present our proposed Cross-Graph framework in this section. After briefly

introducing a basic graph autoencoder, we propose the Cross-Graph framework for

robust learning. The mechanism and some analysis of our model are also presented.

5.3.1 Graph Autoencoder

The graph autoencoder aims to learn low-dimensional embedding of each node

based on the graph data G = (V,E,X). The main idea is to integrate both graph

structure A and node content X through an encoder into a latent embedding Z,

and reconstruct the graph structure A through a decoder to optimize Z.

Graph Convolutional Encoder: One of the most basic and popular kind of

graph encoder is developed as a variant of the graph convolutional network (GCN)

75

(Kipf and Welling, 2017). It encodes both graph structure A and node content X

into a hidden representation by extending the operation of convolution to the graph

domain, and performs a layer-wise transformation by a spectral convolution function

f(Z(l), A):

Z(l+1) = f(Z(l), A) = σ(D̃−
1
2 ÃD̃−

1
2Z(l)W (l)). (5.1)

Here, σ is a nonlinerity function. Z(l) is the input of the l-th layer transformation

function, and Z(l+1) is the corresponding output. D̃−
1
2 ÃD̃−

1
2 is an approximation

of the spectral convolution transformation I + D−
1
2AD−

1
2 , with Ã = A + I, D̃ii =∑

j Ãij, and I being the identity matrix.

The standard graph encoder Enc(X,A) takes the node content X as the input

to the first layer Z(1), and stacks two graph convolution layers to obtain a hidden

representation Z:

Z = Enc(X,A) = f(f(X,A), A). (5.2)

Inner Product Decoder: The decoder reconstructs the graph data from hid-

den representation. Previous works have tried to reconstruct different sides of the

graph information, and reconstructing the graph structure A has been validated

as the best solution, since it also can be more flexible and fit situations in which

no content information is available. The inner product decoder is commonly used

here to predict whether there is a link between two nodes. The reconstructed link

prediction layer Dec(Z) is trained based on the hidden graph representation:

A′ = Dec(Z) = sigmoid(Z>Z), (5.3)

where A′ is the reconstructed structure matrix of the input graph.

Reconstruction Loss: The graph autoencoder learns to optimize the latent

representation Z by minimizing the reconstruction error measuring the binary cross-

76

entropy loss between the original structure A and the reconstructed A′:

L = cross-entropy(A,A′). (5.4)

5.3.2 Cross-Graph Learning Framework

Graph autoencoders have superior ability embedding attributed graphs, but they

lack protection against graph corruptions. Specially facing structural corruption,

adding spurious edges to the graph substantially weakens the performance of the

graph autoencoders (as shown in Fig. 5.1). To confront this challenge, we develop

a Cross-Graph learning framework.

Our framework trains two graph autoencoders simultaneously (Fig. 5.2). In each

epoch t, the two autoencoders take their graph structure A
(t)
1 and A

(t)
2 (which are

both A in the first epoch) as the input, and obtain their reconstructed structure

A′1
(t) and A′2

(t):

A′
(t)
1 = Dec1(Enc1(X,A

(t)
1)), (5.5)

A′
(t)
2 = Dec2(Enc2(X,A

(t)
2)), (5.6)

A
(1)
1 = A

(1)
2 = A. (5.7)

Then, new structure matrix A
(t+1)
1 and A

(t+1)
2 are constructed, as a compromise

between the input graph structure A
(t)
1 &A

(t)
2 and the reconstructed A′

(t)
1 &A′

(t)
2 :

A
(t+1)
1 = (1− γ)A

(t)
2 + γA′

(t)
2 · A

(t)
2 , (5.8)

A
(t+1)
2 = (1− γ)A

(t)
1 + γA′

(t)
1 · A

(t)
1 , (5.9)

where γ is a coefficient control the balance between the two structure matrices,

which we can adjust with the valid data. We dot product the A′(t) part with A(t)

to make sure it learns the edge values taking the current structure as the frame of

77

reference. Please notice that the new structure matrices are formed based on the

information from the peer-autoencoder. In the following epoch t + 1, the autoen-

coders use the updated graph structure A1
(t+1) and A2

(t+1) from the previous epoch

t as their input. The randomly initialized weights of the autoencoder can prevent

the two autoencoders from being too correlated.

5.3.3 Algorithm Description and Deeper Insights

The algorithm is summarized in Algorithm 4. In each iteration, we obtain the

reconstruction from each autoencoder. The input structure compromise with it

and an updated structure is thereby formed, which is further provided to the peer-

autoencoder as the input structure of the next iteration. We use the hidden rep-

resentation in the last iteration as our final embedding results. Fig. 5.3 gives an

illustrated example on our procedure to update the graph structure to handle cor-

rupted graphs.

Our Cross-Graph learning framework is simple but effective, which keeps up the

performance of graph autoencoders against spurious edges. In the following, we will

provide deep insights into our algorithm through answering two key questions.

Question 1: Why can manipulating the graph structure A towards the

reconstructed structure A′ help improve the robustness against structural

corruption?

To answer question 1, we need to make it clear in advance what the elements in

A and A′ represent. A is the adjacency matrix of the graph, in which all elements

are 0 or 1. Ajk = 1 shows there is an edge connecting node j and k in the graph,

otherwise the two nodes are disconnected. On the other hand, A′ is the reconstructed

structure matrix, since it is constrained by the sigmoid function, its elements are all

valued between 0 and 1. Therefore, A′jk can be regarded as a predicted probability

78

Algorithm 4 Cross-Graph Autoencoder

Require:

X: The feature matrix of the graph;

A: The adjacency matrix of the graph;

T : The number of iterations;

Ensure:

Z1 & Z2: the learnt embeddings of the autoencoders;

Construct the two autoencoders.

for t = 1 to T do

Calculate A′
(t)
1 and A′

(t)
2 according to Eq.(5.5), Eq.(5.6) and Eq.(5.7);

Construct A
(t+1)
1 and A

(t+1)
2 according to Eq.(5.8) and Eq.(5.9) for the next

iteration to use.

end for

Calculate Z1 & Z2 according to Eq.(5.2) with A
(T)
1 and A

(T)
2 being the input A

respectively.

whether node j and k are connected with an edge from the autoencoder.

Furthermore, we do not fully trust the connections shown in the input graph

structure. So, we take the reconstructed structure partly as a reference, to construct

a new adjacency matrix for the training of the next iteration. The coefficient γ can

be seen as the degree how the structure is trusted. So here comes a further question:

Why the reconstructed structure can be trusted to judge if an edge is an outlier or

not?

When the optimization starts, the autoencoder tries to reconstruct the input

structure. Deep Neural Networks (DNNs), including graph autoencoders, have a

strong ability fit with noisy data. However, according to a recent discovery of the

79

Figure 5.3 : The Cross-Graph Working Mechanism. The reconstruction level (the
reconstruction’s similarity to the input graph) could show its opinion of the possi-
bility of each edge being spurious, represented by the sparsity degree of the dotted
line. So, based on it and the input graph, our Cross-Graph constructs a new updated
graph, which devalue those suspected edges. The edge value is positively correlated
with the reconstruction level, represented by the gradation of the edge color. This
updated graph is provided to the peer-autoencoder for the next iteration update.

DNN memorization mechanism, the network will better fit those easy and clean

instances first (Arpit et al., 2017; Zhang et al., 2016). Thus, when the reconstructed

A′ tries to fit the input A, those elements trying to fit the real 1s in A will converge

to 1 faster, while those trying to fit the corruptions will converge relatively slower.

Therefore, when A compromises with the reconstructed A′, those suspect edges in

A will be given a balanced value instead of 1 to represent the reliability of the edge

and supervise the subsequent training.

Question 2: Why do we need two autoencoders and that they update

their parameters learning each other?

80

As for question 2, maintaining two autoencoders seems unnecessary, since a single

autoencoder can work according to the above analysis. Indeed, a single autoencoder

already has the ability to distinguish and filter out corruptions following our process.

However, the performance of this will be unstable, because the reconstruction in the

first few iterations are very random, highly depending on the initial parameter state.

Therefore, we further use two autoencoders, to reduce the impact of individual

bias. Both autoencoders have an independent ability to learn and filter out cor-

ruptions. We exchange their reconstruction results so one might get advice from

the other. Thereby, different corruptions can be selected out and our model is less

possible to misjudge the corruptions because of a particular initial state.

Incorporate with Novel Algorithms other than GAE It is worth mention-

ing that, our Cross-Graph learning framework can work on, not only the basic graph

convolutional autoencoder, but also other graph embedding frameworks, as long as

they optimize their embedding by minimizing the difference between the original

graph structure and the algorithm constructed structure.

5.3.4 Time Complexity Analysis

Our model is computationally efficient. The time complexity of a single graph

convolutional layer should be O(uda + nd1db) (Chiang et al., 2019), where u is the

total number of edges, n is the number of nodes, da and db are the input and output

dimension of the layer. GAE uses a two-layer convolutional encoder, which takes

O(um+ nmd′ + ud′ + nd′d), where d′ is the dimension of the hidden layer, m is the

input feature dimension and d is the latent representation dimension as defined in

the problem definition. The decoder is an inner-product of the latent representation

and takes O(dn2). So, the GAE takes about O(um + nmd′ + ud′ + nd′d + dn2).

