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ABSTRACT

The electronic nose (e-nose) is an artificial olfactory system, consisting of a gas

sensor array, a control system, and algorithms, designed to detect and identify

the single or mixtures of odours. Owing to the boom of gas sensor technology and

machine learning algorithms, e-noses have found wide applications in many different

fields. However, the performance of e-noses in real applications has been challenged due

to the 3D issue (i.e. the discreteness issue, the drift issue, and the disturbance issue).

This thesis mainly focuses on the discreteness issue, especially the instability in feature

representations caused by sensor noises.

A kernel regularization modelling-based method is proposed to provide stable rep-

resentations for target odours. This method regards the e-nose as a whole system. The

estimated parameters of the system are applied as features to represent the odour. The

use of a smooth and stable kernel in the regularization term helps to overcome the

ill-posed problem existing in deconvolution. The performance of the proposed method is

verified by the experiment of classifying six target perfumes measured under a relatively

stable environment.

However, the above-proposed method requires an accurate setting of the initial time

(time of gas-on). In order to avoid a laborious searching of this time point, an improved

method based on multiscale wavelet kernel regularization is proposed. The multiscale

wavelet kernel inherits the advantage from wavelet function in approximating arbitrary

signals and equips the method with the ability in resistance to random noise. The

performance of the proposed method is verified by the experiment of classifying four

target whiskies. The training and testing samples were obtained from two environments.

Accordingly, a framework of "feature extraction – domain adaptation" is proposed in the

experiment.

Aiming at the instability of traditional transient-state features extracted from the

noise-contaminated signal, a novel kernel Tikhonov regularization-based numerical

differentiation algorithm is proposed. The proposed method can improve such features by

directly estimating accurate high-order derivatives from noisy signals. The performance
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of the proposed method is verified by the experiment of identifying four target whiskies.

The training and testing set were collected from two different environments. Moreover,

samples of two new whiskies were added to the testing set as disturbances. Accordingly,

a framework of "feature extraction – domain adaptation – one-class classification" is

proposed in this experiment.

In addition, on the basis of stable feature representations, we also proposed two

frameworks for food freshness monitoring and evaluation. Monitoring is realized by

one-class classification. A single hidden Markov model (HMM) trained only by fresh

samples is applied to track the change in freshness. For freshness evaluation, an HMM-

based decoding algorithm is proposed to cluster the freshness level when the whole

life-span data of meat stored in a specific storage condition is available. Then, HMM for

each freshness level is trained and applied in parallel as freshness evaluation models to

classify the tested meat samples.
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4.3 Simulated TGS MOS sensor’s response. The blue line denotes the simulated
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5.3 Representative example of feature extraction. Six transient-state features are
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6.5 (a) Experiment setup. The odour of the tested meat sample was pumped to

the sensor chamber through the input port II by sampling needle. After one

measurement, fresh air was pumped to clean odour molecules from the sensor

array. Meanwhile, the sensors’ responses were sent to and stored in a tablet

PC (Pad). (b) Control logic of the NOS.E system. Connect the meat sample to

input port II. At the baseline setting stage, open Valve I, III, IV and Pumps I,

II and keep the flow rate at 1.1L/min for 30 seconds letting the fresh air to

wash the sensor chamber. The baseline of each sensor can be obtained. At the

testing stage, keep Valve III, IV and the Pump I, II open, and control the flow

rate at 1.1L/min. Then, close Valve I while opening Valve II. This state would

last for 90 seconds, during which the sensor’s response would increase and

reach the steady value. At the recovery stage, keeping the state of Valve III,

IV and the Pump I, II unchanged, close Valve II while opening Valve I. This

state would last for 300 seconds, during which the sensor’s response would

return to its baseline. After the measurement, remove the meat sample from

input port II. Open all valves and pumps, and set the flow rate at 2.2L/min

letting the fresh air clean the residual odour molecules in the gas circuit for 80

seconds. Meanwhile, the sensor’s response were converted into digital signal

at a 1-Hz sampling rate and sent to the Pad via the Wi-Fi module. . . . . . . . 105

xxi



LIST OF FIGURES

6.6 Boxplots of HMM-based meat freshness monitoring. (a) Fish monitoring result.
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6.9 Representative example of HMM-based freshness grading. (a) Hidden path
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