Our Cross-Graph maintains two autoencoders, and the construction of the updated

81

graph structure basically takes O(n2). So, the time complexity of the Cross-Graph

incorporated GAE can be expressed as O(2(um + nmd′ + ud′ + nd′d + dn2 + n2)),

which is on par with the original GAE.

5.4 Experiments

Since we focus on unsupervised learning as explained before, we evaluate our

graph embedding mainly with three unsupervised graph analytic tasks: node clus-

tering, link prediction and network visualization. We conduct experiments for vari-

ous algorithms on both corrupted and uncorrupted datasets to analyze the effect of

our model.

5.4.1 Datasets

We use three graph datasets widely-used in attributed graph learning evaluation,

summarized in Table 5.1. Cora and Citeseer are citation networks where nodes are

publications categorized by the research sub-fields and edges denote the citation

relationships. Wiki is a web-page network containing web-page documents, and the

edges represent there are web-links between the two pages.

To construct the corrupted version of these datasets, we randomly add a certain

percentage of edges to the network structure. We demonstrate in the parameter

study that, our Cross-Graph can strengthen the performance of the baselines under

any ratio of corruption, and with more edges added, the promotion become more

apparent. So, we simply add 40%, 50% and 20% redundancy edges to the Cora,

Citeseer and Wiki datasets respectively as default corruption to make a clear and

comprehensive report in our experiments. For example, for the Cora dataset, orig-

inally with 5, 278 edges, we add 40%, that is 2, 111 spurious edges to the graph

structure to determine our corrupted Cora dataset used in the experiments. All the

experiments with corrupted data use this corruption ratio unless otherwise stated.

82

5.4.2 Baselines

We mainly focus on comparing the performance of different graph autoencoders

with their performance when incorporating our Cross-Graph framework. So, we

choose two representative graph autoencoders as our main baselines as below:

• GAE (Kipf and Welling, 2016b) leverages both topological and content in-

formation from the graph data with a graph convolution operation and learns

unsupervised graph embedding.

• ARGA (Pan et al., 2018) is a graph convolutional autoencoder-based method

that manipulates the learnt embedding with an adversarial regularizer.

For the clustering task, we also include some representative clustering algorithms:

Spectral Clustering, Deepwalk and DNGR for comparison on the corrupted data,

detailed description of these methods could be found in chapter 2.

5.4.3 Node Clustering on Corrupted Data

Evaluation Metrics

We follow Xia et al. (Xia et al., 2014), and employ six metrics to validate our

clustering performance, namely accuracy (ACC), normalized mutual information

(NMI), F-score, precision, recall and average rand index(ARI). A better clustering

scheme should lead to higher scores for all these six metrics.

Experimental Setup

For the baseline algorithms, we keep the settings used in the original papers as far

as possible and select parameters carefully following the procedures in the original

papers. For example, for the GAE algorithm, we construct the encoders with a

32-neuron hidden layer and a 16-neuron embedding layer and train 200 epochs to

83

Dataset Nodes Features Clusters Links

Cora 2,708 1,433 7 5,278

Citeseer 3,327 3,703 6 4,552

Wiki 2,405 4,973 17 11,596

Table 5.1 : Benchmark Graph Datasets

Table 5.2 : Clustering Results on Corrupted Cora Dataset

ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑)

Spectral Clustering 33.55% 15.81% 26.81% 26.89% 26.80% 10.86%

DeepWalk 41.55% 20.48% 30.56% 30.97% 30.28% 15.57%

DNGR 38.33% 17.47% 26.40% 28.19% 24.84% 11.56%

GAE 45.19% 23.58% 11.73% 12.34% 12.41% 18.13%

GAE+Cross-Graph 51.05% 30.07% 18.00% 19.05% 18.74% 24.40%

ARGA 59.53% 37.92% 58.73% 59.80% 61.39% 32.98%

ARGA+Cross-Graph 64.25% 40.28% 61.63% 62.13% 63.73% 38.64%

Table 5.3 : Clustering Results on Corrupted Citeseer Dataset

ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑)

Spectral Clustering 27.64% 5.48% 23.98% 20.90% 28.56% 4.33%

DeepWalk 31.26% 5.91% 23.20% 22.35% 24.19% 5.69%

DNGR 21.23% 0.31% 30.29% 17.86% 99.71% 0.01%

GAE 34.42% 9.91% 16.12% 16.79% 16.63% 8.24%

GAE+Cross-Graph 37.33% 12.35% 16.64% 17.23% 17.01% 10.29%

ARGA 39.39% 13.87% 38.27% 41.64% 38.24% 11.58%

ARGA+Cross-Graph 42.82% 15.05% 41.81% 44.57% 41.40% 13.04%

84

get the result. On the other hand for ARGA, we use a 32-neuron embedding layer

instead and train 100 epochs, in accordance with the original paper.

For our algorithm, we incorporate our Cross-Graph with two representative au-

toencoders for graph learning: Graph Convolutional Autoencoder (GAE) and Ad-

versarially Regularized Graph Autoencoder (ARGA). For a fair comparison, the au-

toencoder part in our algorithm uses the exact same settings as the original method.

For the Cross-Graph part, we set the coefficient γ to 0.02 in accordance with the

parameter study result.

We learn the graph embedding for each method, and then perform k-means

clustering on the embedding to get the results. We run the experiments under each

setting 10 times to get an average score for report and comparison.

Experimental Results

The clustering results of various algorithms on the corrupted Cora, Citeseer and

Wiki datasets are reported in Tables 5.2, 5.3 and 5.4 respectively.

It can be observed from the result that all the algorithms suffer from the corrup-

tion of the data. For instance, the DNGR algorithm completely loses its clustering

ability on the corrupted Citeseer and Wiki datasets. Our Cross-Graph framework

can improve significantly the performance of both GAE and ARGA when they are

used to learn clustering from the corrupted datasets. Take the experiments on the

corrupted Cora dataset as an example. Incorporating it with our Cross-Graph has

increased the performance of GAE from 13.0% in terms of accuracy to 54.4% in terms

of precision, and has also increased the performance of ARGA from 3.8% in terms

of recall to 17.2% in terms of average rand index. Both comparisons demonstrate

the ability of our Cross-Graph to increase robustness against edge corruption.

Detailed Analysis. We further monitor the value of both the spurious and

85

original edges respectively in the Cora and Citeseer datasets along with the opti-

mization of both GAE and ARGA. The change of averaged values is presented in

Fig. 5.4.

The results show a clear trend. Both the original and redundancy edges are

valued universally as 1 at the beginning of the training, because they have no dif-

ference in the input graph. However, our Cross-Graph process has a strong ability

to filter out the redundancy edges, based on the mechanism explained in Section

4. After 200 epochs of training for the GAE-based algorithm and 100 epochs for

the ARGA-based counterpart (the default epochs for these algorithms), the original

and redundancy edges show a clear gap. Taking the GAE-based Cross-Graph as an

example, the original edges keep a relatively high value, the average is 0.543 on the

Cora dataset and 0.607 on the Citeseer dataset; while the average value of redun-

dancy edges has decreased on these datasets to 0.322 and 0.399 respectively, much

closer to 0, which means there is no edge in between. The difference between ARGA

and ARGA-based Cross-Graph is not as high as the GAE-based one. This perhaps,

mainly because (1) it has fewer training epochs by default; and (2) the adversarial

regularizer brings ARGA a stronger ability in fitting those abnormal edges. This

fact also results in an insignificant performance improvement on ARGA, compared

to the improvement on GAE by our Cross-Graph.

Parameter Study. We vary the corruption level of the datasets by continuously

adding random edges to the original graph structure, until the total number of added

edges reaches 50% of the original number. We report the clustering results in Fig.

5.5.

It can be observed that, our Cross-Graph can continuously help improve the

performance of the original algorithm, no matter how many edges we add to the

graph. Even on the original graph without any redundancy edges, GAE + Cross-

86

Table 5.4 : Clustering Results on Corrupted Wiki Dataset

ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑)

Spectral Clustering 30.06% 23.01% 19.06% 19.71% 18.55% 10.56%

DeepWalk 36.70% 28.77% 24.41% 25.71% 23.31% 16.64%

DNGR 16.76% 1.46% 17.92% 9.85% 98.99% 0.07%

GAE 19.16% 13.09% 2.96% 3.99% 4.37% 4.55%

GAE+Cross-Graph 22.37% 18.97% 3.23% 5.83% 4.49% 5.96%

ARGA 40.45% 41.40% 37.86% 45.62% 39.66% 21.32%

ARGA+Cross-Graph 43.45% 42.97% 39.46% 47.97% 43.05% 22.35%

Graph also slightly outperforms GAE in the clustering task. Generally, the more

serious the corruption is, the more effective our Cross-Graph is. This is because

our Cross-Graph is designed for robust learning and can retain performance under

extremely serious corruption.

We also vary the coefficient γ in our Cross-Graph framework. This controls the

balance between the input and reconstructed structure in the updated graph. The

result is reported in Fig. 5.6.

The result from both datasets reveals a similar trend: the performance of the

learnt embedding is well when the coefficient γ is small, and the performance reaches

its peak when γ is around 0.02. As we increase the value of γ from 0.02, the

performance fluctuates and deteriorates overall. This is because (1) the change of

the input graph structure is too rapid for the neural network to become stabilized;

(2) the reconstructed structure is trusted too much and the graph modification is

overdone.

Effectiveness of the Cross-Graph Dual-autoencoders interactive pro-

cess.

87

(a) GAE+Cross-Graph on Cora (b) GAE+Cross-Graph on Citeseer

(c) ARGA+Cross-Graph on Cora (d) ARGA+Cross-Graph on Citeseer

Figure 5.4 : The devalue of two types of edges (original edges and redundancy edges
we added) along with the Cross-Graph training process.

As discussed above, a single autoencoder can already work to filter out the cor-

ruptions. We use two autoencoders to make the framework more stable. To show

the effectiveness of this interactive process, we compare our Cross-Graph with a

framework which maintains only one autoencoder. The input graph for this autoen-

coder is updated according to its own reconstruction result. We keep all the other

settings the same, and run each framework for 20 times. The performance evaluated

by the clustering accuracy is reported in Fig. 5.7.

We can observe from the box plots that, though the average performance of the

single-autoencoder framework is nearly on par with our Cross-Graph, its 20 results

are more dispersive. For example for the Cora dataset, all 20 results from our Cross-

Graph lie above 0.45, and half of them are concentrated between 0.50 and 0.54. On

88

(a) ACC on Cora (b) NMI on Cora

(c) ACC on Citeseer (d) NMI on Citeseer

Figure 5.5 : The clustering performance under different percentage of redundancy
edge corruption.

the other hand, the results from the single-autoencoder framework vary from 0.40

to 0.57. This show our Cross-Graph interactive process can reduce the impact of

individual bias and stabilize the framework.

5.4.4 Link Prediction on Corrupted Data

Evaluation Metrics We report the results of AUC score and AP score (average

precision) follow Pan et al.(Pan et al., 2018). A better link prediction result should

lead to a higher score for both metrics.

Experimental Setup For the link prediction task, we mask 5% edges for hyper-

parameter optimization and 10% edges for performance test. We mask the valid

89

(a) ACC on Cora (b) ACC on Citeseer

Figure 5.6 : The clustering performance with different Cross-Graph coefficient γ.

(a) Cora (b) Citeseer

Figure 5.7 : Box plots of the 20 times’ clustering accuracy from the Cross-Graph
Dual-autoencoders interactive process, compared with a single autoencoder frame-
work. For each box, the five lines from top to bottom represents the maximum,
the first quartiles, the sample median, the third quartiles and the minimum of the
clustering results.

Table 5.5 : Link Prediction Results on Corrupted Datasets

Cora Citeseer Wiki

AUC(↑) AP(↑) AUC(↑) AP(↑) AUC(↑) AP(↑)

GAE 84.03% 86.17% 80.35% 82.88% 75.05% 76.56%

GAE+Cross-Graph 85.72% 87.63% 81.83% 84.07% 76.87% 78.55%

ARGA 86.84% 88.70% 87.29% 89.49% 91.53% 92.71%

ARGA+Cross-Graph 87.74% 89.81% 88.38% 90.49% 92.28% 93.37%

90

Figure 5.8 : The devalue of inner-edges and inter-edges comparison along with the
Cross-Graph training process on uncorrupted Cora dataset.

Table 5.6 : Clustering & Link Prediction Results on Uncorrupted Cora Dataset

ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑) AUC(↑) AP(↑)

GAE 56.85% 41.76% 13.48% 14.55% 14.23% 31.71% 90.93% 92.00%

GAE+Cross-Graph 59.45% 44.04% 13.69% 14.69% 14.64% 33.61% 91.39% 92.43%

and test sets before we corrupt the dataset, to make sure our test sets are clean, as

we do not see it as a plus in predicting those redundancy edges. For the baselines,

we retain the parameter settings described in the original papers.

Experimental Results The detailed results are shown in Table 5.5. We can ob-

serve that our Cross-Graph also helps retain the link prediction performance for the

based algorithms under structural corruption. For example, the ARGA algorithm

originally can achieve both AUC score and AP score as high as 92% on the Cora and

Citeseer dataset. Both scores drop to about 86% − 89% under the corruption. By

incorporating our Cross-Graph, we can recover the performance for about 1%. The

effect of Cross-Graph is not as strong as in the clustering task, probably because

the structural corruption is much more severe for the link prediction task.

91

5.4.5 Experiments on Uncorrupted Data

An interesting observation of our framework is that it can also outperform its

base method on uncorrupted dataset. To deeper analyze the principle of our Cross-

Graph, we also implement our algorithm incorporating GAE on the original “clean”

Cora dataset. The result is summarized in Table 5.6.

From the node clustering and link prediction task performance, we can see GAE

+ Cross-Graph can also slightly outperform GAE on the uncorrupted dataset and

at least match the performance of GAE along all the evaluation metrics.

Since our Cross-Graph’s main ability is to revalue the edges, we also try to

monitor two kinds of edges in this “clean” dataset: the edges linking nodes from

the same cluster as inner edges, and the edges that link nodes from two different

clusters as inter edges. Their average value changes, along with the training process,

are simulated in Fig. 5.8.

Fig. 5.8 shows that inter-edges connecting nodes from two different clusters

devalue much faster than the inner-edges. This is because each cluster of nodes

are closely linked with inner-edges. Inter-edges connecting two nodes from different

clusters are rare and distant from the clusters. Not surprisingly, these inter-edges

are also called weak links in the network and are hard to reconstruct. This will lead

our Cross-Graph to mark them as highly abnormal and devalue these inter-edges

faster than the inner-edges which, in return, strengthen the structure of each cluster

and improve the clustering performance.

5.4.6 Network Visualization on Corrupted Data

We visualize the corrupted Cora dataset in a two-dimension space by applying the

t-SNE algorithm (Van Der Maaten, 2014) on the embedding learned from different

algorithms. The visualizations in Fig. 5.9 show that, due to the structural corruption

92

(a) Embedding from GAE (b) Embedding from GAE+Cross-Graph

(c) Embedding from ARGA (d) Embedding from ARGA+Cross-

Graph

Figure 5.9 : Visualizations of the corrupted Cora dataset, based on the embedding
learned from various algorithms. The dots represent nodes and the seven different
colors represent the ground-truth clusters the nodes belongs to.

of the Cora dataset, GAE already can hardly maintain a meaningful embedding, and

ARGA’s embedding performance is also severely ruined. Fortunately, by applying

Cross-Graph to the original graph autoencoders, the embedding could be effectively

recovered, allowing us to obtain a more meaningful visualization layout of the graph

data.

93

Chapter 6

Learning from Side Information
Constrained Graph Clustering with Contrastive

Regularized Autoencoder

Our last challenge aforementioned is to make use of available side information. To

this end, in this chapter we propose a constrained node clustering framework that

can improve the clustering performance using pair-wise constraint information.

6.1 Background

Attributed graph is a kind of structured data format, in which the plain node

attribute information is combined with the topological structure information of the

graph. With the development of network applications, the mining of attributed

graph has attracted much more attention, since many real-world networks, such as

social networks, citation networks, and protein-protein interaction networks can all

be modeled as attributed graphs.

Node clustering aims to partition the nodes in a graph into disjoint groups. It has

been a long-standing research topic. In recent years, node clustering for attributed

graphs has been more actively researched. A key challenge is to simultaneously

model the structural relationship between nodes and exploit the node content infor-

mation. Various recent attributed node clustering approaches have been proposed

to confront it, utilizing non-negative matrix factorization (Li et al., 2018b; Yang

et al., 2015), content propagation (Liu et al., 2015), generative models (Yang et al.,

2013; He et al., 2017) or GCN-based autoencoders (Kipf and Welling, 2016b; Pan

et al., 2018). The results reported by these methods on several classic benchmark

94

datasets have suggested a looming limit to attributed graph clustering performance.

Attributed graph clustering is a more challenging task then classification due to

the absence of label supervision, and precisely because of it, node clustering earns its

place in real-world applications. In many scenarios, it is expensive to mark labels

for the training data. For instance, in a social network, detecting communities

is helpful for recommendation and statistics analyzing, but these communities are

only ambiguous groups of users with some similarities and hard to define; In citation

networks, there are intricate research fields, interdisciplinary research papers are also

commonplace.

On the other hand, the situation for constraint information is quite different.

in many cases, constraints are much easier to obtain compared with specific labels

defining which cluster the nodes belong to. If two users share very similar attributes

like affiliation and hobbies in a social network, there should be a high possibility

they will be assigned to the same community; If two papers have the same author,

they are very likely to belong to the same research field even if there is no citation in

between. These kinds of constraint information are also helpful. If we can make use

of this information in our clustering, the performance will certainly be improved.

Motivated by these observations, in this paper, we proposed a constrained node

clustering framework for attributed graphs which can improve the clustering perfor-

mance using pair-wise constraint information. To explore the interaction between

the graph structure and node content, we employ a graph convolution-based autoen-

coder, which learns node representation from the graph. A contrastive loss-based

graph regularizer is further designed, to manipulate the embedding learning accord-

ing to the prior pair-wise limitation. The learned embedding could therefore involve

the constraint information. The pairs of nodes indicated to belong to the same com-

munity by the prior will learn similar embedding in the latent space, and further

95

Figure 6.1 : The difference between constrained node clustering and normal node
clustering. Constraint information (the green arrow in the Figure) can define some
pairs of nodes that should be in the same cluster, and therefore may help partition
some equivocal marginal nodes to the right cluster.

naturally assigned to the same cluster.

We summarize the main contributions as follows:

• To the best of our knowledge, we propose the first attributed graph-based node

clustering algorithm that takes pair-wise constraint information into account.

• We propose a regularized graph autoencoder, which utilizes a contrastive reg-

ularizer to model the prior constraint information and learn deep graph em-

bedding for clustering. The clustering result benefits from the graph structure,

the node features as well as the pair-wise constraints.

• We conduct experiments and compare our model with both novel unsupervised

node clustering baselines and constrained clustering methods. The results

show that our model can sufficiently make use of the constraint information

and significantly improve the node clustering performance.

96

6.2 Problem Definition

We consider the node clustering task on the attributed graphs. An attributed

graph is represented as G = (V,E,X), in which V = {vi}i=1,··· ,n consists of a set of

nodes, E = {eij} is a set of edges connecting the nodes. The topological structure of

graph G can be represented as an adjacency matrix A, where Ai,j = 1 if (vi, vj) ∈ E;

otherwise Ai,j = 0. X = {x1; . . . ;xn} are the attribute values where xi ∈ Rm is a

m-dimension real-value attribute vector associated with node vi.

The clustering task aims to partition the nodes in the graph G into k disjoint

clusters {G1, G2, · · · , Gk}, so that nodes within the same group are generally: (1)

close to each other in terms of graph structure while distant otherwise; and (2) more

likely to have similar attribute values.

For our purpose, we add constraints as third party information besides the node

attributes X and graph structure A. Such constraints may be represented as a

constraint list C ∈ Ro×2, where o is the number of given node pairs, and each row

includes a pair of nodes i and j that should be clustered together.

We aim to make use of these constraints to improve the clustering performance

compared with those purely unsupervised clustering schemes.

6.3 Proposed Method

We present our contrastive regularized autoencoder framework in this section.

We first briefly introduce our employed graph convolutional autoencoder. Then we

present our contrastive loss-based regularization term which handles the pair-wise

constraints.

97

Figure 6.2 : Conceptual framework of the Contrastive Regularized Autoencoder
for Constrained Graph Clustering. Given a graph G with graph structure matrix
A, node content matrix X, and a list of node pairs that are constrained to the
same cluster, we aim to learn effective clustering assignment. We train a graph
autoencoder to integrate graph structure and node content information into a latent
node embedding. When optimizing the autoencoder reconstruction loss, we together
minimize a contrastive loss function that forces the constrained node pairs to learn
similar embedding at the same time. The learned embedding is influenced by all
three aspects of the information and used for clustering.

6.3.1 Graph Autoencoder

Autoencoders are widely used for unsupervised tasks such as graph clustering. To

capture the deep information of the networked data, we employ a classic convolution-

based graph autoencoder. The graph autoencoder consists of a graph convolutional

encoder and an inner-product decoder.

Graph Convolutional Encoder: The graph convolutional autoencoder in-

tegrates the two-sides attributed graph information through an encoder based on

the graph convolution operation, and learns latent embedding of the nodes. Its

layer-wise transformation can be represented as f(Z(l), A):

Z(l+1) = f(Z(l), A) = σ(D̃−
1
2 ÃD̃−

1
2Z(l)W (l)). (6.1)

98

Here, σ is a nonlinearity function and W (l) is the weight matrix. Z(l) is the input

to the l-th layer graph convolution function, and Z(l+1) is the corresponding output

of the layer.

We use D̃−
1
2 ÃD̃−

1
2 to approximate the spectral convolution transformation I +

D−
1
2AD−

1
2 , with Ã = A+I, D̃ii =

∑
j Ãij, and I being the identity matrix. Thereby,

the node attributes are combined with attributes from the neighbor nodes through

the convolution operation, and the convoluted node representation contain informa-

tion from both the node content and graph structure.

The standard graph encoder Enc(X,A) takes the node content X as the input

to the first layer Z(1), and stacks two graph convolution layers to obtain a hidden

representation Z:

Z = Enc(X,A) = f(f(X,A), A). (6.2)

Inner Product Decoder: The decoder tries to reconstruct the graph struc-

ture information from the hidden representation. Previous works have tried various

decoders reconstructing different sides of the graph information, and reconstructing

the graph adjacency matrix A has been validated as the best solution, since it also

can be more flexible and fit situations where no content information is available.

Our inner-product decoder contains only a link prediction layer Dec(Z). Based on

the hidden graph representation, its output A′ is the reconstructed graph structure,

and tries to indicate whether there is an edge between two nodes like the original

adjacency matrix A do:

A′ = Dec(Z) = sigmoid(Z>Z), (6.3)

Reconstruction Loss: The graph autoencoder minimizes the reconstruction

error measuring the binary cross-entropy loss between the original structure A and

99

the reconstructed structure A′:

Lr = cross-entropy(A,A′). (6.4)

The weight matrix W (l) is updated through the training and thereby the node

representation Z is optimized.

6.3.2 Contrastive Regularizer

Through the graph autoencoder, we obtain a graph embedding Z, which is

learned from the node attributes and the graph structure. However, existing graph

autoencoders lack the ability to handle constraint information. As we argued above,

constraint information is easily accessible and useful when dealing with unsupervised

problems like clustering. To make use of the constraint information and improve the

unsupervised learning ability of current models, we propose a contrastive regularizer.

Apart from optimizing the reconstruction error of the autoencoder, we also op-

timize a contrastive loss to model the prior constraints information and manipulate

the embedding learning.

Consider prior information that node i and j are highly related and should be

assigned to the same cluster. zi and zj are the autoencoder-learned embeddings

of node i and j (the i-th and j-th row in the hidden representation Z). For the

clustering algorithm to cluster these two nodes together, we naturally need to force

these two embeddings similar to each other. For this purpose, we minimize the

following contrastive loss function:

Lc(i,j) = − log
exp(zi · zj/τ)∑n
u=1 exp(zi · zu/τ)

. (6.5)

Here, τ is a temperature hyper-parameter. We measure the similarity between

zi and zj using dot product. The denominator is summed over all the n nodes of the

100

graph. The whole contrastive loss could be regarded as a n-way softmax classifier

that wants to classify zi to zj.

Obviously, the contrastive loss is a function whose value is low when the target

(zi) is similar to the positive sample (zj) and dissimilar to the negative samples

(the other nodes). So by minimizing the contrastive loss, we can force zi and zj to

be closer to each other, and thereby node i and j are more likely to be clustered

together.

Considering multiple pairs of highly-related nodes that should be clustered to-

gether as prior information. Our contrastive regularizer can be formulated as:

Lc =
∑

(i,j)∈C

− log
exp(zi · zj/τ)∑n
u=1 exp(zi · zu/τ)

. (6.6)

6.3.3 Joint Embedding Learning

We jointly optimize the autoencoder reconstruction and the contrastive loss. Our

total objective function of the framework can be presented as:

L = Lr + γLc, (6.7)

where Lr and Lc are the reconstruction loss and contrastive loss respectively,

γ ≥ 0 is a coefficient that controls the balance in between.

6.3.4 Framework Description

The algorithm is summarized in Algorithm 5. Our framework is simple but

effective, which sufficiently take advantage of the constraint information to improve

the autoencoder embedding performance.

It is worth mentioning that, our contrastive regularizer can also be adopted by

other graph embedding methods to handle extra constraint information.

101

Dataset Nodes Features Clusters Links

Cora 2,708 1,433 7 5,278

Citeseer 3,327 3,703 6 4,552

Pubmed 19,717 500 3 44,338

Table 6.1 : Benchmark Graph Datasets

6.4 Experiments

We evaluate the performance of our framework in this section. We conduct

experiments for various methods and settings, to analyze the effect of our model.

6.4.1 Benchmark Datasets

We employ three graph datasets widely-used in attributed graph learning evalu-

ation, summarized in Table 5.1. These datasets are citation networks where nodes

are publications categorized by the research sub-fields and edges are the citation

relationships.

6.4.2 Baselines

We focus on comparing the performance of different models on the graph cluster-

ing task. Constraint-accessible models naturally have an advantage over traditional

graph clustering methods. We therefore mainly compare with constrained clustering

methods, although there is no constrained clustering baseline perfectly suits the at-

tribute graph data, to the best of our knowledge. We select the following constrained

clustering baselines:

• COP (Wagstaff et al., 2001) is a variant of the k-means algorithm considering

constraint information.

102

Table 6.2 : Clustering Results on Cora Dataset

Info. ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑)

K-means F 50.01% 31.67% 37.56% 37.60% 37.63% 23.92%

Spectral S 39.83% 29.69% 33.16% 31.22% 35.46% 17.44%

TADW F&S 53.64% 36.63% 40.08% 34.16% 49.24% 24.03%

GAE F&S 56.72% 41.72% 41.48% 43.17% 40.06% 30.83%

AGC F&S 68.89% 52.21% 65.60% 67.24% 67.49% 44.81%

COP F&C 70.42% 73.78% 47.32% 43.48% 54.84% 60.86%

LSGR-NMF S&C 71.16% 59.20% 61.12% 63.24% 59.14% 52.97%

LSGR-SC S&C 83.35% 75.21% 81.80% 80.76% 82.87% 77.76%

CRA F&S&C 90.88% 78.24% 91.15% 89.77% 93.04% 78.59%

Table 6.3 : Clustering Results on Citeseer Dataset

Info. ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑)

K-means F 54.39% 31.16% 41.34% 41.13% 41.62% 28.49%

Spectral S 30.80% 9.04% 25.71% 24.13% 27.55% 8.24%

TADW F&S 52.89% 31.95% 43.62% 37.63% 53.15% 28.55%

GAE F&S 38.02% 17.41% 29.67 % 29.06% 30.44% 14.13%

AGC F&S 67.28% 41.44% 62.67% 63.47% 63.09% 41.98%

COP F&C 39.55% 57.55% 21.15% 45.44% 34.53% 34.20%

LSGR-NMF S&C 53.99% 38.85% 44.70% 39.53% 51.43% 30.71%

LSGR-SC S&C 42.06% 29.92% 33.32% 27.88% 41.40% 15.24%

CRA F&S&C 87.25% 69.74% 86.50% 85.95% 88.21% 72.60%

103

• LSGR (Yang et al., 2014) is a semi-supervised community detection frame-

work for topological-only network using latent space graph regularization. It

can be combined with a base algorithm of Spectral Clustering or Non-negative

Matrix Factorization. So we report both results as LSGR-SC and LSGR-NMF.

To have a clear view of the effort of the constraint information, we also list the

performance of some representative graph clustering methods as shown in the tables.

These methods without the constraint information assistance have been introduced

in Chapter 2.

6.4.3 Evaluation Metrics

We follow Xia et al. (Xia et al., 2014), and employ six metrics to validate our

clustering performance, namely accuracy (ACC), normalized mutual information

(NMI), F-score, precision, recall and average rand index(ARI). A better clustering

segmentation should lead to higher scores for all these six metrics.

6.4.4 Experimental Setup

For the baseline methods, we keep their original settings as far as possible, and

carefully select parameters following the procedures in the original paper, to achieve

the best performance.

For our algorithm, we set the temperature hyper-parameter τ to 0.08. The

coefficient γ is simply set to 1. The encoder is constructed with a 32-neuron hidden

layer and a 16-neuron embedding layer. We run the algorithms for 10 times to report

a relatively steady average result.

As for the constraint information, we randomly generate pair-wise constraints

for the constraint-accessible methods. For an undirected graph with n nodes, there

are in total N = n(n− 1)/2 pairs of potential pair-wise relationships. Among these

N pairs, the number of possible node-pair prior information can be represented as:

104

Nm =
K∑
k=1

nk(nk − 1)/2,

with nk being the number of nodes belong to the k-th cluster according to the

ground truth. The other N − Nm potential node pairs are not supposed to be

clustered together.

For convenience, we follow (Yang et al., 2014) and randomly select q node pairs

belong to the same cluster as our standard constraint information and provide it

to all constraint-accessible methods including our algorithm. q is 0.5 percent of the

number of the total potential constraint links Nm for Cora and Citeseer dataset.

For example for the Cora dataset with 2, 708 nodes, there are about 3.665 million of

potential pair-wise relationships and among them, only Nm = 657, 055 are potential

constraint links. We therefore randomly generate 3,285 pair-wise relationships as

our standard constraint information for the Cora dataset. For the Pubmed dataset,

we set q to only 0.01 percent of Nm, since Pubmed has too many potential pair-wise

relationships.

6.4.5 Experimental Results

The clustering results of various algorithms on the datasets are reported in Tables

5.2, 5.3 and 5.4 respectively. F, S and C indicate if the algorithm has taken advantage

of the node feature, graph structure, and pair-wise constraint information.

It can be observed from the results that constraint-accessible methods have a

general advantage over the traditional graph clustering methods. It’s natural since

more information is provided. For example on the Cora dataset, our contrastive

regularized autoencoder represents a relative increase of 60.23% and 87.54% w.r.t.

accuracy and NMI against the basic graph autoencoder (GAE); LSGR-SC also out-

performs the original Spectral Clustering apparently. COP k-means and LSGR

failed to perform well on the Citeseer dataset, may because they are not designed

105

(a) ACC (b) NMI

Figure 6.3 : Average clustering performance evaluated by ACC and NMI, with
different temperature parameter τ , from 0.01 to 0.1.

for attributed graphs and cannot well model the complex relationship among the

different aspects of information. Citeseer is a relatively delicate dataset and the

embedding could become unstable due to some constraint-based operation.

Our CRA obtain satisfactory results on all three datasets, with only very few

pair-wise constraints information. The reasons may include: (1) the constraint

information is powerful helping with unsupervised tasks like clustering; (2) the con-

trastive loss efficiently force constrained nodes to be similar to each other; and (3)

Our model is specially designed for constrained clustering for attributed graph, and

can properly exploit the interaction among the three aspects information.

6.4.6 Parameter Study

We vary the temperature hyper-parameter from 0.01 to 0.1 and report the results

from both Cora and Citeseer datasets in Fig. 6.3.

The results show that, when increasing the parameter τ from 0.01 to about 0.05,

the clustering performance of the learned embedding improves significantly. When

τ increase from 0.05 to 0.1, the clustering performance is not much influenced. The

performance reaches its peak when τ is set to about 0.08 for both Cora and Citeseer

106

(a) Cora dataset (b) Citeseer dataset

Figure 6.4 : Average clustering performance with different number of constrained
node pairs. The percentage is based on the total potential constraint links Nm.

Table 6.4 : Clustering Results on Pubmed Dataset

Info. ACC(↑) NMI(↑) F(↑) P(↑) R(↑) ARI(↑)

K-means F 57.99% 27.82% 54.43% 48.82% 62.07% 24.56%

Spectral S 49.67% 14.69% 47.09% 40.66% 56.13% 9.82%

TADW F&S 56.47% 22.40% 48.11% 46.48% 49.96% 17.73%

GAE F&S 62.39% 24.92% 51.17% 51.82% 50.56% 24.66%

AGC F&S 67.92% 30.63% 68.84% 73.32% 69.49% 31.16%

COP F&C 60.27% 29.00% 57.79% 51.56% 61.35% 2.02%

CRA F&S&C 86.56% 56.14% 86.15% 85.50% 87.41% 63.67%

1 The Pubmed dataset is too large for the LSGR algorithm to run.

107

(a) Cora learned from GAE (b) Cora learned from CRA

(c) Citeseer learned from GAE (d) Citeseer learned from CRA

Figure 6.5 : Visualizations of the Cora and Citeseer datasets, based on the em-
bedding learned from GAE and our CRA. The dots represent nodes and the seven
different colors represent the ground-truth clusters the nodes belong to.

108

datasets.

We also vary the number of pair-wise constraints provided as prior information

to our method, from no constraint provided to 0.6 percent of the total potential

pairs Nm. The results are reported in Fig. 6.4.

The results from both Cora and Citeseer dataset reveal a similar trend: Providing

the constraint information can significantly help to improve the quality of the learned

embedding. The improvement is tremendous with little constrained pairs, and the

increase rate gradually decays with more pairs provided (but the performance keeps

improving).

6.4.7 Network Visualization

We also visualize the Cora and Citeseer datasets in a two-dimension space by

applying the t-SNE algorithm (Van Der Maaten, 2014) on the embedding learned

from both our CRA and a basic graph autoencoder. The visualization in Fig. 5.9

shows that with the help of constraint information, CRA has learnt obviously better

node embedding compared with the original autoencoder.

109

Algorithm 5 Contrastive Regularized Autoencoder

Require:

G = V,E,X: a graph with links and node features;

C = [(i1, j1), (i2, j2), . . . , (io, jo)]: Constraint Node-Pair List;

k: Number of clusters;

Iter: Number of iterations;

γ: Loss Balance Coefficient;

Ensure:

Final constrained clustering results.

for l = 0 to Iter − 1 do

Calculate the convoluted graph embedding Z according to Eq.(5.2);

Calculate the reconstructed graph structure A′ according to Eq.(6.3) and the

reconstruction loss Lr according to Eq.(6.4);

Construct the query matrix for the contrastive loss based-on the hidden embed-

ding Qry = (Zi1 , Zi2 , . . . , Zio); the dictionary matrix Dic = (Zj1 , Zj2 , . . . , Zjo);

calculate the contrastive loss Lc according to Eq.(6.6)

update the model by minimizing Eq.(4.22)

end for

Get the clustering results with final Z by the K-means algorithm

110

Chapter 7

Conclusion

This thesis aimed to study the topic of unsupervised graph learning with deep neu-

ral networks. We especially focused on autoencoder-based algorithms for attributed

graphs. While previous works were mostly shallow methods or one side information-

based approaches, this thesis tried to explore this research area from the following

perspectives: (1) How to integrate both graph structure and node content informa-

tion for graph learning; (2) How to learn deep informative representation for graph

data; (3) How to design goal-directed frameworks to avoid the inconsistency between

the learned embedding architecture and the downstream tasks; (4) How to deal with

different unconventional conditions like corrupted structure of the graph data; and

(5) How to make use of available side information.

Specially, we proposed four frameworks to deal with these aforementioned chal-

lenges. We first proposed MGAE, which integrates the two aspects of information

with a specially designed single-layer autoencoder. To learn better deep represen-

tation, we further added random noise to the graph and proposed a marginalized

process upon it. Such structure could be stacked multiple layers to learn represen-

tative embedding for graph clustering. We then proposed DNEGC, which combines

graph autoencoder with a self-training module, and can learn graph embedding and

perform clustering simultaneously in a unified framework, thereby achieve clustering-

oriented graph embedding for better clustering performance. To deal with corrupted

graph structure information, we further proposed Cross-Graph, which can learn ro-

bust graph embedding against structure corruption. Two graph autoencoders were

111

maintained, which learn from each other the reliability of each edge and filter out

the redundancy edges. Lastly, to make use of side information, we also proposed a

constrained graph clustering method, which use a contrastive regularized graph au-

toencoder to model the pair-wise constraint information and improve the clustering

performance. Experiments on real-world datasets have shown the effectiveness of

these frameworks.

For future works, we would like to extend our research to more complex graph

data conditions. For example, we would like to take cannot-link constraints into

consideration when dealing with side information; for corrupted data, we would like

to explore more realistic data from real-world scenarios with noise or fragment; we

would also like to try to learn from more challenging graphs like multi-view graphs,

spatial-temporal graphs, heterogeneous graphs or knowledge graphs.

112

Bibliography

Al Hasan, M. & Zaki, M. J., 2011, ‘A survey of link prediction in social networks’,

Social network data analytics, Springer, pp. 243–275.

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S.,

Maharaj, T., Fischer, A., Courville, A., Bengio, Y. et al., 2017, ‘A closer look at

memorization in deep networks’, International Conference on Machine Learning,

PMLR, pp. 233–242.

Atwood, J. & Towsley, D., 2016, ‘Diffusion-convolutional neural networks’, NIPS,

pp. 1993–2001.

Blum, A. & Mitchell, T., 1998, ‘Combining labeled and unlabeled data with co-

training’, COLT, ACM, pp. 92–100.

Bojchevski, A. & Günnemann, S., 2018, ‘Bayesian robust attributed graph clus-

tering: Joint learning of partial anomalies and group structure’, Proceedings of

AAAI, .

Bruna, J., Zaremba, W., Szlam, A. & LeCun, Y., 2013, ‘Spectral networks and

locally connected networks on graphs’, arXiv preprint arXiv:1312.6203.

Cai, D., He, X., Wu, X. & Han, J., 2008, ‘Non-negative matrix factorization on

manifold’, Proc. of ICDM, IEEE, pp. 63–72.

Cai, H., Zheng, V. W. & Chang, K. C.-C., 2018, ‘A comprehensive survey of graph

embedding: Problems, techniques, and applications’, TKDE, vol. 30, no. 9, pp.

1616–1637.

113

Cai, Q., Gong, M., Ma, L., Ruan, S., Yuan, F. & Jiao, L., 2015, ‘Greedy discrete

particle swarm optimization for large-scale social network clustering’, Information

Sciences, vol. 316, pp. 503–516.

Cao, S., Lu, W. & Xu, Q., 2016, ‘Deep neural networks for learning graph represen-

tations’, Proc. of AAAI, AAAI Press, pp. 1145–1152.

Chang, J. & Blei, D. M., 2009, ‘Relational topic models for document networks.’,

AIStats, , vol. 9pp. 81–88.

Chen, M., Xu, Z., Sha, F. & Weinberger, K. Q., 2012, ‘Marginalized denoising

autoencoders for domain adaptation’, ICML, pp. 767–774.

Chen, P.-Y. & Wu, L., 2017, ‘Revisiting spectral graph clustering with generative

community models’, ICDM, IEEE, pp. 51–60.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S. & Hsieh, C.-J., 2019, ‘Cluster-gcn:

An efficient algorithm for training deep and large graph convolutional networks’,

KDD, pp. 257–266.

Cohn, D. & Hofmann, T., 2001, ‘The missing link-a probabilistic model of document

content and hypertext connectivity’, Advances in neural information processing

systems, pp. 430–436.

Dahl, G. E., Yu, D., Deng, L. & Acero, A., 2012, ‘Context-dependent pre-trained

deep neural networks for large-vocabulary speech recognition’, IEEE Transactions

on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30–42.

Defferrard, M., Bresson, X. & Vandergheynst, P., 2016, ‘Convolutional neural net-

works on graphs with fast localized spectral filtering’, NIPS, pp. 3844–3852.

Diamond, S., Sitzmann, V., Heide, F. & Wetzstein, G., 2017, ‘Unrolled optimization

with deep priors’, arXiv preprint arXiv:1705.08041.

114

Dizaji, K. G., Herandi, A., Deng, C., Cai, W. & Huang, H., 2017, ‘Deep clustering

via joint convolutional autoencoder embedding and relative entropy minimiza-

tion’, ICCV, IEEE, pp. 5747–5756.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-

Guzik, A. & Adams, R. P., 2015, ‘Convolutional networks on graphs for learning

molecular fingerprints’, NIPS, pp. 2224–2232.

Eaton, E. & Mansbach, R., 2012, ‘A spin-glass model for semi-supervised community

detection’, Twenty-Sixth AAAI Conference on Artificial Intelligence, .

Fortunato, S., 2010, ‘Community detection in graphs’, Physics reports, vol. 486, no.

3-5, pp. 75–174.

Gao, L., Yang, H., Zhou, C., Wu, J., Pan, S. & Hu, Y., 2018, ‘Active discriminative

network representation learning’, Proc. of IJCAI, pp. 2142–2148.

Girvan, M. & Newman, M. E., 2002, ‘Community structure in social and biological

networks’, Proc. of NAS, vol. 99, no. 12, pp. 7821–7826.

Grover, A. & Leskovec, J., 2016, ‘node2vec: Scalable feature learning for networks’,

KDD, pp. 855–864.

Gu, Q. & Zhou, J., 2009, ‘Co-clustering on manifolds’, Proc. of SIGKDD, ACM, pp.

359–368.

Guo, T., Pan, S., Zhu, X. & Zhang, C., 2018, ‘Cfond: consensus factorization

for co-clustering networked data’, IEEE Transactions on Knowledge and Data

Engineering, vol. 31, no. 4, pp. 706–719.

Guo, X., Gao, L., Liu, X. & Yin, J., 2017a, ‘Improved deep embedded clustering

with local structure preservation’, IJCAI, pp. 1753–1759.

115

Guo, X., Liu, X., Zhu, E. & Yin, J., 2017b, ‘Deep clustering with convolu-

tional autoencoders’, International Conference on Neural Information Processing,

Springer, pp. 373–382.

Hadsell, R., Chopra, S. & LeCun, Y., 2006, ‘Dimensionality reduction by learning

an invariant mapping’, 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’06), , vol. 2IEEE, pp. 1735–1742.

Hammond, D. K., Vandergheynst, P. & Gribonval, R., 2009, ‘Wavelets on graphs

via spectral graph theory’, arXiv preprint arXiv:0912.3848.

Hammond, D. K., Vandergheynst, P. & Gribonval, R., 2011, ‘Wavelets on graphs via

spectral graph theory’, Applied and Computational Harmonic Analysis, vol. 30,

no. 2, pp. 129–150.

Han, B., Yao, Q., Yu, X., Niu, G., Xu, M., Hu, W., Tsang, I. & Sugiyama, M.,

2018, ‘Co-teaching: Robust training of deep neural networks with extremely noisy

labels’, NeurIPS, pp. 8527–8537.

Hastings, M. B., 2006, ‘Community detection as an inference problem’, Physical

Review E, vol. 74, no. 3, p. 035102.

He, D., Feng, Z., Jin, D., Wang, X. & Zhang, W., 2017, ‘Joint identification of net-

work communities and semantics via integrative modeling of network topologies

and node contents’, Thirty-First AAAI Conference on Artificial Intelligence, .

He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R., 2020, ‘Momentum contrast for

unsupervised visual representation learning’, Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pp. 9729–9738.

Henaff, M., Bruna, J. & LeCun, Y., 2015, ‘Deep convolutional networks on graph-

structured data’, arXiv preprint arXiv:1506.05163.

116

Hu, P., Chan, K. C. & He, T., 2017, ‘Deep graph clustering in social network’, Proc.

of WWW, pp. 1425–1426.

Hu, R., Pan, S., Long, G., Zhu, X., Jiang, J. & Zhang, C., 2016, ‘Co-clustering

enterprise social networks’, IJCNN, pp. 107–114.

Ji, S., Pan, S., Cambria, E., Marttinen, P. & Yu, P. S., 2020, ‘A survey on

knowledge graphs: Representation, acquisition and applications’, arXiv preprint

arXiv:2002.00388.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J. & Fei-Fei, L., 2018, ‘Mentornet: Learning

data-driven curriculum for very deep neural networks on corrupted labels’, ICML,

.

Kim, S.-Y., Jung, T.-S., Suh, E.-H. & Hwang, H.-S., 2006, ‘Customer segmentation

and strategy development based on customer lifetime value: A case study’, Expert

systems with applications, vol. 31, no. 1, pp. 101–107.

Kipf, T. N. & Welling, M., 2016a, ‘Semi-supervised classification with graph convo-

lutional networks’, arXiv preprint arXiv:1609.02907.

Kipf, T. N. & Welling, M., 2016b, ‘Variational graph auto-encoders’, arXiv preprint

arXiv:1611.07308.

Kipf, T. N. & Welling, M., 2017, ‘Semi-supervised classification with graph convo-

lutional networks’, ICLR, .

Lawrence, S., Giles, C. L., Tsoi, A. C. & Back, A. D., 1997, ‘Face recognition: A

convolutional neural-network approach’, IEEE transactions on neural networks,

vol. 8, no. 1, pp. 98–113.

Leskovec, J. & Mcauley, J. J., 2012, ‘Learning to discover social circles in ego net-

works’, Proc. of NIPS, pp. 539–547.

117

Li, J., Dani, H., Hu, X. & Liu, H., 2017, ‘Radar: Residual analysis for anomaly

detection in attributed networks.’, IJCAI, pp. 2152–2158.

Li, Y., Sha, C., Huang, X. & Zhang, Y., 2018a, ‘Community detection in attributed

graphs: An embedding approach’, Proceedings of AAAI, .

Li, Y., Sha, C., Huang, X. & Zhang, Y., 2018b, ‘Community detection in attributed

graphs: An embedding approach’, Thirty-Second AAAI Conference on Artificial

Intelligence, .

Liang, D., Cheng, J., Ke, Z. & Ying, L., 2019, ‘Deep mri reconstruction: Unrolled

optimization algorithms meet neural networks’, arXiv preprint arXiv:1907.11711.

Liu, L., Xu, L., Wangy, Z. & Chen, E., 2015, ‘Community detection based on

structure and content: A content propagation perspective’, Proc. of ICDM, IEEE,

pp. 271–280.

Liu, N., Huang, X. & Hu, X., 2017, ‘Accelerated local anomaly detection via resolv-

ing attributed networks.’, IJCAI, pp. 2337–2343.

Ma, X., Gao, L., Yong, X. & Fu, L., 2010, ‘Semi-supervised clustering algorithm

for community structure detection in complex networks’, Physica A: Statistical

Mechanics and its Applications, vol. 389, no. 1, pp. 187–197.

Maaten, L. v. d. & Hinton, G., 2008, ‘Visualizing data using t-sne’, JMLR, pp.

2579–2605.

Malach, E. & Shalev-Shwartz, S., 2017, ‘Decoupling” when to update” from” how

to update”’, NeurIPS, pp. 960–970.

Newman, M. E., 2006a, ‘Finding community structure in networks using the eigen-

vectors of matrices’, Physical review E, vol. 74, no. 3, p. 036104.

118

Newman, M. E., 2006b, ‘Modularity and community structure in networks’, Proc.

of NAS, vol. 103, no. 23, pp. 8577–8582.

Oord, A. v. d., Li, Y. & Vinyals, O., 2018, ‘Representation learning with contrastive

predictive coding’, arXiv preprint arXiv:1807.03748.

Ou, M., Cui, P., Pei, J., Zhang, Z. & Zhu, W., 2016, ‘Asymmetric transitivity

preserving graph embedding’, KDD, pp. 1105–1114.

Pan, S., Hu, R., Fung, S.-f., Long, G., Jiang, J. & Zhang, C., 2019, ‘Learning graph

embedding with adversarial training methods’, IEEE Transactions on Cybernet-

ics, vol. 50, no. 6, pp. 2475–2487.

Pan, S., Hu, R., Long, G., Jiang, J., Yao, L. & Zhang, C., 2018, ‘Adversarially

regularized graph autoencoder for graph embedding’, Proc. of IJCAI, pp. 2609–

2615.

Pan, S., Wu, J., Zhu, X., Zhang, C. & Wang, Y., 2016, ‘Tri-party deep network

representation’, Proc. of IJCAI, pp. 1895–1901.

Pathak, D., Krahenbuhl, P. & Darrell, T., 2015, ‘Constrained convolutional neural

networks for weakly supervised segmentation’, Proceedings of the IEEE interna-

tional conference on computer vision, pp. 1796–1804.

Perozzi, B., Al-Rfou, R. & Skiena, S., 2014, ‘Deepwalk: Online learning of social

representations’, Proc. of SIGKDD, ACM, pp. 701–710.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., Wang, K. & Tang,

J., 2020, ‘Gcc: Graph contrastive coding for graph neural network pre-training’,

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 1150–1160.

119

Reihanian, A., Feizi-Derakhshi, M.-R. & Aghdasi, H. S., 2018, ‘Overlapping commu-

nity detection in rating-based social networks through analyzing topics, ratings

and links’, Pattern Recognition, vol. 81, pp. 370–387.

Ren, Y., Hu, K., Dai, X., Pan, L., Hoi, S. C. & Xu, Z., 2019, ‘Semi-supervised deep

embedded clustering’, Neurocomputing, vol. 325, pp. 121–130.

Schmidt, U. & Roth, S., 2014, ‘Shrinkage fields for effective image restoration’, Proc.

of the CVPR, pp. 2774–2781.

Shao, M., Li, S., Ding, Z. & Fu, Y., 2015, ‘Deep linear coding for fast graph clus-

tering.’, Proc. of IJCAI, pp. 3798–3804.

Shen, X., Pan, S., Liu, W., Ong, Y. & Sun, Q., 2018, ‘Discrete network embedding’,

Proc. of IJCAI, pp. 3549–3555.

Sun, Y., Han, J., Gao, J. & Yu, Y., 2009, ‘itopicmodel: Information network-

integrated topic modeling’, Proc. of ICDM, IEEE, pp. 493–502.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J. & Mei, Q., 2015, ‘Line: Large-scale

information network embedding’, Proc. of WWW, ACM, pp. 1067–1077.

Tian, F., Gao, B., Cui, Q., Chen, E. & Liu, T.-Y., 2014, ‘Learning deep representa-

tions for graph clustering.’, AAAI, pp. 1293–1299.

Van Der Maaten, L., 2014, ‘Accelerating t-sne using tree-based algorithms’, The

Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. & Bengio, Y., 2017,

‘Graph attention networks’, arXiv preprint arXiv:1710.10903.

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A., 2008, ‘Extracting and

composing robust features with denoising autoencoders’, Proc. of ICML, pp. 1096–

1103.

120

Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S. et al., 2001, ‘Constrained k-means

clustering with background knowledge’, Icml, , vol. 1pp. 577–584.

Wang, C., Pan, S., Long, G., Zhu, X. & Jiang, J., 2017a, ‘Mgae: Marginalized graph

autoencoder for graph clustering’, Proc. of CIKM, ACM, pp. 889–898.

Wang, H., Zhou, C., Chen, X., Wu, J., Pan, S. & Wang, J., 2020a, ‘Graph stochastic

neural networks for semi-supervised learning’, Advances in Neural Information

Processing Systems, vol. 33.

Wang, L., Yu, Z., Han, Q., Yang, D., Pan, S., Yao, Y. & Zhang, D., 2020b, ‘Compact

scheduling for task graph oriented mobile crowdsourcing’, IEEE Transactions on

Mobile Computing.

Wang, L., Yu, Z., Xiong, F., Yang, D., Pan, S. & Yan, Z., 2019, ‘Influence spread

in geo-social networks: a multiobjective optimization perspective’, IEEE Trans-

actions on Cybernetics.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W. & Yang, S., 2017b, ‘Community

preserving network embedding’, Proceedings of the AAAI Conference on Artificial

Intelligence, , vol. 31.

Wang, Y., Zhang, W., Wu, L., Lin, X., Fang, M. & Pan, S., 2016, ‘Iterative views

agreement: an iterative low-rank based structured optimization method to multi-

view spectral clustering’, arXiv preprint arXiv:1608.05560.

Wang, Z., Chen, C. & Li, W., 2017c, ‘Predictive network representation learning for

link prediction’, SIGIR, pp. 969–972.

Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K. & Zhu, L., 2019a, ‘Adver-

sarial examples for graph data: Deep insights into attack and defense’, IJCAI,

pp. 4816–4823.

121

Wu, M., Pan, S., Zhou, C., Chang, X. & Zhu, X., 2020a, ‘Unsupervised domain

adaptive graph convolutional networks’, Proceedings of The Web Conference 2020,

pp. 1457–1467.

Wu, M., Pan, S. & Zhu, X., 2020b, ‘Openwgl: Open-world graph learning’, 2020

IEEE International Conference on Data Mining (ICDM), IEEE, pp. 681–690.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Yu, P. S., 2019b, ‘A comprehensive

survey on graph neural networks’, arXiv preprint arXiv:1901.00596.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X. & Zhang, C., 2020c, ‘Connecting

the dots: Multivariate time series forecasting with graph neural networks’, arXiv

preprint arXiv:2005.11650.

Wu, Z., Xiong, Y., Yu, S. X. & Lin, D., 2018, ‘Unsupervised feature learning via

non-parametric instance discrimination’, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3733–3742.

Xia, R., Pan, Y., Du, L. & Yin, J., 2014, ‘Robust multi-view spectral clustering via

low-rank and sparse decomposition.’, Proc. of AAAI, pp. 2149–2155.

Xie, J., Girshick, R. & Farhadi, A., 2016, ‘Unsupervised deep embedding for clus-

tering analysis’, ICML, pp. 478–487.

Xie, Y., Gong, M., Wang, S. & Yu, B., 2018, ‘Community discovery in networks

with deep sparse filtering’, Pattern Recognition, vol. 81, pp. 50–59.

Yang, C., Liu, Z., Zhao, D., Sun, M. & Chang, E. Y., 2015, ‘Network representation

learning with rich text information.’, Proc. of IJCAI, pp. 2111–2117.

Yang, J. & Leskovec, J., 2012, ‘Community-affiliation graph model for overlapping

network community detection’, Proc. of ICDM, pp. 1170–1175.

122

Yang, J. & Leskovec, J., 2013, ‘Overlapping community detection at scale: a nonneg-

ative matrix factorization approach’, Proceedings of the sixth ACM international

conference on Web search and data mining, ACM, pp. 587–596.

Yang, J., McAuley, J. & Leskovec, J., 2013, ‘Community detection in networks with

node attributes’, Proc. of ICDM, IEEE, pp. 1151–1156.

Yang, L., Cao, X., Jin, D., Wang, X. & Meng, D., 2014, ‘A unified semi-supervised

community detection framework using latent space graph regularization’, IEEE

transactions on cybernetics, vol. 45, no. 11, pp. 2585–2598.

Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O., 2016, ‘Understanding

deep learning requires rethinking generalization’, arXiv:1611.03530.

Zhang, D., Yin, J., Zhu, X. & Zhang, C., 2018, ‘Network representation learning: A

survey’, IEEE transactions on Big Data, vol. 6, no. 1, pp. 3–28.

Zhang, H., Kiranyaz, S. & Gabbouj, M., 2017, ‘Outlier edge detection using random

graph generation models and applications’, JBD, vol. 4, no. 1, p. 11.

Zhang, X., Liu, H., Li, Q. & Wu, X.-M., 2019, ‘Attributed graph clustering via

adaptive graph convolution’, Proc. of IJCAI, pp. 4327–4333.

Zhang, Z.-Y., 2013, ‘Community structure detection in complex networks with par-

tial background information’, EPL (europhysics letters), vol. 101, no. 4, p. 48005.

Zhang, Z.-Y., Sun, K.-D. & Wang, S.-Q., 2013, ‘Enhanced community structure

detection in complex networks with partial background information’, Scientific

reports, vol. 3, p. 3241.

Zhou, C. & Paffenroth, R. C., 2017, ‘Anomaly detection with robust deep autoen-

coders’, Proc. of KDD, ACM, pp. 665–674.

123

Zhou, Y., Cheng, H. & Yu, J. X., 2009, ‘Graph clustering based on struc-

tural/attribute similarities’, Proc. of the VLDB Endowment, vol. 2, no. 1, pp.

718–729.

Zhu, D., Zhang, Z., Cui, P. & Zhu, W., 2019a, ‘Robust graph convolutional networks

against adversarial attacks’, KDD, pp. 1399–1407.

Zhu, S., Pan, S., Zhou, C., Wu, J., Cao, Y. & Wang, B., 2020, ‘Graph geometry

interaction learning’, arXiv preprint arXiv:2010.12135.

Zhu, S., Zhou, C., Pan, S., Zhu, X. & Wang, B., 2019b, ‘Relation structure-aware

heterogeneous graph neural network’, 2019 IEEE International Conference on

Data Mining (ICDM), IEEE, pp. 1534–1539.

Zhu, X., Loy, C. C. & Gong, S., 2015, ‘Constrained clustering with imperfect oracles’,

IEEE transactions on neural networks and learning systems, vol. 27, no. 6, pp.

1345–1357.

Zügner, D., Akbarnejad, A. & Günnemann, S., 2018, ‘Adversarial attacks on neural

networks for graph data’, KDD, pp. 2847–2856.

	Title Page
	Certificate of Authorship/Originality
	Abstract
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	Abbreviation
	Nomenclature and Notation
	1 Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Thesis Organization

	2 Literature Review
	2.1 Graph Learning Overview
	2.1.1 Deep Neural Networks for Graphs
	2.1.2 Graph Embedding Models
	2.1.3 Node Clustering in Graphs

	2.2 Techniques Employed in Our Frameworks
	2.2.1 Autoencoder
	2.2.2 Deep Clustering Algorithms
	2.2.3 Co-training based Methods
	2.2.4 Outlier-Oriented Graph Models
	2.2.5 Contrastive Learning
	2.2.6 Constrained Clustering

	2.3 Baseline Methods

	3 Learning Using Two-aspects Information MGAE: Marginalized Graph Autoencoder for Graph Clustering
	3.1 Background
	3.2 Problem Definition
	3.3 Proposed Method
	3.3.1 Graph Convolutional Network
	3.3.2 Marginalized Graph Autoencoder (MGAE)
	3.3.3 Graph Clustering Algorithm

	3.4 Experiments
	3.4.1 Benchmark Datasets
	3.4.2 Baseline Methods
	3.4.3 Evaluation Metrics & Parameter Settings
	3.4.4 Experiment Results

	4 Learning with Goal-directed Framework Deep Neighbor-aware Embedding for Node Clustering in Attributed Graphs
	4.1 Background
	4.2 Problem Definition and Overall Framework
	4.2.1 Overall Framework

	4.3 Proposed Method
	4.3.1 Graph Autoencoder
	4.3.2 Self-optimizing Embedding
	4.3.3 Joint Embedding and Clustering Optimization

	4.4 Experiments
	4.4.1 Benchmark Datasets
	4.4.2 Baseline Methods
	4.4.3 Evaluation Metrics & Parameter Settings
	4.4.4 Experiment Results

	5 Learning Corrupted Graph Data Cross-Graph: Robust and Unsupervised Embedding for Attributed Graphs with Corrupted Structure
	5.1 Background
	5.2 Problem Definition
	5.3 Proposed Method
	5.3.1 Graph Autoencoder
	5.3.2 Cross-Graph Learning Framework
	5.3.3 Algorithm Description and Deeper Insights
	5.3.4 Time Complexity Analysis

	5.4 Experiments
	5.4.1 Datasets
	5.4.2 Baselines
	5.4.3 Node Clustering on Corrupted Data
	5.4.4 Link Predictionon Corrupted Data
	5.4.5 Experiments on Uncorrupted Data
	5.4.6 Network Visualization on Corrupted Data

	6 Learning from Side Information Constrained Graph Clustering with Contrastive Regularized Autoencoder
	6.1 Background
	6.2 Problem Definition
	6.3 Proposed Method
	6.3.1 Graph Autoencoder
	6.3.2 Contrastive Regularizer
	6.3.3 Joint Embedding Learning
	6.3.4 Framework Description

	6.4 Experiments
	6.4.1 Benchmark Datasets
	6.4.2 Baselines
	6.4.3 Evaluation Metrics
	6.4.4 Experimental Setup
	6.4.5 Experimental Results
	6.4.6 Parameter Study
	6.4.7 Network Visualization

	7 Conclusion
	Bibliography

